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DRAG AND WEAR CHARACTERISTICS OF VARIOUS SKID MATERIALS 

ON DISSIMILAR W~EBED SURFACES DURING THE SLIDEOUT OF THE x-15 AIRPLANE 

By Ronald J. Wilson 
Fl ight  Research Center 

SUMMARY 

An invest igat ion w a s  made t o  determine the  coef f ic ien ts  of f r i c t i o n  and 
the  wear charac te r i s t ics  f o r  X-15 landing-gear skids of various materials.  
Data a re  presented f o r  skids made of 4130 s t ee l ,  with and without cermet 
coating, and InconelX f o r  several  lakebed-surface conditions. The mean coef- 
f i c i e n t  of f r i c t i o n  on a dry-hard surface was found t o  be 0.30 f o r  4130 s t e e l  
skids, 0.36 f o r  4130 s t e e l  skids with cermet coating, and 0.33 fo r  Inconel X 
skids.  The mean coeff ic ient  of f r i c t i o n  f o r  the  cermet-coated skids on a s o f t  
surface w a s  0.46; f o r  Inconel X skids on a damp surface the  mean value was 
0.25. Flight data  are  compared with experimental ground-tow t e s t  data  on 
na tura l  and simulated lakebed surfaces.  Also included i s  the  var ia t ion  of 
skid wear with s l ideout  dis tance.  

INTRODUCTION 

Landing gear t h a t  use skids instead of wheels have been used on a number 
of f l i g h t  vehicles and have been proposed fo r  some fu ture  vehicles.  Some of 
t he  advantages of t h i s  type of gear are i t s  simplicity,  r e l i a b i l i t y ,  t he  
a b i l i t y  t o  withstand aerodynamic heating, minimum space and weight require- 
ments, and the  a b i l i t y  t o  sus ta in  high landing speeds. 
plane u t i l i z e s  a landing gear of t h i s  type. Some aspects of operating with 
skid gear on the  X-15 a re  reported i n  references 1 t o  6.  

The X-15 research a i r -  

Coefficients of f r i c t i o n  and wear charac te r i s t ics  fo r  skids of various 
materials have been studied by several  invest igators .  The r e su l t s  of experi- 
mental ground-tow t e s t s  on simulated and na tura l  lakebeds a t  ve loc i t ies  up t o  
82.5 knots a re  reported i n  references 7 t o  9. 
skids, fabr icated from s t r u c t u r a l  s tee ls ,  on hard lakebed surfaces were made 
i n  t h e  invest igat ions of references 3 and 10. Opt imum f r i c t i o n  coeff ic ients  
f o r  landing skids w e  discussed i n  reference ILL. 
required, however, on coef f ic ien ts  of f r i c t i o n  and wear a t  high speeds on 
hard, sof t ,  and damp lakebed surfaces.  I n  order t o  obtain information of this  
type during high-speed slideout,  an X-15 airplane was instrumented by the  NASA 
F l igh t  Research Center, Edwards, C a l i f  ., t o  measure per t inent  quant i t ies  
during landing. 

Fl ight  t e s t s  of operational 

Additional information i s  

Twelve tests were conducted with skids of various mater ia ls  
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and f o r  several  d i f f e ren t  lakebed surface conditions. 
results of t he  invest igat ion.  

This paper presents  t he  

TEST VEHICLZ AND EQUIPMENT 

The X-15 airplane ( f i g .  1) used as the  t e s t  vehicle i n  t h i s  invest igat ion 
i s  a rocket-powered a i r c r a f t  capable of a t ta in ing  a Mach number of 6 and alti- 
tudes i n  excess of  3OO,OOO f e e t .  
ences 12 and 13. 

The airplane i s  described f u l l y  i n  re fer -  

Gear system.- The X-13 
landing-gear system, dis- 
cussed i n  d e t a i l  i n  re fer -  
ence 3, consis ts  of a non- 
s t eerable, full-  c a s t e r  ing 
(360")  nose gear located well  
forward of the airplane center 
of grav i ty  and a skid-type 
main gear located under the  

E-7905 t a i l ,  well  a f t  of the center 
Figure 1.- X-15 airplane. of  gravi ty .  

The main-gear legs  are  Inconel X s t r u t s  attached t o  the  fuselage by 
trunnion f i t t i n g s  ( f ig .  2 )  and through bellcrank a r m s  t o  high-pressure shock 
s t r u t s  ins ide  the  fuselage. The t w o  skids are  universal ly  mounted. t o  t he  
s t r u t s  t o  allow f o r  pi tching and ro l l i ng  motion, but are  res t ra ined i n  yaw f o r  
p a r a l l e l  alinement. 
universal  f i t t i n g s  and are  s imi la r ly  connected t o  the  skids ahead of t he  

The drag braces are  attached t o  t he  fuselage by semi- 

-Instrumented for 
Instrumented for shock-strut force/ 

shock-strut force- 

Instrumented for fa 
drag-brace tension 

Skids - 3 feet long 
6 inches wide 

Figure 2.- X-15 main landing gear and instrumentation. 
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strut-attachment pin. Bungees connect t h e  leading edge of the skid t o  the  
main-landing-gear l e g  t o  insure a nose-up a t t i t ude  of t he  skids before touch- 
down. 

