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ANALYSIS OF DEVELOPING LAMINAR FLOW AND HEAT TRANSFER IN A TUBE FOR A GAS WITH VARIJABLE PROPERTIES

by Robert G. Deissler and Alden F. Presler

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio

ABSTRACT

Laminar tube flow and heat transfer for helium gas are analyzed numerically by using the compressible
Navier-Stokes, energy, and continuity equations in finite difference form. Both radial and axial property
variations are considered. The radial as well as the axial velocity are retained in the equations; the
only assumptions made in the equations are the usual boundary-layer assumptions. The heat flux at the wall
and the initial velocity and temperature profiles are taken to be uniform. The effects of both heat flux
and Mach number on the Nusselt number and friction correlations are obtained.

AUSZUG

Leminarstroming in einer ROhre und WHrmellbertrsgung fir Heliumgas wurden mit Hilfe der kompressiblen
Formel von Navier-Stokes und der Energie- und Kontinuitatsformeln in endlicher Differenzform numerisch
analysiert. Abweichungen der radialen und axialen Eigenschaften werden in Betracht gezogen. Sowohl die
radiale wie die axiale Geschwindigkeit sind in die Gleichungen eingesetzt und nur die {iblichen Grenzschicht~

annahmen sind in den Gleichungen gemacht

-temperaturprofile sind als gleichmassig angenommen.

Der Warmestrom an der Wand und die Ausgangsgeschwindigkeit und
Der Einfluss des Warmestroms und der Machzahl auf die

Nusseltzahl und die Reibungsbeziehungen werden erhalten.

AHHOTALIMA

YrcJeBHHM CHOCO60M IJA TeJud HCCIeNYOTCA JaMUHADHHH NOTOK B TpybKe M Temaomepenava
IpUMEHAA ypaBHeHuA HaBoe-CTOKCA, DHEPTMHM M HEPA3PHBHOCTH NJIA CKUMAEMOTO rasa B BHIE KOHeU—
HHX pasHocTeit. PaccMaTpuBanTCA KAk pajdalJbHHe TAK ¥ OCEBHE IepeMeHHbHe CBOHCTBAa; B ypaB-
HEHUAX CHeJaHH TOJABKO OCHUHHE NPEeLUOJOXKSHUA OTHOCHTEJNBHO NOTPAHUUHOTO cilod. [Ipennonaraerca
PABHOMEDHOCTH NIOTOKA TElNa Hg CTeHKe M Opofunell HAualbHONH CKOPOCTH M TEMIEDATYPH. [IOAyUEHB!
BAMAHMA NIOTOKA TelNa M uucaa Maxa Ha uucio HycceabTa W Ha KOppelAlUM TpeHUA.

INTRODUCTION

The laminar flow and heat transfer in the en-
trance regions of passages have been extensively
analyzed by a number of workers. The constant-
property Graetz problem [1 and 2], 1 in vhich the
velocity profile is assumed fully developed, and
where the temperature profile is calculated as a
function of distance from the entrance, has been
exhaustively explored. Whenever the development of
the velocity profile has been comsidercd, integral
methods have generally been employed [3], or the
nonlinear acceleration terms in the equations of
motion have been approximated by linear terms
[4 and 5]. A numerical solution for constant-
property plane-Poiseuille flow in which the non-
linear terms are retained is given in [6]. Numeri-
cal solutions for heat transfer with developing
velocity and temperature profiles in a tube are
given in [7] and [8]. In those analyses the veloc-
ity profiles are obtained from the linearized solu-
tion in [4].

For the case of laminar flow with variable
fluid properties, only a limited amount of work has
been done. An analysis in [9] considers flow in a
tube far from the entrance. Radiel variations of
fluid properties are considered, but axial varia-
tions are neglected. The effects of radial veloc-
ity are also neglected. In [10] various radial
flows are arbitrarily introduced into an analysis
in an attempt to study the effects of radial flow
on heat transfer and friction with variable prop-

II\I b i

umbers in brackets denote references.

erties. A comparison of the results with the
experiments in [10] and [11] indicates that the
radial flow could have an important effect. Addi-
tional partial solutions, which study effects of
variable fluid properties, are given in [12],
[13], and [14].

