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MIDCOURSE GUIDANCE FOR RETURN FROM THE MOON TO A
GEOGRAPHICALLY FIXED LANDING SITE

By John D. McLean and Imigi 5. Cicolani
Ames Research Center

SUMMARY

This report describes a midcourse guidance system for return from the
moon to a safe landing at a specific geographical site. The design is based
on linear perturbations about a reference trajectory. The vehicle's ability
to maneuver within the atmosphere 1s used to reduce the midcourse corrective
velocity requirements.

The system is compared statistically on the basis of a digital computer
similation with one that uses fixed-time-of-arrival method of guidance. The
trajectory estimation method used for both systems is that described in NASA
TR R-135. The transearth injection errors, observation errors, velocity cor-
rection mechanization errors, and velocity correction measurement errors are
specified by statistical distributions considered to be realistic in terms of
present day capabilities.

The fixed-landing-site guidance system requires substantially less cor-
rective velocity than a fixed-time-of-arrival system, but it 1s more sensitive
to errors in the final velocity correction than is the fixed-time-of-arrival
system. This sensitivity can be effectively compensated for by proper schedul-
ing of observations and velocity corrections or by the use of a rocket engine
having different error characteristics for midcourse corrections.

INTRODUCTION

The objectives of midcourse guidance for the return phase of a lunar
mission are defined for this study as:

1. To place the vacuum perigee of the return trajectory at the center of
the entry corridor.

2. To land the vehicle at a specified geographical landing site.

3. To reach this landing site without crossrange maneuvering during
entry.

The third objective arises because the crossrange maneuvering capability for
Apollo-class entry vehicles is much more limited than the downrange maneuver
capability (ref. 1).

It is recognized that because of errors, from sources to be discussed
later, the above objectives cannot be met exactly. However the



fixed-time-of-arrival guidance system used in earlier studies at Ames (ref. 2)
and elsewhere does not explicitly impose these objectives. (This system
guides the vehicle to the position on a precomputed reference trajectory cor-
responding to the time of reference perigee.) It is true that the fixed-time-
of-arrival system satisfies the desired constraints within acceptable
tolerances for the range of initial errors studied in reference 2. Vacuum
perigee differs from the reference value (center of the entry corridor) by
small amounts and the desired landing site can be obtained with modest cross-
range and downrange maneuvering during the entry flight. On the other hand,
there may be some advantage in a guidance system which recognizes these
constraints explicitly.

This report presents the development of a method for guidance to a fixed
landing site. The performance of this system for a sample return trajectory
is then compared statistically with that of a fixed-time-of-arrival system on
the basis of a digital simulation.

NOTATTION
C covariance matrix of velocity corrections actually made
D declination
G 3 X 6 matrix from guidance equation
H matrix of partial derivatives of observed angles with respect to

Cartesian coordinates
I unit matrix

kg multiplying factor for initial covariance matrices

M 3 X 3 matrix from guidance egquation

P covariance matrix of errors in trajectory estimation
Q covariance matrix of observation errors

R magnitude of R

R position vector

T vector of small deviations from reference position

rms root mean square
RA right ascension

S covariance matrix of errors in making velocity corrections



SM covariance matrix of errors in measuring velocity corrections

t time

u unit vector

A magnitude of v

v velocity vector

v vector of small deviations from reference velocity

Vg, Vg corrective velocity increments

W covariance matrix of deviations between actual and reference
trajectories
X state vector (6 X 1 matrix of vehicle's position and velocity

deviations from reference)

a azimuth angle from north of orbital plane at landing site

¥ one-half the subtended angle of earth or moon

€,06 pointing errors in corrective velocity

4 4 x 1 matrix of deviations in arrival parameters

V) entry range angle

0} transition matrix

W ' matrix of partial derivatives of Cartesian position and velocity with

respect to arrival parameters

w earth's angular velocity
Superscripts

T . transpose of a matrix

) 3 X 1L matrix (or vector)

(") derivative with respect to time
Subscripts

a actual

a desired




E atmospheric entry
i,m integers

L landing site

P perigee

rms root-mean-square value
ANATYSIS

The development of the method of guidance to a fixed landing site follows
the approach used in reference 3 for finding reference trajectories which
return from the moon to a specified geographic site. Such a reference tra-
jectory distorted for ease of illustration is pictured in sketch (a). The

Earth track of
reference orbit

Landing site track

Vernol
equinox

Reference orbit

Sketch (a)

point, P, represents either the transearth injection point or any point along
the trajectory. The trajectory is divided into two phases: orbital and entry,
entry being defined as a radius of 6500 km (about 400,000 ft altitude).

The point of view is taken that the trajectory travels backward in time
from the landing site to point P. Hence, the orbital portion can be speci-
fied by the vacuum perigee position vector R, . perigee velocity vector Vp,
and time of perigee, tp. If the trajectory is to terminate at the landing
site, these quantities must satisfy certain functional relationships. These
are:

§ -ﬁ (CP :a‘)tL:DL)
P 1Y (l)

6<|
i

T/'P (CP ;O“:tL:DL)

ct
Il

t7, = 0.00933p - 0.00254 (2)



where ¢ 1is the angle from entry to landing; the azimuth angle, o, is mea-
sured from the meridian through the landing site to the orbital track; Dy 1s
the declination of the landing site, and <%y, is the time of landing. Equa-
tions (1) are geometrical relationships (derived in appendix A) which implic-
itly restrict the crossrange maneuver to zero. Equation (2) contains the
dynamical relationship between the entry angle, ¢, in radians and the time in
mean solar days required to traverse it. This equation is of empirical origin
(see ref. 3). Thus the complete trajectory may be specified in terms of the
"arrival parameters" ¢, a, tr, Vy, Rp, and Dr.

Assume that a reference trajectory from the moon to the landing site has
been defined. The point P in sketch (a) will now be regarded as lying on
the reference trajectory somewhere in cislunar space. Because of injection
errors, the vehicle arrives at point P' at time t instead of at P (see
sketch (b)). Likewise, the
velocity will generally be
such that unless a velocity
correction is made before
entry the vehicle will not
land at the desired site.

Londing site track

If a velocity correction

is to be made at time t,
then the function of the
fixed-landing-site guidance
system is to compute a new
trajectory which legves P!
at time t and lands at the
landing site at time +f,
\\ Corrected orbit for fixed time of arrival Because Of the earth' 8 rOta_

Corrected orbit for fixed landing site tion during the interval
(+{, - t1,) the landing site
will have moved to the point
L'. The corrective velocity increment will be the difference between the
vehicle's actual velocity and that of the corrected orbit.

Reference earth track

Reference orbit

Sketch (b)

For comparison the corrected trajectory which would be produced by the
fixed-time-of-arrival method is shown as a dashed line in sketch (b). It
intercepts the reference at ©P,, corresponding to perigee on the reference
orbit. Note that if the reference perigee point lies outside the orbital
plane, a plane change will be required. On the other hand, if Rp and Dy,
are the only arrival parameters constrained, the fixed-landing-site guidance
system will require a plane change only if the inclination of the incoming
orbit is less then Dy, (see ref. 3).