-- Landing-gear skids.- Three skid materials were used i n  t h i s  investiga- 
t ion .  The f i rs t  s e t  of skids, which i s  standard equipment on the  X-15 a i r -  
plane, w a s  fabr icated from 4130 s t e e l .  
a cermet coating t h a t  was or ig ina l ly  developed fo r  t h e  X-20 nose-gear skid.  
The t h i r d  s e t  was fabricated from Inconel X. 

The second s e t  was of 4130 s t e e l  with 

The skids were 6 inches wide and 3 f e e t  long, with contact surfaces ap- 
proximately 4.8 inches wide and 30.6 inches long. The wearing surfaces were 
approximately 0.15O-inch th ick  f o r  t he  4130 s t e e l  skids, 0.40-inch th ick  €or 
t he  cermet-coated skids, and 0.15O-inch th i ck  f o r  t he  Inconel X skids.  

The cermet-coating process 
( f i g s .  3(a)  and 3(b) consisted of :  

(1) copper-brazing inch screened 

tungsten carbide chips t o  the  skid 
surface a f t e r  precoating t h e  surface 
with flux ( the  chips were applied t o  
the  surface by hand); 
spraying a 0.020-inch- t o  

-27- 

(2)  flame- 

I 0 ~ 0 4 0 - i ~ c h - t h i c k  matrix of tungsten 

boron (65 percent) on top of t h e  
E-10822 (35 percent),  chrome, nickel,  and 

(a) Bottom view. 

copper-brazed carbide chips, then 
fusing and g r i t  blasting; and (3)  
flame-spraying with a copper-nickel 
matrix. The cermet coating w a s  then 
ground t o  a nominal thickness of 4 0.20 inch. 

I 
E- 10820 

(b) End view of both skids.  
TEST LANDING CONDITIONS 

The landing conditions fo r  t h e  Figure 3.- Cermet-coated skid. 

t e s t s  discussed herein are  summa- 

The t r u e  ground speed varied f r o m  164 knots 
r ized  i n  t ab le  I. A s  shown, the landing weights f o r  the X-15 ranged from 
14,500 pounds t o  15,855 pounds. 
t o  221 knots. The maximum sl ideout  distance was 8968 fee t ,  and the minimum 
distance was 3520 f e e t .  The maximum wind veloci ty  across the lakebed was ap- 
proximately 10 knots. 

A l l  the  landings of t h i s  study except one were made on the  hard, smooth 
lakebed of Rogers D r y  Lake, a t  Edwards, C a l i f . ;  one landing was made on t h e  
s o f t  surface of Cuddeback D r y  Lake, near Edwards. 

Lakebed-surface conditions were var iable  and presented a range of hard- 
ness values dependent on weather conditions, location, and s o i l  charac te r i s t ics .  
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Surface-hardness values were not obtained d i r e c t l y  f o r  all of the  surface con- 
di t ions.  Hardness values, expressed i n  terms of Cal i fornia  Bearing Ratio 
(CBR)1, were obtained from reference 9 f o r  dry-hard surface conditions. 
values f o r  t e s t s  1 t o  9 and ll averaged 76, with a high of 94 and a low of 59.  
A CBR of 30 or greater  i s  considered sa t i s f ac to ry  f o r  operations of heavy j e t -  
t ransport  a i r c r a f t .  

The 

Test 

TAEZE I 

SUMMARY OF TEST CONDITIONS 

Lakebed 
Type Of surface 

condition 

I I 

4130 
Cermet 
Cermet 
Cermet 
Cermet 

Dry-hard 
Dry-hard 
Dry-hard 
Dry-hard 
Dry-hard 
Dry-hard 
Dry-hard 
Dry-hard 
Dry-hard 
Dry-soft 
Dry-hard 
Damp-hard 

Landing 
weight, 

lb 

14,700 
14,500 
14,600 
14,950 

15, loo 
15,100 
14,750 
14,920 

15,150 
14,920 

15,798 
15,855 

Distance from 
main-gear t o  

nose-gear 
touchdown, 

f t  

312 
304 
218 
294 
2 05 
252 
253 
310 
320 
271.6 
287.8 
365 

Time of 
nose-gear 

impact , 
sec 

0.7 .a 
.54 
.74 
.60 
* 72 
.61 
.83 
.89 
76 

. 7 u  
*715 

Slideout 
distance, 

f t  

7920 

8170 
4488 
5702 
4805 
5204 
5808 
3520 
60% 
8968 

_ _ _ _  
-___  

Wind 
veloci ty ,  

knots 

8 
C a l m  
10 

Calm 
2 

Calm 
3 

C a l m  
C a l m  

5 
C a l m  
C a l m  

Velocity a t  
touchdown 

( indicated 
airspeed), 

knots 

Velocity a t  
touchdown 

( t r u e  ground 
speed), 
knots 

2 07 
1% 
1% 
204 
164 
175 
208 
193 
187 
181 
205 
221 

Surface CBR values were not determined fo r  the  s o f t  surface of Cuddeback 
Lake, used i n  t e s t  10, because of the remote locat ion of t h e  lake.  A CBR of 
16 t o  23 w a s  estimated on the  bas i s  of ground t e s t s  t h a t  provided the  same 
coeff ic ient  of f r i c t i o n  f o r  t he  same skid mater ia l .  No estimates of surface 
hardxess were made f o r  t he  damp surface condition of t e s t  12. 

