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FLIGHT INVESTIGATION OF STEZP INST- 

APPROACH CAPABILITIES OF A T-33 AIRPLANE 

UNDER MANUAL CONTROL 

By Albert W. Hal l  and Donald J. McGinley, Jr. 
Langley Research Center 

SUMMARY 

A f l i g h t  invest igat ion has been conducted t o  determine t h e  steep in s t ru -  
ment approach capab i l i t i e s  and l imi ta t ions  of a T-33 ai rplane under manual con- 
t r o l .  The study included an invest igat ion of f l a r e  paths su i tab le  for t r ans i -  
t i o n  from t h e  steep g l ide  slope t o  touchdown. 

The maximum gl ide slope feas ib le  f o r  operational use i n  an instrument 
approach was 6'. 
t he  minimum engine speed t h a t  could be used. The minimum engine speed was 
chosen a s  t h e  lowest speed which would s t i l l  respond adequately i f  a wave-off 
occurred. 

This l i m i t  was establ ished by the  desired approach speed and 

More p i l o t  e f f o r t  w a s  required t o  f l y  t h e  6 O  g l ide  slopes than t h e  2 . 5 O  
slopes. 

The greatest  problem during the  instrument approach and f l a r e  was t h e  
e f f o r t  required t o  maintain proper la te ra l -d i rec t iona l  control .  Simulated 
autopi lot  l a te ra l -d i rec t iona l  control  w a s  found t o  be very e f fec t ive  i n  allowing 
more e f f o r t  t o  be put on the  glide-path control,  which resu l ted  i n  consistent 
touchdowns with the  p i l o t  under the  hood. 

Flare  paths which required about 25 t o  30 seconds f o r  t r ans i t i on  from the  
6' glide slope t o  the  terminal angle w e r e  found t o  be sa t i s fac tory  f o r  manual 
control  under instrument f l i g h t .  

. 
INTRODUCTION 

I n  making the normal instrument approach (2.5' t o  3 O  g l ide  slope),  t h e  
current tu rboje t  t ranspor t s  use a large amount of airspace.  
engines of these t ranspor t s  produce noise of an objectionable l e v e l  when t h e  
long, l o w  instrument approach takes t h e  turboje t s  over populated areas. 
According t o  reference 1, the  most frequent public complaints today are con- 
cerned with the  approach noise ra ther  than the  take-off noise. Some recent 
s tudies  have indicated t h a t  t he  landing-approach engine noise of t h e  supersonic 

I n  addition, t h e  
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t ranspor t  i s  expected t o  be even more severe than t h a t  of t he  current turbo- 
jets.  
noise l e v e l  would be t o  steepen the  approach gl ide slope. 
f l i gh t - t e s t  data are avai lable ,  an invest igat ion was undertaken on several  dif- 
fe ren t  types of a i r c r a f t  t o  determine how a i r c r a f t  charac te r i s t ics  influence 
steep-approach capab i l i t i e s .  

One method of reducing both the  airspace requirements and the  ground 
Since l i t t l e  or no 

The first a i r c r a f t  invest igated was a twin-engine, transport-type, 
propeller-driven airplane (C-47). 
reported i n  reference 2. 
engine, straight-wing, two-place j e t  t r a i n e r  are presented herein. 

The r e s u l t s  of t h a t  invest igat ion are 
The r e s u l t s  of a similar invest igat ion on a single- 

EQUIPMENT 

Guidance 

Glide slope and ~~- f l a r e . -  - .  Glide-slope and f l a r e  guidance w a s  provided by a 
biangular system previously described i n  references 2 and 3. 
s i s t e d  of t w o  ground-based t ransmit ters  (g l ide  slope and f l a r e ) ,  two airborne 
receivers (one f o r  each t ransmi t te r ) ,  and an airborne flare-path computer. 
Each t ransmit ter  sent out coded s ignals  which were received i n  the  a i r c r a f t  and 
decoded t o  give the  elevation angle of the  airplane r e l a t ive  t o  the  pa r t i cu la r  
t ransmit ter .  

