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ANALYSIS OF DENELOPING LAMINAR F L O W  AND HEAT TRANSFER I N  A TUEE FY)R A GAS W I T H  VARIABLE PROPERTIES 

by Robert G. Deissler and Alden F. F'resler 

L e w i s  Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio 

ABSTRACT 

Laminar tube flow and heat transfer f o r  helium gas a re  analyzed numerically by using the compressible 
Navier-Stokes, energy, and continuity equations in  f i n i t e  difference form. Both r ad ia l  and a x i a l  property 
variations a re  considered. 
only assumptions made i n  the  equations a re  the usualboundary-layer assumptions. 
and the  i n i t i a l  velocity and temperature prof i les  are taken t o  be uniform. 
and Mach number on the  Nusselt number and f r i c t ion  correlations a re  obtained. 

The r a d i a l  as  well as the a x i a l  velocity a re  retained in the  equations; the 
The heat f lux  a t  the wal l  

The e f fec ts  of both heat f lux  

AUSZU: 

LaminarstrEmung in  e iner  Rbhre und Wbne~bertragung fiir Heliumgas wurden m i t  Hilfe der kompressiblen 
Forme1 von Navier-Stokes und der Energie- und Kontinuitatsformeln i n  endlicher Differenzform numerisch 
analysiert .  
radiale wie die axiale Geschwindigkeit sind in  die Gleichungen eingesetzt  und nur die Gblichen Grenzschicht- 
annahmen sind i n  den Gleichungen gemacht. 
-temperaturprofile sind a l s  gleicbm&?sig angenommen. 
Nusseltzahl und d ie  Reibungsbeziehungen werden erhalten. 

Abweichungen der radialen und axialen Eigenschaften werden i n  Betracht gezogen. Sowohl d ie  

Der W&mestrom an der Wand und die Ausgangsgeschwindigkeit und 
Der Einfluss des Wknestroms und der Machzahl auf d ie  

INTRODUCTION 

The laminar flow and heat t ransfer  i n  the  en- 
trance regions of passages have been extensively 
analyzed by a number of workers. 
property Graetz problem [ 1  and 2 1 , l  i n  which the  
velocity prof i le  is assumed f u l l y  developed, and 
where the  temperature p ro f i l e  i s  calculated as a 
function of distance from the entrance, has been 
exhaustively explored. 
the  velocity p ro f i l e  has &en ioiisiderc-l, intsgrP1 
methods have generally been employed [31, or the  
nonlinear acceleration terms i n  the  equations of 
motion have been approximated by l i nea r  terms 
[ 4  and 51. 
property plane-Poiseuille flow i n  which the non- 
l i nea r  terms are  retained i s  given i n  [ 6 l .  
c a l  solutions fo r  heat t r ans fe r  with developing 
ve loc i ty  and temperature prof i les  i n  a tube a re  
given in  [71 and [SI. I n  those analyses the veloc- 
i t y  prof i les  a re  obtained from the l inearized solu- 
t i on  i n  [41. 

f l u i d  properties, only a limited amount of work has  
been done. An analysis i n  [9] considers f l o w  i n  a 
tube f a r  from the  entrance. Radial variations of 
f l u i d  properties a re  considered, but ax ia l  varia- 
t i ons  a re  neglected. The e f fec ts  of radial veloc- 
i t y  a re  a l so  neglected. 
flows are  a r b i t r a r i l y  introduced in to  an analysis 
i n  an attempt t o  study the  e f fec ts  of rad ia l  flow 
on heat t r ans fe r  and f r i c t ion  with variable prop- 

The constant- 

Whenever the  development of 

A numerical solution f o r  constant- 

Numeri- 

For the  case of laminar f l o w  with variable 

In  [ lo ]  various radial 

e r t i e s .  A comparison of the r e su l t s  with the  
experiments i n  [ l o ]  and [111 indicates t ha t  the  
rad ia l  flow could have an important e f fec t .  Addi- 
t iona l  pa r t i a l  solutions,  which study ef fec ts  of 
variable f l u i d  properties,  are given i n  [E], 
[131, and [141. 

the dubious assumptions made i n  previous analyses, 
the equations of motion and energy f o r  a gas with 
variable properties a re  herein solved numerically. 
C!?Ly the ?~.qi.i.nl hmmdary-layer assumptions a re  
made. Those assumptions have been made i n  nearly 
all of the analyses fo r  flow and heat t ransfer  
i n  tubes, and they generally give good resu l t s ,  
except i n  the  region very close t o  the  entrance. 
The pertinent equations and t h e i r  solutions fo r  
uniform i n i t i a l  velocity and temperature prof i les  
i n  a tube with uniform w a l l  heating w i l l  be con- 
sidered i n  the next section. 