In order to eliminate, as far as possible,
the dubious assumptions made in previous analyses,
the equations of motion and energy for a gas with
variable properties are herein solved numerically.
Only the usual boundary-layer assumptions are
made. Those assumptions have been made in nearly
all of the analyses for flow and heat transfer
in tubes, and they generally give good results,
except in the region very close to the entrance.
The pertinent equations and their solutions for
uniform initial velocity and temperature profiles
in a tube with uniform wall heating will be con-
sidered in the next section.

ANALYSTS

The equations of motion, energy, and state for
a perfect gas, for a steady-state, axially-
symmetric flow, without swirl and body forces, can
be written as [15]

TMX-52174
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dvy ovy 3 ) dvy, 2 1 ovy, 13 ov. dv
D(Vr§+"z§)='£'+$2“§;+C‘z“);yr”r*a‘; M (o Rl @)

3 vy OV, Egavl' Vp
* 3 (az *3;) * r(y'? (2)

r or T =© (3)

and
P = RT (5) - =
N 03T
If it is assumed that the boundary layer thickness VpE=-— tlo —E-(~vZ 15} .BE.H,Z 171 @ (8)
& << z, then Equations (1), (2) and (4) reduce to I/ dz T Oz T 3z)°
Qv dv 3 dv where the axial density gradient in Equation (3)
24 ~2) - . 92 + 19 -z 3 was eliminated by differentiating the equation of
o\Vr vz ()
or dz dz r Or or state (Eq. (5)). The subscript i refers to values
at the tube inlet. The fact that v, = 0 at the
and tube axis was used in obtaining Equatlon (8).
2 To obtain an expression for the axial pressure
oc (v E_,_V oL - Sp _x 2 Xr or A (7) gradient, which is independent of r, Equation (6)
P\ror 2oz 29z T O or at the wall is evaluated:
where, from Equation (2), p and Op/dz are essen- d _ 1[d av
tially independent of r. The boundary-layer as- Fyiialiogy Pyt 8 (9)
sumption should be valid except, possibly, for the z w[oF T

region very close to the entrance.

An expression for the radial velocity Ve cen
be obtained by integrating the continuity Equa-
tion (3) as follows:

By using Equations (5), (8), (7), (8), and (9),
the final set of equations to be solved can be writ-
ten in dimensionless form as

1 ] z'
&g Nz a-gmr OV [ |—1 - ot ovy e 2 o) a2 Vs éL—ldE
Azt dz! (l_YMP)Br‘/O l_l-q_T' dz! 4 (l_qu')Z ' ii1-qm sz

M ' me 82' ov! , dv!
e1-q'T dp' ., 2(1 -g'T) (u.r. Vz+u-_£+rvi'__f) (10)

oz' - 2 '
Vil - erp‘) Re, (1 - vMp Wvir

i 2y a1 - o ‘
Al:z 31'_: = 1-g'T il'_: 5[(1 - YMiP ) ?& . qQ Vz(l YMiIZJ ) lf_'_ i YME vz’ ' %p_%]dg
Oz dz 1 - YMiZP')I"Vé or 1-q'T 2z (1 - q'7') 32" 1 o LT 32
2 1 1
+(T-1)Mi(l-q’l‘) %!, 2 1-gqg'T! 6{'1‘ §—T2+k'§-‘r—'—+r Bk‘gfl‘_')
1 n -
q.cr.)(l -TMiZP') dz Re,Pr. (3 . TMEP' )CI.)V;I.. or! or or' or'

2 \2
Z(T - l)Mi ul(l - qul) (ﬁ) (11)
a'Resep (1 - YMip')V;
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. 3%} v dv!
sptoop' 2. V2, e, Ve
szt dz'  Re (“ ‘ 8r'2+u o T A (12)
w

In order to compare results with those in [9], the
following values are used:

ut o= ko= (3> = (1 -qT)°%  (13)
Ty
ct =1, (14a)
p
and
= 0.667 (l4b)

These properties also correspond closely to those
for helium, so that these results should apply to
that gas.

To carry out the numerical solution the de-
rivatives in Equations (10), (11), and (12) are
replaced by their finite difference forms. For
instance, ov]/dr' is replaced by

Vi e~V ,r_Ar)/ZAr , and aav 1Jr2 vy

Vi,r-aAr - &Y z,r vz,r'l-Ar) » In the
problem considered here, the velocity and temper-
ature profiles are uniform at the tube inlet, and
the heat flux at the tube wall is also uniform.
Thus, the initial conditions can be written in di-
mensionless form as follows: At the tube inlet
(z'=0), T* =0, p' = O, and v} = 1 (except at

= 1, where v] = 0). For the boundary condi-
tions at the wall (r' =1), vl =0 and

AM'/or' = -1/k'. At the tube axis (r' = 0),
dvy/dr' = 0 and I'/dr' = 0. Since the wall heat
flux is uniform, the parameter q' is set equal to
a constant for each numerical run.