B a l l  t e s t s  were conducted t o  compare surface-hardness values of  the  natu- 
ral lakebed surfaces with those of the simulated lakebed surface of re fer -  
ence 7. A 17.9-pound s t e e l  ba l l ,  5 inches i n  diameter, w a s  dropped onto the  
lakebed from a height of 6 fee t .  
b a l l  on the  hard lakebed surface ranged from 2.25 inches t o  2.50 inches. On 
the  s o f t  lakebed surface, indentation diameters were from 4.0 inches t o  
4.50 inches. 
i n  diameters of 3.0 inches. 

The diameters of the  indentations l e f t  by the  

The b a l l  t e s t s  on the  simulated lakebed of reference 7 resul ted 

INSTRUMENTATION AND DATA REDUCTION 
t 

Airspeed, shock- s t r u t  force, and drag-brace tension load were measured 
during the  approach, touchdown, and s l ideout  phases of the  landings. Airspeed 1 

data  were obtained f rom the  X-15 flow-direction sensor i n  t h e  nose of the  
- _ _  

k a l i f o r n i a  Bearing Ratio i s  defined as the  r a t i o  o f  t he  bearing strength 
of the  s o i l  surface i n  question t o  a standard high-quality compacted crushed- 
stone surface. 
depth of 0.10 inch. 

This standard has a bearing s t rength of 1000 lb/sq i n .  a t  a 
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a i r c r a f t  and s t a t i c  pressure pickups on the  a i r c r a f t  fuselage.  S t ra in  gages 
mounted on each of t he  main-gear bellcrank arms and drag braces ( f i g .  2 )  were 
arranged t o  measure the  normal skid and drag loads. 

The measured quant i t ies  were recorded on standard oscillographs, synchro- 
nized a t  0.1-second in te rva ls  t o  a comon timer. 
damping r a t i o  of the recording galvanometers were 20 cps and 0.64, respec- 
t ive ly .  

The na tura l  frequency and 

Recordings were accurate within 32 percent of fu l l - sca le  readings. 

The t r u e  ground speed a t  touchdown w a s  calculated by dividing the  measured 
distance between the  main-gear and nose-gear touchdown points  on the  lakebed by 
the  time in t e rva l  between main-gear and nose-gear touchdown (as obtained from 
oscillograph records).  The t r u e  ground speed during s l ideout  w a s  determined by 
correcting t h e  t r u e  airspeed, obtained from onboard recording, f o r  the  d i f fe r -  
e n t i a l  between t h e  airspeed and the  ground speed a t  touchdown. 
accurate t o  within +1 knot. 

The data  a re  

Landing-gear loads, which a re  normal skid and drag loads, were determined 
The s t r a i n  from data  recorded f o r  each main-gear skid during the  s l ideout .  

gages on the  l e f t  and the r igh t  main drag braces were cal ibrated t o  give the  
drag-brace tension loads resu l t ing  from the  drag loads on t h e  skids.  
geometry of t he  main-gear system, the drag-brace tension loads were used t o  
calculate  the  drag react ion between the  skids and the  ground. No in te rac t ion  
ex i s t s  between the  drag-brace load and the main-gear shock s t ru t ,  since pivot 
points  a t  the  fuselage f o r  t h e  drag brace and the  landing-gear leg  f a l l  on a 
l i n e  t h a t  i s  e s sen t i a l ly  p a r a l l e l  t o  the longi tudinal  center l ine of the  fuse- 
lage.  

From the  

The s t r a i n  gages on the  main-gear bellcrank arm were cal ibrated t o  give 
the  a x i a l  load on the  shock-strut cylinders.  Since only s l i g h t  pitching, ver- 
t i c a l ,  and ro l l i ng  motions were experienced during the  sl ideout,  the  main-gear 
shock-strut reaction t o  the  v e r t i c a l  load of t he  skid w a s  regarded as being 
equal t o  the  s t r u t  a i rspr ing force; t ha t  i s ,  the  airplane was e s sen t i a l ly  
r iding on the  airspr ing force of t h e  shock s t r u t s .  A ca l ibra t ion  on the  main- 
gear system correlated the  e f f ec t  of the v e r t i c a l  force of the  skid on the  
shock-strut-cylinder react ion and shock-strut displacement. 

TEST RESULTS 

Twelve t e s t s  were conducted with skids of various materials and fo r  
several  d i f fe ren t  lakebed-surface conditions ( tab le  I) .  

Tests 1 t o  5 were made with the  4130-steel skids on a dry-hard surface, 
The which w a s  smooth except f o r  a few indicat ions of previous a i r c r a f t  use. 

typ ica l  var ia t ion  of skid loads with time and of coeff ic ients  of f r i c t i o n  with 
forward speed during s l ideout  on these t e s t s  i s  shown i n  t h e  da ta  of f ig -  
ures 4(a)  and 4(b) .  
c ien ts  of f r i c t i o n  were somewhat similar i n  magnitude t o  the  values obtained 
during wheel spin-up on conventional landing gear. 