In order t o  eliminate, as  f a r  as possible, 

ANALYSIS 

The equations of motion, e n e r a ,  and s t a t e  f o r  
a perfect gas, fo r  a steady-state, axially- 
symmetric flow, without s w i r l  and body forces, can 
be writ ten as [151 

'Numbers i n  brackets denote references TMX-52174 
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and 

P = PRT ( 5 )  

I f  it i s  assumed that the  boundary layer thickness 
S << z, then Equations (l), ( 2 )  and (4) reduce t o  

and 

where, f r m  Equation (21, p and ap/az a re  essen- 
t i a l l y  independent of I'. The boundary-layer as- 
sumption should be valid except, possibly, fo r  the 
region very close t o  the entrance. 

be obtained by integrating the  continuity Equa- 
t i o n  ( 3 )  as follows: 

A n  expression fo r  the  radial velocity vr can 

where the  axial density gradient i n  Equation ( 3 )  
w a s  eliminated by d i f fe ren t ia t ing  the  equation of 
s t a t e  (Eq. ( 5 ) ) .  The subscript i re fe r s  t o  values 
at the  tube i n l e t .  The f ac t  t ha t  vr = 0 at the  
tube axis w a s  used i n  obtaining Equation ( 8 ) .  

gradient, which is  independent of 
at  the  w a l l  i s  evaluated: 

To obtain an expression fo r  t he  axial  pressure 
r, Equation ( 6 )  

By using Equations (51, (61, (71, (81, and (91, 
the  f i n a l  s e t  of equations t o  be solved can be writ- 
t en  i n  dimensionless form as 
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I n  order t o  compare r e su l t s  with 
following values are used: 

I 

those i n  [91 , t he  

0.68 
p' = k'  = (t) = (1 - 

c '  = 1, 
P 

and 

Pri = 0.667 

These properties a l so  correspond closely t o  those 
for  helium, so tha t  these r e su l t s  should apply t o  
tha t  gas. 

r iva t ives  i n  Equations ( lo ) ,  (ll), and (12)  are 
replaced by t h e i r  f i n i t e  difference forms. For 
instance, b~/&'  is  replaced by 
(Vi,r* - V i J r & ) / & ' ,  and a q k / h t 2  by 

- EVAJr + v; , rw)(Ar ' )2 .  
problem considered here , the  velocity and temper- 
ature prof i les  are uniform at the tube in l e t ,  and 
the  heat f lux  at the  tube w a l l  i s  a l so  uniform. 
Thus, the  i n i t i a l  conditions can be wr i t ten  i n  d i -  
mensionless form as follows: A t  the  tube inlet 
( z '  = o ) ,  T '  = 0, p' = 0, and v i  = 1 (except at 
r '  = 1, where For the  boundary condi- 
t ions  at the  w a l l  ( r '  = l), v; = 0 
&'/&-I = -l/k'.  

= 0 and & I / & '  = 0. Since the  w a l l  heat 
f lux i s  uniform, the  parameter q '  i s  s e t  equal t o  
a constant for each numerical run. 

d i t ions ,  Equations (lo), (ll), (12 ) ,  (13), and ( 1 4 )  
can be used i n  f i n i t e  difference form t o  calculate 
v i ,  T', and p'  at various increments of z ' .  
The values of &;/&' and & ' /az '  occurring on 
the  r igh t  sides of the  equations a re  generally not 
known at 
t i o n  by assuming values fo r  them and then calcu- 
l a t i n g  new values f r o m  the  equations. For l a t e r  
AZ steps, yaLues of &Ngihz! &uai X',%Z' f r x  
the  preceding s tep  can be substi tuted i n  the right 
sides of t he  equations. These might again be i t e r -  
ated, although it may not be necessary f o r  su f f i -  
c ien t ly  small values of Az. The calculations can 
a l so  be carried out by a matrix method which avoids 
the  use of i t e r a t ion .  
r a t i o  of t o  (&' )2  must be kept sufficiently 
s a l  t o  ensure s t a b i l i t y  of t he  solution. 
quantity h' must also be made s m a l l  enough so 
that cutt ing it i n  half does not change the resu l t s  
appreciably. 
a high speed d i g i t a l  cmputing machine. 
dimensionless velocity and temperature prof i les ,  
as wel l  as the  pressure, Calculated as functions 
of z', R, Mi, and q ' ,  the  following in t eg ra l  
quant i t ies  can be obtained: 

