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ABSTRACT

As a step towards a better understanding of turbulent liquid-metal
heat transfer in rectangular ducts with heat generation in the fluid
stream, an analysis is performed for forced-convection heat transfer to
slug flow in rectangular channels with aspect ratios from 1 to = and with
heat sources in the fluid. The channel walls are uniformly heated, and
the heat flux on the short sides is considered an arbitrary fraction or
multiple of the heat flux on the broad sides. The analysis is based on
the additional assumptions thatv(;) heat transport by eddy conduction is
negligible compared with molecular conduction, (2) internal heat gener-
ation is spatially uniform, and (3) fluid properties are invariant with
temperature.

The temperature distributions are determined by utilizing the method
of superposition, and the required eigenvalues and constants are deter-
mined analytically. The results obtained apply in the thermal entrance
region of the channel as well as far downstream from the entrance.

The effects of (1) the ratio which determines the relative role of
internal heat generation to that of wall heat transfer, (2) specified
aspect ratio, and (3) specified heat fluxes around the channel periphery
on temperature distributions are investigated. Numerical results for
wall temperatures and bulk-mean fluid temperatures are presented graph-
ically. The solutions point out the locations of maximum temperature.

The results are useful in estimating local heat-transfer characteris-
tics in turbulent heat-generating liquid metal flow in rectangular ducts
when the Prandtl and Reynolds moduli are low.

INTRODGCTION
Recent technological developments in space power generation have
stimulated interest in the problem of forced-convection heat transfer to

liquid metal flow in passages with internal heat generation in the fluid
stream. This system has applications, for example, in the design of
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liguid metal-fuel reactors, electromagnetic pumps and flowmeters, and
liquid metal MHD generators. The fluid in these devices will be heated
by radiocactive fission products or by an electric current flowing through
the fluid. A factor of importance for the proper operation of these de-
vices is maintaining a satisfactory temperature distribution along the
passage walls. The designer, therefore, must be able to compute the
temperature distribution along the walls and to know how much heat must
be removed to cool the walls to prevent temperatures from exceeding de-
sign limits. The problem involves studying liquid-metal duct flow with
combined internal heat sources and wall heat transfer. Turbulent flows
are very often encountered in practice, and 1t is this flow regime which
ls of concern here.

This investigation is concerned with hydrodynamically developed tur-
bulent flow of a liquid metal in rectangular ducts with aspect ratios from
1 to » and with uniform internal heat generation. The channel walls are
considered uniformly heated, but the heat flux on the short sides of the
channel 1s an arbitrary fraction or multiple of the heat flux on the long
sides. Such a heat transfer situation, for example, may be the result
of unwanted heat leakage or addition through insulation.

Attention is focused here on the rectangular duct because of its in-
creasing use in the applications mentioned. Within the knowledge of the
author, the experimental and analytical studies of turbulent liquid-metal
duct flows with internal heat generation have been confined to elementary
geometries such as the circular tube (refs. 1 to 3, and 5) and the parallel-
plate channel (refs. 4 and 5). In contrast to this moderate amount of
information, turbulent-flow heat transfer to a heat-generating liquid metal
in a rectangular duct has apparently received little analytical and no
experimental work. A few studies related to the problem considered in the
present investigation are noted. In the absence of internal heat genera-
tion in the fluid, there have been developed solutions which approximate
situations which might occur with liquid metals in turbulent flow through
rectangular ducts. Fully developed slug-flow Nusselt numbers and wall-
temperature distributions have been presented in references 6 to 8. 1In
these references, the solution of the problem was obtained by assuming,
in addition to a uniform velocity throughout the duct, that turbulent eddy-
ing does not contribute to conduction of heat within the fluid. The results
pertain to systems characterized by low Reynolds and Prandtl moduli and to
the portion of reaetangular duct beyond the thermal entrance region. In
the discussion of reference 9, Hoagland discusses work done on the thermal
entrance region for laminar slug flow in rectangular ducts, and reports
some numerical results. Reference 10 has examined forced-convection heat
transfer to laminar slug flow in a rectangular channel for the boundary
condition of a duct wall temperature both peripherally and axially uniform.
This analysis was carried out under the restriction of no internal heat
sources.
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It is the purpose of this investigation to study forced-convection
heat transfer in a heat-generating liquid metal flowing in a rectangular
channel where heating occurs on all four walls. The uniform heat flux on
the short walls 1s assumed an arbitrary fraction or multiple of the flux
on the broad walls. For the sake of completeness, the converse condition
is also considered; namely, that the heat flux on the broad walls is any
fraction or multiple of the flux on the short walls. Aspect ratios from
1 to = are considered for the rectangular channel, and the aim of the
following analysis is the determination of the axial and peripheral
temperature distribution and heat-transfer characteristics in the channel.
The findings of the analysis should be applicable along the entire length
of the duects, that is, in thermal entrance as well as fully developed
regions.