This system con- 

Elevation angles up t o  20° could be measured. 

The geometry of t h e  guidance system i s  i l l u s t r a t e d  i n  f igure 1. The rear -  
ward ( f l a r e )  t ransmi t te r  w a s  located 3000 f e e t  down a 10 000-foot runway a t  

AB - Glide pa th  
BC - F l a r e  pa th  
CD - Terminal p a t h  

Terminal 
ang le  

F l a r e  t r i g g e r  
ang le  

3000 t o  4000 f t  

F l a r e  pa th  Touchdown 
t r a n s m i t t e r  p o i n t  

End of 
runway 1 

Glide-slope 
t r a n s m i t t e r  

s 

F l a r e  t r i g g e r  

Figure 1.- Biangular guidance system. 
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Langley A i r  Force Base, Virginia and about 300 f e e t  t o  t h e  r i g h t  of the  runway 
center l i ne .  
approach end of t h e  runway f o r  some of t he  tes ts  and 1000 feet ahead f o r  other 
t e s t s  giving a distance of 3000 and 4000 feet between sites. A s  shown i n  the  
f igure,  the forward t ransmit ter  provided glide-slope guidance (A t o  B) and t h e  
rearward t ransmi t te r  provided f lare-path guidance ( B  t o  C )  and terminal-angle 
guidance t o  touchdown ( C  t o  D ) .  

The forward (glide-slope) t ransmit ter  w a s  located near t he  

A de ta i led  descr ipt ion of t h e  flare-path guidance has been given i n  r e f -  
erence 2. 
ahead of t he  glide-slope or ig in  f o r  a l l  t he  glide-slope angles used i n  t h i s  
invest igat ion.  
f lare of 105 f ee t ,  252 feet, and 376 f e e t  f o r  gl ide slopes of 2.50, 6 O ,  and go, 
respectively.  The f l a r e  paths provided guidance t o  d i r ec t  the  airplane along a 
smooth path,  gently curving away from the  gl ide slope t o  a f i n a l  terminal slope 
of about O.5O. The t ransmit ter  and receiver antenna heights were r e l a t ed  so 
t h a t  when t h e  airplane w a s  f ly ing  along the  terminal angle, the wheels would 
touch down about 500 f e e t  ahead of t he  f l a r e  t ransmit ter  s i te .  

The flare i n i t i a t i o n ,  or f l a r e  t r i gge r  point ,  was located 2400 f e e t  

This geometry gave a nominal a l t i t u d e  a t  t he  beginning of t he  

Directional guidance.- The guidance f o r  t h e  horizontal  plane was provided 
by the - loca l i ze r  used i n  the  instrument landing system (ILS) a t  Langley A i r  
Force Base. This l oca l i ze r  provided an angular deviation system with the 
or ig in  1500 f e e t  beyond the runway on the  extended center l i n e  (11 '500 f e e t  
from the  approach end of t h e  runway). 

Guidance display.-  Deviations from the  desired f l i g h t  path were displayed 
t o  t h e  p i l o t  on an I L S  cross-pointer indicator  which showed f l ight-path devia- 
t i ons  i n  angular units as i s  standard i n  present-day ILS.  Full-scale deflec- 
t i o n  of t he  horizontal  cross pointer  (glide-slope needle) represented a devia- 
t i o n  of k0.6' from the  f l i gh t  path a s  measured a t  the  forward t ransmit ter  f o r  
the g l ide  slope and a t  t he  rearward t ransmit ter  f o r  t he  f l a r e .  A given cross- 
pointer  def lect ion,  therefore ,  represents an increasing s e n s i t i v i t y  or  a 
decreasing distance from t h e  desired path a s  t he  t ransmit ter  i s  approached. 

Full-scale def lect ion of the  v e r t i c a l  cross pointer  ( l oca l i ze r  needle) 
represented a deviation of k2.5O from the  desired d i rec t iona l  path a s  measured 
from a point 11 500 f e e t  from the  approach end of t he  runway. 