To carry out t he  numerical solution the  de- 

In the  

v; = 0) .  
and 

A t  the  tube axis (r '  = 0), 

With the  foregoing i n i t i a l  and boundary con- 

z '  = 0, but they may be found by i t e r a -  

I n  the  calculations,  t he  

The 

The calculations were carried out on 
With the 

Ti = 

where - 

4;~; bRei (1 - yqp ' )v ;  2 bRei 
R% = - (19) 

0.68 

4(1 - q ' q ) T '  
fTJb = (1 - yMtp')v;FbRei 

where 

Results calculated f r m  these equations w i l l  be 
given i n  the  next section. 

RESULTS AND DISCUSSION 

Fr ic t ion  fac tor  curves are presented i n  Fig- 
ures 1, 2, and 3, and corresponding N u s s e l t  number 
r e su l t s  fo r  heat t ransfer  a re  given i n  Figure 4. 
Fr ic t ion  fac tors  based on w a l l  shear s t ress ,  pres- 
sure gradient, and pressure drop are shown. They 
are multiplied by 
R q ,  i s  not a function of R q ,  but is a function 
only of (z/D)/R%, q' ,  M i ,  and P r i .  The Nusselt 
number N% i s  a l s o  a function only of those var i -  
ables.  In  the  uniform property case, f r i c t ion  pa- 
rameters and Nusselt numbers approach constant 
values f o r  large distances f r m  the  entrance. 

factor curves for uniform properties 
(9 '  = Mi  = 0 )  are ccnnpared with the  l inearized 

R%, since f r i c t i o n  factor times 

In  Figures 1 t o  3, the  calculated f r i c t ion  
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analyses f r o m  [41 and [SI ,  and with the  experi- 
mental data f r o m  [16]. These calculated curves 
are i n  substantial  agreement with the  da ta  and the  
l inear ized  analyses, except fo r  the l inearized 
r e su l t s  f o r  shear s t r e s s  sham i n  Figure 1. 
l a t t e r  apparently deviate because the  shear stress 
i s  very sensit ive t o  the  e f fec t  of t he  l inear iz ing  
approximation. 

curves fo r  uniform properties are compared with the 
analysis from [e ] .  The main difference between the 
present analysis and that i n  [SI is  t h a t  t he  l a t t e r  
i s  based on the  l inear ized  velocity prof i les  f r o m  
[41 , whereas the  present analysis does not use a 
l inear iz ing  approximation. The comparison shows 
that the  e f fec t  of the  l inear iz ing  approximation 
on the  Nusselt number p lo t  i s  s m a l l .  Results from 
[81 fo r  vr = 0 (not sham)  are  a l so  i n  good agree- 
ment with those calculated here, although the  orig- 
i n a l  calculations fo r  vr = 0 from [71  showed 
somewhat more deviation because of t he  la rger  
increment s ize  used there.  

the  gas (q '  = 13.5) and fo r  Mi = 0 and Mi = 0.06 
a re  a l s o  sham i n  Figures 1 t o  4. 
sham, the  maximum temperature r a t i o  occurs 
i n  the  entrance region and is  about 2.7. 
point where N% i s  a minimum, Tw/lpb i s  about 
1.5. The ef fec t  of t he  heat f lux on the  f r i c t i o n  
fac tor  i s  much greater than t h a t  on the  Nusselt 
number. Values of t h e  f r i c t i o n  parameters axe, 
i n  general, increased considerably by the  heat 
t ransfer  t o  the gas. On the  other hand, the  
Nusselt numbers i n  the  entrance region a re  in-  
creased but  s l igh t ly ,  and par t  of t ha t  increase 
m a y  be due t o  the  s l i gh t ly  lower Prandtl  number 
used f o r  t he  runs i n  which 
the  e f fec t  of variable properties on the  bulk 
Nusselt number correlation is  small i n  the  entrance 
region i s  i n  agreement with the  experimental find- 
ing i n  1111. 
Nusselt number d ip  below the  fully developed value 
for  uniform properties. Finally, s t i l l  fa r ther  
down the  tube, the  Nusselt numbers fo r  
and = 0 again approach the  uniform property 
value of 48/11. 
absolute temperature r a t i o  q / T b  approaches 1 
because of t he  increase i n  temperature leve l  along 
t h e  tube, even though the  heat f lux  is uniform. 
Xi-= , r&id>y -L-L%= fl-nid properties are ap- 
proached far dam the  tube, although the  proper- 
t i e s  s t i l l  vary ax ia l ly .  The values of f,,bRq, 
also approach the M l y  developed uniform property 
value at la rge  values of (z/D)/Reb. 
a x i a l  var ia t ion  of properties does not seem t o  
a f f ec t  the  values of I?% and of f,,bR% i n  the 
region far frm t he  entrance. The behavior of 
fgJbR% and fp,bR% at large distances from the 
entrance is  more cmpl ica ted  because those quanti- 
t ies  include pressure changes due t o  momentum 
ef fec ts .  