Finally, it should be pointed out that the basic methods used in
developing the fixed-landing-site guidance system can be used for landing on
any rotating celestial body, provided the "entry" phase of the trajectory can
be suitably approximated. This statement is true even if the destination body
has no atmosphere (here "entry" would correspond to powered descent), but it
would probably be pointless to apply the method when the rotation rate of the
body is extremely low.



Fixed-ILanding-Site Guidance Equation

For the computation of a new trajectory from P' +to the landing site,
Rp and Dy, are constrained to the reference values. This leaves four arrival
parameters (¢, o, tr, and V. ) which may be changed from the reference values
so that the trajectory will originate at P' instead of P. Since only three
quantities are required to specify the position of P', there is an infinite
family of possible corrected orbits. A uniqgue trajectory may be selected from
this family either by constraining an additional arrival parameter or by sat-
isfying some other condition. For this study we require magnitude of the
corrective velocity to be a minimum.

The procedure for finding the reference trajectory is a complex iterative
one, so the problem of finding the corrected trajectory has been linearized in
terms of small perturbations around the reference trajectory. The resulting
linearized guidance equation is derived in appendix A and may be written as

g = (I - l) (M - 7) (3)

where V3 1s the desired corrective velocity vector, W is a unit vector, M
is a 3 X 3 matrix, and T and ¥ are vectors of position and velocity
deviation from the reference trajectory.

Comparison with flixed time of arrival.- The fixed-time-of-arrival
guidance equation in reference 2 is given by

V4 = 0" 10,77 (L)

where 0, and ®, are submatrices of the state transition matrix which relates
position and velocity deviations at the time of reference perigee to those at
the time of the correction.

If the vector (MF - ¥) in equation (3) is defined to be the nonoptimum
correction, then both the fixed-time-of-arrival and the nonoptimum fixed-
landing-site guidance corrections can be expressed in the form (AT - ¥). It
can be seen that the magnitudes of both corrections are dependent on the
direction of T, but the correction will be zero only when AT 1is equal to ¥.

Now consider the multiplying factor (I - TGGL) in the landing-site
guidance law. Since

(I - wal)d =0

any component of the nonoptimum correction lying in the U direction will be
eliminated by this multiplying factor. Because of this fact, it is to be
expected that the magnitude of the optimum correction for fixed-landing-site
guidance will be more sensitive to the directions of T and v +than is the
case for fixed-time-of-arrival guidance. Thus, from a statistical point of
view, the mean-square velocity correction for fixed-landing-site guidance will



be more sensitive to the directional properties of the distribution of
deviations from the reference trajectory.

DIGITAL SIMULATION

The fixed-landing-site guidance equation was compared on a statistical
basis with that for fixed time of arrival by means of a digital computer
simulation of the two systems under identical conditions.

Four sources of error were considered:
(1) Transearth injection errors

(2) Errors in knowledge of the vehicle position and velocity (trajectory
estimation errors)

(3) Errors in mechanization of the desired velocity correction
(%) Errors in measurement of the velocity correction actually made

The injection and estimation errors were assumed to be ildentical for each sys-
tem at injection time and to be described statistically by a known covariance
matrix. The particular covariance matrices used in the study will be
discussed in the section on results.

During the course of the flight, celestial observations are made in order
to reduce the trajectory estimation errors. The resulting data are processed
by an optimal filter (see ref. 4) which provides the best estimate of the
spacecraft's position and velocity together with the covariance matrix of
errors in that estimate. The type of celestial observations and the measure-
ment error model assumed are identical with that used for the standard case in
reference 2, as is the error model for item (4) above. These error models are
described briefly in appendix B. While it is necessary to separate the errors
of items (2) and (4) in the mathematical analysis, they will be lumped
together under "trajectory estimation errors" in the remainder of this
discussion.

The error model for the velocity correction, the one used in reference 5,
is described in detail in appendix B. It is shown in the appendix that for
small velocity corrections (of the order 1.0 m/sec) the vector error in the
correction is due almost entirely to rocket engine cutoff error. This error
lies nearly in the direction of the commanded velocity correction and has an
rms value of 0.1 m/sec. On the other hand, as the magnitude of the commanded
correction increases, the error normal to the commanded direction increases
until the components of the error along and normal to the commanded correction
are nearly equal. (The rms value of both components in this case depends on
the magnitude of the correction.)



Schedule of Observations and Velocity Corrections

The schedule of observations and velocity corrections used is considered,
on the basis of other Ames studies, to be nearly optimum for the fixed-time-of-
arrival system. This schedule is outlined briefly as follows:

(1) sStarting a half hour after transearth injection, ten observations
are made followed by the first velocity correction, all at half-hour intervals.

(2) starting 24 hours after transearth injection, nine observations are
made followed by the second velocity correction, all at one-hour intervals,

(3) Starting 34 hours after transearth injection, 15 observations are
made followed by the third and final velocity correction, all at one-hour
intervals.

This last correction occurs about 8.6 hours before entry.

Computation of Statistical Information

The purpose of the digital computer simulation was to determine how well,
and at what cost in corrective velocity, each guidance system fulfills the
requirement of returning the spacecraft from the moon on a trajectory from
which a satisfactory landing can be made. The two guildance systems are then
compared on the basis of: (1) the rms values of the velocity corrections at
the three different correction times and of the total correction, and (2) the
rms deviations from the reference values of the "landing parameters," perigee
altitude, entry range angle, crossrange adjustment, and time of landing.

During the orbital phase of the trajectory, the statistics of the
velocity corrections and deviations from the reference trajectory were com-
puted using the linear methods described in appendix C. However, it was nec-
essary to use the Monte Carlo method for the entry phase of the flight. The
computations involved for the entry phase are outlined in appendix D.

The first velocity correction attempts, on the basis of the estimated
state vector at the time of the correction, to eliminate the effects of the
injection errors. It is only because the estimate of the vehicle's position
and velocity and the mechanization of the velocity correction are imperfect,
and hence sources of error, that the second and third corrections are needed.
It is shown in appendix C how the portions of the second and third corrections,
for these sources of error, can be separated.

Finally, in the case of fixed-landing-site guidance the deviations from
the reference values of entry range angle and time of landing arise from two
sources and can be separated accordingly (see appendix C). Some of these
deviations, as in the case of fixed time of arrival, result from errors in
trajectory estimation and velocity correction mechanization and will be
referred to as errors. The remaining deviations result from changes required
by the guidance law and will be referred to as entry range and landing time
adjustments.