With the foregoing initial and boundary con-
ditions, Equations (10}, (11), (12), (13), and (14)
can be used in finite difference form to calculate

z, T', and p' at various increments of z'.
The values of ov//dz' and JT'/dz' occurring on

the right sides of the equations are generally not
known at z' = 0, but they may be found by itera-
tion by assuming values for them and then calcu-
lating new values from the equations. For later
Az steps, values of vy /dz' and OT'/dz' from
the preceding step can be substituted in the right
sides of the equations. These might again be iter-
ated, although it may not be necessary for suffi-
ciently small values of Az. The calculations can
also be carried out by a matrix method which avoids
the use of iteration. In the calculations, the
ratio of Az' to (Ar')2 must be kept sufficiently
small to ensure stebility of the solution. The
quantity Ar' must also be made small enough so
that cutting it in half does not change the results
appreciably. The calculations were carried out on
a high speed digital computing machine. With the
dimensionless velocity and temperature profiles,

as well as the pressure, calculated as functions
of =z', R, M;, and gq', the following integral
quantities can be obtained:

1
vt o= 2/ v'r! dr' (15)
Z,b 0 z

L var'
Tt ————— 4r'
/ 1-q'T

16
- (16)
D[
o 1 - qIT'
1
f T, —— ar!
- ' 1
oo ‘1-a? (17)
t,b fl vir'
drl
0 l - qlT'
where
Mg
Pt L1 7E2 (18)
t 2 q' 2z
2
Rey = ovzpfes (- vMptIvy e (19)
' 0.68
" (1-a)A - a'y)
Nu, = T 2 T z (20)
k! (T umi0-68 .
b t,b Ttyw (1 q’l‘) (tb Tt,w)
a(1l - 1 ')T'
fT b= ( Zq T 2 (21)
)
(1- rM]._p')vé’bRe:,L
where
! av)
o= =E] = (- qrm)088( 2 (22)
W\or! Br'
w
,r' Tl
= = 23
Sb v! bp{) ! (l - t ')O 68 ( )
Zs z,b a Tb
e o dptfazt (L - a'®) dpt/ae (24)
gb 1412 - B 1 12
4 Zgbvz,_b 2(1 ™D )vz,b
R (25)

P
“p,b 2010ty 2
p‘sz,b

Results calculated from these equations will be
given in the next section.

RESULTS AND DISCUSSION

Friction factor curves are presented in Fig-
ures 1, 2, and 3, and corresponding Nusselt number
results for heat transfer are given in Figure 4.
Friction factors based on wall shear stress, pres-
sure gradient, and pressure drop are shown. They
are multiplied by Rey, since friction factor times
Rey, 1is not a function of Rep, but is a function
only of (z/D)/Rey, q', Mj, and Prj. The Nusselt
number Nu, is also a function only of those vari-
ables. In the uniform property case, friction pa-
rameters and Nusselt numbers approach constant
values for large distances from the entrance.

In Figures 1 to 3, the calculated friction
factor curves for uniform properties
(@" = M; = 0) are compared with the linearized
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analyses from [4] and (5], and with the experi-
mental data from [16]. These calculated curves
are in substantial agreement with the data and the
linearized analyses, except for the linearized
results for shear stress shown in Figure 1. The
latter apparently deviate because the shear stress
is very sensitive to the effect of the linearizing
approximation.

In Figure 4, the calculated Nusselt number
curves for uniform properties are compared with the
analysis from [8]. The main difference between the
present analysis and that in [8] is that the latter
is based on the linearized velocity profiles from
[4], whereas the present analysis does not use a
linearizing approximation. The comparison shows
that the effect of the linearizing approximation
on the Nusselt number plot is small. Results from
(8] for v, = 0 (not shown) are also in good agree-
ment with those calculated here, although the orig-
inal calculations for Vv, = O from [7] showed
somewhat more devistion because of the larger
increment size used there.