During landing impact, the  i n i t i a l  values of the coeffi-  

These high values were not 
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8 X l  O3 
I 

Normal skid load 
Normal skid 

drag load, 
Ib 

0 4 8 12 16 2 0  2 4  28 32  3 6  4 0  44 

Time after initial touchdown, sec 

0 

0 00 
0 0 0  00 

O o c 0  moo 0 O 0 @ @ c 0  Omo@O 

0 

Coefficient 
of friction 

I I I I I I I I I I I 
0 

0 
2 2 0  200  180 160 140 120 100 8 0  60 4 0  2 0  

Velocity, knots 

(a) Left main gear. 

Figure 4.- Drag characteristics of main gear on test 1. 4130 steel skids; dry-hard lakebed. 



10x103 

I j 

Normal skid 6 
Normal skid load 

drag load, 

I b  4 

0 

.6 *'I 
Coefficient 
of friction ' 4 1  

32 36 4 0  44 4 a 12 16 2 0  24 28 
Time after initial touchdown, sec 

0 

0 

220 200  180 160 140 120 100 8 0  6 0  40  2 0  0 
Velocity, knots 

(b) Right main gear. 

Figure 4.- Concluded. 



analyzed because of t he  t r ans i en t  conditions of impact, rebound, and maximum 
loading. For t h i s  paper, t he  coef f ic ien ts  of f r i c t i o n  were evaluated during 
t h e  s t ab i l i zed  port ion of t h e  s l ideout .1  
of f r i c t i o n  decreased t o  a r e l a t i v e l y  constant value. A t  approximately 
50 knots, it began t o  increase t o  i t s  maximum value (impending s t a t i c  f r i c t i o n )  
a t  t he  end of s l ideout .  

During t h i s  period, t he  coef f ic ien t  

Type of 
skid 

Tests 6 t o  9 were a l s o  conducted on a dry-hard lakebed, but with cermet- 
coated skids.  Landing-loads da%a were not obtained on tes t  7 because of a loss  
of instrumentation during f l i g h t .  
i n  f igures  5(a) and ? (b ) .  

Typical da ta  from these t e s t s  a re  presented 

surface 
condition 

Test 10 w a s  conducted with the  cermet-coated skids  on a so f t  lakebed sur- 
face t h a t  was  r e l a t i v e l y  rough and wavy. The va r i a t ion  of landing loads with 
time and coef f ic ien t  of f r i c t i o n  with forward speed during slideout i s  shown 
i n  f igures  6(a)  and 6(b). The drag loads could not be obtained u n t i l  2 sec- 
onds a f t e r  touchdown because of indistinguishable oscil lograph t races .  A 
second gap i n  the  data  occurred a t  13.4 seconds a f t e r  touchdown as a r e s u l t  of 
contact with a graded road. Because of surface i r r e g u l a r i t i e s ,  the  measured 
loads f luctuated considerably more than during t h e  previous t e s t s .  

Tests 11 and 12 were made on dry-hard and damp-hard lakebeds, respec- 
t ive ly ,  using Inconel X skids.  Data from the t e s t s  a re  presented i n  f ig-  
ures 7(a) and 7(b)  and 8 ( a )  and 8 (b ) .  

Table I1 summarizes per t inent  quant i t ies  resu l t ing  from each s l ideout .  

TABLE I1 

SUMMARY O F  TEST CONDITIONS AND MEASURED DATA 

Test 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

I 
4130 
4130 
4130 
4130 
4130 

Cermet 
Cermet 
Cermet 
Cermet 
Cermet 

Inconel X 
Inconel X 

Dry-hard 
Dry-hard 
Dry-hard 
Dry-hard 
Dry-hard 
Dry-hard 
Dry-hard 
Dry-hard 
Dry-hard 

Dry-hard 
Damp - hard 

Dry-soft 

Estimated 
CBR 

59 t o  94 
59 t o  94 
59 to 94 
59 t o  94 
59 to 94 
59 to 94 
59 t o  94 
59 t o  94 
59 to 94 
16 t o  23 
59 to 94 -------- 

Mean 
coe f f i c i en t  
of f r i c t i o n  

~~ ~ .~ 

0.31 
-29 
.28 
-32 
-32 
-37 

.36 

.38 

.46 
-35 - 25 

---- 

Mean absolute 
devia t ion  of 
coe f f i c i en t  
of f r i c t i o n  

0.01 
.02 
.02 
.02 
.02 
.02 

.03 

.02 

.04 
-03 
.07 

---- 

Range of 
coe f f i c i en t  
of  f r i c t i o n  - 
Low 

~~ - 

0.25 
-25 
.22 
.18 
.19 
-33 

-29 
.34 
-35 
.18 
.c6 

---- 

- 

- 
High 

0.36 
* 33 
.34 
.38 
-37 
-47 

-45 
.45 
.64 
.46 
.47 

---- 

- 

Skid mean 
bearing 

pressure, 
lb/sq i n .  