The present very limited knowledge of turbulent liquid-metal flow and
eddy-diffusivity-variation in noncircular passages make theoretical pro-
gress very unlikely without appeal to simplified models. It does not seem
likely, moreover, that any single model (for which a mathematical analysis
is feasible) will prove adequate for all Reynolds and Prandtl moduli.
Therefore, in order to gain some understanding of the complex problem of
turbulent liquid-metal flow in rectangular ducts with wall heat transfer
and internal heat sources, consideration will be given to a simplified but
representative model; this specific model not only retains many of the
physical characteristics of turbulent liquid metal duet flow, but also
leads to a tractable mathematical problem. This model should, therefore,
provide information on the temperature distribution and heat-transfer
characteristics for such flows in rectangular passages.

The idealized system assumed to approximate the forced convection
system under consideration is based on the following postulates: (1) The
established turbulent velocity profile is represented by a uniform
distribution; (2) the thermal eddy diffusivity is small compared to the
thermal molecular diffusivity and is neglected; (3) longitudinal heat
conduction is small compared to longitudinal convection and transverse
conduction and is neglected; and (4) the internal heat generation is spa-
tially uniform. It is pointed out (e.g., refs. 6 and 11) that the blunt-
nosed turbulent velocity distribution for a liquid metal system can be
represented satisfactorily by a uniform distribution. The second postulate
implies (ref 12) that the thermal solution pertains to systems character-
ised by low Prandtl moduli and low and intermediate Reynolds moduli. The
third postulate has been shown in reference 13 to introduce a negligible
error for Peclet moduli egual to, or greater than, approximately 100.
References 6 to 8 point out that turbulent-flow heat transfer to ligquild
metals may be estimated, at least in the absence of internal heat gener-
ation, by the use of the slug-flow solutions for molecular conduction.

In this investigation numerical results are provided for the case of
internal heat scurces which are uniform across the duct cross section and
along the duct length. The results can undoubtedly be extended, however,
to include sources which vary in the transverse and longitudinal directions
(refs. 14 and 15).
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ANATYSIS

The rectangular channel and its coordinate system are shown in fig-
ure l. Turbulent velocity is postulated to be fully established at x = 0.
The fluid temperature at the channel entrance is uniform across the sec-
tion at a value te. Within the channel a heating process takes place that
includes a uniform heat generation within the liquid metal and a uniform
heat transfer at the channel walls. The fluid is assumed to have constant
physical properties, and only steady-state heat transfer is investigated.

The established turbulent velocity profile is represented by

The differential equation describing convective heat transfer for the
idealized system takes the form

dt k [Py 3% Q

The linearity of the energy equation (2) suggests that the temperature
t(x,¥y,2) be written as the sum of two parts,

t(X;y,v z) = tQ(XJY’ z) + tq(XJy) z) (5)

in which t corresponds to the situation where a heat-generating fluid
with an entering temperature of zero flows through a channel with insulated
walls (qB = Qg = 0) and t corresponds to the situation where a nongener-
ating fluid entering at temperature te flows through a channel with heat
transfer ag and gg at the walls. The general solution can then be
obtained by superposition of the two simpler solutions in accordance with
equation (3), since if the individual temperature fields satisfy the linear
energy equation, then their sum does also.

At this stage, it is convenient to employ dimensionless coordinates;
the dimensionless equations and boundary conditions used to determine tq
and tq are then, respectively:

2 2
otg  9%q . N , G8?

aX, - ay|2 aZ,Z K (48')
atQ
Tl O at y' =0 and 1 (Insulated walls) (4v)
BtQ
S27 =0 at z' =0 and o (Insulated walls) (4c)



tQ(O,y',z‘) = 0 (Entrance condition) " (4d)

and

S I B " (5a)

ot gpa ~
9. B __ ‘7_7q at ©y' = O (Specified wall heat flux) (5b)
ot pe
3 - d at y' = 1 (Specified wall heat flux) “ (5c)
dy' 2k(o + a)
ot g2 ~ '
—3=-_ 8 - ____ 94 .4 ,1-0 (Specified wall heat flux)  (5d)
dz'! K 2k(o + a)
3t ~
d - q at z' = o (Specified wall heat flux) (se)

oz' 2k(o + a)

tq(O,y',z') = te (Entrance condition) (51)

These two problems will be treated separately and the results combined to
yleld information for the general situation. There is first considered
the problem of a heat-generating fluid flowlng in an insulated channel.
The problem of wall heat transfer to a nongenerating flowing fluid is then
considered.

