
MIDCOURSE GUIDANCE FOR 
RETURN FROM THE MOON 
TO A GEOGRAPHICALLY 
FIXED LANDING SITE 

by John D. McLeun and Lzligi S. Cicolani 

Ames Research Center 
Moffett Field, CaZ$ 

N A T I O N A L  A E R O N A U T I C S  A N D  SPACE A D M I N I S T R A T I O N  W A S H I N G T O N ,  D. C. M A R C H  1966  



TECH LDBRARY KAFB, NM 

I I lllll lllll lllll lllll11ll11ll1 Ill1 llll 

MIDCOURSE GUIDANCE FOR RETURN FROM THE MOON TO A 

GEOGRAPHICALLY FIXED LANDING SITE 

By John D. McLean and Luigi S. Cicolani 

A m e s  R e s e a r c h  Center  
Moff ett Field,  Calif. 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

For sale by the Clearinghouse for Federal Scientific and Technical Information 
Springfield, Virginia 22151 - Price $2.00 



TABU OF CONTENTS 

Page 

SUMMCIRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

NOTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 

ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 

Fixed-Landing-Site Guidance Equation . . . . . . . . . . . . . . . . .  6 

Comparison with fixed time of a r r i v a l  . . . . . . . . . . . . . . . .  6 

DIGITALSIMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 

Schedule of Observations and Velocity Corrections . . . . . . . . . . .  8 

Computation of S t a t i s t i c a l  Information . . . . . . . . . . . . . . . .  8 

RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . .  9 

Corrective Velocity Requirements . . . . . . . . . . . . . . . . . . .  10 

Total  corrective veloci ty  requirements . . . . . . . . . . . . . . .  10 

Penal t ies  from veloci ty  correct ion mechanization e r r o r s  . . . . . . .  10 

Terminal Deviations . . . . . . . . . . . . . . . . . . . . . . . . . .  11 

Perigee a l t i t u d e  . . . . . . . . . . . . . . . . . . . . . . . . . .  11 

Crossrange . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 

Downrange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12 

Landing time . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12 

Effect of changing observation and velocity correct ion schedule . . .  12 

Computer requirements . . . . . . . . . . . . . . . . . . . . . . . .  13 

CONCLUDING REsIARKs . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 

APPENDIX A . DERIVATION OF THE FIXED-LANDING-SITE GUIDANCE EQUATION . . .  15 
APPENDIX B . ERROR MODEL FOR THE DIGITAL COMPUTER SIMLTLATION . . . . . .  22 

i 



TABLF OF CONTENTS 

Page - 
A P P E N D M  C - COMPUTATION O F  S T A T I S T I C A L  INFORMflTION FOR ORBITAL PHASE 

O F F L I G H T . .  . . . . . . . . . . . . . . . . . . . . . . . 24 

APPENDIX D - COMPUTATION OF STATISTICS OF THE LANDING CONDITIONS . . . . 29 

APPENDM E - DERIVATION OF THE GENERALIZED INVERSE OF q . . . . . . . . 32 

R E F E R E N C E S . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 

T A B L J Z S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35 

F I G U R E . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36 

ii 



MIDCOURSE GUIDANCE FOR RFTURN FROM THE MOON TO A 

GE0GRAPHICAT;LY FIXED LANDING SITE 

By John D. McLean and Luigi S.  Cicolani 
Ames Research Center 

SUMMARY 

This repor t  describes a midcourse guidance system f o r  r e tu rn  from the  
moon t o  a safe  landing a t  a spec i f i c  geograph.ica1 s i t e .  The design i s  based 
on l i nea r  per turbat ions about a reference t r a j ec to ry .  The vehicle 's  a b i l i t y  
t o  maneuver within t h e  atmosphere i s  used t o  reduce the  midcourse correct ive 
ve loc i ty  requirements. 

The system i s  compared s t a t i s t i c a l l y  on t h e  bas i s  of a d i g i t a l  computer 
simulation with one t h a t  uses  f ixed-t ime-of-arr ival  method of guidance. The 
t r a j e c t o r y  estimation method used f o r  both systems i s  t h a t  described i n  NASA 
TR R-135 .  The t ransear th  in j ec t ion  e r ro r s ,  observation e r ro r s ,  ve loc i ty  cor- 
rec t ion  mechanization e r ro r s ,  and veloci ty  correct ion measurement e r ro r s  a re  
specif ied by s t a t i s t i c a l  d i s t r ibu t ions  considered t o  be r e a l i s t i c  i n  terms of 
present day c a p a b i l i t i e s .  

The f ixed-landing-si te  guidance system requires  subs t an t i a l ly  l e s s  cor-  
r ec t ive  ve loc i ty  than a f ixed-time -of - a r r i v a l  system, but  it i s  more sens i t ive  
t o  e r ro r s  i n  the  f i n a l  ve loc i ty  correct ion than i s  t h e  f ixed-t ime-of-arr ival  
system. This s e n s i t i v i t y  can be e f f ec t ive ly  compensated f o r  by proper schedul- 
ing of  observations and ve loc i ty  correct ions or by the  use of a rocket engine 
having d i f f e ren t  e r r o r  cha rac t e r i s t i c s  f o r  midcourse correct ions.  

INTRODUCTION 

The object ives  of midcourse guidance f o r  t he  re turn  phase of a lunar 
mission a re  defined f o r  t h i s  study as: 

1. To place t h e  vacuum perigee of t h e  re turn  t r a j e c t o r y  a t  the  center  of  
t he  en t ry  cor r idor .  

2. To land t h e  vehicle  a t  a specif ied geographical landing s i t e .  

3. To reach t h i s  landing s i t e  without crossrange maneuvering during 
entry.  

The t h i r d  object ive arises because t h e  crossrange maneuvering capabi l i ty  f o r  
Apollo-class en t ry  vehicles  i s  much more l imited than t h e  downrange maneuver 
capabi l i ty  ( r e f .  1). 

It i s  recognized t h a t  because of  e r ro r s ,  f r o m  sources t o  be discussed 
l a t e r ,  t h e  above objec t ives  cannot be met exact ly .  However t h e  
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f ixed-time-of-arrival guidance system used i n  earlier s tud ie s  a t  Ames ( r e f .  2) 
and elsewhere does not e x p l i c i t l y  impose these  objec t ives .  
guides t h e  vehicle  t o  t h e  pos i t i on  on a precomputed reference t r a j e c t o r y  cor- 
responding t o  t h e  time of reference per igee.)  
o f - a r r iva l  system satisfies t h e  desired cons t r a in t s  within acceptable 
tolerances f o r  t h e  range of i n i t i a l  e r r o r s  s tud ied  i n  reference 2. Vacuum 
perigee d i f f e r s  from t h e  reference value (center  of t h e  en t ry  cor r idor )  by 
s m a l l  amounts and t h e  desired landing s i t e  can be obtained with modest cross- 
range and downrange maneuvering during t h e  en t ry  f l i g h t .  
t he re  may be some advantage i n  a guidance system which recognizes these  
cons t ra in ts  e x p l i c i t l y .  

(This system 

It i s  t r u e  t h a t  t h e  fixed-time- 

On t h e  o ther  hand, 

This report  presents  t h e  development of a method f o r  guidance t o  a f ixed  
landing s i t e .  
i s  then compared s t a t i s t i c a l l y  with t h a t  of a fixed-time-of-arrival system on 
t h e  b a s i s  of a d i g i t a l  simulation. 

The performance of t h i s  system f o r  a sample r e tu rn  t r a j e c t o r y  
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covariance m a t r i x  of ve loc i ty  correct ions ac tua l ly  made 

decl inat ion 

3 x 6 matrix from guidance equation 

matrix of  p a r t i a l  der iva t ives  of observed angles with respect  t o  
Cartesian coordinates 

un i t  m a t r i x  

multiplying f a c t o r  f o r  i n i t i a l  covariance matrices 

3 x 3 matrix from guidance equation 

covariance m a t r i x  of e r r o r s  i n  t r a j e c t o r y  est imat ion 

covariance m a t r i x  of observation e r ro r s  

magnitude of R 

pos i t ion  vector 

vector of s m a l l  deviat ions from reference pos i t i on  

root  mean square 

right ascension 

covariance m a t r i x  of e r r o r s  i n  making ve loc i ty  correct ions 

- 
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covariance matrix of e r ro r s  i n  measuring ve loc i ty  correct ions sM 

X 

a 

Y 

5 

cp 

time 

u n i t  vector 
- 

magnitude of V 

ve loc i ty  vector 

vector of s m a l l  deviations from reference ve loc i ty  

correct ive ve loc i ty  increments 

covariance matrix of deviations between a c t u a l  and reference 
t r a j e c t o r i e s  

s t a t e  vector (6 x 1 matrix of vehic le ' s  pos i t ion  and veloci ty  
deviations f rom reference) 

azimuth angle from north of o r b i t a l  plane a t  landing s i t e  

one-half t h e  subtended angle of ea r th  or moon 

point ing e r r o r s  i n  correct ive ve loc i ty  

4 x 1 matrix of deviations i n  a r r i v a l  parameters 

entry range angle 

CD t r ans  it ion matrix 

+ matrix of p a r t i a l  der iva t ives  of Cartesian pos i t ion  and ve loc i ty  w i t h  
respect t o  a r r i v a l  parameters 

w e a r t h ' s  angular ve loc i ty  

Superscripts 

T .  transpose of a matrix 

(-1 

(7 
3 x 1 matrix ( o r  vector)  

der ivat ive with respect  t o  t i m e  

Sub s c r i p t s  

a ac tua l  

d desired 
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E atmospheric en t ry  

i , m  in tegers  

L landing s i t e  

P perigee 

rms root-mean-square value 

ANALYSIS 

The development of t h e  method of guidance t o  a f ixed landing s i t e  follows 
t h e  approach used i n  reference 3 f o r  f inding reference t r a j e c t o r i e s  which 
re turn  from t h e  moon t o  a specif ied geographic s i t e .  Such a reference tra- 
jec tory  d i s t o r t e d  f o r  ease of i l l u s t r a t i o n  i s  pictured i n  sketch ( a ) .  The 

Earth troth of 
reference orbit 

Equator 

Sketch (a)  

point ,  P, represents  e i t h e r  t h e  t ransear th  i n j e c t i o n  point or any point along 
the  t r a j e c t o r y .  The t r a j e c t o r y  i s  divided i n t o  two phases: o r b i t a l  and entry, 
entry being defined as a radius  of 6500 km (about 400,000 f t  a l t i t u d e ) .  