Curves for moderately high heat transfer to
the gas (q' = 13.5) and for M; = O and M; = 0.06
are also shown in Figures 1 to 4. For the runs
shown, the maximum temperature ratio Tw/Tb oceurs
in the entrance region and is about 2.7. At the
point where Nub is a minimum, Tw/fl.‘b is about
1.5. The effect of the heat flux on the friction
factor is much greater than that on the Nusselt
mumber . Values of the friction parameters are,
in general, increased considerably by the heat
transfer to the gas. On the other hand, the
Nusselt numbers in the entrance region are in-
creased but slightly, and part of that increase
may be due to the slightly lower Prandtl number
used for the runs in which q' > 0. The fact that
the effect of varisble properties on the bulk
Nusselt number correlation is small in the entrance
region is in agreement with the experimental find-
ing in [11]. Farther down the tube the values of
Nusselt number dip below the fully developed value
for uniform properties. Finally, still farther
down the tube, the Nusselt numbers for q' > 0
and M; = O again approach the uniform property
value of 48/11. This happens inasmuch as the
absolute temperature ratio TW/Tb approaches 1
because of the increase in temperature level along
the tube, even though the heat flux is uniform.
Thus, radially uniform flnid properties are ap-
proached far down the tube, although the proper-
ties still vary axially. The values of f-r,bReb
also approach the fully developed uniform property
value at large values of (z/D)/Re-D. Therefore, the
axial variation of properties does not seem to
affect the values of Nwy, and of fr,bReb in the
region far from the entrance. The behavior of
fg,bRe‘b and fj pRep at large distances from the

entrance is more complicated because those quanti-
ties include pressure changes due to momentum
effects.

For Mj >0 and q' >0 both the Nusselt
numbers (Fig. 4) and shear-stress friction factors
(Fig. 1) increase rapidly near the end of the run.
This occurs because the local Mach number approach-
es 1 and choking takes place. These large in-
creases in Nusselt number and shear stress are
evidently associated with the large accelerations
that occur near a Mach number of 1.

Numerical calculations of Nusselt number,
such as those given in Figure 4, might be used in
conjunction with measurements of heat-transfer
coefficients in tubes to obtain the thermal con-

ductivities of gases at high temperatures. The
use of such calculations would allow measurements
at reasonably high heat fluxes, so that greater
accuracy could be obtained than would be possible
if it were necessary to keep the heat fluxes small
enough to approximate uniform properties. An
advantage of this method of obtaining thermal
conductivities at high temperatures 1s that radi-
ation effects are small.

Velocity profiles which correspond to the
curves in Figures 1 to 4 for M; = 0.06 and
q' = 13.5 are plotted in Figure 5. At z = O
the profile is, of course, flat by assumption.
As z increases, the fluid near the wall accel~
erates because of the heat addition. This causes
a peak in the curve to develop away from the tube
axis. Farther down the tube the profile tends to
approach a fully developed parabolic shape. Then,
as a Mach number of 1 is approached, the profile
flattens because of the acceleration of the fluid
near the wall. This region of flattening corre-
sponds to the region of rising values of ¢ bReb
and Ny, in Figures 1 and 4. T

Figures 6 and 7 compare the present zero Mach
number results for the guasi-developed region with
those in [9], where the effect of radial variation
of properties is considered, but axial effects and
radial flow are neglected. Values of Nu, and of
the friction parameter By = f-r,bReb are plotted

against temperature ratio Tw/Tb for heat addition
to the gas. The region of quasi-developed flow for
the present results was somewhat arbitrarily taken
as the region beyond the minimum in the Nusselt
number curves.

The Nusselt number results from [9] are in
reasonably good agreement with the present results,
which decrease slowly with inereasing values of
Tw/Tb' In the case of the friction parameter,
although both the present results and those from
[9] show an increase in ¥, with increasing
Ty/Tp, the increases shown by the present analysis
are considerably greater. Experimental data from
[10] also showed increases in friction considerably
greater than those predicted in [9]. The conclu-
sion to be drawn, then, is that axial changes and
radial flow are not important as far as the quasi-
developed heat-transfer correlation is concerned,
but that those factors can have a considersble
effect on the friction.

SUMMARY OF RESULTS

The calculated heat-transfer and pressure-drop
results for uniform properties agreed reasonably
well with analyses which make use of linearizing
approximations in the momentum equation. ILinear-
ized shear-stress results, however, showed devia-
tion from the present calculations, apparently
because the shear stress is very sensitive to the
effect of the linearizing approximation. Calcu-
lated pressure-gradient and pressure-drop results
for uniform properties were in satisfactory agree-
ment with aveilable experimental data.

