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INTRODUCTION AIID SMWARY
 

This brochure represents a .ummary of work performed to date by Lockheed Missiles and Space 

Company on JPL Contract No. 950871. The overall objective of the Study is to determine 

alternate ways of reliably accomplishing a scientific investigation of the Asteroid Belts and 

the planet Jupiter, utilizing unmanned spac ecraft. The scientific objectives include measurement 

of partiele distribution in the Asteroid Belts, physical and chemical properties of asteroidal 

material, observation of the gross surface features of a major asteroid and measurement of Jupiter's 

environment.
 

The 'first two months of the study have been devoted to selecting suitable experiments, the analysis 

of mission profiles and energy requirements, the development of subsystem concepts and preliminary 

estimates of the spacecraft configuration. During the second phase, trade-offs will be performed 

to allow selection of the final concepts. The final phase will involve a detailed analysis of the 

chosen concepts resulting in final descriptions of the mission, scientific payload, subsystems, 

vehicle configurations, functional specifications, reliability aspects, development programs and
 

cost. 

The planning of the scientific experiments has received major emphasis during Phase I. Only very 

limnited data exist on the properties of the Asteroids and Jupiter; this implies a wide field for
 

future effort but also limits the planning of experiments based on current reliable theory. The 

approach taken was to define all desirable' observations and apply a scientific priority to each. 

Implementation of the experiments was then studied and a final project priority awarded toe'ach 

experiment. The latter operation included consideration of ease of measurement, instrumentation
 

complexity, data storage and retrieval, as well as scientific priority. The results are summarized
 

in tabular form on pages 17 to 27 * Preferred experiments include observation of the following: 

.AsteroidBelt: Flux and size distribution of parti nis*m- r­

physical and chemical properties, 

Major Asteroid: Mass. and surface visual features. 
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$fl)MY OBdCTIZE 
DETERMINE ALTERNATE FEASIBLE WAYS OF MEASURING 

0 PARTICLE DISTRIBUTION IN ASTEROID BELTS FOR
 
I-VEHICLE DIA.
 
IOO-VEHICLE DIA.
 

o.PHYSICAL AND CHEMICAL PROPERTIES OF ASTEROIDAL PARTICLES 

o GROSS SURFACE FEATURES OF ONE MAJOR ASTEROID 

o 	 ENVIRONMENT OF JUPITER 
MAGNETIC FIELD 
RADIATION 
ATMOSPHERIC PRESSURE, TEMPERATURE, COMPOSITION 
SURFACE TEMPERATURE
 
VISUAL
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Jupiter: 	 Magnetic field, trapped particles, atmospheric composition,
 

thermal balance, radio emission, auroral effects and dust
 

concentration.
 

Inspection of a major Asteroid should be carried out with (1) Ceres and (2) Vesta. The choice
 

of Ceres as a prime objective is based mainly on size consideration (for maximum spacecraft
 

trajectory perturbation in mass determination experiment). Vesta has a higher value of albedo
 

but calculations of the light intensity near Ceres show that it is adequate for cnnv nt n
nhl
 

T.V. pictures. 

Mission Concepts have been proposed to meet the experimental requirements (see page 14 ). 
Although multiple missions are desirable for a thorough investigation, the following are recom­

mended if the choice is limited to single missions. 

Asteroid Belt: Fly-through all belts, aphelion at 4 to 5 A.U. 

Major Asteroid: Light-side flyby 

Jupiter: Light-side flyby with terminal orbit inlined about 20-30 

to Jupiter's equator. 

A flyby of Jupiter at 2 radii is desirable for magnetic field and trapped radiation measurements. 

A restriction on miss distance might be imposed by Jupiter's environment (strong magnetic field, 

intense radiation and dust concentration) but preliminary investigations indicate that these 

factors can be overcome by suitable spacecraft design. A composite mission consisting of a 

Belt fly-through, flyby of a major Asteroid and a flyby of Jupiter appears attractive, but for 

the major asteroids examined (Ceres, Vesta and Juno) no such opportunity exists, becaiise the
 

Asteroid orbits are inclined to the plane of the ecliptic.
 