The point of view i s  taken t h a t  t h e  t r a j e c t o r y  t r a v e l s  backward i n  time 
from t h e  landing s i t e  t o  point P. Hence, t h e  o r b i t a l  portion can be speci- 
f i e d  by t h e  vacuum perigee pos i t ion  vector Rp, perigee veloci ty  vector Vp, 
and time of perigee,  t p .  If the  t r a j e c t o r y  i s  t o  terminate a t  the  landing 
s i t e ,  these quant i t ies  must s a t i s f y  c e r t a i n  funct ional  re la t ionships .  These 
a r e  : 

- 

4 
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where cp i s  t h e  angle from entry t o  landing; the  azimuth angle, a ,  i s  mea- 
sured from t h e  meridian through t h e  landing s i t e  t o  t h e  o r b i t a l  track; i s  
t h e  declination of t h e  landing s i t e ,  and t L  i s  t h e  time of landing. Equa- 
t i o n s  (1) a r e  geometrical re la t ionships  (derived i n  appendix A) which implic- 
i t l y  r e s t r i c t  t h e  crossrange maneuver t o  zero. 
dynamical re la t ionship  between t h e  entry angle, cp, i n  radians and t h e  time i n  
mean s o l a r  days required t o  t raverse  it. This equation i s  of empirical o r i g i n  
(see r e f .  3 ) .  
"arrival parameters" c p ,  a ,  t L ,  Vp, Rp, and DL. 

been defined. The point P i n  sketch (a) w i l l  now be regarded as ly ing  on 
t h e  reference t r a j e c t o r y  somewhere i n  c is lunar  space. Because of in jec t ion  
e r r o r s ,  t h e  vehicle a r r i v e s  a t  point  P' at t i m e  t instead of a t  P (see 

sketch ( b ) ) .  Likewise, t h e  
veloci ty  w i l l  generally be 
such t h a t  unless a ve loc i ty  
correct ion i s  made before 
en t ry  t h e  vehicle w i l l  not 
land a t  t h e  desired s i t e .  

DL 

Equation (2) contains t h e  

Thus t h e  complete t r a j e c t o r y  may be specif ied i n  terms of the  

Assume t h a t  a reference t r a j e c t o r y  from t h e  moon t o  t h e  landing s i t e  has 

If a veloci ty  correct ion 
i s  t o  be made a t  time t, 

Reference earth frock then t h e  function of the  
Reference orbit fixed-landing-site guidance 

system i s  t o  compute a new 

a t  t i m e  t and lands a t  the  
landing s i te  a t  time ti. 
Because of the  e a r t h ' s  r o t a -  

Corrected orbit for f ixed landing sile t i o n  during the  i n t e r v a l  
(ti - t L )  the  landing s i t e  
w i l l  have moved t o  t h e  point  

P t r a j e c t o r y  which leaves Pr  

Corrected orbit for fixed ttme of orrivol 

Sketch ( b )  

L ' .  
vehicle 's  ac tua l  ve loc i ty  and t h a t  of the corrected o r b i t .  

The correct ive ve loc i ty  increment will be the difference between the 

For comparison t h e  corrected t r a j e c t o r y  which would be produced by t h e  
fixed-time-of-arrival method i s  shown as a dashed l i n e  i n  sketch ( b ) .  It 
intercepts  t h e  reference a t  Ply corresponding t o  perigee on t h e  reference 
o r b i t .  Note t h a t  i f  the  reference perigee point l i e s  outside t h e  o r b i t a l  
plane, a plane change w i l l  be required.  Rp and DL 
a r e  t h e  only a r r i v a l  parameters constrained, the  fixed-landing-site guidance 
system w i l l  require  a plane change only i f  t h e  inc l ina t ion  of t h e  incoming 
o r b i t  is  l e s s  than 

On t h e  other  hand, i f  

DL ( see  r e f .  3 ) .  

Final ly ,  it should be pointed out t h a t  t h e  basic  methods used i n  
developing t h e  fixed-landing-site guidance system can be used f o r  landing on 
any r o t a t i n g  c e l e s t i a l  body, provided t h e  "entry" phase of t h e  t r a j e c t o r y  can 
be su i tab ly  approximated. This statement i s  t r u e  even i f  t h e  dest inat ion body 
has no atmosphere (here "entry" would correspond t o  powered descent),  but it 
would probably be poin t less  t o  apply t h e  method when t h e  r o t a t i o n  r a t e  of the  
body i s  extremely low. 



Fixed-Landing-Site Guidance Equation 

For t h e  computation of a new t r a j e c t o r y  from 
a r e  constrained t o  t h e  reference values. 

P' t o  t h e  landing s i t e ,  
This leaves four  arrival Rp and DL 

parameters (cp, a, tL, and Vp) which may be changed from t h e  reference values 
s o  t h a t  the  t r a j e c t o r y  w i l l  o r ig ina te  at  P' ins tead  of P. Since only t h r e e  
quant i t ies  are required t o  specify t h e  pos i t ion  of P ' ,  there  i s  an i n f i n i t e  
family of possible  corrected o r b i t s .  A unique t r a j e c t o r y  may be selected from 
t h i s  family e i t h e r  by constraining an addi t iona l  a r r i v a l  parameter o r  by sat- 
i s fy ing  some other condition. 
correct ive veloci ty  t o  be a minimum. 

For t h i s  study we require  magnitude of t h e  

The procedure f o r  f inding t h e  reference t r a j e c t o r y  i s  a complex i t e r a t i v e  
one, so  t h e  problem of f inding t h e  corrected t r a j e c t o r y  has been l inear ized  i n  
terms of s m a l l  per turbat ions around t h e  reference t r a j e c t o r y .  The r e s u l t i n g  
l inear ized  guidance equation i s  derived i n  appendix A and may be wr i t ten  as 

- where Vd i s  t h e  desired correct ive ve loc i ty  vector,  5 i s  a u n i t  vector,  M 
i s  a 3 X 3 matrix, and r a n d 7  a r e  vectors of pos i t ion  and veloci ty  
deviation from t h e  reference t r a j e c t o r y .  

- 

Comparison with f ixed  time- 0-f- arriva-1.- . .  . The f ixed-time-of-arrival 
guidance equation i n  reference 2 i s  given by 

where 
pos i t ion  and veloci ty  deviations a t  t h e  time of reference perigee t o  those a t  
t h e  time of the  correct ion.  

Q 2  and Q l  a r e  submatrices of the  s t a t e  t r a n s i t i o n  matrix which r e l a t e s  

If t h e  vector (E - 7) i n  equation (3)  i s  defined t o  be the  nonoptimum 
correction, then both t h e  fixed-time-of-arrival and t h e  nonoptimum fixed- 
landing-site guidance correct ions can be expressed i n  t h e  form (AT - 7). 
can be seen t h a t  t h e  magnitudes of both correct ions a r e  dependent on t h e  
d i rec t ion  of F, but t h e  correct ion w i l l  be zero only when AT i s  equal t o  v. 

It 

- 

Now consider t h e  multiplying f a c t o r  (I  - EET) i n  t h e  landing-site 
guidance l a w .  Since 

(I  - EiY-)Z = 0 

- any component of t h e  nonoptimum correct ion ly ing  i n  t h e  
eliminated by t h i s  multiplying f a c t o r .  Because of t h i s  f a c t ,  it i s  t o  be 
expected t h a t  t h e  magnitude of t h e  optimum correct ion f o r  fixed-landing-site 
guidance w i l l  be more sens i t ive  t o  t h e  d i rec t ions  of 
case f o r  fixed-time-of-arrival guidance. Thus, from a s t a t i s t i c a l  point of 
view, t h e  mean-square veloci ty  correct ion f o r  fixed-landing-site guidance w i l l  

u d i rec t ion  w i l l  be 

- r and 7 than i s  t h e  

6 
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be more sens i t ive  t o  t h e  d i r e c t i o n a l  propert ies  of t h e  d i s t r i b u t i o n  of 
deviations from t h e  reference t r a j e c t o r y .  

DIGITAL SLMUMTION 

The fixed-landing-site guidance equation w a s  compared on a s t a t i s t i c a l  
bas i s  with t h a t  f o r  f ixed time of a r r i v a l  by means of a d i g i t a l  computer 
simulation of t h e  two systems under i d e n t i c a l  conditions.  

Four sources of e r r o r  were considered: 

(1) Transearth i n j e c t i o n  e r r o r s  

( 2 )  Errors i n  knowledge of t h e  vehicle pos i t ion  and veloci ty  ( t r a j e c t o r y  
estimation e r r o r s )  

( 3 )  Errors i n  mechanization of t h e  desired veloci ty  correct ion 

(4) Errors i n  measurement of t h e  veloci ty  correct ion ac tua l ly  made 

The in jec t ion  and estimation e r r o r s  were assumed t o  be i d e n t i c a l  f o r  each sys- 
tem a t  in jec t ion  time and t o  be described s t a t i s t i c a l l y  by a known covariance 
matrix. The p a r t i c u l a r  covariance matrices used i n  t h e  study w i l l  be 
discussed i n  t h e  sect ion on r e s u l t s .  

During the  course of t h e  f l i g h t ,  c e l e s t i a l  observations a r e  made i n  order 
t o  reduce t h e  t r a j e c t o r y  estimation e r r o r s .  
by an optimal f i l t e r  (see r e f .  4) which provides t h e  bes t  estimate of t h e  
spacecraf t ' s  posi t ion and veloci ty  together  with t h e  covariance matrix of 
e r r o r s  i n  t h a t  estimate.  The type of c e l e s t i a l  observations and the  measure- 
ment e r r o r  model assumed a r e  i d e n t i c a l  with t h a t  used f o r  t h e  standard case i n  
reference 2, as i s  t h e  e r r o r  model f o r  item ( 4 )  above. These e r r o r  models a r e  
described b r i e f l y  i n  appendix B .  While it i s  necessary t o  separate t h e  e r r o r s  
of items ( 2 )  and ( 4 )  i n  t h e  mathematical analysis ,  they w i l l  be lumped 
together  under " t ra jec tory  estimation e r rors"  i n  t h e  remainder of t h i s  
discussion. 