8



RESULTS AND DISCUSSION

Data from the eight cases outlined below provide a comparison between the
fixed-landing-site and fixed-time-of-arrival systems with regard to corrective
velocity requirements, terminal accuracies and the effects of the three major
error sources (injection errors, observation errors, and velocity correction
mechanization errors). These data are intended to indicate the areas which
must be considered for a particular application of the guidance law.

Two different covariance matrices of transearth injection errors were
used. The first is considered, on the basis of unpublished work, to be realis-
tic for an Apollo-type mission. This distribution has mean-square values of
about 0.6 km® and 3.5 m?/sec® in position and velocity, respectively. However,
the errors are cross correlated and the complete statistical description is
given by the covariance matrix presented in table I. This distribution was
used for most of the data and will be referred to as the "standargd"
distribution.

The other covariance matrix of injection errors is of interest mainly
from a theoretical point of view. This matrix is diagonal for Cartesian coor-
dinates, with mean-square values of 3 km@ and 3 mz/sec2 in position and veloc-
ity. The mean-square errors are equal for each Cartesian direction, so the
distribution will be referred to as spherical.

The two covariance matrices of injection errors were multiplied by a
scalar, kg, in order to assess the influence of the magnitude (as opposed to
direction) of the initial error distribution. It is shown in reference 2
and is confirmed here that the effects of the magnitude of the injection
errors on the estimation errors are of minor significance.

The effects of velocity correction mechanization errors were evaluated by
comparison of data resulting from the use of the standard error model des-
cribed in appendix B with the data resulting when the error was assumed to be
zZero.

With this background the eight cases for which data are to be presented
can be summarized as follows:

Velocity

Case K correction tnjection
errors errors
la 1 None Standard
2a 10 None Standard
3a 100 None Standard
1b 1 Standard Standard
2b 10 Standard Standard
3b 100 Standard Standard
lc 1 Standard Spherical
3c 100 Standard Spherical



Corrective Velocity Requirements

The ratio of the rms error in estimating the wvehicle's position for case
3a to that for la is plotted in figure 1 as a function of the number of obser-
vations. Note that just before the first velocity correction the estimation
error for case 3a 1s only about 1/3 larger than that for case la even though
the initial rms errors differed by an order of magnitude. This increase in
estimation error with initial error becomes progressively smaller as more
observations are made, and the results are substantially the same for velocity
estimation errors. Thus, it can be seen that the errors remaining to be cor-
rected after the first velocity correction are mainly the result of observation
errors and, where applicable, of velocity correction mechanization errors. The
rms values of the individual velocity corrections and the total corrective
velocity are presented in table II. Likewise, the ratio of the total rms cor-
rective velocity for fixed landing site to that for fixed time of arrival is
presented. As expected on the basis of the data in figure 1, the first veloc-
ity correction increases linearly with. kg while subsequent corrections show
only a small effect from initial errors.

Total corrective velocity requirements.- The total rms corrective velocity
for fixed-landing-site guidance ranges from 52 percent of that for fixed time
of arrival in case la to 64 percent in case 3a. Including the velocity cor-
rection mechanization errors changes the result for the first case to 5k
percent but has negligible effect on the third case because of the dominant
influence of injection errors. These data indicate that the fixed-landing-
site guidance system requires substantially less corrective velocity than
fixed time of arrival for a realistic set of injection errors. However, for
cases lec and 3¢ the corrective velocity requirements for fixed-landing-site
guidance increase to TO and 89 percent of those for fixed time of arrival,
indicating that the initial distribution of errors must be considered carefully

in comparing the two systems.

The importance of the directional distribution of the deviations being
corrected for is demonstrated by comparison of the data in table ITI for cases
lc and 3c with those for cases 1b and 3b. The spherical distribution of injec-
tion errors requires an initial correction for fixed-landing-site guidance
which is about 95 percent of that for fixed time of arrival as compared to
69 percent for the standard distribution. The remaining corrections are in
the same ratio as for the standard distribution, since the first correction
eliminates most of the effects of initial errors.

Penalties from velocity correction mechanization errors.- Table IIT lists
the rms values of the portions of the second and third velocity corrections
which result from errors in making the previous corrections. The portion of
the second correction due to errors in the first increases with initial errors
because the magnitude dependent portion of the velocity correction mechaniza-
tion error in the first correction becomes significant for cases 2b and 3b.

On the other hand, since the second correction is small the rms error in the
correction is essentially constant and the rms corrective velocity it requires
at the time of the third correction is constant.
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Fixed-landing-site guidance requires only about half as much corrective
velocity at the time of the third correction because of errors in the second
correction as does fixed time of arrival even though the rms mechanization
errors are the same. However, from the data in table II (cases la, 2a, and
3a) it is seen that the ratio of the corrections caused by trajectory estima-
tion errors at the time of the second correction was about 1/5. This differ-
ence is due largely to the fact that for small corrections, the mechanization
error lies approximately along the commanded velocity correction. For fixed-
landing-site guidance this means the error has no component along the unit
vector U while one would not expect this to be the case with the estimation
errors. (It should be emphasized here that the magnitude of the third correc-
tion is rather insignificant and it is used only to demonstrate a directional
sensitivity which could be important in other applications of the fixed-
landing-site guidance scheme.)

Terminal Deviations

Perigee altitude.— The rms deviations from reference perigee altitude are
summarized in teble IV. Only the errors in the final correction and in the
observational data have an appreciable effect on deviations from the desired
terminal conditions. Therefore the deviations for the first three cases and
the last three, respectively, are nearly constant. In addition, the devia-
tions for the two guidance systems are nearly equal in the absence of velocity
correction mechanization errors.

The data in table IV also indicate that perigee altitude is much more
sensitive to errors in the final velocity correction for fixed-landing-site
guidance than for fixed time of arrival. It was pointed out earlier that for
velocity corrections of the order of 1 m/sec, the mechanization error results
almost entirely from the rocket engine cutoff error. Therefore, if the final
velocity correction is small, the rms perigee altitude error will be determined
almost entirely by the magnitude of the cutoff error and the time of the final
correction. The perigee altitude error due to errors in the final correction
is much larger for the landing~site-guidance system than for fixed-time-of-
arrival guidance. For this reason the use of a rocket engine with a smaller
cutoff error would improve the accuracy of the former scheme relative to
fixed-time-of -arrival guidance. It can be shown analytically (on a two-body
basis) that perigee altitude becomes less sensitive to velocity changes as the
time to go (to perigee) decreases. Therefore, since the mechanization error
is nearly constant, the perigee error could be reduced, at the expense of more
corrective fuel, by delaying the final correction. This approach will be
discussed in more detail later.

Crossrange.— The rms crossrange deviations for the two systems are
presented in table V. (See appendix D.) The fixed-time-of~arrival system
does not attempt to eliminate the necessity for crossrange adjustment during
entry so that the deviations for this system increase with the initial errors.
This increase is nonlinear as is to be expected since the computation of the
crossrange deviation from the state vector at the time of entry is nonlinear.