Internal Heat Generation with Channel Insulated

The solution for t is found most easily by separate consideration
of the fully developed and entrance regions. There is first considered the
fully developed temperature which applies in the region downstream of the
entrance region. The tempersture tQ,d satisfies equation (4a)

dtq,a _ a,a  tga  qa?
= ¥ + (6)
aXI ay|2 azyz K




The fully developed situation for uniform internal heat generation is
characterized by the fact that

Jt
Qd _ _Q
ox pUcy (7

Equation (7) states that the temperature at all positions in the rectangular
cross section risesin the same linear fashion along the channel length.

For the fully developed situation the boundary condition at the entrance

of the channel (x =.0) need not be considered, since it is accounted for

by the entrance region solution, and equation (7) may be rephrased as

t
Sk T ) (8)

The function f(y',z') is found by inserting equation (8) into the differ-
ential equation (6). This leads to the equation for f(y',z') as

2 2
Z

The boundary conditions on f(y',z') are determined from the thermal
boundary conditions (egs. (4b) and (4c)), so that

%57 -0 at y' =0and 1 (10e)
%57 =0 at z' =0and o (10b)

Taking a solution of equation (9) in the fomm
fly',z'") = aoy‘z +oagy' + azz'2 + azz' + ay (11)

in which ag, aj, ... . are constants chosen to satisfy the boundary condi-
tions (egs. (10a) and (10b)), there 1s obtained the result

f(y',z') = a4 = constant (12a)

The constant can be evaluated from an overall energy balance on the fluid
for the length of channel from O to x:



Uty g0y'dz!
d
t = X = ° 0 v
Q,b = pUcy = ~ fo/‘l
Udytdz!
0 ¢

1/0 fl
= = tq,qdy'dz’
ag 0 0 )

This leads to the condition from equation (8):

o 1
y//* ~//. f(y',z')dy'dz' = 0 (12b)
0 Jo

from which the constant i1s evaluated. The resulting expression for
f(y',z') is found to be

£=0 (13)

The final expression for, the temperature distribution tQ,d is given by

tq,d
" =

which applies only in the fully developed region downstream of the thermal
entrance region.

To determine the temperatures in the entrance region, it is conven-
ient to introduce an entrance temperature ta 50 that

tQ = tQ,d + t-)é (15)

From the linearity of the energy equation (4a), it is found that ta
satisfies the equation

ot¥ azts azta
az‘ = ay|2 + 8212 (168.)

with the boundary conditions

ot
§—$ =0 at y'
¥

It

0 and 1 (16D)

ata
S5;7=0 at z' =0ando (16c)
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At x' = O, the condition is
tQ(O;y"Z')

or, by rearranging:

= 0= tQ,d(O:yTJZ')'+ t6<o;y')z')

* 1 1
tQ(Z,g/,z ) - -f(y',2') = 0 (164)
a~ /K

The solution of equation (16a) which will satisfy equations (16b) to

(16d) can be found by using

a product solution which leads to a separation

of variables. This will have the form

i=

in which the functions Y(y

o o o0 -x?.x'
Q _ 2, E ' ' ij
P /x = ain(y Yyz(z")e (17)

0 §=0

'Y and Z(z') satisfy the differential equations

acy

with the respective boundary conditions

dy
dy!

dz
dz'

and Az = ai + B

+afY = 0 (18a)
dy-‘z 1
2
d°Z
Y + BJ =0 (18b)
=0 at y'=0andl (18c)
=0 at z'=0and o (184)

Equations (18a) and (18b) with their boundary condi-

tions belong to tﬁe well-known class of differential equations of the
Sturm-Liouville type. Solutlons are possible only for discrete, though

infinite, sets of ai and
It may be seen readily

and the boundary conditions
tions Y(y') and Z(z') the
Y =

7 =

. jmz! :
cos(<—1]; J

Bj values.

that the differential equations (18a) and (18b)
are sitisfied if there are taken for the func-
expressions

0, 1, . . . (19a)

1!

cos{imy'); i

0, 1, . . . (191)



The elgenvalue xij is then given by the following expression:

2
My = ‘nfz(iz + L (19¢)

o

The coefficients 84 j in equation (17) are evaluated to satisfy the
entrance boundary condition equation (16d). This gives the condition

o0 0

) e tq(0,y',2")
aijcos(lny{)cos( 5 ) = @E/k
10 320 |
=0 (20a)
It follows immediately that
a;:. =0 for all i and j (20b)

1J
This result indicates that there is no entrance region solution; that is,
ty(Qaz/K) = 0.