The r e s u l t i n g  data  a r e  processed 

The e r r o r  model f o r  t h e  veloci ty  correction, t h e  one used i n  reference 5 ,  
i s  described i n  d e t a i l  i n  appendix B .  It i s  shown i n  t h e  appendix t h a t  f o r  
s m a l l  veloci ty  correct ions (of t h e  order 1.0 ,/see) the  vector e r r o r  i n  t h e  
correct ion i s  due almost e n t i r e l y  t o  rocket engine cutoff e r r o r .  This e r r o r  
l i e s  nearly i n  the  d i rec t ion  of t h e  commanded veloci ty  correct ion and has an 
r m s  value of 0.1 m/sec. 
correct ion increases,  t h e  e r r o r  normal t o  t h e  commanded d i rec t ion  increases 
u n t i l  t h e  components of t h e  e r r o r  along and normal t o  t h e  commanded correct ion 
a r e  near ly  equal. 
t h e  magnitude of t h e  correct ion.)  

On t h e  other  hand, as t h e  magnitude of t h e  commanded 

(The r m s  value of both components i n  t h i s  case depends on 
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Schedule of Observations and Velocity Corrections 

The schedule of observations and veloci ty  correct ions used i s  considered, 
on t h e  b a s i s  of other  Ames s tudies ,  t o  be near ly  optimum f o r  t h e  fixed-time-of- 
a r r i v a l  system. This schedule i s  out l ined b r i e f l y  as follows: 

(1) S t a r t i n g  a ha l f  hour a f t e r  t ransear th  in jec t ion ,  t e n  observations 
a r e  made followed by t h e  first veloci ty  correct ion,  a l l  a t  half-hour i n t e r v a l s .  

( 2 )  S t a r t i n g  24 hours a f t e r  t ransear th  in jec t ion ,  nine observations a r e  
made followed by t h e  second veloci ty  correct ion,  a l l  a t  one-hour i n t e r v a l s .  

(3)  S t a r t i n g  34 hours a f t e r  t ransear th  in jec t ion ,  13 observations a r e  
made followed by t h e  t h i r d  and f i n a l  veloci ty  correct ion,  a l l  a t  one-hour 
i n t e r v a l s .  

This last  correct ion occurs about 8.6 hours before entry.  

Computation of S t a t i s t i c a l  Information 

The purpose of t h e  d i g i t a l  computer simulation w a s  t o  determine how well, 
and a t  what cost  i n  correct ive veloci ty ,  each guidance system f u l f i l l s  t h e  
requirement of re turning t h e  spacecraft  from t h e  moon on a t r a j e c t o r y  from 
which a s a t i s f a c t o r y  landing can be made. The two guidance systems a r e  then 
compared on the  b a s i s  of :  (1) the  r m s  values of t h e  veloci ty  correct ions a t  
t h e  three  d i f f e r e n t  correct ion times and of t h e  t o t a l  correction, and (2)  t h e  
rms deviations from t h e  reference values of t h e  "landing parameters," perigee 
a l t i t u d e ,  entry range angle, crossrange adjustment, and time of landing. 

During t h e  o r b i t a l  phase of t h e  t r a j e c t o r y ,  t h e  s t a t i s t i c s  of t h e  
veloci ty  correct ions and deviations from t h e  reference t r a j e c t o r y  were com- 
puted using the  l i n e a r  methods described i n  appendix C .  However, it w a s  nec- 
essary t o  use t h e  Monte Carlo method f o r  t h e  entry phase of t h e  f l i g h t .  The 
computations involved for t h e  entry phase a r e  out l ined i n  appendix D. 

The first ve loc i ty  correct ion attempts, on t h e  b a s i s  of t h e  estimated 
s t a t e  vector at t h e  time of t h e  correction, t o  eliminate t h e  e f f e c t s  of t h e  
in jec t ion  e r r o r s .  It i s  only because t h e  estimate of t h e  vehic le ' s  pos i t ion  
and veloci ty  and t h e  mechanization of t h e  ve loc i ty  correct ion a r e  imperfect, 
and hence sources of e r r o r ,  t h a t  t h e  second and t h i r d  correct ions a r e  needed. 
It is  shown i n  appendix C how t h e  portions of t h e  second and t h i r d  correct ions,  
f o r  these sources of e r r o r ,  can be separated. 

Final ly ,  i n  t h e  case of fixed-landing-site guidance t h e  deviations from 
t h e  reference values of entry range angle and time of landing a r i s e  from two 
sources and can be separated accordingly ( see  appendix C ) .  
deviations,  as i n  t h e  case of f ixed time of a r r i v a l ,  r e s u l t  from e r r o r s  i n  
t r a j e c t o r y  estimation and veloci ty  correct ion mechanization and w i l l  be 
re fer red  t o  as e r r o r s .  The remaining deviations r e s u l t  from changes required 
by the  guidance l a w  and w i l l  be re fer red  t o  as en t ry  range and landing time 
adjustments. 

Some of these 
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RESULTS AND DISCUSSION 

D a t a  from t h e  eight  cases out l ined below provide a comparison between t h e  
fixed-landing-site and fixed-time-of-arrival systems with regard t o  correct ive 
veloci ty  requirements, terminal accuracies and t h e  e f f e c t s  of t h e  three  major 
e r r o r  sources ( i n j e c t i o n  e r r o r s ,  observation e r r o r s ,  and veloci ty  correct ion 
mechanization e r r o r s ) .  
must be considered f o r  a p a r t i c u l a r  appl icat ion of t h e  guidance l a w .  

These data  a r e  intended t o  indicate  t h e  areas which 

Two d i f fe ren t  covariance matrices of t ransear th  in jec t ion  e r rors  were 
used. The f i r s t  i s  considered, on t h e  basis of unpublished work, t o  be r e a l i s -  
t i c  f o r  an Apollo-type mission. This d i s t r ibu t ion  has mean-square values of 
about 0.6 km2 and 3.5 m2/sec2 i n  posi t ion and velocity,  respect ively.  However, 
t h e  e r r o r s  a r e  cross corre la ted  and t h e  complete s t a t i s t i c a l  descr ipt ion is  
given by t h e  covariance matrix presented i n  t a b l e  I .  This d i s t r i b u t i o n  w a s  
used f o r  most of t h e  data and w i l l  be re fer red  t o  as t h e  "standard" 
d i s t r i b u t i o n .  

The other covariance matrix of in jec t ion  e r r o r s  i s  of i n t e r e s t  mainly 
from a t h e o r e t i c a l  point  of view. This matrix i s  diagonal f o r  Cartesian coor- 
dinates ,  with mean-square values of 3 kmz and 3 m2/sec2 i n  pos i t ion  and veloc- 
i t y .  The mean-square e r r o r s  a r e  equal f o r  each Cartesian direct ion,  s o  the  
d i s t r i b u t i o n  w i l l  be re fer red  t o  as spherical .  

The two covariance matrices of in jec t ion  e r r o r s  were mult ipl ied by a 
sca la r ,  ka, i n  order t o  assess t h e  influence of t h e  magnitude (as opposed t o  
d i rec t ion)  of t h e  i n i t i a l  e r r o r  d i s t r i b u t i o n .  It i s  shown i n  reference 2 
and i s  confirmed here t h a t  the e f f e c t s  of the  magnitude of t h e  i n j e c t i o n  
e r rors  on t h e  estimation e r r o r s  a r e  of minor significance.  

The e f f e c t s  of veloci ty  correct ion mechanization e r r o r s  were evaluated by 
comparison of data r e s u l t i n g  from t h e  use of t h e  standard e r r o r  model des- 
cribed i n  appendix B with t h e  data  r e s u l t i n g  when t h e  e r r o r  w a s  assumed t o  be 
zero. 

With t h i s  background t h e  eight  cases f o r  which data  a r e  t o  be presented 
can be summarized as follows: 

'e'ocit~ I n  j e c t ion correct ion 
e r r o r s  e r r o r s  Case K 

l a  
2a 
3a 
l b  
2b 
3b 
I C  

3c 

1 None 
10 None 
100 None 
1 Standard 
10 Standard 
100 Standard 
1 Standard 
100 Standard 

Standard 
Standard 
Standard 
Standard 
Standard 
Standard 
Spherical  
Spheric a1 
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Corrective Velocity Requirements 

The r a t i o  of the r m s  e r r o r  i n  estimating t h e  vehic le ' s  pos i t ion  f o r  case 
3a t o  that f o r  l a  i s  p lo t t ed  i n  figure 1 as a funct ion of t h e  number of obser- 
vat ions.  Note t h a t  j u s t  before t h e  f i r s t  ve loc i ty  correct ion t h e  estimation 
e r r o r  f o r  case 3a i s  only about 1/3 l a rge r  than that f o r  case l a  even though 
t h e  i n i t i a l  r m s  e r r o r s  differed by an order of magnitude. 
estimation e r r o r  with i n i t i a l  e r r o r  becomes progressively smaller as more 
observations are made, and t h e  r e s u l t s  are subs t an t i a l ly  t h e  same f o r  ve loc i ty  
estimation e r r o r s .  
rected after the  f i r s t  ve loc i ty  correct ion are mainly t h e  r e s u l t  of observation 
errors and, where appl icable ,  of ve loc i ty  cor rec t ion  mechanization e r ro r s .  "he 
r m s  values of t h e  individual  ve loc i ty  correct ions and t h e  t o t a l  cor rec t ive  
ve loc i ty  a re  presented i n  t a b l e  11. Likewise, t he  r a t i o  of t h e  t o t a l  rms cor-  
r ec t ive  ve loc i ty  f o r  f ixed landing s i te  t o  that f o r  f ixed  time of arrival i s  
presented. As  expected on t h e  b a s i s  of t h e  da t a  i n  f i g u r e  1, t h e  f i r s t  veloc- 
i t y  correct ion increases  l i n e a r l y  w i t h a  while subsequent correct ions show 
only a small e f f e c t  from i n i t i a l  e r ro r s .  

This increase i n  

"hius, it can be seen t h a t  t h e  e r r o r s  remaining t o  be cor-  

Total  cor rec t ive  ve loc i ty  requirements .- The t o t a l  rms correct ive ve loc i ty  -- 
f o r  fixed-landing-site guidance ranges from 52 percent of t h a t  f o r  f ixed  time 
of a r r i v a l  i n  case l a  t o  64 percent i n  case 3a. 
rec t ion  mechanization e r ro r s  changes t h e  r e s u l t  f o r  t h e  f i rs t  case t o  54 
percent but has negl ig ib le  e f f e c t  on t h e  t h i r d  case because of t h e  dominant 
influence of  i n j ec t ion  e r r o r s .  These data  ind ica te  t h a t  t h e  fixed-landing- 
s i t e  guidance system requires  subs t an t i a l ly  less cor rec t ive  ve loc i ty  than 
f ixed  time of a r r i v a l  f o r  a r e a l i s t i c  s e t  of i n j ec t ion  e r ro r s .  However, f o r  
cases IC and 3c t h e  cor rec t ive  ve loc i ty  requirements f o r  fixed-landing-site 
guidance increase t o  70 and 89 percent of  those f o r  f i xed  time of a r r i v a l ,  
ind ica t ing  t h a t  t h e  i n i t i a l  d i s t r ibu t ion  of e r r o r s  must be considered ca re fu l ly  
i n  comparing t h e  two systems. 