~ -~ ~ 

26.5 
30.7 
31.2 
25.7 
28.3 
25 *5 

27.8 

30.6 

---- 

27.4 
25.7 

26.4 

'Stabilized s l ideout  w a s  considered t o  be the  period between 2 seconds 
a f t e r  impact and 6 seconds before termination of sl ideout,  at which time i m -  
pending s t a t i c  f r i c t i o n  s t a r t e d  t o  increase t h e  coef f ic ien t  of f r i c t ion .  

a 
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Normal skid Normal skid load 

I v I I I I I 1 1 1 1 1 
16 20 24 28 32 36 40  0 4 8 12 

Time after initial touchdown, sec 

0 
0 

0 I I I I I 1 1 1 1 1 
200 180 160 140 120 100 80 60 40  20 0 

Velocity, knots 

(a) Left main gear. 

Figure 5.- Drag characteristics of main gear on test 9. Cermet-coated skids; dry-hard lakebed. 



P 
0 

10 

8 

Normal skid 6 
load and 

drag load, 

Ib 4 

2 

0 

.8 

.6  

Coefficient 
of friction .4 

.2 

03 

Normal skid load - 
r 
I '  

I I I I I I I I I 

4 8 12 16 2 0  2 4  28 32 3 6  4 0  
I 

Time after initial touchdown, see 

0 

0 
A 

0 I I I I I I I I I I 
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(b) Right main gear. 

Figure 5.- Concluded. 



8X1O3 

I 
6 -  

Normal skid Normal skid load 
load and 

drag load, 
Ib 

Drag load ,--- /' 
\Jlr\zy~gcJ+-+VV---- \,- w\P".L,PzwL%--.. 

I I I I 1 I I I I I I I 
0 2 4 6 8 10 12 14 16 18 2 0  22 24 26  

I 

.8 

.6 

Coefficient 
of friction .4 

.2 

Time after initial touchdown, sec 

0 

01 I I I I I I I I I I 
200 180 160 140 120 100 80 60 4 0  2 0  0 

Velocity, knots 

(a) Left main gear. 

Figure 6.- Drag characteristics of main gear on test 10. Cermet-coated skids; dry-soft lakebed. 

I-' 
P 



8 -  

Normal skid 6 - 

(b) Right main gear. 
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Figure 6.- Concluded. 

- 

I I I I I I I I I I 



12x10~ 

Normal skid 
load and 

drag load, 
Ib Normal skid load w w  

/ r D r a g  load 

0 4 8 12 16 20 24  28  3 2  36 40 
Time after initial touchdown, sec 

.8 

.6 
0 

0 
0 o o o o o  0 0 0 0  

oo 0 
0 0 oooooo 0 

0000 000 O 0  

0 
0 c8 

0 

Coefficient .4 
of friction 

.2 

0 

I I I I I I I I I I 

Velocity, knots 

(a) Left main gear. 

Figure 7.- Drag characteristics of main gear on test 11. Inconel X skids; dry-hard l&-&d. 
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Figure 8.- Drag characteristics of main gear on test 12. Inconel X skids; damp-hard lakebed. 
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Included are the mean coef f ic ien t  of f r i c t i o n  and t h e  mean absolute devi- 
a t ion  ( re f .  14)  of the  f r i c t i o n  coeff ic ient ,  e q r e s s e d  by 

.8 

*' 

Coefficient 
of friction .4 

.2 

0 

where 

-- X-15, tests 1 to 5,  
average CBR 7 6  of the  coef f ic ien ts  of f r i c t i o n  

--__ Experimental data, for t e s t s  1 t o  5 with t h e  experi- 
mental ground-tow t e s t s  of re fer -  

f i v e  recorded s l ideouts  were made 
on a surface with an average CBR 
of 76. The experimental da ta  of 
reference 8, using the  same type 

CBR of 60 and 16 t o  23. 
f i c i e n t s  of f r i c t i o n  from f l i g h t  

CBR 60 
----Experimental data, 

CBR 16 to 23 ence 8 a t  low ve loc i t i e s .  The 

- 

- of skid, apply t o  a surface w i t h  a 
The coef- 

I I I I 1 t es t s  (0 .30 )  a re  considerably 

(pi - c )  = absolute deviat ion from t h e  mean coef f ic ien t  of f r i c t i o n  of a 

f i  = t h e  number of occurrences of the  associated value 

N = t o t a l  number of data  points  considered 

da ta  value p i  

pi 

DISCUSSION OF RFSULTS 

Coefficient of Fr ic t ion  

The process of a skid s l i d ing  on a r e l a t i v e l y  s o f t  surface such as a lake- 
bed involves shearing and ploughing, two of the  p r inc ipa l  f ac to r s  which pro- 
duce the  res i s tance  t h a t  determines the  coef f ic ien t  of f r i c t i o n .  The shearing 
term i s  e s sen t i a l ly  independent of skid pressure, whereas the  ploughing term 
i s  a function of skid penetration, which, i n  turn,  i s  a function of skid shape, 
load d is t r ibu t ion ,  and pressure ( r e f .  8). 
drag force and normal load on each skid were determined from da ta  recorded f o r  
each main-gear skid during landing impact and sl ideout .  

For t h i s  analysis,  t h e  values of 

Ef fec t  of surface hardness.- The e f f ec t  of surface hardness on t h e  
. . ... 

shearing and ploughing terms of the  s l id ing  coef f ic ien t  of f r i c t i o n  i s  shown 
i n  f igures  9 t o  11. 