Heliocentric ephemeides have been calculated for all objects of interest and trajectory analyses
 

have produced the following data. 

Earth-Jupiter transfers for opportunities in the period 1970-1980 (page 39 ) 

Time history of a heliocentric ellipse to' the Asteroid Belts (invariant with time) (page 48) 
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o ALTERNATE EXPERIMENTAL CONCEPT DESCRIPTIONS
 
(TECHNIQUE, INSTRUMENTATION, WEIGHT, POWER, ETC.)
 

o SELECT OPTIMUM MISSIONS 

o TRAJECTORY ANALYSES (LAUNCI] WINDOWS, ENERGY REQUIREMENTS, ETC.) 

.o SUBSYSTEM REQUIREMENTS 

o SPACECRAFT CONCEPTS 

o RELIABILITY. 

o TRADE-OFFS AND PROBLEM AREAS 

o LAUNCI4 SYSTEM CONCEPTS 

o FUNCTIONAL REQUIREMENTS 

o DEVELOPMENT PROGRAM AND COST 
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Farth-Ceres and Earth-Vesta transfers for opportunities in the period 1970-75 (page 53)
 

Long trip duration is a characteristic of all missions involved in the study; thus reliability will be 

a major design consideration. Minimum-energy Jupiter missions show only moderate yearly variation in
 

energy requirements, with 1970 the most favorable year. However at each opportunity, the energy re­

quirement varies considerably with trip duration. Thus increasing the duration from 470 to 830 days
 

reduces the launch velocity requirement by 7000 ft/sec. Also the energy-duration dependence places
 

strict limits on the launch window. The Asteroid flyby missions show considerable differences from
 

opportunity to opportunity. When work is completed on the Asteroid transfers, optimum launch dates will 

be selected for each target Asteroid. Other work in the field of space flight mechanics has been con­

cerned with the characteristics of Jupiter-centered hyperbolas for various hyperbolic excess speeds and 

Jupiter pericenters, and the computation of guidance sensitivity coefficients for the Jupiter missions 

(197o-8o). 

Spacecraft subsystem requirements have been studied and preliminary concepts developed. Extension of 

Mariner guidance techniques should be suitable for all missions. Exclusive Earth-based radio tracking 

(DSIF) is being considered with one or two mideourse corrections, depending on mission requirements. 

Miss distances of approximately 1000 and 2000 km at Ceres and Jupitei respectively, can be achieved with 

one correction. Reqtirements for observations of one of Jupiter's satellites will present additional 

guidance probiems (terminal correction to include arrival time adjustment) and some launch window 

restrictions. The Sun-Canopus system will be used for stabilization reference, and reaction jet controls 

will be used. Continuous stabilization (except during maneuvers) is presently being considered. The 

occultation of the Sun when very near Jupiter may pose a problem. This might be solved by choqsing a 

suitable terminal trajectory ("light-side) or acquiring a new reference (the planet), although the 

latter technique is far from desirable. 

Data handling techniques will involve storage in all cases - due to the high acquisition rates during 

the Asteroid and Jupiter encounter, whereas in the Asteroid belts accumulation of data is required to 

utilize the data transmission link efficiently. A steerable, 7 ft dia, parabolic antenna is suggested 
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l DV OQUDE ME
 

o MISSION PERIOD: 
o 	 ASTEROID BELT 1967- 75 
0 	 LARGE ASTEROD AND 

JUPITER FLYBY 1970- 75 

o PEALISTIC INSTRUMENTATION 

o FULL DSDF TO BE UTILIZED 

o LAUNCH VEHICLES: 
o 	 ATLAS. AGENA D 
o 	 30% FLAX ATLAS -CENTAUR 

+ APPROPOIATE 3RD STAGE 
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for the Jupiter mission. Operating at lOW all the experimental data (exclusive of TV) could be
 

transmitted in about 19 hours. A requirement for TV information imposes more stringent requirements,
 

as approximately 18 hours are required for the transmission of each frame. Transmission delay times
 

(about 40. min at Jupiter, 20 min at Asteroid) adds to operating power requirements since some three times
 
-this period is required to ensure coherent operation of the link. ;upiter's radio noise reduces the bit
 

rate received at Earth and will probably eliminate the possibility of spacecraft reception within about 

3 to 4 Jupiter radii. 