Now that +t and t%¥ are known, they can be superposed as in
Q,d Q

equation (15) to obtain the solution that applies over the entire length
of the channel, which is simply

tq
Qaz/K

= x! (21)

The local bulk fluid temperature tQ,b(x') along the channel length, for
the uniform heat source, is given oy

- _9
tQ).b B pUC’p x

or

tQ,b(X’) =28 g (22)

Wall Heat Transfer Without Internal Sources

There 1s considered next the situation where there are prescribed
wall heat fluxes gg and qg = agg at the channel walls (fig. 1) but no

internal heat sources. The temperature tq(x',y',z') is the solution to
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equation (5). To obtain a solution for +t, that will apply over the entire
length of the channel, it 1s convenient toqbreak tq into two parts. The
first part is tq,d, the fully developed solution. The second part is té,
an entrance region solution that is added to th,d to obtain temperatures

in the region near the entrance of the channel. The temperature tg 1is
then given by

_ *
tg = tq,a * tq

From the linearity of the energy equation, tq,d and tg have to each
satisfy equations (5).

The fully developed solution is considered first. Far from the en-
trance of the rectangular channel the temperature rises linearly in the
axial direction because of the uniform, but unequal, heat inputs at the
channel walls. From a heat balance on the fluid, the temperature gradient
in the fully developed region must be

ot 3
9,4 _ 4 = constant (24)
ox pUcPazc

The temperature distribution is then given by the equation

t -t

g,d e_ 1 & Fly',z") (25)

— = N
a/k o

An equation for the function F(y',z') is found by substituting equation (25)
into equation (5a). This gives

2
O°F +—82F =1 (26a)

dy'2  3z'2 -

The boundary conditions on F(y',z') are determined from the thermsl boundary
conditions (egs. (5b) to (5e)) so that

BF_ g |-

ErA Coea B A

S (26Db)
F (o]

S T Eeroy YV <1

@EL = - —99 a4t ' =0

ozt 2{a + q)

5 (26¢)
P ac -

%" T e +o) 2 7 =0
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The solution of equation (25a) is taken in the form
Fly',z') = boy'2 + byy' + 'bgz'2 + bzz' + by (27

The constants bp, by, by, and Dbz can be found from the conditions given
by equations (26b) and (26c) and which yield

g : a
= b = - = b =-b
o 2o+ o)’ 1L bos B2 Ha + o) 2 %z

Hence equation (27) can be represented in the following form:

G .
F(y',z') = e o) [%'2 -y o+ % 212 agﬁ} + by X (28a)

The rempining constant by can be evaluated from an overall energy balance
on the fluid for the length of channel from O to x:

o} 1 ~
(tq,d - te)dy'dz' = ———g—g X
0 0 pUcpa

This leads to the condition from equation (25):

g 1
F(y',z')dy'dz' = 0 "~ (28b)
0 0

from which the constant is evaluated. The expression is then inserted
into equation (25) to give the final expression for the fully developed

temperature distribution:

+ -t
tq,a - e _ 1, asz-aZw%(“wﬂ (29a)

1 2
= = x' + oyl o+ =
a/K a 2(a + 0) [% y c

This can be rephrased in an equivalent form

tq,d - te

qBa K

= 2(1 + %)x' AL A I A % (1 + ao) (29b)

Equation (29b) applies only in the fully developed region.

To determine the temperatures in the thermal entrance region the
function té is needed. From the linearity of the energy equation, the

equation for t; is the same as equation (5a):
* 2, % 2. %
atq _ ) ty N ) tq
dx' 'l 2z

(30a)
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Since the wall heat additions have already been accounted for in the fully
developed solution, the:boundary conditions for tg are that no heat is
transferred at the walls:

dtg

3yt = 0aty' =0and 1 (30D)
*

dtg o o

5,7 =0atz'=0ando (30c)

At the channel entrance (x' = O) the condition is
tS(O:yl:Z') =t, = tq’d(o)Y':Z') + t;(o,y',z')
or by rearranging,

ana
tq(0,y",2") = - (%)Ef'z -y o+ %’ 212 - azt o+ % (1 + cwﬂ (304)

It will now be convenient to represent the entrance region temperature té

of the fluid by two functions 6(x',y') and ¥(x',z') such that

*
t
/R = ey 2 (31)
an K
In terms of 6 the energy equation (30a) becomes
d6 _ d%p
ox' ayrz (32)
for which the boundary conditions will be taken as
ggT =0aty'=0and 1
6(0,y") = - [%‘2 A % (1 + m%ﬂ
Correspondingly, the function ¢ 1is given by..
v _ & (33)

X' Dz 12

with the boundary conditions

%gT = 0at z'" = 0and o

¥v(0,2") = - (E AL az')

o
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A solution for the function 6 is taken in the form

o]
_7‘2}(’
6 = Ape '™ cos (ypy') (34)
m=2,4,...
in which the eigenvalues Ym &are given by

Tm = mx (35)

In a similar manner the function V  has the solution

oy
¥ o= ZBne—SnX cos (Bpz') (36)

n=2,4,...

where the eigenvalues &, are given by
5, = == (37)

The coefficients Ap of equation (34) and the coefficients B, of
equation (36) are evaluated to satisfy the respective entrance boundary
conditions. This gives the conditions

Z A, cos (mny') = - Er'z -y o+ % (1 + o,oﬂ (38a)

m=2, 4,
o0
B, cos nn-i-i = - (£ 212 _ gpr (38b)
n o g
n=2,4, ...