Including t h e  ve loc i ty  cor- 

The importance of t h e  d i r ec t iona l  d i s t r i b u t i o n  of  t h e  deviations being 
corrected f o r  i s  demonstrated by comparison of t h e  data  i n  t a b l e  I1 f o r  cases 
IC and 3c with those f o r  cases l b  and 3b. The spher ica l  d i s t r ibu t ion  of injec-  
t i o n  e r ro r s  requires  an i n i t i a l  correct ion f o r  f ixed-landing-si te  guidance 
which is  about 95 percent of t h a t  f o r  f ixed  time of a r r i v a l  as compared t o  
69 percent f o r  t h e  standard d i s t r ibu t ion .  The remaining correct ions a re  i n  
t h e  same r a t i o  as f o r  t h e  standard d i s t r ibu t ion ,  s ince  t h e  f irst  correct ion 
eliminates most of t h e  e f f e c t s  of i n i t i a l  e r ro r s .  

Penal t ies  from veloc-itx correct ion mechanization e r r o r s  .- Table I11 l i s t s  
t h e  rms values of t h e  port ions o f  t he  second and t h i r d  ve loc i ty  correct ions 
which r e s u l t  from e r ro r s  i n  making the  previous cor rec t ions .  The port ion of 
t h e  second correct ion due t o  e r ro r s  i n  t h e  f i rs t  increases  with i n i t i a l  e r ro r s  
because t h e  magnitude dependent port ion of t he  ve loc i ty  correct ion mechaniza- 
t i o n  e r ro r  i n  t h e  f irst  correct ion becomes s ign i f i can t  f o r  cases 2b and 3b. 
On t h e  other  hand, s ince  t h e  second correct ion i s  s m a l l  t h e  rms e r ro r  i n  t h e  
correct ion is  e s s e n t i a l l y  constant and t h e  r m s  cor rec t ive  ve loc i ty  it requires  
at t h e  time of t h e  t h i r d  correct ion Is constant.  
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Fixed-landing-site guidance requires only about ha l f  as much correct ive 
veloci ty  a t  t h e  t i m e  of t h e  t h i r d  correct ion because of e r r o r s  i n  t h e  second 
correct ion as does f ixed time of a r r i v a l  even though t h e  rms mechanization 
e r r o r s  a r e  t h e  same. 
3a) it i s  seen t h a t  t h e  r a t i o  of t h e  correct ions caused by t r a j e c t o r y  estima- 
t i o n  e r r o r s  at t h e  time of t h e  second correct ion w a s  about 1/5. This d i f fe r -  
ence is due la rge ly  t o  t h e  f a c t  t h a t  f o r  s m a l l  correct ions,  the  mechanization 
e r r o r  l i e s  approximately along t h e  commanded veloci ty  correct ion.  For fixed- 
landing-site guidance t h i s  means t h e  e r r o r  has no component along t h e  u n i t  
vector u while one would not expect t h i s  t o  be t h e  case with t h e  estimation 
e r r o r s .  
t i o n  i s  r a t h e r  ins igni f icant  and it i s  used only t o  demonstrate a d i rec t iona l  
s e n s i t i v i t y  which could be important i n  other  appl icat ions of t h e  fixed- 
landing-site guidance scheme.) 

However, f r o m t h e  data i n  t a b l e  I1 (cases l a ,  2a, and 

- 
(It should be emphasized here t h a t  t h e  magnitude of t h e  t h i r d  correc- 

Terminal Deviations 

Perigee a l t i tude . -  The rms deviations from reference perigee a l t i t u d e  a r e  
summarized i n  t a b l e  I V .  
observational data  have an appreciable e f f e c t  on deviations from t h e  desired 
terminal conditions.  Therefore t h e  deviations f o r  t h e  f i r s t  th ree  cases and 
t h e  last  three ,  respect ively,  a r e  nearly constant.  I n  addi t ion,  t h e  devia- 
t i o n s  f o r  t h e  two guidance systems a r e  nearly equal i n  t h e  absence of veloci ty  
correction mechanization e r r o r s .  

Only t h e  e r r o r s  i n  the  f i n a l  correct ion and i n  t h e  

The data  i n  t a b l e  IV a l s o  indicate  t h a t  perigee a l t i t u d e  i s  Much more 
sens i t ive  t o  e r rors  i n  the f i n a l  veloci ty  correct ion f o r  fixed-landing-site 
guidance than f o r  f ixed  time of a r r i v a l .  It w a s  pointed out e a r l i e r  t h a t  f o r  
veloci ty  corrections of t h e  order of 1 m/sec, the  mechanization e r r o r  r e s u l t s  
almost e n t i r e l y  from the  rocket engine cutoff e r r o r .  Therefore, if t h e  f i n a l  
veloci ty  correct ion i s  smal1,the rms perigee a l t i t u d e  e r r o r  will be determined 
almost e n t i r e l y  by t h e  magnitude of t h e  cutoff e r r o r  and t h e  time of t h e  f i n a l  
correct ion.  The perigee a l t i t u d e  e r r o r  due t o  e r r o r s  i n  t h e  f i n a l  correct ion 
i s  much la rger  f o r  t h e  landing-site-guidance system than f o r  fixed-time-of- 
a r r i v a l  guidance. For t h i s  reason the  use of a rocket engine w i t h  a smaller 
cutoff e r r o r  would improve t h e  accuracy of t h e  former scheme r e l a t i v e  t o  
fixed-time-of - a r r i v a l  guidance. It can be shown ana ly t ica l ly  (on a two-body 
b a s i s )  t h a t  perigee a l t i t u d e  becomes l e s s  sens i t ive  t o  veloci ty  changes as t h e  
time t o  go ( t o  perigee) decreases. Therefore, s ince t h e  mechanization e r r o r  
i s  nearly constant,  t h e  perigee e r r o r  could be reduced, a t  t h e  expense of more 
correct ive fue l ,  by delaying t h e  f i n a l  correct ion.  This approach w i l l  be 
discussed i n  more d e t a i l  l a t e r .  

Crossrange.- The rms crossrange deviations f o r  t h e  two systems a r e  
presented i n  t a b l e  V .  (See appendix D.)  The fixed-time-of-arrival system 
does not attempt t o  eliminate t h e  necessi ty  f o r  crossrange adjustment during 
entry so t h a t  t h e  deviations f o r  t h i s  system increase with t h e  i n i t i a l  e r r o r s .  
This increase i s  nonlinear as i s  t o  be expected s ince t h e  computation of the  
crossrange deviation from t h e  s t a t e  vector a t  the  time of entry i s  nonlinear. 
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The fixed-landing-site guidance system does constrain crossrange 
adjustment, and t h e  rms crossrange deviation i s  determined mainly by e r r o r s  i n  
t h e  f i n a l  veloci ty  correct ion and t r a j e c t o r y  estimation e r r o r s  a t  t h e  time of 
t h i s  correct ion.  The crossrange deviations f o r  fLxed-landing-site guidance 
a r e  much more s e n s i t i v e  t o  e r rors  i n  t h e  f i n a l  ve loc i ty  correct ion than those 
f o r  f ixed time of a r r i v a l .  However, t h e  t o t a l  deviation f o r  landing-site 
guidance is  s o  s m a l l  compared t o  t h a t  f o r  f ixed  time of a r r i v a l  t h a t  t h i s  
increased s e n s i t i v i t y  t o  t h e  veloci ty  correct ion e r r o r s  i s  not s i g n i f i c a n t .  

Downrange.- The rms entry-range deviations f o r  t h e  two systems and t h e  
r m s  entry-range adjustment f o r  fixed-landing-site guidance a r e  presented i n  
t a b l e  V I .  A s  i n  t h e  case of perigee a l t i t u d e  and crossrange deviations,  t h e  
entry-range deviation f o r  t h e  fixed-time-of-arrival system i s  much l e s s  sensi- 
t i v e  t o  e r rors  i n  t h e  f i n a l  veloci ty  cor rec t ion .  The entry-range adjustment 
f o r  fixed-landing-site guidance r e s u l t s  from adjust ing t h e  entry-range angle 
and azimuth angle t o  compensate f o r  deviations from t h e  reference posi t ion.  
Hence, the  rms value of t h e  adjustment increases l i n e a r l y  with t h e  square root 
of k,. The t o t a l  deviation i n  t a b l e  V I  i s  t h e  root  sum square of t h e  entry- 
range deviation and t h e  downrange adjustment. Under t h e  assumption t h a t  t h e  
two components a r e  independent random variables  t h i s  quant i ty  represents t h e  
t o t a l  r m s  change from t h e  reference en t ry  range required of t h e  vehicle .  It 
can be seen by comparison of cases l a ,  2a, and 3a with cases l b ,  2b, and 3b 
t h a t  t h e  contr ibut ion of t h e  entry-range deviation, p a r t i c u l a r l y  t h e  p a r t  
caused by veloci ty  correct ion e r r o r s ,  i s  r e l a t i v e l y  unimportant. 

Landing time.- The r m s  landing-time deviations f o r  t h e  two systems and 
t h e  r m s  landing-time adjustment f o r  fixed-landing-site guidance a r e  given i n  
t a b l e  V I I .  Like t h e  entry-range deviation, t h e  landing-time deviation is  due 
pr inc ipa l ly  t o  e r r o r s  i n  the  f i n a l  veloci ty  correct ion and i n  t r a j e c t o r y  e s t i -  
mation a t  t h e  time of t h a t  correction. I n  t h i s  case, i n  contrast  t o  t h e  other  
landing parameters, veloci ty  correct ion e r r o r s  have negl igible  e f f e c t  on t h e  
fixed-landing-site guidance system. I n  addition, f o r  fixed-landing-site guid- 
ance t h e  landing-time deviations a re  negl igible  compared t o  t h e  landing time 
adjustment. Since t h e  landing-time adjustment and t h e  entry-range adjustment 
a r e  c losely re la ted ,  t h e  landing-time adjustment a l s o  increases approximately 
l i n e a r l y  with t h e  square root of k,. 