Airplane and Instrumentation 

A drawing of t h e  T-33 a i rplane used i n  t h i s  invest igat ion i s  shown i n  
f igure  2. The approaches were made with t h e  speed brakes out and t h e  gear 
down; ha l f - f laps  were used f o r  t h e  2.5O gl ide  slopes and fu l l - f l aps  w e r e  used 
f o r  t h e  steeper g l ide  slopes.  The airplane wing loading var ied between 55 and 
42 pounds per  square foot  a s  fuel w a s  consumed. 

The a i rp lane  w a s  instrumented with standard NASA f l i g h t - t e s t  instrumenta- 
t i o n  t o  measure and record the  following quant i t ies :  airspeed, pressure- 
a l t i t ude ,  t h r o t t l e  posi t ion,  f l a p  posi t ion,  e levator  posi t ion,  deviation of 
glide-slope needle, deviation of l oca l i ze r  needle, angle measured by glide-slope 
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Figure 2.- Airplane used in investigation. 

Dimensions are in feet. 

receiver,  and angle measured by f l a r e  receiver .  All recording instruments w e r e  
correlated by an NASA timer. 
two angle ind ica tors  were included t o  display the  glide-slope and f lare  angles 
and a panel l i g h t  w a s  i n s t a l l e d  t o  ind ica te  the  f lare  t r igge r .  

I n  addition t o  normal cockpit instrumentation, 

TESTS 

P i l o t s  

The p i l o t s  pa r t i c ipa t ing  i n  t h i s  program were NASA experimental t e s t  p i l o t s  
with varying degrees of experience ranging from over 20 years t o  a few years of 
f l i g h t - t e s t  work. Although these p i l o t s  have not had the  opportunity t o  make 
ILS  approaches as of ten  as a i r l i n e  p i l o t s  of comparable years of experience, 
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t h e i r  background does make them capable of providing expert opinion t o  assess 
the  r e l a t i v e  d i f f i c u l t y  of f ly ing  various gl ide slopes and flare paths. 

Ins~rument-Fl ight  Simulation 

The r ea r  cockpit of t he  airplane w a s  f i t t e d  with a fabr ic  hood which could 
be pul led forward t o  block ex te r io r  vis ion f o r  instrument f lying.  A safe ty  
p i l o t  was used i n  the  f ron t  cockpit t o  take t h e  controls  when necessary. 

Te st Procedure s 

The instrument landing approaches were flown with the  airplane approaching 
the  outer marker i n  l e v e l  f l i g h t  a t  an a l t i t u d e  which would allow t h e  p i l o t  t o  
push over and acquire the  g i ide  slope near t he  outer marker. The p i l o t  then 
attempted t o  f l y  an instrument approach by using the  ILS cross pointers  f o r  
guidance. After several  successful instrument approaches were made a t  a given 
gl ide slope, the  angle was increased u n t i l  an upper l i m i t  was reached. The 
gi ide slopes used i n  t h i s  invest igat ion were 2.50, 6 O ,  7 O ,  8O,  and 9 O .  
opinion supported by measured f l ight-path deviations was used t o  determine a 
maximum gl ide slope t h a t  seemed feas ib le  f o r  operational use. 

P i l o t  

Several p i l o t s  were used t o  obtain a comparison of the  approaches made a t  
t h i s  maximum operational g l ide  slope with approaches made a t  t h e  conventional 
2.5O slope. 
t a sk  was t o  continue the  instrument approach t o  touchdown, i f  possible.  

Flare-path guidance was provided during these t e s t s  and the  p i l o t ' s  

During some of the  t e s t s ,  the  safe ty  p i l o t  controlled the  l a t e r a l  f l i g h t  
path t o  simulate a sp l i t - ax i s  au topi lo t .  This autopi lot  simulation allowed the  
t e s t  p i l o t  t o  concentrate on the  longi tudinal  control.  