According to Sturm-ILiouville thecry the coefficients A, and B, given by

. 1
Ay = -[ E'Z - -é— (1+ apﬂ cos (mmy')dy"

T
f cos (mmy')dy’
o)

(39a)
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0 1
/ (9 z'ec - czz') cos (mr Z—)dz'
c o

0
o ot
cos? (nﬂ ?T)dZ'
0

The integral appearing in the numerator of equation (39a) may be written as

1
[?'2 -yt + L+ ani] cos (mry')dy' = _&
0 6 2.2

(39D)

m-i

where m 1s an even integer. If m 1s an odd number, the integral ylelds
a value of zero. The series coefficlents are thus

Ap=-—2;m=2, 4 . .. (40a)
mx

In a similar manner the coefficients Bn are obtained sas

400
B, = - 2n2’ n=2, 4, . . . (40b)
n

Now that t4 4

equation (23) to obtain the solution which applies over the entire length
of the channel. This is

and tz are known, they can be superposed as in

tg - te

a 2 a 42 ' 1
= + Zxt + yr2 ooyt + 2 - + = +
—65572— 2(1 U)x y y S 2 az = (1 + ao)

2.2
cos (muy')e™ ™ x!

4
mex?

M=2,4,04..

1 (P lly? [ ~o
- ag E 4 cos (nn E—) e (néx®x! /o) (41)
nérl a

The local bulk mean temperature t4,p along the channel is given by
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1

C'-
()

o+

q,b

te + Bq? x' (422)

Substituting g = 2(¢ + a)(qBa) into equation (42a) gives

t -t
"9,b e . 2(1 + g’)xi (42v)
aga/K g

The analysis of the preceding paragraphs led to the determination of
the temperature distributitn for the condition where the heat flux on the
short sides is an arbitrary fraction or multiple of the heat flux on the
broad sides, or more simply, where dg = agp- There may arise, however,
bractical applications where it is desirable to express the heat flux on
the broad walls as - dg = ady. The temperature distribution in this situation

is then obtained from equation (41) by substituting o = l/& and dp = ddg:

t, -t
d € - Der 4 12 - yry 4 L2l e + 1 +
ko 2(@ + U)x aly y') Sz z 5 (o + o)

2l
- ;:2 cos (muy!)e ™ X
m“x

' 22t [ o2
cos (nn %;)e'n ex! /o (43)

4
nén

N=2,...

The local bulk mean temperature is given by

t -t
___q,b L 2a+_l_ x! (44)
qga/K o

Combined Internal Heat Generation and Wall Heat Transfer

) Results for the situation where internal heat generation and wall hesat
“transfer are occurring simultaneocusly are found by combining the solutions
for tQ and tq in acgordance with equation (3). For side wall heat

tFansfer given by qg = aqp, the solution can be written as



where

16

=[2(l+%’)-+R:]x’ +y'2-y‘ +%z’2-qz‘ +-é—(1+o@)

[e o]

L cos (mﬁy')e-mzﬁzx'
men?

m=2,4,...
: N\ 2.2, /42
- g g 5 cos (nﬁ %;)e nrte /0 (45)
n"n
n=z,4,...
R = & (46)
9B

the temperature distribution may also be expressed in terms of side wall heat
transfer by substituting 1ja_ for a, Wgg for gp, and replacing the

parameter R by the parameter

The parameters

S, defined as

_ &

S = % (47)

R and S are the ratios of internal heat evolution to the

heat transferred at the channel walls and give a measure of the relative
Importance, in connection with temperature development, of internal heat
generation in the presence of wall heat transfer.

Heat Transfer Results

From the temperature distribution given by equation (45), various

gquantities of engineering interest can be determined.

In the developments

to follow, the analytical results will be expressed in terms of the broad

wall heat transfer qp.

Results of practical interest are the wall temperature variations
corresponding to prescribed wall heat transfer and internal heat genersa-

tion.