11



The fixed-landing-site guidance system does constrain crossrange
adjustment, and the rms crossrange deviation is determined mainly by errors in
the final velocity correction and trajectory estimation errors at the time of
this correction. The crossrange deviations for fixed-landing-site guidance
are much more sensitive to errors in the final velocity correction than those
for fixed time of arrival. However, the total deviation for landing-site
guidance is so small compared to that for fixed time of arrival that this
increased sensitivity to the velocity correction errors is not significant.

Downrange .- The rms entry-range deviations for the two systems and the
rms entry-range adjustment for fixed-landing-site guidance are presented in
table VI. As in the case of perigee altitude and crossrange deviations, the
entry-range deviation for the fixed-time-of-arrival system is much less sensi-
tive to errors in the final velocity correction. The entry-range adjustment
for fixed-landing-site guidance results from adjusting the entry-range angle
and azimuth angle to compensate for deviations from the reference position.
Hence, the rms value of the adjustment increases linearly with the square root
of kg. The total deviation in table VI is the root sum square of the entry-
range deviation and the downrange adjustment. Under the assumption that the
two components are independent random variables this quantity represents the
total rms change from the reference entry range required of the wvehicle. It
can be seen by comparison of cases la, 2a, and 3a with cases 1b, 2b, and 3b
that the contribution of the entry-range deviation, particularly the part
caused by velocity correction errors, is relatively unimportant.

Landing time.- The rms landing-time deviations for the two systems and
the rms landing-time adjustment for fixed-landing-site guidance are given in
table VII. Like the entry-range deviation, the landing-time deviation is due
principally to errors in the final velocity correction and in trajectory esti-
mation at the time of that correction. 1In this case, in contrast to the other
landing parameters, velocity correction errors have negligible effect on the
fixed-landing-site guidance system. 1In addition, for fixed-landing-site guid-
ance the landing-time deviations are negligible compared to the landing time
adjustment. Since the landing-time adjustment and the entry-range adjustment
are closely related, the landing-time adjustment also increases approximately
linearly with the square root of Kkg.

Effect of changing observation and velocity correction schedule.- The
terminal accuracy of the fixed—landing-site guidance system with the standard
schedule of observations and velocity corrections is adeguate; however, it was
desired to compare the total corrective velocity requirements needed when two
systems provide approximately the same terminal accuracy. As was pointed outb
earlier, the perigee altitude error can be reduced by delaying the final veloc
ity correction, but the magnitude of the final correction increases rapidly as
the delay is increased. It was found empirically that the perigee altitude
error can be reduced by making additional observations during the delay time.
A few trials with this procedure resulted in the following revised schedule:
Starting one hour after the last observation for the standard schedule, eight
observations were made of the earth followed by the third velocity correction,
all at half-hour intervals. This revision delayed the final correction until

about 4.6 hours before entry.

12



When kg = 1 was used with the new schedule, the terminal errors of the
fixed~landing-site system were comparable to those of the fixed-time-of-
arrival system for case 1b (e.g., the rms perigee altitude error was reduced
from 2.11 to 1.57 km). This improved accuracy required an increase from 0.26
to 0.53 m/sec in the rms value of the final velocity correction. The total
rms corrective velocity for fixed-landing-site guidance ranged from about
62 percent of fixed-time-of-arrival guidance with the standard schedule in
case 1b to 66 percent in case 3b. Thus, even with the increase in the final
correction, the fixed-landing-site guidance system still saves a substantial
portion of the midcourse fuel.

Computer requirements.- The fixed-time-of-arrival system used the same
computer program as was used for the data in reference 2. A simple modifica—
tion of this program was required to obtain data for the fixed-landing-site
guidance system. The increase in program size was about equivalent to the
amount required to compute the multiplying factor (I - GUT) and multiply the
matrix (M -I) by it. No noticeable change in computation time resulted.

The initial conditions required for the fixed-landing-site guidance system are
the same as those for fixed-time-of-arrival system with the addition of the
matrix Y, discussed in appendix A.

CONCLUDING REMARKS

The fixed-landing-site guidance system has been shown to require only a
little over half as much corrective velocity as the fixed-time-of-arrival sys-
tem in the presence of injection errors considered to be realistic. This
ratio increases to about 2/3 for an order of magnitude increase in injection
errors, but because the total corrective velocity also increases, the actual
saving in fuel is greater.

The fixed-landing-site system is more sensitive to errors in the final
velocity correction than the fixed-time-of-arrival system, but this increased
sensitivity will not significantly affect the obJjective of making the desired
landing. It is possible to improve the terminal accuracy to that of the
fixed-time-of-arrival system by revision of the observation and velocity cor-
rection schedule. This improvement increases the corrective velocity required
to about 2/3 of that of the fixed-time-of-arrival system. An alternate method
would be to use a rocket engine for the midcourse correction having a smaller
cutoff error than the one assumed in this study. This approach would not
degrade the total corrective velocity requirement, but would reduce the error
caused by errors in making the final velocity correction.

The errors assumed in the study are considered to be realistic, but it
must be noted that the relative rms corrective velocity required by the two
systems is strongly dependent on the distribution of errors. The relative
merits of fixed-landing-site guidance can only be determined on the basis of
the type of observed data and the statistical distribution of injection errors,
observation errors, and the velocity correction errors.

13




The computations required are of asbout the same complexity for the two

systems. However, the computation of the input data is slightly more compli-
cated for fixed-landing-site guidance.

The example presented here was an application to return to earth from the
moon, but the basic method can be applied to direct landing on other rotating

bodies.

Ames Research Center
National Aeronautics and Space Administration

Moffett Field, Calif., Nov. 3, 1965
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APPENDIX A
DERIVATION OF THE FIXED-IANDING-SITE GUIDANCE EQUATION

The first step in obtaining the linearized fixed-landing-site guidance
equation is the derivation of the relationships given in generalized form in
equations (1). For this purpose the angle from vacuum perigee to landing is
defined as ©¢p. It is assumed that the angle from entry to vacuum perigee is
fixed at 12° (pp = @ ~ 12°) and that it is traversed in 122 seconds. Thus,

from equation (2) the time of vacuum perigee is
tp = tg, = 0.0093pp - 0.00240 (A1)

We now define three coordinate frames, illustrated in sketeh (c) by three
sets of unit vectors: (1) up along
the radius vector to vacuum perigee,
Uy along the perigee velocity vec-
tor, and Uy normal to the orbital
plane; (2) Up, along the radius vec-
tor to the location of the landing
site at the time of landing, U,
eastward from the landing site, and
Us northward from the landing site
(an auxiliary unit vector to this
set is ug which is normal to Ty
and in the orbit plane); (3)_an
inertial Cartesian set with T
toward the vernal equinox, K north-
ward along the earth's axis, and J
completing a right-handed orthogonal
venol T, systen.