RESULTS AND DISCUSSION 

Airplane Performance Character is t ics  

Aside from t h e  p i l o t ' s  a b i l i t y  t o  control  an airplane i n  a steep descent 
under instrument-fl ight conditions, t he  steep-descent capabi l i ty  i s  ul t imately 
l imited by the airplane performance charac te r i s t ics .  The charac te r i s t ics  which 
a re  r e l a t ed  t o  the  descent performance of the  t e s t  a i rplane a r e  presented i n  
f igure  3 a s  a var ia t ion  of thrust required with airspeed f o r  several  f l i g h t -  
path angles and two values of a i rplane weight. These curves were determined 
from the  drag polar  given i n  reference 4 f o r  t h i s  a i rplane.  The measured val-  
ues of t h r o t t l e  posi t ion and t h e  p i l o t ' s  notes of corresponding engine r p m  
readings were r e l a t ed  t o  t h e  thrust-required values f o r  several  tests a t  var i -  
ous f l igh t -pa th  angles t o  give an epproximate correlat ion between percent 
engine r p m  and engine t h r u s t  a s  shown i n  f igure  3 .  

For t h e  2.50 gl ide slope, t h e  handbook gives approach speeds of 122 knots 
and lo7 b o t s  f o r  a i rplane weights of 13 000 and 10 000 pounds, respectively.  

5 
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Figure 3 . -  Variation of thrust required with airspeed. 

Figure 3 shows t h a t  steady unaccelerated f l i g h t  along a 2.5O gl ide slope would 
require an engine speed s l igh t ly  l e s s  than 80 percent of design r p m  a t  a weight 
of 13 000 pounds and about 75 percent of design rpm a t  10 000 pounds. Most of 
t he  t e s t s  f o r  the  6 O  g l ide  slope were made a t  speeds between l l 5  and 120 knots 
with engine speeds about 65 percent of design rpm. 

L e s s  than 65 percent of design engine rpm w a s  not believed t o  provide 
adequate engine accelerat ion f o r  safe  wave-off charac te r i s t ics .  A t  65 percent 
the  airplane could be flown a t  g l ide  slopes a s  high a s  9 O ,  but approach speeds 
between 145 and 156 knots resu l ted  from the  lack  of su f f i c i en t  drag i n  the  
approach configuration ( f u l l  f laps ,  gear down, and speed brakes extended). 
Touchdowns were not made because t h i s  low drag a l s o  would cause excessive 
touchdown speeds on the order of 130 knots and therefore  would r e s u l t  i n  
landing on the  nose wheel f i r s t .  

Glide-Path Control f o r  2.5O, 6 O ,  and 9O Glide Slopes 

Because of t he  l imited scope of t h i s  invest igat ion,  it w a s  not possible t o  
obtain enough data f o r  a s t a t i s t i c a l  analysis  of the  r e l a t i v e  accuracy of  
f l ight-path control  fo r  various gl ide slopes. The primary purpose w a s  t o  deter-  
mine the  maximum gl ide  slope su i tab le  f o r  operational use and the  reasons f o r  
l imi t ing  t h i s  value. 
of f ly ing  the  steep gl ide slopes a s  compared with the  conventional 2.5' g l ide 
slope. 

P i l o t  opinion was used t o  assess the  r e l a t i v e  d i f f i c u l t y  

The time h i s t o r i e s  i n  f igure  4 show t h e  range of gl ide slopes investigated.  
The r e s u l t s  of t he  tes t s  f o r  t he  intermediate 70 and 8 O  glide slopes were 
s i m i l a r  t o  those i l l u s t r a t e d  i n  f igure  4 f o r  t he  2.5O, 6 O ,  and 9 O  gl ide  slopes. 
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( a )  2.50 gl ide slope. 