Figure 10 shows, photographically, t h a t  skid penetration i n  the  area of  
landing impact and slideout,  with a CBR of 59 t o  94, was  s l igh t ,  with l i t t l e  

breakthrough of t he  surface ( m a x i -  
mum v e r t i c a l  load occurred during 
nose-gear impact). _ _  ___-*-  . -  .. ....--rc= -= 52- ~ - - . 5 5 = : - .  - - 

.- 

Figure ll compares the  average 
coef f ic ien ts  of f r i c t i o n  f o r  t h e  
cermet-coated skids during t e s t s  6, 
8, and 9 on a hard surface ( e s t i -  
mated CBR of 39 t o  94) and during 
t e s t  10 on a s o f t  surface ( e s t i -  

parison i l l u s t r a t e s  t he  e f f ec t  of 

. . . .  . 
- ,  . ., . 

. -  mated CBR of 16 t o  2 3 ) .  This com- /,,,.TI . .  

surface hardness and skid ploughing 
on t h e  measured coeff ic ients  of 

values of t he  mean coeff ic ients  of 
f r i c t i o n  (0.36 to 0.46) can be at- 

I t 2 % .  

- 
. I  f r i c t i o n .  The increase i n  the  

c 
, . , .  'L ' , t r i bu ted  t o  t he  ploughing of the  

E-5233 asmuch as the  skid bearing pres- 
, ,  . skid in to  the  so f t e r  surface, in- I . .  . 

Figure 10.- Landing impact and slideout area. Rogers sures are  approximately equal. 
(Additional t e s t s  may indicate  t h a t  
t he  ploughing fac tor  of skids i s  

p a r t i a l l y  dependent on bearing pressure, i .e . ,  a sk id  of  t he  same size,  shape, 
and load dis t r ibut ion,  on t h e  same lakebed would produce d i f fe ren t  values of 
f r i c t i o n  coeff ic ients  with varying bearing pressure or skid penetration.)  
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Dry Lake. 
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Coefficient .4 
of friction 

- Tests 6, 8, and 9 (dry-hard lakebed) '1 
I I I 1 - - 1  I 1 1 I J 

As i n  t e s t s  1 t o  3 ,  t h e  skid penetration of the  cermet-coated skids i n  
tests 6, 8, and 9 w a s  s l i gh t ,  with l i t t l e  breakthrough of t he  surface; how- 
ever, a se r i e s  of grooves l e f t  by the  exposed tungsten carbide chips could be 
observed. On t h e  dry-soft surface of t e s t  10, t h e  penetration of t he  skids 
a t  the  time of nose-gear impact was approximately 2.5 inches t o  2.75 inches 
( f ig .  12), as compared t o  the  ins igni f icant  penetration of  t e s t s  1 t o  6, 8, 
and 9. During the  s t ab i l i zed  portion of t he  s l ideout  on t h e  dry-soft surface, 
t h e  penetration w a s  approximately 0.10 inch t o  0.15 inch, except a t  impact 
with surface i r regulax i t ies .  The skids broke through the  surface, leaving a 
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compacted-powder residue along the  skid t r ack  t h a t  could be removed t o  a 
depth of approximately 0.20 inch before a f i r m  surface was reached. 

E- 11308 
Figure 12.- Landing impact and slideout area on 

Cuddeback Dry Lake. 

p 8  r 

X-15, tests 6, 8, and 9, CBR 7 6  
---- X-15, test 10, CBR 16 to 2 3  
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Figure 13.- Variation of coefficient of friction with true 
ground speed for recorded X-15 flight data and experi- 
mental data. Cermet-coated skids.  

Figure 13 compares the recorded 
f l i g h t  data  from t e s t s  6 and 8 t o  10 
with the experimental da ta  of re fer -  
ence 8, i n  which the same type of 
sk id  was used but with a thinner  
cermet coating. The recorded f l i g h t  
data  agree closely with the  experi- 
mental r e s u l t s  above 40 knots, as- 
suming t h a t  the  experimental data  
remain constant at high speeds. 
The i r r e g u l a r i t y  of t he  curve ( see  
f i g .  ll a lso)  f o r  t e s t  10 i s  due 
pr imari ly  t o  the  roughness of t he  
d i f f e ren t  lakebed surface. Although 
the  lakebed surface f o r  t he  ground- 
tow t e s t s  of reference 8 w a s  not 
i d e n t i c a l  t o  the  lakebed surface f o r  
f l i g h t  t e s t s  6 and 8 t o  10, the  hard 
and s o f t  surfaces do y i e ld  similar 
r e su l t s .  These r e s u l t s  show t h a t  
the  ploughing ef fec t  r e s u l t s  i n  the  
coef f ic ien t  of f r i c t i o n  being par- 
t i a l l y  dependent on the  skid bearing 
pressure.  