equinox

/—Lunding site track

<«

ital pigne

Uy

T

Sketch (c) _ The unit vectors Tup, U, and
Ug lie in the orbital plane and it
can be seen from the sketch that Ep can be reso;Xed Ento components cos @p
and sin ¢p along ur, and ug, respectively. Now u;, uz, and Uz 1lie in a
plane normal to Uy (tangent to the earth's surface) so that the component of
up along Uz may be further resolved into components along T; and Uz to
give

U = uy, cos @p + Uy sin ¢p sin @ + Up cos @p cos o (A2)

Similarly, it can be shown that

Uy = -up, sin ¢y + Uy cos ¢y sin @ + TWp cos @p cos a (A3)

From sketch (c) it can be seen that the 7uj, Uy, Uz system is related to
the Cartesian system by the transformation.
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ur, cos Dp, cos RA], cos Dy, sin RAT, sin Dr, T
T, | = -sin RA7, cos RAf, 0 J (AL)
Uo -sin D, cos RAy, -sin Dr, sin RAL, cos DpJLK
Equations (A2), (A3), and (A4) can be combined to give
Uy = TI(cos Dy, cos RAp, cos ¢p - sin RAf, sin @, sin a
- sin D, cos RAp sin 9p cos a) + 3(cos D, sin RAf, cos op
+ cos RAp, sin ¢, sin o — sin Dy, sin RAp, sin @ cos a)
+ K(sin Dr, cos ¢y + cos Dp, sin @p) (A5)
Ty = I{-cos Dy, cos RAL sin ¢p — sin RAj, cos @y sin a
- sin Dy, cos RA, cos @, cos @) + J(-cos Dy, sin RAf, sin Pp
+ cos RA7, cos Pp sin @ - sin Dy, sin RA1, cos $p cos a)
+ K(-sin Dy, sin ¢p + cos Dp, cos @, cos @) (A6)
Rewriting equations (1) we have
Ry = Rplp
- (A7)
VP = Vpliy

which together with equations (A5) and (A6) relate perigee position and veloc-
1ty to the arrival parameters. Note that the assumption that ﬁp and Ty, both
lie in the orbital plane implicitly restricts the incoming orbit to one that
requires no crossrange adjustment.

We now wish to linearize the problem by considering first-order

perturbations about a reference trajectory subject to the constraint that the

16

perturbed trajectories have the same
Jetuctposiion ot tine of iwnce s ™ values of Rp and Df, as the reference.
Vi) Differentiating equations (A7) will
result in a matrix of the first partial
derivatives of perigee position and
velocity with respect to the arrival
parameters. However, we wish to obtain

Actual trajectory

~ +
Actual perigee —| Reference periges Reference trajectory

Ro

W"“nwﬂTL-nmm . first partial derivatives of position

/$KW{/—/”- T?T\}r>ﬁkh\ and velocity at the time of reference

* ’ perigee. The distinction between these
Sketch (d) guantities is illustrated with the aid

of sketch (d).



Here R, and V are position and velocity vectors of perigee on the
perturbed trajectory which occurs at some time tg. On the other hand, §(tp)
and V(tp) are the position and velocity vectors on the perturbed trajectory at
the time, tp, when reference perigee occurs. If tg 1s nearly equal to tp,
then we can write

R(tp) = Ry = Vp(ta - tp) = R, - V(821 - 0.00933859) )

V(tp) = V§ - Vp(ta - tp) = Vp - Vp(8ty - 0.00933%p)

Define as the matrix of first partial derivatives of position and
velocity at the time of reference perigee with respect to the arrival param-
eters. We now compute 1V, by differentiating equations (A8), but we must
recognize that the terms involving (ta - tp) are already in the form of first-
order perturbations. Therefore,

r_ _ _ — —
X, OF, o, OR| 0033 T _
0.009 A 0 -V O
dp, Oda Aty AV P P
Vp = - * (A9)
ov. X oV oV — _
p _2 £ avp 0.00933 7, 0 -V, O
(%0 S Otn Tp) o | -

The computation of the partial derivatives in equation (A9) is simplified
by expressing Ry and Vp as in equations (1).

Ry

Ry = Rplp
Vp = VT
so that W
ORp . duy,
— = Rp —=
aCPP aCPP
(A10)
BVP S
—— — P —
a‘:Pp BCPP J
Since differentiation with respect to Py is equivalent to a small
rotation about Ty, from sketch (c)
3R
=2 = R,
g,
(a11)
BVP
—= =V_T
6$o pYp
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A change in the angle o represents a rotation of the orbital plane about

ﬁL so that
SR 3T, —
D D _ =
Se P, T XU
(A12)
5%, STy _

—_— V, — =V_XT
aq b 5& P L

A change in the time of landing rotates the orbital plane about the earth's
axis. If w dis the angular velocity of the earth then

L S
o S

il
<
£
=~
X

— (A13)
va EEX
BtL p S‘tL

|

o5
S
£
=1
X
cl

<v

Finally,

]
O

P (A1k)

b Ty

|

Substituting equations (All) through (Alk) in equation (A3) with the

unit vectors in terms of Ry and VP gives

- . B L
D = _
(Tp + o.oo9§ Vlo R, X Uy (K x Rp) vy 0
Vp = _
\" . _ _ . K7
p'p +0.0093 T, V, X T (K x %)V, 71?
L P

This expression can be verified by straightforward differentiation of
equations (A5) and (A6) followed by considerable algebraic manipulation.

We will now use to derive the linearized fixed-landing-site guidance
equation. For this purpose we define T and ¥ as small vector deviations
from the reference position and velocity and x as the 6 x 1 state vector

given by

x = [f] (a15)
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The state vectors at different times are related by the state transition
matrix ¢ as follows:

x(tz) = o(ta,t1)x(t,) (A16)

If tz 1is the present time, t, and t, the time of reference perigee,
tp, then equation (Al6) becomes

x(t) = o(t,tp)x(t,) (A17)

Let ¢ be defined as a L x 1 matrix of deviations from the reference
arrival parameters. Then

x(tp) = ﬂfpé

substituting for x(tp) in equation (ALlT)

x(t) = o(t,tp)ipt (A18)

or
x =Vt (A19)
where v = Q(t,tp)wp (420)

Equation (Al9) may be written in partitioned form as

——

€1

T' V1 pa|f b2
- (A21)
v V2 P2l €s

5]
Here YV, and ¥o are 3 x 3 matrices, p1 and P2 are 3 x 1 matrices and the §;
indicate deviations from the reference values of the arrival parameters. The
primes have been added to T and v to indicate that they are the deviations
from the reference position and velocity which would be produced by changes

of ti, {2, £a, £4 in the arrival parameters.