F i w e  4.- Variation of glide-slope e r ror ,  airspeed, t h r o t t l e  motion, and elevator 
def lect ion with time for three gl ide slopes. 
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The 2 . 5 O  glide slope ( f i g .  4 ( a ) )  i l l u s t r a t e s  a case i n  which t h e  a i r c r a f t  
was under simulated sp l i t - ax i s  autopi lot  control  and t h e  p i l o t  w a s  able  t o  f l y  
a f l a r e  path t o  touchdown while under the  hood. The 6 O  glide slope ( f i g .  4 (b ) )  
i l l u s t r a t e s  one of the  f e w  t i m e s  t h a t  t he  p i l o t  was able  t o  f l y  t o  touchdown 
w h i l e  under the  hood with t h e  airplane under complete manual control.  The a i r -  
plane w a s  a l so  under complete manual control  f o r  the  90 glide slope ( f i g .  4 ( c ) ) .  

Although the  data of figure 4 show an increase i n  glide-slope e r ro r  with 
increasing gl ide slope a t  t h e  f lare t r igge r  point ,  a summary of a l l  approaches 
i n  which the  p i l o t  had complete manual control  gives an average glide-slope 
e r ro r  a t  t he  flare t r igge r  point of 19, 11, and 1-9 feet f o r  2 . 5 O ,  6 O ,  and 9O 
gl ide  slopes, respectively.  

The p i l o t  e f f o r t  required f o r  glide-path control  increases as the  g l ide  
slope increases,  a s  indicated i n  f igure  4 by the  increased frequency of 
elevator-control motions and increased magnitude of t h r o t t l e  motions f o r  t h e  6 O  
and 9 O  slopes compared with these values f o r  t he  2 . 5 O  slope. 

For t h e  2.5O slope i n  t h i s  f igure,  after t h e  airplane w a s  s t ab i l i zed  on 

The airspeed var ied between 110 and 116 knots on the  gl ide slope. 
t he  gl ide slope no t h r o t t l e  movement w a s  required throughout t h e  approach and 
flare.  
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(b) 6 O  glide slope. 

Figure 4.- Cqntinued. 

More t h r o t t l e  movement was required f o r  t he  6 O  slope i n  f igure 4 than f o r  
the  2.5' slope. 
of 100 pounds or less.  The airspeed was steady, varying between 113 and 

These small t h r o t t l e  movements varied the  th rus t  i n  increments 

118 knots. 

The 6' glide slope was picked a s  the  maximum slope su i tab le  f o r  opera- 
t i o n a l  use based on the  minimum usable engine r p m  and the  desirable a i rplane 
landing a t t i t u d e  and speed. 
d i f f i c u l t  t o  f l y  than the  2.5' slope p a r t l y  because more a t t i t u d e  change OCCUI'S 

a t  t he  glide-slope in te rcept  and more s m a l l  power changes a re  required t o  con- 
t r o l  t he  speed and f l i g h t  path. 

The p i l o t s  th ink  t h a t  t he  6O glide slope i s  more 

After t he  airplane was establ ished on t h e  90 gl ide  slope, no more t h r o t t l e  
movement w a s  required f o r  t h i s  slope than f o r  t he  6O slope. The la rge  airspeed 
var ia t ion shown f o r  the  9 O  slope during the  20 seconds before f l a r e  was prob- 
ably due t o  a wind shear. Even a t  t h e  higher approach speeds, the  engine rpm 
for the  90 gl ide  slopes had t o  be reduced t o  57 percent of t he  design value 
which i s  much lower than 65 percent, t h e  value considered t o  be the  minimum f o r  

8 
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( c )  go glide slope. 

Figure 4.- Concluded. 

'. operational use. 
t i o n a l  use with t h i s  pa r t i cu la r  a i rplane because of low drag which r e s u l t s  i n  
high approach speeds, t he  gl ide slope w a s  flown with reasonable precis ion i n  
the invest igat ion.  However, t h e  la rge  a t t i t u d e  change required a t  t h e  glide- 
slope in te rcept  makes the  glide-slope acquis i t ion  even more d i f f i c u l t  for t h e  
go slope than for t h e  6 O  slope. 