Effect of changing observat-ion and ve loc i ty  correct ion - schedule .- The 
terminal accuracy of t h e  fixed-landing-site guidance system with the standard 
schedule of observations and veloci ty  correct ions i s  adequate; however, it w a s  
desired t o  compare t h e  t o t a l  correct ive ve loc i ty  requirements needed when two 
systems provide approximately the  same terminal accuracy. A s  w a s  pointed out 
e a r l i e r ,  t h e  perigee a l t i t u d e  e r r o r  can be reduced by delaying t h e  f i n a l  veloc- 
i t y  correction, but t h e  magnitude of the  f i n a l  correct ion increases rapidly as 
t h e  delay i s  increased. 
e r r o r  can be reduced by making addi t ional  observations during t h e  delay time. 
A few t r i a l s  with t h i s  procedure resu l ted  i n  the  following revised schedule: 
S t a r t i n g  one hour a f t e r  t h e  las t  observation f o r  t h e  standard schedule, e ight  
observations were made of t h e  ear th  followed by t h e  t h i r d  veloci ty  correct ion,  
a l l  a t  half-hour in te rva ls .  This revis ion delayed t h e  f i n a l  correct ion u n t i l  
about 4.6 hours before entry.  

It w a s  found empirically t h a t  t h e  perigee a l t i t u d e  
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When ko = 1 w a s  used with t h e  new schedule, t h e  terminal e r rors  of t h e  
fixed-landing-site system w e r e  comparable t o  those of t h e  fixed-time-of- 
a r r i v a l  system for  case l b  (e.g. ,  t h e  r m s  perigee a l t i t u d e  e r ror  w a s  reduced 
from 2 . 1 1 t o  1.57 km). 
t o  0.33 m/sec i n  t h e  rms value of t h e  f i n a l  veloci ty  correction. 
r m s  correct ive veloci ty  f o r  fixed-landing-site guidance ranged from about 
62 percent of fixed-time-of-arrival guidance with the standard schedule i n  
case l b  t o  66 percent i n  case 3b. Thus, even with t h e  increase i n  t h e  f i n a l  
correction, t h e  fixed-landing-site guidance system s t i l l  saves a s u b s t a n t i a l  
port ion of t h e  midcourse f u e l .  

This improved accuracy required an increase from 0.26 
The t o t a l  

Computer requirements.- The fixed-time-of-arrival system used t h e  same 
computer program as w a s  used f o r  t h e  data  i n  reference 2. 
t i o n  of t h i s  program w a s  required t o  obtain data f o r  t h e  fixed-landing-site 
guidance system. 
amount required t o  compute t h e  multiplying f a c t o r  (I - UET) and multiply t h e  
matrix (M 
The i n i t i a l  conditions required f o r  t h e  fixed-landing-site guidance system a r e  
t h e  same as those f o r  fixed-time-of-arrival system with t h e  addition of t h e  
matrix q0 discussed i n  appendix A .  

A simple modifica- 

The increase i n  program s i z e  w a s  about equivalent t o  t h e  

N o  noticeable change i n  computation time resul ted.  -I) by it. 

CONCLUDING REMpLRKs 

The fixed-landing-site guidance system has been shown t o  require only a 
l i t t l e  over half  as much correct ive veloci ty  as t h e  fixed-time-of-arrival sys- 
tem i n  t h e  presence of in jec t ion  e r r o r s  considered t o  be r e a l i s t i c .  
r a t i o  increases t o  about 2 / 3  f o r  an order of magnitude increase i n  i n j e c t i o n  
e r rors ,  but because t h e  t o t a l  correct ive veloci ty  a l s o  increases,  t h e  a c t u a l  
saving i n  f u e l  i s  grea te r .  

This 

The fixed-landing-site system is  more sens i t ive  t o  e r rors  i n  t h e  f i n a l  
veloci ty  correction than t h e  fixed-time-of-arrival system, but t h i s  increased 
s e n s i t i v i t y  w i l l  not s i g n i f i c a n t l y  a f f e c t  the  objective of making t h e  desired 
landing. 
fixed-time-of-arrival system by revision of t h e  observation and  veloci ty  cor- 
rect ion schedule. This improvement increases t h e  correct ive veloci ty  required 
t o  about 2/3 of t h a t  of t h e  fixed-time-of-arrival system. An a l t e r n a t e  method 
would be t o  use a rocket engine f o r  t h e  midcourse correct ion having a smaller 
cutoff e r r o r  than t h e  one assumed i n  t h i s  study. 
degrade t h e  t o t a l  correct ive veloci ty  requirement, but would reduce t h e  e r r o r  
caused by e r r o r s  i n  making t h e  f i n a l  veloci ty  correct ion.  

It i s  possible t o  improve the  terminal accuracy t o  t h a t  of t h e  

This approach would not 

The e r r o r s  assumed i n  t h e  study are considered t o  be r e a l i s t i c ,  but  it 
must be noted t h a t  t h e  r e l a t i v e  r m s  correct ive ve loc i ty  required by t h e  two 
systems i s  strongly dependent on t h e  d i s t r i b u t i o n  of e r r o r s .  
m e r i t s  of fixed-landing-site guidance can only be determined on t h e  b a s i s  of 
t h e  type of observed data  and t h e  s t a t i s t i c a l  d i s t r i b u t i o n  of i n j e c t i o n  errors ,  
observation e r r o r s ,  and t h e  veloci ty  correct ion e r r o r s .  

The r e l a t i v e  

.. . .  . . ,. .. .,,, , . 



The computations required a r e  of about t h e  same complexity f o r  t h e  two 
systems. 
cated f o r  fixed-landing-site guidance. 

However, t h e  computation of t h e  input da ta  i s  s l i g h t l y  more compli- 

The example presented here w a s  an appl ica t ion  t o  r e tu rn  t o  ear th . f rom t h e  
moon, but  t h e  bas ic  method can be appl ied t o  d i r e c t  landing on other  r o t a t i n g  
bodies. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffe t t  F ie ld ,  C a l i f . ,  Nov. 3, 1965 
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APPENDIX A 

DERIVATION OF THE FIXED-LANDINGSITE GUIDANCE EQUATION 

The f irst  s t ep  i n  obtaining t h e  l inear ized  fixed-landing-site guidance 
equation i s  t h e  der ivat ion of t h e  re la t ionships  given i n  generalized form i n  
equations (1). For t h i s  purpose t h e  angle from vacuum perigee t o  landing i s  
defined as cpp. 
f ixed  a t  12 
from equation (2) t h e  t i m e  of vacuum perigee i s  

It i s  assumed t h a t  t h e  angle from ent ry  t o  vacuum perigee i s  
0 (cpp = cp - 12') and t h a t  it i s  t raversed i n  122 seconds. Thus, 

tp = t L  - 0 . 0 0 9 3 ~ ~ ~  - 0.00240 (All 

We now define th ree  coordinate frames, i l l u s t r a t e d  i n  sketch ( c )  by th ree  
s e t s  of u n i t  vectors:  (1) Up along 
t h e  radius  vector t o  vacuum perigee,  
uv along t h e  per igee veloci ty  vec- 
t o r ,  and c h  normal t o  t he  o r b i t a l  
plane; (2) TiL along t h e  radius  vec- 
t o r  t o  t h e  loca t ion  of t h e  landing 
s i t e  at t h e  time of landing, Til 
eastward from t h e  landing s i t e ,  and 
up northward from t h e  landing s i t e  
(an aux i l i a ry  - u n i t  vector t o  t h i s  
s e t  i s  ug which i s  normal t o  TiL 

j and i n  t h e  o r b i t  plane);  (3) an 
i n e r t i a l  Cartesian s e t  with I 
toward t h e  verna l  equinox, K 
ward along t h e  e a r t h ' s  axis, and J 

K - 

onding Sit. trock 

- 

- 
nortg- 

- 
1 completing a right-handed orthogonal 

vern01 4, system. 
Bq"l"0" - 

The u n i t  vectors  Up, uL, and 
u3 l i e  i n  t h e  o r b i t a l  plane and it 

Sketch ( c )  - 
can be seen from the  sketch t h a t  iip can be resolved i n t o  components cos cpp 
and s i n  qP along UL and Us, respect ively.  Now El, U2, and Ti3 l i e  i n  a 
plane normal t o  uL (tangent t o  t h e  e a r t h ' s  surface)  so  t h a t  t h e  component of 
up along u3 may be fu r the r  resolved i n t o  components along u1 a n d G 2  t o  
give 

- 
- 

- - - 

(A21 
- - 
u = UL cos cpp + El s i n  cpp s i n  a + E, cos cpp cos a P 

Similar ly ,  it can be shown t h a t  

( A 3 1  
- - 

uv = -uL s i n  'pp + Til cos cp s i n  a + Ti2 cos cpp cos CL P 
- - -  From sketch ( c )  it can be seen t h a t  t h e  uL, ul, u2 system is  r e l a t e d  t o  

t h e  Cartesian system by t h e  transformation. 



cos DL cos RAL cos DL s i n  RAL 

-s in  RAL cos RAL 

-s in  DL COS RAL - s in  s i n  RAL COS DL 

Equations (A2), ( A 3 ) ,  and (Ab) can be combined t o  give 

- u-p = T(cos cos RAL cos 'pp - sin RAL s i n  'pp s i n  a 

- s i n  DL cos RAL s i n  'pp cos a) + :(cos DL s i n  RAL cos 'pp 

+ cos RAL s i n  cp 

+ fT(sin 4, cos 'pp + cos DL s i n  cp,) 

s i n  a - s i n  DL s i n  RAL s i n  'pp cos a )  P 

- 
cv = I(-cos % c o s  RAL s i n  cpp - s i n  RAL cos cpp s i n  a 

- s i n  D~ cos RAL cos cp P 

+ cos RAL cos cpp s i n  a - s in  DL s i n  RAL cos cp 

+ K(-sin DL s i n  cpp + cos DL cos cpp cos a )  

cos a) + :(-cos DL s i n  RAL s i n  cpp 

cos a )  P - 

Rewriting equations (1) we have 
- 
I$ = Rp"ip 
- vp = vpiiv (A7 1 

which together with equations (A5)  and ( A 6 )  r e l a t e  perigee pos i t ion  and veloc- 
i t y  t o  t h e  a r r i v a l  parameters. Note t h a t  t h e  assumption t h a t  Tip and EL both 
l i e  i n  t h e  o r b i t a l  plane impl ic i t ly  r e s t r i c t s  t h e  incoming o r b i t  t o  one t h a t  
requires no crossrange adjustment. 