The local temperatures t,(x',z') = t,p along the broad walls can

be found from equation (45) by evaluating it at y' = 0 or at y' = 1:



twB - te - ot ' a .o . 1
TB&K—=[21+E '*'l:ﬂx +~EZ - az +-6'(l+da)

t\ _(nSglxt /g2
- a0 — cos | nx 5—)@ (n®x%x? /o) (48)
nlre o

n=z,...
The local temperatures tw(x’,y') = t,s along the side walls are found in

a similar manner from equation (45) by evaluating it at z' = 0 or at
z' = o¥

tws - te - [%(l +_%) + %]Xf + y'2 -y 4+ % (1 + ao)

qBa K
[~}
4 ( " -m@xx?
- ——5 ¢os (mmy')e
méx?
W=2, ...
o0
Z 2,241 /-2
4 -(nenx' /o
- Q0 —ﬂ e ( / ) (49)
nen
Nn==2,c..

Another form of these equations which is more convenlient is obtained
by introducting the bulk mean temperature t,. TFor a uniform heat source
and uniform wall heat transfer, the bulk temperature is given by

t, = t
b € - 2(1 + 9) + %]x' (50)
qBa; K g

Then the local wall- to bulk-temperature difference along the braod walls
is given by
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t.n - T
wB L L R % (1 + ao) -

qga/Kk ~ © 22
'Y _(ng2x1 /52
- a0 : cos (nﬂ E—)e (n®x%x? /%) (51)
néx? o
I’l=2,..-
while the temperature difference along the side walls 1is
. o]
tws - tp . ' 1- 4 -merlx!
. - 12_ T+ = + - 1
—_§£E7§7 y y 5 (1 + ao) =3 cos (mmy')e
m=z,.
A nlrlxyt /52
- ao 42 e (nénx! /o) (52)
néx
N=2ysss

A noteworthy feature of equations (51) and (52) is that the variation of the
local wall- to bulk-temperature differences is independent of the internal
heat generation rate. The differences between the fully developed wall and
bulk temperatures are

(twB - tb)
hd d_2502 _ g+ L (14 o) (53a)
qBa7K o] 6
(tws - tb)d 1
- 12 =
———a£§7E—f— =y'e - y' + 5 (1 + «o) (53b)

The ratios of local to Tully developed temperature differences along
the broad walls or side walls at any location in the channel is found from
equations (51) to (53) as

2] o0

4 wPext s ) - (n2x2x" [o?)
e o} - 5 0s nmw ——jJe
mr? 22 75
£ (typ-tp) L TR n=2,...
EtW‘B"tbjd «% Z'2 - azt' + % (1 + ao)

(54a)
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E 4 -merlx? E 4 - (nx2x' /52)
cos {(mmy')e + oo e
(tys - tp) _ Mm=2,... n=2,...

=1 - - -
{ - )
tws tp d y’2 -y + % (1 + ao)

(541b)

It may be observed from the foregoing results that a prescribed heat flow
from the duct surfaces to the fluid produces, at a given axial location, a
local wall temperature or wall- to bulk-temperature difference which
varies around the periphery of the duct and which also varies with duct
aspect ratio.

Results and Discussion

To illustrate the effects of internal heat generation and prescribed
wall heat transfer on wall temperature distributions, local bulk mean
temperature, and thermal entry lengths for liquid metal flow in rectangu-
lar passages, a number of solutions have been obtained for wvarious
combinations of aspect ratio o, wall heat flux ratio o or 49, and heat
flux ratio R or B. For the sake of brevity, only some of these results
are included in this paper. In particular, values of the parameters a
and o chosen for the computations correspond to the following cases:

(a) @ = -1, in which the broad walls are heated and the side walls are
cooled; (b) a = O, in which the side walls are insulated; (c) a = 1, in
which uniform heating (or cooling) takes place all around the duct periph-
ery; and (d) @ = 0, in which the broad walls are insulated.

Designers of channels for the applications previously mentioned are
interested in the temperatures achieved by the walls, and in particular
the peripheral location where the wall temperature will assume its high-
est value for a known wall heat input and internal heat generation rate.
From an examination of the analytical results, it is to be expected that
the peak temperatures will occur either in the corner of a duct or else
at the centerline of the broad wall or short wall, depending upon the wall
heat flux ratio a. Therefore, knowledge of temperature conditions in
such regions is of speclal interest. The wall temperatures are given
here relative to the bulk temperature, since the heat flux ratic R or
5 1s then eliminated as a parameter.