Expansion of equation (A21) gives
1
w1

7! = Y| 2| + pala (A22)

g
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€1
V' = Yol | + P2la (a23)
Ca
If T' is taken to be the actual deviation of the vehicle's position from the
reference trajectory, the changes in the first three arrival parameters neces-
sary to produce a trajectory from the present position to the landing site are
€1
bo| = V2T - vt Bale (a2k)
Ca

The velocity deviation of this trajectory from that of the reference trajec-
tory is found by substituting equation (A24) into (423)

Vo= Yoyt ?—(¢2W1_l D1 - P2)ta

The total difference between the desired velocity and the present velocilty is

Y, =V' - %
or if
M= ayy "
and
T ~(Y2¥2"" B - Pa) _ -(Mp1 - B2)
[ V21" B2 - B2 k
then
V, = Mr + Kuly - ¥ (A25)

It can be seen from equation (A25) that 7. 1s not uniquely determined
but is a function of 4. It is desired to choose (4 s0 as to minimize
|Ve|, and this optimum is ¥q in equation (3)

% |% = OF + Kita - DTOF + Kits - 7)
2
a(vel?) V‘gl ) - 2k%, + OKTL(MF) - KOOV
aCa
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If this derivative is set equal to zero, the optimum

‘ G
T K

Substituting in equation (A5) gives

- —T
Vg = M - U Mr + TV - T

or

Tg = (I-@mHIM  (-1)]x

€a

is found to be

(A26)
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APPENDIX B
ERROR MODEL FOR THE DIGITAL COMPUTER SIMULATTON

The error model assumed for mechanizing the velocity correction can be

explained briefly with the aid of sketch (e) in which 73 is the desired
velocity correction while ¥, 1is

the correction actually made.
The directional displacement
' between Vg and ¥V, can be speci-
fied by the angles € and 8. The
angle, €, between the two vectors
Vd may be either positive or nega-
tive and has Gaussian distribu-
tion, zero mean, and 1° standard
deviation. The angle, 6, gives
Sketch (e) the orientation of the plane of
the two vectors with respect to
some fixed reference and has uniform distribution between zero and =n. There
is also an error in Iﬁé which has two components. There is a cutoff error
having Gaussian distribution, zero mean, and a standard deviation of 0.l m/sec.
The other component due to thrust level also has Gausslan distribution with
zero mean, but its standard deviation is 1 percent of Iﬁdl.

Vo

The relative significance of the different components of the velocity
correction error can be better explained with the aid of sketch (f) showing
the plane of ¥y and V. The error,
Ve, in the velocity correction can be
resolved into two components, v,, in
the direction of ¥vg and v, normal to
Vq. Since € is very small a good
approximation to ve 1s given by

Vo &~ V3e

Sketch (f)

Likewise, vy 1s approximately equal to the error, vg, in vg so that

vy ~J0.0L + (0.01 vg)2

Since the rms value of ¢ is 1° (about 1/60 radian), it is seen that for vg
of order 1 m/sec, ve is nearly an order of magnitude smaller than v,, and
the rms value of v; consists almost entirely of the cutoff error. On the
other hand, if vg 1is of order 10 m/sec, the rms value of vz is about

0.17 m/sec while that of +v; is about 0.1k m/sec.

The method of calculating the covariance matrix, S, of velocity correction
mechanization errors from the error model Jjust described is given in

reference 5.
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The errors in measuring the individual Cartesian components of velocity
correction were assumed to be random and independent with Gaussian distribution,
zero mean, and standard deviation of these measurements is

Sy = 21

As mentioned in the text it was assumed that certain celestial
observations (angles) are made for the purpose of estimating trajectory. These
measured angles consist of the subtense angle of either earth or moon together
with the azimuth and elevation angles of center of the same body with respect
to some inertial reference.

The errors in the observations were assumed to be random with Gaussian
distribution and zero mean. Also, the errors in different angles and measure-
ments made at different times were assumed to be uncorrelated. The standard
deviation was the same for the three angles measured and is assumed to be given
in seconds of arc by

o =Jloo + (0.001y)%

where 7y is half the subtended angle of the body observed. These statistical
characteristics result in the covariance matrix, Q, of observation errors being
a diagonal 3 X 3 matrix

Q = o3I
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APPENDIX C
COMPUTATION OF STATISTICAL INFORMATION FOR ORBITAL PHASE OF FLIGHT

During the orbital phase of the flight the statistical performance of both
guidance systems was evaluated by means of linear theory. This evaluation
required the knowledge of three covariance matrices:

(1) The covariance matrix, W, of position and velocity deviations from
the reference trajectory,

(2) The covariance matrix, P, of errors in estimating those gquantities,
(3) The covariance matrix, C, of velocity correction actually made.
P) Y Y

This third matrix is separated into two parts so that the penalties due to
velocity correction errors may be evaluated. A supplementary covariance matrix
is needed, for reasons to be discussed later, to account for adjustments made
in entry range and landing time by the landing-site guidance system.

The covariance matrices S, Sy, and @ of velocity correction mechaniza-
tion errors, velocity correction measurement errors, and errors in celestial
observations are used in calculating W, P, and C. The sources of these
matrices are given in appendix B.

Initially, P and W are both set equal to the covariance matrix of
injection errors, and they must be updated as the flight proceeds. This
updating which takes place either as a result of the passage of time or because
of operations (observations, velocity corrections, or termination of the flight)
performed by the system proceeds as follows:

Let & ©be the transition matrix giving deviations from the reference
position and velocity at time t due to deviations at some earlier time. Then

between operations, P and W are updated by

P = oPoT

n

: (c1)

W = OW0

I

If H is the matrix of partial derivatives of the observed angles with
respect to the Cartesian components of position and velocity, then after an

observation

-1
P = P, - PoHI[HPHT + Q)7 HP, (c2)

while W remains unchanged. The derivation of this relationship is quite
complex and will not be presented here. (See ref. 4, egs. (13) and (14).)
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The only estimation errors incurred in maeking a velocity correction are
those in measuring the correction actually made. Hence, after the correction

P = P, + Sy (c3)

It is shown in reference 2 that straightforward computation of E(xxT)
after a velocity correction gives

T
I 0 I 0
W= (W, - P,) + Py + 8 (ck)
Gi (Go + I) G1 (Gz + I)

where I 1is a 3 X 3 unit matrix, O represents a 3 X 3 null matrix, and
G = (Gl Gz)

The significance of the different terms on the right side of equation (C4) can
be explained by the use of egquations (Cl) to update W +to the time of refer-
ence perigee. Then

W(tp) = W1 + Wo
where by definition

I 0] I 0
Wl =0 (Wo - Po) )
Gy (G2 + I) Gy (Gz + I)

and
WZ = (D(PO + S)q)T

It is also shown in reference 2 that (W-P) is the covariance matrix of
the estimated deviations from reference position and velocity. Since the
velocity correction would cause the guidance requirements to be satisfied if
the estimate were correct, W; represents a distribution of deviations from
the reference trajectory for which the guidance requirements are still satis-
fied. On the other hand Wy represents deviations, from members of this fam-—
ily of satisfactory trajectories, which are caused by errors in trajectory
estimation at the time of the velocity correction and by errors in making the
correction.