Effect  of material.- The e f f e c t  
of various sk id  mater ia ls  on the  
coef f ic ien t  of f r i c t i o n  during 
s l ideout  on na tura l  and simulated 
lakebed surfaces ( r e f .  7) i s  shown 
i n  f igure  14. 
the  average coef f ic ien ts  of f r i c t i o n  
as a function of forward ve loc i ty  
f o r  skids of 4130 s t e e l ,  4130 s t e e l  
with cermet coating, and Inconel X 
on t h e  same landing s i t e ,  and f o r  a 
1020 s t e e l  skid, with a contact area 
of 4 inches by 24 inches, on a sirnu- 
l a t e d  lakebed. Coefficients of 
f r i c t i o n  f o r  t h e  4130 s t e e l  sk id  and 
fo r  the  1020 s t e e l  skid on a simu- 
l a t e d  lakebed agree well  a t  veloci-  
t i e s  above 70 knots. The skid 
bearing pressure was 26.8 lb/sq in .  
f o r  t he  4130 s t e e l  sk id  and 
22.4 lb/sq in .  f o r  t he  1020 s t e e l  
skid. 

This f igure  compares 
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Figure 14.- Effect of various skid materials on the coefficient of friction. 
Dry-hard runways. 

Figure 14 a l so  i l lustrates t h e  r ise i n  t h e  mean coef f ic ien t  of f r i c t i o n  
f o r  t he  cermet-coated skids (0.36) over t h a t  f o r  4130 steel  skids (0.30). 
This increase i s  a t t r i bu ted  t o  t h e  s o f t  copper-nickel matrix and t h e  exposed 
tungsten carbide chips, which resu l ted  i n  an increased ploughing component. 
Figure 13 shows a bottom view of t he  cermet-coated skid, revealing the  exposed 
tungsten carbide chips and the sheared copper-nickel matrix. 

I-- 

_ _  

E- 10825 
Figure 15.- Bottom view of cermet-coated skid after first slideout. 

The r e su l t s  of t e s t  11 i n  which an InconelX skid was  used are  a l s o  shown 
The reason for  t he  increase i n  the  mean coeff ic ient  of  f r i c t i o n  i n  f igure  14.  

f o r  t he  Inconel X skid over t h a t  f o r  t he  4130 s t e e l  skid has not been estab- 
l i shed .  

Effect of moisture.- The e f f ec t  of moisture on t h e  coefficient of f r i c -  
t i o n  i s  shown i n  the  r e s u l t s  from t e s t s  11 and 12. The same InconelX skids 
and the  same landing locat ion were used i n  t h e  two t e s t s ;  however, on t e s t  12 
the  lakebed surface w a s  damp, because of a recent r a i n f a l l .  
the  average values f o r  t h e  two landings. 
t e s t  11 and 0.25 for  t e s t  12) between the  two f l i g h t s  i s  a t t r ibu ted  t o  t he  
dampness of  t he  lakebed surface. Skid penetration fo r  t e s t  11 was s l igh t ,  

Figure 16 presents 
The drop i n  the  mean value (0.35 fo r  
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with some surface breakthrough during the  i n i t i a l  phase of t he  s l ideout .  Skid 
penetration fo r  t e s t  12 w a s  a l so  s l i gh t ;  however, the skid t racks were com- 
pacted and l e f t  a r e l a t i v e l y  s l i c k  surface because of t he  moisture content of  
t he  lakebed material .  

c 
/ 

i Test 11 (dry-hard lakebed) 

1 
I 

of friction '4 
Coefficient 

O J ~  1 1 I I I 
I I I I I I 

2 2 0  2 0 0  180 160 140 120 100 8 0  6 0  40 2 0  0 
Velocity, knots 

Figure 16.- Effect of a damp surface on coefficient of friction. Inconel X skids. 

The e f f ec t  of a damp surface on a skid-type landing i s  shown a lso  i n  the  
s l ideout  distance recorded on t e s t  12. Although there  i s  some correlat ion 
between the  X-15 s l ideout  distance and touchdown velocity,  t h e  longest s l ide-  
out of 8968 f e e t  f o r  a touchdown ve loc i ty  of 221 knots was experienced on t h i s  
t e s t .  A s l ideout  of 7228 f e e t  w a s  recorded for the  highest  touchdown veloci ty  
of 238 knots ( r e f .  5 ) .  

The r e s u l t s  of t e s t  =--the lower coeff ic ient  of f r i c t i o n  and the  re- 
su l t ing  s l ideout  distance--indicate the  e f fec t  of a damp surface on a skid- 
type landing. 

Skid Wear 

Skid wear i s  caused by t h e  shearing of surface i r r e g u l a r i t i e s  from the  
skid surface and t h e  separation of t h e  i r r e g u l a r i t i e s  from t h e  skid mater ia l  
by the  surface over which it i s  s l id ing .  The amount of skid wear depends on 
the  speed of s l iding,  the  s t rength and hardness of t h e  skid material, the  
s t rength of t h e  surface material ,  and the  s l iding distance.  

The thickness of t he  X-Yj  skids was measured a f t e r  each f l i g h t  t o  deter- 
mine the  usefulness of t h e  skid f o r  the  succeeding f l i g h t .  Skids were re- 
jected when the  minimum thickness (generally near the point of attachment of 
t he  main s t r u t )  w a s  0.06 inch or l e s s .  
t h e  thickness w a s  taken as t h e  average of several  measurements. The weight of 
t he  mater ia l  removed during each s l ideout  w a s  determined by multiplying the  
volume removed by the  spec i f ic  weight of t he  material. The skids were not 
weighed a f t e r  each f l i g h t  because of the d i f f i c u l t y  of removal and re ins ta l -  
l a t  ion. 