The longitudinal variation of the dimensionless wall temperatures
were evaluated from the analytical solution and are presented in fig-
ures 2 for duct aspect ratios of 1, 4, and 10. For the special case of
side walls insulated (o = 0) the solution is independent of the duct
aspect ratio, and therefore; the result applies for all aspect ratios.
At some places along a wall, the wall- to bulk-temperature difference
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may be negative. This is understandable, however, if it is recalled that
tw 1s a local value along the wall, while t3, 1is an average value over
the entire cross section. When the broad walls are heated and the side
walls are cooled, the peak temperatures occur along the centerline of the
broad walls at all axial positions for the aspect ratios shown (fig. 2(a)).
With heating from only the broad walls (fig. 2(b)), these walls assume a
uniform temperature for all aspect ratios which is higher than the tempera-
tures along the insulated side walls. Tor =a rectangular duct with uniform
heat flux all around the periphery (fig. 2(c)), the peak temperatures for
all o's occur at the duct corners. Finally, when heat is transferred
from only the short walls (fig. 2(d)), these walls attain a uniform temper-
ature which is higher than the temperatures along the adiabatic broasd walls.

Another quanitiy which is of practical interest is the bulk mean tem-
perature varlation along the length of the channel. The bulk temperature
is given here relative to the temperature of the fluid at the entrance to
the channel. The dimensionless bulk temperatures are presented in figures 3
for duct aspect ratios of 1, 20, and o (parallel-plate channel) with the
heat flux ratio appearing as a Tamily parameter.

Positive and negative values of the bparameters R and S are con-
sidered in the figures. It is supposed that Q 1s positive (a heat source).
A posltive value of R, therefore, implies that ag 1s positive, that is,
that heat 1s being transferred from thé broad walls to the fluid. A
negative value of R, on the other hand, implies that qp is negative or
that heat is being transferred from the fluid to the broad walls. For
positive R, therefore, internal heat generation and broad-wall heat transfer
reinforce one another to produce a bulk temperature larger than that obtained
in the absence of internal heat generation. Conversely, for negative R,
the broad wall heat transfer opposés internal heat generation in the bulk
temperature development. Similar arguments apply in conrection with side
wall heat transfer qg and heat flux ratio 8.

For very small values of |R|] or | 5[, wall heat transfer dominates
the bulk temperature development, while for large values of ,R' or
LS[, the effects of internal heat generation dominate. This accounts for
he varieth of trends that are evident in each of the figures. It is also
observed that the bulk temperature development is, in general, slightly
affected by duct aspect ratio ¢ to about 20 and insignificantly thereafter.
For a duct with insulated side walls, however, the bulk temperature de-

velopment is independent of the duct aspect ratio.

The foregolng presentation of results has been concerr.ed with wall
temperatures in the thermal entrance region. As a matter of general
interest the wall temperature variation around the periphery of the duct
in the fully developed region 1s considered. The wall temperatures are
agaln given relative to the bulk temperature, since in the fully developed
reglon the temperature difference (ty - tb)d is independent of x. In

addition,  as noted earlier, the temperature differencd tw - tb 1s inde-
pendent of the heat flux ratio R at all axial positions.
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Fully developed wall temperatures are presented in figures 4 for
values of o and @ considered earlier and for various aspect ratios.
It is worth while to recall that +ty 1s a local value along the wall,
while +ty 1s an average value over the entire cross section. Therefore,
at some places along the wall, the temperature difference (tw - tb)d is
negative, which means that +tp i1is larger than ty. The hot spots are
strikingly displayed in these figures, appearing in the corners, or at the
broad wall or short wall mlidpoints. It is also seen that the aspect ratio
has a profound effect on the temperature distribution.

Of considerable practical importance to the designer 1s the knowledge
of the conditions under which entrance effects must be accounted for in
heat-transfer calculations. The approach of a local wall- to bulk-
temperature difference to the fully developed value is, in theory, asymp-
totic. Consequently, it is difficult to ldentify a specific length of
channel as a thermal entrance length. It is practice to define a thermal
entrance length in terms of the downstream distance x/aRePr at which
the temperature difference approaches to within 5 percent of the fully
developed value. The variation with dimensionless axial distance of local
to fully developed wall temperatures at the duct corner and at the broad
wall and short wall centerlines has been evaluated from the analytical
expressions. The results thus obtained have been piotted in figures S for

values of a=-1 and W= 0, for parametric aspect ratio values. Tt
should be noted that the corner temperature ratio is not shown for the
square duct when o = - 1, since for this situation the corner temperature

difference is zero at all axial positions. Lines delineating the condition
(tw - tp)/(ty - tp)g = 0.95 have been drawn in the figures to facilitate

determining the thermal entrance length.

From an 1lnspection of the graphs, it is seen that for the wall heating
conditions represented, the wall temperature profiles become fully de-
veloped at widely different distances from the entrance to the heating sec-
tion, depending upon the particular wall location chosen for consideration.
It is also evident that there 1s a strong influence of the side walls of
the ducts on the temperature developments, with the thermal entrance
lengths increased with increased aspect ratio.