From this analysis it appears that the first term on the right side
of equation (C4) could be eliminated, with no loss of significant information,
to gilve

W=P, +8 (c5)

However, the information contained in the term eliminated from equation (Ch4) is
necessary for computing the statistics of the landing parameters. The above

25



reasoning can be confirmed analytically for the case of fixed-time-of-arrival
guidance as follows:

For the fixed-time-of-arrival guidance equation stated in equation (2)

Gy = -02" "0,
(c6)
Gg = —-T
Here 1 1is the unit matrix and ¢; and ¢5 arise from partitioning ¢ as
follows:
1 %2
® = (C?)
(DS @4_.
Substitution from equations (C6) and (C7) shows that
I 0 0 0
o) = (c8)
Gy (G + I) (0 - 040" %01) O
It is shown in reference 2 that
X 0.7 —0,T
" = T (09)
03 .7
and this relationship can be used to show that
T
(b5 - 2a02"701) = (=0577) (c10)
Therefore, for the fixed-time-of-arrival guidance equation
0 0 0 o5t
Wy = o (Wy = Pg) (c11)
(e277) 0 0 0

Hence, only the lower right 3 X 3, the velocity components, of W; are not
zero. These are the deviations in velocity at the time of reference perigee
which must be accepted in order to have zero position deviation. Since the
landing parameters are functions of perigee velocity as well as position, it
is necessary to retain the information contained in W;. This information was
retained in the case of fixed-time-of-arrival system by using equations (Cl)
to update W. (Since, to a first-order approximation, ¢ is proportional to
the time over which it is computed, the effects of W; on the landing
parameters will be small.)

In the case of fixed-landing~site guidance it would be very difficult to
reduce W, mathematically to a simple form. However, as in the case of
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fixed-time~of-arrival system, W; will make no contribution to the deviations
which the guidance law requires to be zero. For this system these are devia-
tions in perigee altitude, declination of the landing site, and crossrange
adjustment. In this case the information lost by the elimination of W, will
be the statistical distribution of the adjustments in entry-range angle, land-
ing time, and perigee velocity made by the guidance system in order to achieve
a satisfactory trajectory. It was desired to know the first two of these three
quantities which are defined in the text as downrange adjustment and landing-
time adjustment, respectively, but preliminary results using equations (Cl)
with the fixed~landing-site guidance system showed that round-off errors cause
unacceptable inaccuracy for large initial values of W. For this reason equa-
tion (C5) was used with this system and the statistics of the downrange adjust-—
ment and landing-time adjustment were computed separately as described in the
following paragraphs.

The generalized inverse of the matrix V¥ in equation (A19) (derived in
appendix E) can be used to compute these statistics. This inverse will be
written ¥ so that

¢ = ¥*x (c12)
where ¢ 1is the result of applying the guidance equation.

At the time of any given velocity correction

EL£tT] = BlysxT(y*)T]

(c13)
ELetT) = yxw(yx)T

Note that this is the covariance matrix of ¢ due to a specific velocity cor—
rection, and W is evaluated immediately before that correction. Under the
assumption that the various velocity corrections are uncorrelated, the covari-
ance matrix for the total change in arrival parameters can be found by summing
the individual covariance matrices.

The mean-square veloclty correction for the nth correction time is
given by the trace of the covariance matrix.

Cp = G(Wn - Pp)aT + 8y (c1k)

In equation (Cl4) W, and P, are evaluated just before the correction. If W,
is obtained by updating W from the time of the previous correction then

Cp = G(eWy_10T - Py)aT + 8, (c15)

Substitution for W,_, from equation (ch) yields

Cp = G0 (Wy_, = Pp_;)0TcT + coPy_,0TeT + cos, 0TaT + 8, (c16)

where Wh_l and Pn—l are evaluated immediately before the n-lst correction.
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(Also note that the first term on the right side of equation (C16) should be
zero.) The trace of the matrix G@Sn_lQTGT gives the mean-square value of
that portion of the nth wvelocity correction resulting from errors in making

the previous correction.
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APPENDIX D
COMPUTATION OF STATISTICS OF THE LANDING CONDITIONS

The application of the Monte Carlo method to the computation of the
landing conditions is as follows:

1. Starting immediately after the final velocity correction, two-body
formulas were used to compute the perigee radius of the reference
trajectory and its position and velocity vectors at atmospheric entry.

2. The formulas derived below were used to compute the reference landing
conditions.

3. A set of random position and velocity deviations from the reference
trajectory was obtained from the statistical distribution described
by W (ref. 6). These deviations were added to the reference posi-
tion and velocity to obtain a perturbed position and velocity.

4, Steps 1 and 2 were repeated for the perturbed trajectory and the
differences between perturbed and reference landing conditions were
computed.

5. A sample of 1000 different perturbed trajectories was found to give
sufficiently accurate values of the statistical quantities of
interest.

Standard two-body formulas were used for Step 1 and will not be presented
here. The entry position,velocity, and time were then used to compute the
landing conditions, and the formulas used for this computation are derived in
the following paragraphs.

The relationship of the unit vector 1uy, along the radius vector to the
landing site to the Cartesian coordinate system is shown in appendix A to be

Ur, = I cos Dr, cos RAT, + J cos Dp, sin RAL, + K sin D, (p1)

Similarly, the unit vector 7ur along the radius vector to the entry point is
given by

Ty = 1 cos Dg cos RAg + J cos Dy sin RAg + K sin Dy (D2)
Since
cos ¢ = Tp - Uf,
it follows that
cos ¢ = cos Dy, cos Dg cos (RA; — RAg) + sin Dp sin Dy (D3)
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If RArgp is the right ascension of the landing site at the time of entry,
then

RAL = RALE + th (D)-P)

where w 1is the earth's angular velocity and ty 1is the time of flight from
entry to landing. Substitution in equation (D3) gives

cos ¢ = cos DE cos DL cOoS (RA:LE + th - RA-E) (DS)

and from equation (2)
tp = 0.00933p + 0.0025k4

Equations (2) and (D5) must be solved by iteration (see ref. 1) to find ¢ and
tpe The time of landing, ty, is

ty, = tE + tp

K

The computation of the crossrange
deviation can be explained with the aid of
sketch (g).

Landing site track

If the vehicle were allowed to continue
in its incoming orbital plane the "actual
orbital plane" in the sketch, it would cross
the landing site track at point L;. At the
same time the landing site would be at point
Lo+ If the vehicle were on a satisfactory
trajectory, it would pass through the entry
point in the "desired orbital plane" and
arrive at Lp at the same time as the land-
ing site. The crossrange deviation is
defined as the normal arc, CR, from the
landing site to the actual orbital plane.