numbers (Fig. 4) and shear-stress f r i c t ion  factors 
(Fig. 1 )  increase rapidly near t he  end of t h e  run. 
This occurs because the  loca l  Mach number approach- 
e s  1 and chokingtakes place. These la rge  in-  
creases i n  Nusselt number and shear s t r e s s  a re  
evidently associated with the  la rge  accelerations 
that occur near a Mach number of 1. 

Numerical calculations of Nusselt number, 
such as those given i n  Figure 4, m i g h t  be used in  
conjunction with measurements of heat-transfer 
coefficients i n  tubes t o  obtain the  thermal con- 

The 

In Figure 4, the  calculated Nusselt number 

Curves fo r  moderately high heat t ransfer  t o  

For the  runs 

A t  t he  

q' > 0. The f ac t  that 

Farther dam the  tube the  values of 

q' > 0 

This happens inasmuch as t he  

Therefore, the 

For M i  > 0 and q' > 0 both the  Nusselt 

duc t iv i t ies  of gases at high temperatures. The 
use of such calculations would a l l o w  measurements 
at  reasonably high heat fluxes, so  t ha t  greater 
accuracy could be obtained than would be possible 
i f  it were necessary t o  keep the  heat fluxes s m a l l  
enough t o  approximate uniform properties. An 
advantage of this method of obtaining thermal 
conductivit ies at high temperatures i s  that radi-  
a t ion  e f fec ts  a re  small. 

Velocity prof i les  which correspond t o  the  
curves i n  Figures 1 t o  4 fo r  = 0.06 and 
q' = 13.5 a re  plotted i n  Figure 5. A t  z = 0 
t h e  prof i le  is, of course, f l a t  by assumption. 
A s  z increases, the  f lu id  near t he  w a l l  accel- 
e ra tes  because of the  heat addition. This causes 
a peak i n  the  cu i i e  t o  develop away from t he  tube 
axis.  Farther dam the  tube the  prof i le  tends t o  
approach a f d l y  developed parabolic shape. 
as a Mach number of 1 is  approached, the  prof i le  
f l a t t e n s  because of t he  acceleration of the  f l u i d  
near t he  w a l l .  This region of f la t ten ing  corre- 

TJbR% 
sponds t o  the  region of r i s ing  values of f 
and N% i n  Figures 1 and 4. 

Figures 6 and 7 compare the  present zero Mach 
number r e su l t s  fo r  the  quasi-developed region with 
those i n  [91 , where the e f fec t  of radial var ia t ion  
of properties i s  considered, but ax ia l  e f fec ts  and 
r ad ia l  flow a re  neglected. Values of N q ,  and of 
t he  f r i c t ion  parameter Sb = f T J b R q ,  a re  plotted 
against  temperature r a t i o  TW/q f o r  heat addition 
t o  the  gas. The region of quasi-developed flow fo r  
the  present r e su l t s  was  somewhat a r b i t r a r i l y  taken 
as the region beyond the  m i n i m u m  i n  the  Nusselt 
number curves. 

The Nusselt number r e su l t s  from [91 are i n  
reasonably good agreement with the  present resu l t s ,  
which decrease slowly with increasing values of 
TWITb. 
although both the  present r e su l t s  and those from 
[91 show an increase i n  Sb with increasing 
T,/'Q,, the  increases shown by the  present analysis 
a re  considerably greater.  Experimental data from 
[lo] a l so  showed increases i n  f r i c t ion  considerably 
greater than those predicted i n  [91. The conclu- 
sion t o  be drawn, then, i s  tha t  ax ia l  changes and 
r ad ia l  flow are  not important as far as the  quasi- 
developed heat-transfer correlation is  concerned, 
but t ha t  those fac tors  can have a considerable 
e f fec t  on the  f r i c t ion .  