Although t h e  go glide slope would not be su i tab le  for opera- 
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Lateral-Directional Control 

The l a t e ra l -d i r ec t iona l  control  w a s  much b e t t e r  f o r  t h i s  a i rplane than f o r  
t he  C-47 as reported i n  reference 2. 
l oca l i ze r  e r ro r  and corresponding glide-slope e r r o r  and airspeed f o r  one hooded 
approach a t  a 6 O  gl ide  slope. 
o sc i l l a to ry  var ia t ion  which w a s  t yp ica l  with t h e  C-47. 
l a t e r a l  control  system, the  d i f f i c u l t y  i n  keeping t h e  loca l i ze r  needle centered 
detracted from t h e  t a s k  of glide-slope control  t o  t h e  extent t h a t  hooded 
approaches t o  touchdown w e r e  possible only occasionally. 

Figure 5 gives a typ ica l  t i m e  h i s tory  of 

For t h e  T-33, t he  e r ro r  does not exhibi t  t h e  
Even with t h e  improved 

r 

L I I 

M 

t) 

ri 
L - 

120 - 
3 
$ 1 i O  . I 1 I I 

0 20 40 60 as 100 120 
Time, sec 

Figure 5.- Localizer e r ro r ,  glide-slope e r ro r ,  and airspeed for a hooded 
approach a t  6' glide slope. 

I n  the  invest igat ion of reference 2, the  p i l o t s  believed t h a t  with s p l i t -  
ax i s  autopi lot  control  of the  la te ra l -d i rec t iona l  axes, hooded approaches t o  
touchdown would be possible  with manual control  of t h e  v e r t i c a l  f l i g h t  path. 
This sp l i t - ax i s  control  was simulated during some of these tests by having t h e  
safe ty  p i l o t  f l y  the  horizontal  f l i g h t  path v isua l ly  while t he  hooded tes t  
p i l o t  flew the  v e r t i c a l  f l i g h t  path. A l l  p i l o t s  found the  sp l i t - ax i s  control  
t o  be very e f fec t ive  i n  allowing more e f f o r t  t o  be put on the  glide-path con- 
t r o l ,  which resu l ted  i n  consistent touchdowns with the  p i l o t  under the  hood. 
The effectiveness of t he  sp l i t - ax i s  control  i s  shown i n  the  following t ab le  by 
comparison of t he  number of hooded touchdowns made by three evaluation p i l o t s  
having e i the r  complete control  or sp l i t - ax i s  control:  
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Glide slope, Number of Touchdowns I -s 

I Complete manual control  I 

I Spli t -axis  control  I 

Flare  Paths 

F lare  paths with lengths of 5000 feet and 6000 feet  were invest igated.  
The longer f lare paths shown i n  f igure  6 were more desirable  f o r  t he  steeper 
g l ide  slopes because there  w a s  more t i m e  t o  make the  la rge  f l igh t -pa th  change 
Eequired from the  s teep slopes 
t o  the  small terminal angle. 
For example, a t  an average 
ground speed of 115 knots, t he  
ai rplane could t raverse  the  
5000-foot f l a r e  path i n  about 
26 seconds; but t he  6000-foot 
f l a r e  path would require 
31 seconds. These lengths f o r  
f l a r e  paths may seem unusually 
large,  but t he  f l a r e  paths  are 
flown manually by hooded p i l o t s  
t o  touchdown. One of t he  
p i l o t s  commented t h a t  t h e  t i m e  
required f o r  t r ans i t i on  from 
the  6 O  gl ide slope t o  t h e  0 . 5 O  
terminal angle w a s  too short .  
( I n  t h i s  instance, t he  t i m e  
from s t a r t  of f lare t o  touch- 
down w a s  25 seconds.) 

The 6000-foot f lare path 
w a s  flown with t h e  go gl ide  
slope but w a s  not f u l l y  eval-  
uated because the  tests had t o  
be discontinued before touchdown. 

G l i d e  
k slope, 
8 deg 
M 

400 

t-' % 

a, a 

.A 
3 200 

5 

0 2 4 6 a 103 
H o r i z o n t a l  d i s t a n c e ,  f t  

Figure 6.- Flare  paths f o r  several  gl ide slopes. 