~~—Equator

-~
i A
L7 “~—Desired orbital plane

Actual orbital plane

Sketch (g)

Let T, be a unit vector normal to the actual orbital plane and ng a
unit vector normal to the desired plane. Then

FE X VE

n i r—ae——
& |Rg X Vg
and

ng = — —
U.EXU.L

The relative inclination angle, i, can be obtained from
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cos i

and from spherical trigonometry

tan (CR)

Multiplying by a constant factor converts
kilometers.

tan 1 sin ¢

CR from angular units to
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APPENDIX E
DERTVATION OF THE GENERALIZED INVERSE OF

It is shown in reference 7T that every rectangular matrix, A, has a
generalized inverse, A¥, which 1s unique. Furthermore, it is a property of

A%  that if

b = Ay (E1)
has a solution, then that solution is given by

y = A% (E2)

The guidance law was derived to insure that for every state vector x
there exists a unique ¢{. Therefore, it is known that

£ = y*x (E3)
This fact will be used to solve for %,

Equation (E3) can be written in partitioned form as

PR
1
to 1P =X || T ()
= E
— x.T — T —
ts|  |(P1) (o) | ¥
€a
S |
where V.¥ and ¥o* are 3 x 3 matrices. From equation (A26)
ta = :}% (TOHVF - %)
so that
T _
(5.%)" = =L T
k
(E5)
(5% = 2 0T

If the optimum €4 from equation (A26) is substituted into equation (A22)
(the prime is omitted from T) then

£1
T = yy|la] - % .(TME - TTF)
(s
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580 that

€1
- S —_ -1 1= =
to = Vi NI + X pluTM)r - ¥,7t =By v
k k
92
From equation (E6&)
Va* = i T + £ A

Yo* = ;"1 L 5T
k
Substitution from equations (E7) and (E5) into equation (Ek4) gives

—1 1 — -1
¥ (I + T P1 Ty - = vy Ofdr

bl

v* =
:12:'1' () T’

bl e

It can be shown that
vy =1

where I is a 4 X 4 unit matrix and

il
H

Yy

where I is a 6 X 6 unit matrix.

(E6)

(ET)
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TABLE T.- COVARIANCE MATRIX OF INJECTION ERRORS FOR STANDARD DISTRIBUTION
]

£,

|
Y, !

Z,

X

Y

z

{ |~ .73958537x10” "

|~ . 47001117x10" 2

.59077530x10™ "

L171h4755%10™°

.15240228x10™°

5907753010

.29213600x10~ "
.17300981x10™3

.13020790x10"3

.22371290%x10°
-.11326999x10~°
.25554670x107°

-.11326999%x10~°
.18436915x10™°

.25506313x10™°

km km : km km/éec km/éec km/éec
0.50443614 -0.1053457 -0.16956842 -0.73958537x10™% -0.47001117x10™3|-0.22777k52x10™3
-.10534570 36L4579k2x10™  ,30887L450x107 L L171Eh75hx107°  .152L0230x1073 .59077529><1o'4
-.16956842 .30887450x10"1  .84712863x10” L .29243600x10™ .17300981x10"°> .1302079o><1o_3

25554670107
.25527313%10

-5
.15039492x10
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TABLE IT.- RMS VELOCITY CORRECTIONS

Fixed-time-of-arrival Fixed-landing-site .
. . Ratio of
correction no. correction no.
total for
. F.L.S. to
1
oo Ve oc1?y Injection 1 2, 3 Total,| 1, 2, 3, | Total,|that for
ase| k correction ’ ’ 4
g erTOrs errors m/sec |m/sec | m/sec | m/sec | m/sec | m/sec | m/sec | m/sec |F.T.A.
la | 1 None Standard 1.37|11.08 |o0.72 3.17| 0.94| 0.55 |0.14 - 1.63 | 0.52
| 1
| | h
2a |10 None Standard 4,58 | 1.32 15 6.65 | 3.15| .66 A5 | 3.96 .59
3a | 100 | None Standard | 14.61 | 1.64 | .84 17.09 | 10.0%| .77 15 1 10.96 .64
b 1 Standard | Standard 1.37 | 1.11 .83 3.31} .9k .58 26 1.78 Sh
2b 10 Standard | Standard 4,58 | 1.36 .86 6.80 | 3.15| .69 27 L.11 .60
3b 100 | Standard | Standard | 1L4.61 |1.76 .94 "17.31 | 10.04' .83 27 1l.1h 6L
: le 1 Standard | Spherical | 2.79 | 1.47 .93 5.19 | 2.68 .71 27 3.66 .70
L?C 100 ' Standard | Spherical | 28.62 | 2.47 .99  32.08 |27.22 . 1.15 27 28.64 .89
TABLE IIT.- CORRECTIONS DUE TO ERRORS IN PREVIOUS CORRECTION
Fixed time of arrival Fixed landing site
Second correction, Third correction, Second correction, Third correction
Case m/sec m/sec m/sec m/sec
1b 0.2k4 0.4%0 0.16 0.20
b 31 1o .18 .20
3b .63 A1 .30 .20




Case
‘ la
2a
3a
1b
2b

3b

Case

la
2a
3a
1b
2b

3b

TABLE IV.— RMS PERIGEE ALTITUDE DEVIATIONS

km
Fixed time of arrival
1.45
1.51
1.54
1.50
1.56
1.58

Rms perigee altitude deviations,

Fixed landing site

1.h4h
1.49
1.51
2.11
2.17

2.20

TABIE V.- RMS CROSSRANGE DEVIATION

km
Fixed time of arrival
3.82
5.61
12.26
3.85
5.67
12,37

Crossrange deviation,

Fixed landing site

0.59
61
.62
.92
.93
93

37
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TABLE VI.- RMS ENTRY-RANGE DEVIATTONS

Fixed ?ime of Fixed landing site
arrival s
Total Bntry-range Entry-range Total
Case deviation, deviation, adjustment, deviation,
km km km | km
1la, 12.8 12.8 23.2 26.5
2a, 13.3 13.1 72.2 73.3
3a 13.7 13.3 227.8 227.8
1ib 13.3 19.1 23.2 30.0
2b 13.9 19.6 72.2 4.8
3b 14.3 19.8 227.8 227.8
TABLE VII,~ RMS LANDING-TIME DEVIATIONS
Fixed ?ime of Fixed landing site
arrival | s
Total Landing-time | Landing-time Total
Case deviation, deviation, adjustment, deviation,
km sec _ _sec | sec
la 3.7k 3.72 69 70
2a, 3.80 3.79 215 215
3a 3.96 3.94 630 680
1b 3.83 3.73 69 70
Zb 3.87 3.82 215 215
3b 4,02 3.96 680 630
. I . . . —_— .
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RMS Position estimation error, case 3A

RMS Position estimation error, case 1A
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Figure 1.- RMS position estimation errors.
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