It is practice in reporting heat transfer connected with flow through
noncircular passages to present average heat transfer coefficlents or
Nusselt numbers based upon a heat flow averaged around the duct periphery
and on an average wall temperature. This practice has utility when the
wall temperature remains constant everywhere, or is at least constant
around the periphery of a duct at a given axial position. In the present
situation where the wall boundary condition is one of peripherally and
axially uniform heat input, however, it is apparent that the knowledge
of the resulting local wall-temperature distribution is of more importance
to the designer than the Nusselt numbers or even average thermal entry
lengths. Therefore, no attempt has been made to determine these quantities.
It is felt that the results are presented in a form more convenient for
engineering calculations.
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CONCLUDING REMARKS

Results have been presented for heat transfer in rectangular channels
with prescribed wall heat fluxés and heat sources uniformly distributed in
the fluid. The various effects considered have thrown some light on the
axlal and peripheral temperature distributlions as well as on the heat
transfer characteristics.

The present results are strictly valid only for the slug-flow velocity
distribution with heat transfer only by molecular conduction. The simpli-
fication provided by these assumptions, however, has made 1t possible to
obtain exact mathematical solutions to the governing energy equation. Of
greater importance is the fact that these temperature distributions approxi-
mate conditions to be expected for turbulent liquid-metal flow in rectangu-
lar ducts for relatively low Prandtl and Reynolds modull. The results, in
addition, point out the locations of maximum temperatures.

For Improved heat transfer calculations, velocity-profile and eddy
diffusivity variations would have to be taken into account to provide a
more realistic description.. Turbulent velocity profiles for circular pipe
and parallel plate duct systems have been satisfactorily represented by
power-law expressions. Within the knowledge of the guthor, velocity-profile
and eddy diffusivity distributions for turbulent flow in rectangular ducts
have received little theoretical consideration. Reference 16 presents sa
variational method for determining velocity distributions for flow of a
power law fluild fnieylindrical ducts. The results might prove useful for
heat transfer studies.

In closing, it should be menticned that the slug-flow, molecular-
conduction analysis can be used to treat other wall boundary conditions,
such as a specified axlal and peripheral wall temperature distribution.

NOMENCLATURE

Apy coefficient in series for:temperature distribution with wall
heat transfer and Q = QO

g length of short side

aij coefficient in series for temperature distribution with internal
heat generation and qp = gg = 0

Bn coefficient in series for temperature distribution with wall
heat transfer and Q = O

b length of broad side

Cp spécific heat of fiuid at constant pressure
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Fly',z') transverse temperature distribution in fully developed region
with wall heat transfer and Q = 0

f(y',2z') transverse temperature distribution in fully developed region
with internal heat generation and dg =4y = O

Pr Prandtl number, ucp/K
Q rate of internal heat generation per unit wvolume
q heat addition per unit wall area
q heat addition per unit channel length, equal to quB + 2agg
R heat flux ratio, Qa/qB
Re Reynolds number, pUa/u
S heat flux ratio, Qa/qS
t temperature
U' velocity taken as uniform over duct cross-section
u local fluid velocity
X coordinate measured along the axial direction
x! dimensionless axial coordinate, x/aRePr
Y(y*) eigenfunction for case of internal heat generation and dg = 4g =
v coordinate measured along short side
y! dimensionless coordinate, y/a
Z(z*) - elgenfunction for case of internal heat generation and gp = qg =
7 coordinate measured along long side
z! dimensionless coordinate, z/a
z'! dimensionless coordinate, z/b = z'/o
) wall heat flux ratio, qg/qp
= wall heat flux ratio, a./ap = 1/a

ay eigenvalues for case of internal heat generation and qg = gqg = O
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Bj eigenvalues for internal heat generation and Qg = dg = 0
Y eigenvalues for wall heat transfer and Q = O
By eigenvalues for wall heat transfer and Q = O

o(x',y'") function defined by equation (32)

K thermal conductivity of fluid
2 — 2 2

Xij elgenfunction, of + Bj

U fluid viscosity

P fluid density

o aspect ratio, b/a

V¥(x',z!') function defined by equation (33)

Subscripts
B refers to broad wall
b bulk mean value
d fully developed
e entrancé value
Q insulated wall, internal heat generation
q wall heat flux, no internal generation
s refers to side wall
W value at wall
Superscript
* entrance region
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Figure 1. - Coordinate system for rectangular channel
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Figure 2, - Wall temperature development In
thermal entrance region of rectangular ducts.
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Figure 3. - Longitudinal variation of bulk mean
temperature for various values of heat flux
ratio R.
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Figure 3. - Continued.
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Figure 5. - Wall temperature ratios.
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