Then, 

In the  case of the  f r i c t ion  parameter, 

The calculated heat-transfer and pressure-drop 
r e su l t s  fo r  uniform properties agreed reasonably 
well with analyses which make use of l inear iz ing  
approximations i n  the  momentum equation. Linear- 
ized shear-stress results, however, showed devia- 
t i on  fran t he  present calculations, apparently 
because the  shear s t r e s s  i s  very sens i t ive  t o  the  
e f fec t  of t he  l inear iz ing  approximation. Calcu- 
l a t ed  pressure-gradient and pressure-drop r e su l t s  
fo r  uniform properties were i n  sa t i s fac tory  agree- 
ment with available experimental data. 

with properties evaluated at the  f l u i d  bulk temper- 
ature showed that the leve l  of t he  curves can be 
increased considerably by heat t ransfer  t o  the gas. 
On the  other hand, the  Nusselt number correlation 
based on the  bulk temperature was  affected but 
s l igh t ly  by variable properties i n  the  entrance 
region. 
with la rge  heat t ransfer  t o  the  gas dropped below 
the  fu l ly  developed uniform property value. How- 
ever, when the  Mach number approached l near the  

The variable-property f r ic t ion- fac tor  curves 

Farther dam the  tube, t he  Nusselt numbers 
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end of the tube, both the  Nusselt number and the  
f r i c t ion  parameter increased sharply. 

The numerical method used here for calcu- 
l a t i n g  Nusselt numbers i n  variable-property streams 
may be useful i n  obtaining thermal conductivities 
of gases at  high temperatures by measurement of 
heat-transfer coefficients.  

The r e su l t s  calculated here for  the quasi- 
developed region and a Mach number of zero were 
compared with those from a previous analysis 
(NACA TN-2410) which considered the rad ia l  varia- 
t i o n  of properties but neglected ax ia l  e f fec ts  and 
r ad ia l  flow. 
e f f ec t s  and rad ia l  flow have but a s l igh t  e f fec t  
on the  heat t ransfer  resu l t s ,  but they have a 
marked ef fec t  on the  shear s t ress .  

The comparison showed that ax ia l  

SYMBOLS 

D 
CP 
C '  P 
CV 
f 

T,b 

fgJb 

%,b 

h 
k 
k '  

Mi 

P 

Pri 
9 

P '  

9' 
r 
T W  

rl 

Rei 
R 

T 
T' 
Tb 

R% 

Td 
Tt 

Tt,b 
,b 

"r 
VZ 

"k 
Z 

2 '  

r 

tube diameter 
specific heat at constant pressure 

cp/cp, i 
specific heat at constant volume 
2Q/(pbv:,b) f r i c t ion  factor based on w a l l  

shear s t r e s s ,w i th  density evaluated at lj, 
-Z[dp/d(z/D)l/(qv~,b) 1 f'riction factor based 

on pressure gradient with density evalu- 
ated at % 

(1/2) ( p i  - p)/l (z/D)pbvg bl f r i c t i o n  factor 
based on pressure drop'with density evalu- 
ated at Tb 

q / (TtJw - 'ItJb), heat t ransfer  coefficient 
thermal conductivity of gas 
k/ki - 

vz ,<I- 
h D/kb Nusselt number with conductivity 

evaluated at % 
pressure 

cpJ ip i /k i  Prandtl  number at i n l e t  
heat t ransfer  per un i t  area from w a l l  t o  

(Pi - P)/(Piv:,i) 

f l u id  
qrw/(Tiq)  

r/rw 

distance from tube axis 
tube radius 

pivz,i  D/pi i n l e t  Reynolds number 
perfect as constant 

absolute temperature 

bulk temperature 
(Ti - Tb)ki/(qrw), Equation (16) 
absolute t o t a l  temperature 

bulk t o t a l  temperature 

PbVz,b D$pb loca l  bulk Reynolds number 

( T i  - T)%/ (vW)  

(Ti - Tt)ki/(vw) 

(Ti - Tt,b)ki/(qrw)j Equation ( 1 7 )  
r a d i a l  ve loc i ty  
ax ia l  velocity 

vz/vz, i 
ax ia l  distance from tube in l e t  

mw/(vZ,bpb) , shear s t r e s s  parameter, 

second viscosity coefficient ( 5  = 0 

viscos i ty  

density 

w a l l  shear s t r e s s  

Equation (23) 

monatomic gas) 
for 

F l p i  

p / P i  

vw/ (VZJPi ) 

Subscripts : 

b bulk, evaluated at bulk or  mixed mean 
temperature 

i at tube i n l e t  
W at  w a l l  

Superscripts: 

I on dimensionless quantity 
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Fig. 1. - Friction parameter based o n  local wall shear stress plotted against dimensionless distance from tube 
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