Touchdown was prohibi ted by a nose-down 
a t t i t u d e  which resu l ted  from higher speeds encountered with t h e  go gl ide  slope. 

For the  f lare from t h e  2.5O glide slope ( f i g .  4 ( a ) ) ,  the  airspeed dropped 
The airspeed dropped from from 114 t o  104 knots with no addi t ion of t h rus t .  

118 t o  105 knots during the  f l a r e  from the  6 O  gl ide slope even with t h e  
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addi t ion of a considerable amount of t h r u s t  ( f i g .  4 ( b ) ) .  
t he  go glide slope ( f i g .  4 ( c ) ) ,  t he  airspeed dropped from 141  knots t o  120 knots 
a t  which t i m e  a wave-off was i n i t i a t e d .  The l a rge r  a t t i t u d e  changes required 
i n  the  f l a r e  from the  steep g l ide  slopes demand more e f f o r t  by the  p i l o t  t o  
maintain the  airspeed during the f l a r e .  If the  s teep approaches a re  t o  be con- 
t inued through the  f l a r e  t o  touchdown, o r  t o  very low a l t i t udes ,  some form of 
automatic speed cont ro l  i n  addi t ion t o  the  necessary sp l i t - ax i s  autopi lot  would 
be very desirable .  

During the  f l a r e  from 

F l igh t  Instrument Requirements 

Some of t he  p i l o t s '  comments concerning the  f l i g h t  instruments used during 
t h i s  invest igat ion a r e  worthy of consideration. 

The proper grouping of instruments i s  of ten overlooked, a s  i n  the present 
case. 
i n  f igure  7. This grouping increased the  p i l o t ' s  e f f o r t  required i n  scanning 
h i s  instruments during an I L S  approach, pr imari ly  because the  cross-pointer 
ind ica tor  i s  separated from the  other instruments needed f o r  f l ight-path con- 
t r o l  (rate-of-climb, heading, and airspeed ind ica tors ,  and a t t i t u d e  gyro) .  

A photograph of the  instrument panel used i n  t h i s  invest igat ion i s  shown 

Figure 7.- Instrument panel. 
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CONCLUDING REMARKS 

A f l ight invest igat ion has been conducted t o  determine the  steep in s t ru -  
ment approach capab i l i t i e s  and l imi ta t ions  of a T-33 a i rplane under manual con- 
t r o l .  
t i o n  from the  steep g l ide  slope t o  touchdown. 

The study included an invest igat ion of f lare paths su i tab le  f o r  t r ans i -  

The maximum gl ide slope feas ib le  f o r  operational use i n  an instrument 

The minimum engine speed w a s  
approach w a s  6'. 
t h e  minimum engine speed t h a t  could be used. 
chosen as the  lowest speed which would s t i l l  respond adequately i f  a wave-off 
occurred. 

This l i m i t  w a s  established by the  desired approach speed and 

More p i l o t  e f f o r t  w a s  required t o  f l y  t h e  6 O  g l ide  slopes than the  2.5' 
slopes. 

The grea tes t  problem during the  instrument approach and flare w a s  t he  
Simulated e f f o r t  required t o  maintain proper la te ra l -d i rec t iona l  control.  

autopi lot  l a te ra l -d i rec t iona l  control  w a s  found t o  be very e f fec t ive  i n  
allowing more e f f o r t  t o  be put on t h e  glide-path control,  which resu l ted  i n  
consistent touchdowns with t h e  p i l o t  under the  hood. 

Flare  paths which required about 25 t o  30 seconds f o r  t r ans i t i on  from t h e  
6' g l ide  slope t o  the  terminal angle were found t o  be sa t i s fac tory  f o r  manual 
control  under instrument f l i g h t .  

Langley Research Center, 
National Aeronaaics and Space Administration, 

Langley Station, Hampton, V a . ,  January 12, 1965. 
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