We now wish t o  l i n e a r i z e  t h e  problem by considering f i r s t -order  
perturbations about a reference t r a j e c t o r y  subject t o  t h e  constraint  t h a t  the  

perturbed t r a j e c t o r i e s  have the  same 

Dif fe ren t ia t ing  equations ( A 7 )  w i l l  
r e s u l t  i n  a matrix of t h e  f irst  p a r t i a l  
der ivat ives  of perigee pos i t ion  and 
veloci ty  with respect t o  t h e  a r r i v a l  
parameters. However, we wish t o  obtain 
f i rs t  p a r t i a l  der ivat ives  of pos i t ion  
and veloci ty  a t  t h e  time of reference 
perigee.  The d i s t i n c t i o n  between these 

of sketch ( a ) .  

- Actwl  position at  time of reference wriges. Tp values of Rp and DL as t h e  reference.  
"p L T p 1  

Sketch ( d )  quant i t ies  i s  i l l u s t r a t e d  with the  a i d  
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Here Ep and vp a r e  pos i t ion  and veloci ty  vectors of perigee on t h e  
p e r t g b e d  t r a j e c t o r y  which occurs a t  some time t a .  On the  other  hand, R ( t p )  
and V ( t p )  are t h e  pos i t ion  and ve loc i ty  vectors  on t h e  perturbed t r a j e c t o r y  a t  
t h e  time, tp, when reference perigee occurs. If ta is near ly  equal t o  tp, 
then we can wri te  

- - 
R ( t p )  = % - Vp(ta - tP) = Rp - fJ ( 6 t I  - 0*00933sCp) 1 P 

Define qP as  t h e  matrix of f i rs t  p a r t i a l  der ivat ives  of pos i t ion  and 
veloci ty  a t  t h e  time of reference perigee with respect t o  t h e  a r r i v a l  param- 
e t e r s .  We now compute qP by d i f f e r e n t i a t i n g  equations ( A 8 ) ,  but  we must 
recognize t h a t  t h e  terms involving (ta - tP) a r e  already i n  the  form of f irst-  
order  per turbat ions.  Therefore, 

$p = 

aEP aTi, aRp axp 
&Po aa at, av, 

;3vp ayp avp Zp 
&Po aa at, avp 

- - - -  

+ 
- - - -  

- 
0.00933 Vp o -vp 

(A91 

0.00933 vp 0 -Vp 
- 

The computation of t h e  p a r t i a l  der iva t ives  i n  equation (Ag) i s  s impl i f ied  
by expressing Rp and Vp as i n  equations (1). 

s o  t h a t  

Since d i f f e ren t i a t ion  with respect t o  cpp i s  equivalent t o  a s m a l l  
r o t a t ion  about EH, from sketch ( e )  



A change i n  the  angle a 
uL s o  t h a t  

represents a r o t a t i o n  of t h e  o r b i t a l  plane about - 

A change i n  t h e  time of landing r o t a t e s  t h e  o r b i t a l  plane about t h e  e a r t h ' s  
axis. I f  w is  t h e  angular veloci ty  of t h e  e a r t h  then 

Final ly ,  

Subst i tut ing equations ( A l l )  through (A14) i n  equation ( A 3 )  with t h e  
gives u n i t  vectors i n  terms of xp and 7 P 

This expression can be v e r i f i e d  by straightforward d i f fe ren t ia t ion  of 
equations ( A 5 )  and (A6)  followed by considerable algebraic manipulation. 

We w i l l  now use qn t o  derive t h e  l i n e a r i z e d  fixed-landing-site guidance 
equation. For t h i s  purzose 
from t h e  reference pos i t ion  
given by 

we define 7 and 
and veloci ty  and 

T as s m a l l  vector deviations 
as t h e  6 x 1 s t a t e  vector x 
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The s t a t e  vectors a t  d i f f e ren t  times a re  r e l a t ed  by the  s t a t e  t r a n s i t i o n  
matrix @ as follows: 

If t 2  i s  the  present time, t ,  and tl t he  time of reference perigee, 
tp, then equation (~16) becomes 

x ( t >  = @ ( t , t p ) x ( t p )  (A171 

Let 5 be defined as  a 4 x lmatrix of deviations from the  reference 
a r r i v a l  parameters. Then 

subs t i tu t ing  f o r  x ( t p )  i n  equation (Al7) 

x ( t )  = @(t , tp)$5  

or 

x = +C 
where 

q = @(t,tphp 

Equation (Al9) may be wr i t ten  i n  par t i t ioned  form as  

54 

Here q1 and q2 a re  3 x 3 matrices, and p2 are  3 x 1 matrices and the 
indicate  deviations from the  reference values of t he  a r r i v a l  parameters. The 
primes have been added t o  
from the  reference pos i t ion  and veloci ty  which would be produced by changes 
of C1, C2,  C3, 54 i n  t he  a r r i v a l  parameters. 

- r and 7 t o  indicate  t h a t  they a re  the  deviations 

Expansion of equation (~21) gives 



If F' i s  taken t o  be t h e  ac tua l  deviat ion of t h e  vehic le ' s  pos i t ion  from t h e  
reference t r a j ec to ry ,  t h e  changes i n  t h e  first th ree  a r r i v a l  parameters neces- 
sa ry  t o  produce a t r a j e c t o r y  from t h e  present pos i t i on  t o  t h e  landing s i t e  a re  

The veloci ty  deviat ion of  t h i s  t r a j e c t o r y  from t h a t  o f  t h e  reference t r a j ec -  
t o r y  is  found by subs t i t u t ing  equation (A24) i n t o  (A23)  

The t o t a l  difference between t h e  desired ve loc i ty  and t h e  present ve loc i ty  i s  

or i f  

and 

then 

It can be seen from equation (A25) t h a t  Yc i s  not uniquely determined 
but i s  a function of 54. It i s  desired t o  choose 54 so  as  t o  minimize 
ITc 1 ,  and t h i s  optimum i s  Td i n  equation (3) 

2 
IFcI = (MF + E t 4  - T ) T ( E  + k554 - 7) 
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If t h i s  der ivat ive i s  set equal t o  zero, t h e  o p t i m  (4 i s  found t o  be 

-(ET&?) - E% 
k 54 = 

Subst i tut ing i n  equation (A5) gives 

- -T - V d = @ -  U U b k + E T ? - T  

o r  

-T Td = (I  - uu ) [ M  (-1)Ix 
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APPENDM B 

ERRGR MODEL FOR THE DIGITAL COMPTPTER SIMULATION 

The e r r o r  model assumed f o r  mechanizing t h e  ve loc i ty  correct ion can be 
explained b r i e f l y  with t h e  a i d  of sketch ( e )  i n  which Td i s  t h e  desired 

ve loc i ty  correct ion while Ta i s  
t h e  correct ion a c t u a l l y  made. 
The d i r e c t i o n a l  displacement 
between Td and Ta can be Speci- 
f i e d  by t h e  angles E and 8. The 
angle, E, between t h e  two vectors 
may be e i t h e r  pos i t ive  or  nega- 
t i v e  and has Gaussian dis t r ibu-  
t i o n ,  zero mean, and lo standard 
deviation. The angle, 8, gives 

Sketch ( e )  t h e  or ien ta t ion  of t h e  plane of 
t h e  two vectors with respect t o  

some f ixed  reference and has uniform d i s t r i b u t i o n  between zero and a. There 
i s  a l s o  an e r r o r  i n  ITa[ which has two components. There i s  a cutoff e r r o r  
having Gaussian d is t r ibu t ion ,  zero mean, and a standard deviation of O.lm/sec. 
The other  component due t o  t h r u s t  l e v e l  a l so  has Gaussian d i s t r i b u t i o n  with 
zero mean, but i t s  standard deviation i s  1 percent of 

vd 

Iydl. 

The r e l a t i v e  s ignif icance of t h e  d i f fe ren t  components of the  veloci ty  
correct ion e r r o r  can be b e t t e r  explained with the  a i d  of sketch ( f )  showing 

t h e  plane of Td and Va. The e r ror ,  
v,, i n  t h e  veloci ty  correct ion can be 
resolved i n t o  two components, vl, i n  

Vd.  Since E i s  very s m a l l  a good 

- 

- v2 t h e  d i rec t ion  of ?d and v2, nornal t o  - 
:- 

f - - approximation t o  v2 i s  given by 
'd VI 

v2 M vdE Sketch ( f )  

Likewise, v1 i s  approximately equal t o  t h e  e r r o r ,  vg, i n  va so  t h a t  

Since t h e  rms value of E 
of order 1 m/sec, v2 i s  near ly  an order of magnitude smaller than vl, and 
t h e  r m s  value of v1 cons is t s  almost e n t i r e l y  of t h e  cutoff e r ror .  On t h e  
other  hand, i f  Fd i s  of order 10 m/sec, t h e  rms value of v2 i s  about 
0.17 m/sec while t h a t  of v1 i s  about 0.14 m/sec. 

i s  1' (about 1/60 radian) ,  it i s  seen t h a t  f o r  vd 

The method of ca lcu la t ing  t h e  covariance matrix, S, of veloci ty  correct ion 
mechanization e r r o r s  from t h e  e r r o r  model j u s t  described i s  given i n  
reference 5 .  
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The e r r o r s  i n  measuring t h e  individual Cartesian components of ve loc i ty  
correct ion were assumed t o  be random and independent with Gaussian d is t r ibu t ion ,  
zero mean, and standard deviation of these measurements i s  

A s  mentioned i n  t h e  t e x t  it w a s  assumed t h a t  c e r t a i n  c e l e s t i a l  
observations (angles) a r e  made for t h e  purpose of estimating t r a j e c t o r y .  These 
measured angles consis t  of t h e  subtense angle of e i t h e r  e a r t h  or moon together 
with t h e  azimuth and elevat ion angles of center of t h e  same body with respect 
t o  some i n e r t i a l  reference.  