Because of deep grooves i n  t h e  skids, 

I 

Wear data  for the  4130 s t e e l  skids were obtained from previous X-15 
f l i gh t s ,  ra ther  than from the  f l i g h t s  of t h i s  investigation, because it w a s  not 
possible t o  phase a new s e t  of skids in to  the  program at the  t h e  the  drag- 
brace instrumentation w a s  ins ta l led .  Data from f i v e  f l i g h t s ,  numbers 1-9-17 



to 1-13-25 ( s e e  ref. 5 ) ,  are  presented. 
about f i v e  landings. 
mate posit ions a t  which thickness w a s  measured on the  4130 s t e e l  skids  a f t e r  
each landing. Below the  sketches axe p l o t s  of t h e  average t o t a l  skid thick- 
ness as a function of longi tudinal  posi t ion.  

Skid l i f e  for t h i s  type of  skid i s  
The sketches i n  figures 17(a)  and 17(b) show t h e  approxi- 
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Figure 17.- Variation of total skid thickness of the main gear 
with skid length for five X- 15 flights. 4130 steel skids.  
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Figures 18( a) and 18(b) present similar information on t h e  cermet-coated 
sk ids .  
outer layer  of copper-nickel. 
tungsten carbide chips were uncovered. 
fe r ,  w a s  noted, which made measurements d i f f i c u l t  t o  in te rpre t .  

Considerable wear occurred during t h e  f i rs t  landing because of  t h e  s o f t  

Some amount of material  flow, or trans- 
Less wear occurred during l a t e r  landings as t h e  

The heat  
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Figure 18.- Variation of total skid thickness of the main gear 
with skid length for tests 6 to 10. Cermet-coated skids.  



generated by the  s l ideout  and the  physical cha rac t e r i s t i c s  of t h e  copper- 
nickel  matrix are  believed t o  be responsible f o r  t h i s  t r ans fe r  of material .  

.4 

The weaz of coated and uncoated skids on a na tura l  lakebed surface i s  
compared i n  f igure  19 i n  terms of pounds of mater ia l  removed as a function of 
s l id ing  distance. 
amount of skid wear as t h e  s l i d ing  distance increased beyond 6400 f ee t .  
data  f o r  the  cermet skids revealed a considerable amount of w e a r  f o r  t he  first 
s l ideout  of 5702 fee t ,  which w a s  expected because of t he  s o f t  copper-nickel 
matrix. The remaining landings showed a reduced amount of wear, similar t o  
the  experience with the  4130 s t e e l  skid. 
the increasing proportion of contact with the  hard carbide chips and work- 
hardening of t he  copper-nickel matrix. 

The data  f o r  t he  4130 s t e e l  skids showed an increasing 
The 

This reduction i n  wear i s  a r e s u l t  of 
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Figure 19.- Variation of wear for 4130 s tee l  and cermet-coated skids on 

a lakebed surface for various slideout distances.  

Wear charac te r i s t ics  of the Inconel X skids were not determined because 
of the  d i f f i c u l t y  of  measuring t h e  chemically milled areas inside the  skid. 
However, preliminary da ta  indicate  wear res is tance superior t o  tha t  of 
4130 s tee l ,  with o r  without a cermet coating. 

CONCLUSIONS 

Results of an invest igat ion t o  determine t h e  coef f ic ien ts  of f r i c t i o n  and 
the wear charac te r i s t ics  f o r  X-15 landing-gear skids of various materials 
showed t h a t :  

1. The mean coef f ic ien t  of f r i c t i o n  determined from f l i g h t  data  f o r  the  
4130 s t e e l  skids was 0.30. 
on the same lakebed resu l ted  i n  lower values of f r i c t i o n  coeff ic ients  for  
t h e  X-15. 
l a t e d  lakebed f o r  ve loc i t ies  exceeding 70 knots. 

Comparison of f l i g h t  data  and ground-tow t e s t s  

The r e s u l t s  a l so  tend t o  agree with ground-tow t e s t s  on a simu- 
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2.  The mean coef f ic ien t  of f r i c t i o n  fo r  t h e  cermet-coated skids on a dry- 1 
i 

hard surface was 0.36. The ploughing action of skids and i t s  e f f ec t  on the  
measured coeff ic ient  of f r i c t i o n  i s  i l l u s t r a t e d  by the  increase of measured 
values to 0.46 on a dry-soft  surface. 

3. The moisture content of the  lakebed surface has a marked e f f ec t  on the  
coeff ic ient  of f r i c t i o n .  The mean coeff ic ient  of f r i c t i o n  of t he  Inconel X 
skids was 0.35 on a dry lakebed surface and 0.25 on a damp lakebed surface. 

4 .  The wear experienced by the  4130 s t e e l  skids tended t o  be constant up 
to a sl ideout  distance of 6400 fee t ,  with increased wear during greater  s l ide-  
out distances.  

Fl ight  Research Center, 
National Aeronautics and Space Administration, 

Edwards, C a l i f . ,  December 3, 1965. 
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