The variable-property friction-factor curves
with properties evaluated at the fluid bulk temper-
ature showed that the level of the curves can be
increased considerably by heat transfer to the gas.
On the other hand, the Nusselt number correlation
based@ on the bulk temperature was affected bdut
slightly by varisble properties in the entrance
region. Farther down the tube, the Nusselt numbers
with large heat transfer to the gas dropped below
the fully developed uniform property value. How-
ever, when the Mach number approached 1 near the
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end of the tube, both the Nusselt number and the
friction parameter increased sharply.

The numerical method used here for calcu-
lating Nusselt numbers in variable-property streams
may be useful in cbtaining thermal conductivities
of gases at high temperatures by measurement of
heat-transfer coefficients.

The results calculated here for the quasi-
developed region and a Mach number of zero were
compared with those from a previous analysis
(NACA TN-2410) which considered the radial varia-
tion of properties but neglected axial effects and
radial flow. The comparison showed that axial
effects and radial flow have but a slight effect
on the heat transfer results, but they have a
marked effect on the shear stress,

SYMBOLS

D tube diameter

cp specific heat at constant pressure

P /%, 1

ey specific heat at constant volume

f-r,b ZTw/(pb"i,b) friction factor based on wall
shear stress with density evaluated at T

1 2 PN

fob -é-[dp/d(z/D)]/(pbvz,b) friction factor based
on pressure gradient with density evalu-
ated at Ty

0 (1/2)(p; - p)/[(z/D)pbvg’bl friction factor

based on pressure drop with density evalu-

ated at T
h /Ty, - Ty p), heat transfer coefficient
k thermal conductivity of gas
k' k/ky

M vy /VGRT)
Ny, h D/k, Nusselt number with conductivity

evaluated at Ty
P pressure

p' (py - P)/(pyvE 5)
Pry  cp,iui/k; Prandtl number at inlet
q heat transfer per unit area from wall to
fluid

q' ary/ (T5k;)

r distance from tube axis

Ty tube radius

r' r/r,
Rey PivVz,i D/u:~L inlet Reynolds number
R perfect gas constant
Rey PbVz,b D/up  local bulk Reynolds number
T absolute temperature

T (13 - )k /(ar,)

Ty bulk temperature

T, (T - )k, /(ar,), Equation (16)
Tt absolute total temperature

‘l", (Ti - Tt)ki/(qrw)

Tt b bulk total temperature

2

Té,b (T3 - Tt,b)ki/(qrw)’ Equation (17)
Vo radial velocity

v, axial velocity

Vz'. vz/vz,i

z axial distance from tube inlet

z' z/I‘w
T cp/cv

oy Trw/(VZ’bub), shear stress parameter,
Equation (23)

second viscosity coefficient (Q =0 for
monatomic gas)

viscosity

U/Hi

density

Q/Di

wall shear stress

Trw/(vz,i“i)

fal

" DDETE

Subscripts:

b bulk, evaluated at bulk or mixed mean
temperature

i at tube inlet

W at wall

Superscripts:

' on dimensionless quantity
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Fig. 1. - Friction parameter based on local wall shear stress plotted against dimensionless distance from tube
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Fig. 2. - Friction parameter based on local pressure gradient plotted against dimensionless distance from tube
entrance.
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Nusselt number, Nuy, = hDfk,

2p; - p)Dz

Average friction factor based on overall pressure drop

—— Present analysis, ¢' = M;=0
——=—-= Present analysis, ¢' = 13.5, M; = 02and 0. 06, Pr; = 0. 667
===== Analysis, Ref.[4],q" =M; =0
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—=---— Experimental, Ref. 16}, ¢' =0
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Fig. 3. - Friction parameter based on pressure drop plotted against dimensionless dis-
tance from tube entrance.
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Fig. 4 - Local Nusselt number plotted against dimensionless distance from tube entrance.
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Fig. 5. - Curves showing development of velocity profile.
q =13.5; M; = 0.06; Pr;=0.667. (Valuesof z/D are for
Rei =1500. )
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Fig. 6. - Effect of temperature ratio on Nusselt
number for quasi-developed flow (M; = 0).
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Fig. 7. - Effect of temperature ratio on friction
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