The e r r o r s  i n  t h e  observations were assumed t o  be random with Gaussian 
d i s t r i b u t i o n  and zero mean. Also, t h e  e r r o r s  i n  d i f fe ren t  angles and measure- 
ments made a t  d i f fe ren t  times were assumed t o  be uncorrelated.  The standard 
deviation w a s  t h e  same for t h e  three  angles measured and i s  assumed t o  be given 
i n  seconds of a rc  by 

0 = J l O O  + (o.ooly-)2 

where y i s  half  t h e  subtended angle of t h e  body observed. These s t a t i s t i c a l  
c h a r a c t e r i s t i c s  r e s u l t  i n  t h e  covariance matrix, Q, of observation e r r o r s  being 
a diagonal 3 x 3 matrix 

Q = a21 
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APPENDIX C 

COMF’UTATION OF STATISTICAL INFORMATION FOR ORBITAL PHASE OF FLIGHT 

During t h e  o r b i t a l  phase of t h e  f l i g h t  t h e  s t a t i s t i c a l  performance of both 
guidance systems w a s  evaluated by means of l i n e a r  theory.  
required t h e  knowledge of three covariance matrices: 

This evaluation 

(1) The covariance m a t r i x ,  W, of pos i t ion  and veloc i ty  deviations from 
t h e  reference t r a j e c t o r y ,  

( 2 )  The covariance m a t r i x ,  P, of e r r o r s  i n  estimating those quant i t ies ,  

( 3 )  The covariance m a t r i x ,  C y  of veloci ty  correct ion ac tua l ly  made. 

This t h i r d  matrix i s  separated i n t o  two p a r t s  so  t h a t  t h e  pena l t ies  due t o  
ve loc i ty  correct ion e r r o r s  may be evaluated. 
i s  needed, f o r  reasons t o  be discussed later,  t o  account f o r  adjustments made 
i n  entry range and landing time by t h e  landing-site guidance system. 

A supplementary covariance matrix 

The covariance matrices S, SM, and Q of ve loc i ty  correct ion mechaniza- 
t i o n  e r rors ,  ve loc i ty  correct ion measurement e r r o r s ,  and e r r o r s  i n  c e l e s t i a l  
observations a r e  used i n  calculat ing W, P, and C .  The sources of these 
matrices are given i n  appendix B. 

I n i t i a l l y ,  P and W a r e  both s e t  equal t o  t h e  covariance matrix of 
in jec t ion  e r r o r s ,  and they must be updated as t h e  f l i g h t  proceeds. 
updating which takes  place e i t h e r  as a r e s u l t  of t h e  passage of time o r  because 
of operations (observations , veloc i ty  corrections, or termination of t h e  f l i g h t )  
performed by t h e  system proceeds as follows: 

This 

Let CJ be t h e  t r a n s i t i o n  matrix giving deviations from t h e  reference 
pos i t ion  and veloci ty  at time t due t o  deviations at some e a r l i e r  time. Then 
between operations,  P and W a r e  updated by 

If H i s  t h e  m a t r i x  of p a r t i a l  der ivat ives  of t h e  observed angles with 
respect t o  the  Cartesian components of pos i t ion  and veloci ty ,  then a f t e r  an 
observation 

while W remains unchanged. The derivation of t h i s  re la t ionship  i s  qui te  
complex and will not be presented here.  (See r e f .  4, eqs. (1.3) and (14) .) 
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The only estimation e r r o r s  incurred i n  making a veloci ty  correct ion a r e  
those i n  measuring t h e  correct ion a c t u a l l y  made. Hence, a f t e r  t h e  correct ion 

It is  shown i n  reference 2 t h a t  straightforward computation of E(xxT) 
a f t e r  a veloci ty  correct ion gives 

w = K l  (G2 o + 1) ] ( w o - p o ) ~ l  (G2 o + 1) J T + P o + s  
(c4) 

where I is  a 3 X 3 uni t  matrix, 0 represents  a 3 X 3 n u l l  matrix, and 

The significance of t h e  d i f fe ren t  terms on t h e  r i g h t  s ide  of equation ( C 4 )  can 
be explained by t h e  use of equations (Cl) t o  update 
ence perigee. Then 

W t o  the  time of refer-  

W ( t p )  = w1 + w2 
where by def in i t ion  

w 1 =  @El 
and 

T w2 = @(Po + SI@ 

It i s  a l s o  shown i n  reference 2 tha t  (W-P) i s  the covariance m a t r i x  of 
t h e  estimated deviations from reference pos i t ion  and velocity.  
veloci ty  correct ion would cause t h e  guidance requirements t o  be s a t i s f i e d  i f  
t h e  estimate were cor rec t ,  W1 represents a d i s t r i b u t i o n  of deviations from 
t h e  reference t r a j e c t o r y  f o r  which t h e  guidance requirements a re  s t i l l  satis- 
f i e d .  On the  other hand W2 represents deviations,  from members of t h i s  fam- 
i l y  of s a t i s f a c t o r y  t r a j e c t o r i e s ,  which a r e  caused by e r r o r s  i n  t r a j e c t o r y  
estimation a t  t h e  time of t h e  veloci ty  correct ion and by er rors  i n  making t h e  
correction. 

Since t h e  

From t h i s  analysis  it appears t h a t  t h e  f i rs t  term on the  r i g h t  s ide  
of equation ( C 4 )  could be eliminated, with no loss of s ign i f icant  information, 
t o  give 

W = P 0 + S  (c5) 

However, t h e  information contained i n  t h e  term eliminated from equation ( C 4 )  i s  
necessary f o r  computing the  s t a t i s t i c s  of t h e  landing parameters. The above 
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reasoning can be confirmed ana ly t ica l ly  f o r  t h e  case of fixed-time-of-arrival 
guidance as follows: 

For t h e  fixed-time-of-arrival guidance equation s t a t e d  i n  equation (2) 

G1 

G2 

Here I i s  t h e  u n i t  m a t r i x  and Q l  
follows : 

@ =  

and Q 2  arise from p a r t i t i o n i n g  Q as 

Subst i tut ion from equations ( ~ 6 )  and (C7) shows t h a t  

0 

(GzO+ I d  = l @ s  - @.4@2-%)4~) 

and t h i s  re la t ionship  can be used t o  show 

(Q,3 - Q4@2-%1) 

Q, lT 

t h a t  
T 

= (-0z-l) 

0 

Therefore , f o r  t h e  fixed-time-of-arrival guidance equation 

Hence, only t h e  lower r i g h t  3 x 3, t h e  veloci ty  components, of W1 a r e  not 
zero. These a r e  t h e  deviations i n  veloci ty  a t  t h e  time of reference perigee 
which must be accepted i n  order t o  have zero pos i t ion  deviation. Since t h e  
landing parameters a r e  functions of perigee veloci ty  as wel l  as posi t ion,  it 
i s  necessary t o  r e t a i n  the  information contained i n  W1. This information w a s  
re ta ined i n  the  case of fixed-time-of-arrival system by using equations (Cl) 
t o  update W .  (Since, t o  a f i r s t -order  approximation, Q 2  i s  proportional t o  
t h e  time over which it i s  computed, the  e f f e c t s  of W1 on the  landing 
parameters w i l l  be small.) 

I n  t h e  case of fixed-landing-site guidance it would be very d i f f i c u l t  t o  
reduce W1 mathematically t o  a simple form. However, as i n  t h e  case of 
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fixed-time-of-arrival system, W, w i l l  make no contr ibut ion t o  t h e  deviations 
which t h e  guidance l a w  requires  t o  be zero. For t h i s  system these  a re  devia- 
t i o n s  i n  perigee a l t i t u d e ,  decl inat ion of t h e  landing s i t e ,  and crossrange 
adjustment. In  t h i s  case t h e  information l o s t  by t h e  elimination of W, w i l l  
be t h e  s t a t i s t i c a l  d i s t r i b u t i o n  of t h e  adjustments i n  entry-range angle, land- 
ing time, and perigee ve loc i ty  made by the  guidance system i n  order t o  achieve 
a sa t i s f ac to ry  t r a j e c t o r y .  It w a s  desired t o  know t h e  f irst  two of these  th ree  
quan t i t i e s  which are defined i n  t h e  t e x t  as downrange adjustment and landing- 
time adjustment, respect ively,  bu t  preliminary r e s u l t s  using equations ( C l )  
with t h e  fixed-landing-site guidance system showed t h a t  round-off e r ro r s  cause 
unacceptable inaccuracy f o r  la rge  i n i t i a l  values of W. For t h i s  reason equa- 
t i o n  (C?) w a s  used with t h i s  system and t h e  s t a t i s t i c s  of t h e  downrange adjust-  
ment and landing-time adjustment were computed separately as described i n  t h e  
following paragraphs. 

The generalized inverse of t h e  matrix $ i n  equatlon ( A l 9 )  (derived i n  
appendix E) can be used t o  compute these  s t a t i s t i c s .  
wr i t t en  $* so  t h a t  

This inverse will be 

5 = Ilr+ 

where 5 i s  t h e  r e s u l t  of applying t h e  guidance equation. 

A t  t h e  time o f  any given ve loc i ty  correct ion 

Note t h a t  t h i s  i s  t h e  covariance m a t r i x  of 5 due t o  a spec i f i c  ve loc i ty  cor- 
rec t ion ,  and W i s  evaluated immediately before t h a t  correct ion.  Under t h e  
assumption t h a t  t h e  various veloci ty  correct ions a re  uncorrelated,  t h e  covari- 
ance m a t r i x  f o r  t he  t o t a l  change i n  a r r i v a l  parameters can be found by summing 
t h e  individual  covariance matrices.  

The mean-square ve loc i ty  correct ion f o r  t h e  nth correct ion time i s  
given by t h e  t r a c e  of t h e  covariance matrix. 

I n  equation (C14) Wn and Pn a re  evaluated j u s t  before t h e  correct ion.  If Wn 
i s  obtained by updating W from t h e  time of t h e  previous correct ion then 

C, = G(QWn-lQT - Pn)GT + Sn ( c15 ) 

Subs t i tu t ion  f o r  Wn-, from equation ( ~ 4 )  y i e lds  

where Wn-l and P,, are evaluated immediately before t h e  n-1st correct ion.  
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(Also note t h a t  t h e  f i r s t  term on t h e  r i g h t  s ide  of equation (c16) should be 
zero.)  The t r a c e  of t h e  matrix G@Sn-=@TGT gives t h e  mean-square value of 
t h a t  por t ion  of t h e  nth ve loc i ty  correct ion r e su l t i ng  f rom e r r o r s  i n  making 
t h e  previous correct ion.  
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APPENDIX D 

COMPUTATION OF STATISTICS OF THE U N D I N G  CONDITIONS 

The appl icat ion of t h e  Monte Carlo method t o  t h e  computation of t h e  
landing 

1. 

2. 

3 .  

4. 

5 .  

conditions i s  as follows: 

S ta r t ing  immediately a f t e r  t h e  f i n a l  ve loc i ty  correct ion,  two-body 
formulas were used t o  compute t h e  perigee radius  of t h e  reference 
t r a j e c t o r y  and i ts  pos i t ion  and ve loc i ty  vectors  at atmospheric entry.  

The formulas derived below were used t o  compute t h e  reference landing 
conditions.  

A s e t  of random pos i t ion  and ve loc i ty  deviations from t h e  reference 
t r a j e c t o r y  w a s  obtained from t h e  s t a t i s t i c a l  d i s t r ibu t ion  described 
by W ( r e f .  6 ) .  These deviations were a d d e d t o  t h e  reference posi- 
t i o n  and veloci ty  t o  obtain a perturbed pos i t ion  and veloci ty .  

Steps 1 and 2 were repeated f o r  t h e  perturbed t r a j e c t o r y  and t h e  
differences between perturbed and reference landing conditions were 
computed. 

A sample of 1000 d i f f e ren t  perturbed t r a j e c t o r i e s  was found t o  give 
su f f i c i en t ly  accurate values of t h e  s t a t i s t i c a l  quant i t ies  of 
i n t e r e s t .  

Standard two-body formulas were used f o r  Step 1 and will not be presented 
here .  
landing conditions,  and t h e  formulas used f o r  t h i s  computation a re  derived i n  
t h e  following paragraphs. 

The en t ry  posit ion,velocity,  and time were then used t o  compute t h e  

The re la t ionship  of t h e  uni t  vector UL, along t h e  radius  vector t o  t h e  
landing s i t e  t o  t h e  Cartesian coordinate system i s  shown i n  appendix A t o  be 

( D 1 )  
- - 

UL = I cos DL cos RAL + '5 cos DL s i n  RAL + x s i n  DL 

- Similar ly ,  t h e  u n i t  vector UE 
given by 

along t h e  radius  vector to t h e  entry point  i s  

- 
(D2) 

- 
5, = I COS DE COS RAE + J cos DE s i n  RAE + s i n  

it follows t h a t  

COS q = cos DL cos cos (mL - RAE) + s i n  D~ s i n  



I f  RAu 
then 

i s  t h e  r i g h t  ascension of t h e  landing s i t e  a t  t h e  time of entry,  

where w i s  t h e  e a r t h ' s  angular ve loc i ty  and t F  i s  t h e  time of f l i g h t  from 
ent ry  t o  landing. Subs t i tu t ion  i n  equation ( D 3 )  gives 

cos = cos cos DL cos (mu + WtF - RAE) ( D 5 )  

and from equation (2) 

t F  = 0.00933~p + 0.00234 

Equations (2)  and ( D 5 )  must be solved by i t e r a t i o n  ( see  r e f .  1) t o  f i n d  

tF. 
cp and 

The time of landing, tL, i s  

K 
t L  = t E  + t F  

The computation of t h e  crossrange 
deviation can be explained with t h e  a i d  of 
sketch ( g ) .  

If t h e  vehicle  were allowed t o  continue 
i n  i t s  incoming o r b i t a l  plane t h e  "actual  
o r b i t a l  plane" i n  t h e  sketch, it would cross  
t h e  landing s i t e  t r a c k  at point L1. A t  t h e  
same t i m e  t h e  landing s i t e  would be at point  
Lo. 
t r a j e c t o r y ,  it would pass through t h e  en t ry  
point i n  t h e  ' 'desired o r b i t a l  plane" and 
a r r i v e  a t  L2 at  t h e  same time as t h e  land- 
ing s i t e .  The crossrange deviation i s  
defined as t h e  normal arc ,  CR, from t h e  
landing s i t e  t o  t h e  a c t u a l  o r b i t a l  plane.  

If t h e  vehicle  were on a s a t i s f a c t o r y  

Actual orbital plane 

Sketch ( g )  

- Let Ea be a u n i t  vector normal t o  t h e  a c t u a l  o r b i t a l  plane and nd a 
u n i t  vector normal t o  t h e  desired plane. Then 

and 

The r e l a t i v e  i n c l i n a t i o n  angle, i, can be obtained from 



- 
nd cos i = Ea 

and from spherical  trigonometry 

t a n  ( C R )  = t a n  i s i n  cp 

Multiplying by a constant f a c t o r  converts CR from angular u n i t s  t o  
kilometers. 



APPENDM E 

DERIVATION OF THE GENERALIZED INVERSE OF $ 

It i s  shown i n  reference 7 t h a t  every rectangular m a t r i x ,  A, has a 
generalized inverse,  A*, which i s  unique. Furthermore, it i s  a property of 
A* t h a t  i f  

b = Ay 

has a solut ion,  then t h a t  solut ion i s  given by 

y = A*b (E21 

The guidance l a w  w a s  derived t o  insure t h a t  f o r  every s t a t e  vector x 
there  e x i s t s  a unique c .  Therefore, it i s  known t h a t  

5 = 

This f a c t  will be used t o  solve f o r  $*. 

Equation (E3) can be wr i t ten  i n  p a r t i t i o n e d  form as 

where q1* and $2* a r e  3 X 3 matrices. From equation ( ~ 2 6 )  

so  t h a t  

-1 -T 
k 

(Fl*) = - u M 

(E3 1 

(E51 

I f  t h e  optimum 54 from equation ( ~ 2 6 )  i s  subs t i tu ted  i n t o  equation (A22) 
( t h e  prime i s  omitted from 'F) then 
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I 
, . . .. - . . - .. .. -. . . . . . ... ... . ._. . .- ... .. . . . .. -. .. . - . . . . . I ,  

s o  t h a t  

From equation (E6) 

Subst i tut ion from equations (E7) and (E’j) i n t o  equation (E4) gives 

- 
- 1 $1 (1 + P1U M) 

- 1 -1 1 - -T 

5 (i.iTM) 1 ip 
k k 

It can be shown t h a t  

q*$ = I 

where I i s  a 4 X 4 u n i t  matrix and 

$$* = I 

where I i s  a 6 x 6 uni t  matrix. 
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TABLE I.- COVARIANCE MATRIX OF INJECTION ERRORS FOR STANDARD DISTRIBUTION 
I II 

.3 0887450x10- 

.84712863~10'~ 

.29243 6 0 0 ~ 1 0 - ~  

.17300981xio-~ 

. 13020790x10-3 



TABLE 11.- RMS VELOCITY COFZECTIONS 

Case 

100 

lb 1 

2b 10 

3b 100 

IC 1 I 

I 

, 3c 100 

Fixed time of a r r i v a l  Fixed landing s i t e  

Second correction, Third correction, Second correction, Third correction 
m/sec m/sec m/sec m/sec 

Velocity 
:orrect ion 

e r ro r s  

None 

None 

None 

Standard 

Standard 

Standard 

Standard 

Standard 

In jec t ion  
e r ro r s  

~~ 

Standard 

Standard 

Standard 

Standard 

Standard 

Standard 

Spherical 

Spherical 

Fixed-time-of-arrival 
correction no. 

1, 
m/sec 

1-37 

4.58 

14.61 

1.37 

4.58 

14.61 

2-79 

28.62 

2? 
m/sec 

1.08 

L .32 

1.64 

1.11 

1.36 

Total, 

3 J7 

6.65 

.84 17.09 

.83 3.31 

.86 6.00 

1.76 .94 17.31 

1-47 -93 5.19 

2.47 .99 32.08 

Fixed-landing-s it e 
correction no. 

1, 
m/sec 

0.94 

3 -15 

10.04 

94 

3 -15 

10.04 

2.68 

m/sec m/sec + Total, 
m/sec 

1.63 

3 -96 

10.96 

27.22.: 1.15 .27 28.64 

Ratio of 
t o t a l  f o r  
F.L.S. t o  
tha t  f o r  
F.T.A. 

o .52 

*59 

.64 

-54 

.60 

.64 

9 70 

-89 

TABLE 111.- CORRFCTIONS DUE TO ERRORS I N  PREVIOUS CORRFCTION 

1 I 

lb 
2b 
3b 

0.24 
*31 
63 

0.40 
.bo 
.41 

0.16 
.18 
-30 

0.20 
.20 
.20 



TABLE IV.- RMS PERIGEE ALTITUDE DEVIATIONS 

Case 

l a  

2a 

3a 

lb 

2b 

3b 

Rms perigee a l t i t u d e  deviations, -- km 

Fixed time of a r r i v a l  

1.45 
.. 

1.51 

1.54 

1.50 

1.56 

1.58 

Fixed landing s i t e  

1.44 

TABLE V.- RMS CROSSRANGE DEVIATION 

Crossrange deviation, 
km 

Fixed time of  a r r i v a l  

3.82 

5.61 

12.26 

3 -85 

5 -67 

12 *37 

Fixed landing s i t e  

0.59 

.61 

.62 

92 

93 

93 
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TABU V I . -  RMS ENTRY-RANGE DEVIATIONS 

Fixed t i m e  of 
arrival 
T o t a l  

- 

Fixed landing s i te  

Entry-range- 
Case 

l a  

2a 

3a 

l b  

2b 

3b 

deviation, 
km 

Case 

l a  

2a 

3a 

lb 

2b 

3b 

12.8 

1-3.3 

13.7 

1-3.3 

13.9 

14.3 

12.8 

13.1 

13.3 

19.1 

19.6 

19.8 
~~ 

-. - . 

Ent r y-r &-ge 
adjustment, 

km -_ - 

23.2 

72.2 

227.8 

23.2 

72.2 

227.8 
. .  

TABU V I 1 . -  RMS LANDING-TIME DEVIATIONS 

-. 

T o t  a1 
deviation, 

km - 

26.5 

Fixed t i m e  of 
arrival 

T o t  a1 
deviation, 

km 

3.74 

3.80 

3.96 

3.83 

3.87 

4.02 

73.3 

227.8 

30.0 

74.8 

227.8 
. -  

Fixed landing s i t e  

Landing -t ime 
deviation, 

see 

3.72 

3.79 

3.94 

3.73 

3.82 

. .  . 
3.96 

- F ~ . . .  . 
Landing -t i m e  
adjustment , 
- . see ~ 

69 

215 

680 

69 

215 

680 

T o t  a1 
deviation, 

sec . 

70 

21.5 

680 

70 

215 

680 
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Figure 1.- RMS position estimation errors .  
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