Preliminary power profiles for the missions indicate an average peak load of about 200 watts. A radio 

isotope power source will be required in all cases. A SNAP-9A system (1 watt per lb) is presently being 

considered. Solar panels could be used on the shorter-duration missions but large areas are required and 

severe damage from asteroid particles can be expected (see Page 65).
 

A detailed design of the spacecraft is contingent upon a detailed statement of scientific instrumentation
 

and subsystems. As this information is not available at this stage of the study, only preliminary con­

cepts have been generated (see pages 75and 77). Preliminary payload estimates (total spacecraft) in­

licate values of 1165, 1150 and 135Olb for the Asteroid Belt, Major Asteroid and Jupiter missions,
 

respectively. This means that the Flox Atlas-Agena and Flox Atlas-Centaur launch vehicles alone Vill
 

not be adequate. A high energy kick stage combined with the Flox Atlas-Centaur vehicle will be required. 

Even so, the Jupiter mission will be limited to relatively long duration trips. The possibility of using
 

other launch systems (such as Saturn 1B-Centaur) should be given consideration.
 

The data reproduced in this brochure wre given in chart form at the first Bimonthly Oral Presentation
 

at JPL on September 15, 1964.
 

Phase II Study Plan 

During the'next two months of the study, the technical effort will be directed toward further analyses 

and trade-off studies to achieve the following objectives:
 

* Selection of experiments that will provide most valuable data for eaci mission (within 

the restraints imposed.by subsystem capability and launch vehicle potential)
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P. 

CANDI DATE. 
EXPERIM[NT6 
GUBSYGTEM6o 
SPACECRAFT 
LhUNCN-VEHICLES 

EPHAE 
PROBLEM AREAS "7 

6ELECTION OF FINAL 
CONCEPTS FOR 
DETAILED ANALY6IG 

PRAE 

MIGSION (S) 
DES6IPTION 

PAYLOAD * VEHI1LE 

DEFINITION 
PERFOIMN-.CE. 
FUNCTiONAL CPECG 

APPROACH TO 
TRADE -OFF.6 
RE6O/RMEN DATIONC6 

FEASIBILITY OF 
MULTI. MISSION 
,ONCEPTO 

RELIABILITV 4 C06T 
RECOMEN PATI ON 

GEPT 15 NOV 12 bpit'22 
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" 	Detailed analysis of required instrumentation and definition of scientific payload
 

o 	Finalization of appropriate mission concepts
 

Completion of trajectory Analyses for Ceres and Vesta and preparation of contour maps;
o 

compilation of launch window data for all missions
 

Computation of a limited number of high-accuracy interplanetary trajectories to supplement
" 

performance estimates obtained from the Medium Accuracy Orbital' Transfer program 

o 	 Influence of reliability considerations on instrumentation and subsystems 

Definition of recommended subsystems (thermal control, midcourse propulsion, guidance and
" 


control, data handling, communication and power supplies)
 

and 	compatible launch venic-e" 	Finalization of candidate spacecraft' concepts 

* 	 Preparation of functional specifications 

o 	 Feasibility of multi-mission concept (standard bus) 
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NI",7 I ST D PL---.N 

ASTRO-, 
QUANTITIES

TO BE. 
. M__MISSION 

CONCEPTS 
PHYSICS MEASURED ______ 

SU3SYSTEPA 
PEQUIREMENTS TRAJECTORIES 

EX PTA L 
TECHNIQUES 

EXPT. LIMITATIONS 
GUIDANCE CONCEPTS NEAR TARGET 

PROVISIONAL 
,POWER CO/APARSIONS 

4-CONCEPTS 
MISSION PROFILES 

INSTRUP4ENTATIO, COMM 
DATA 

SYSTEM CONCEPTS 
HANDLING CONCEPTS SYSTEM 

SELECTION 
.-Jr _ 

PAYENVIRONMENT 

MISSION 
SELECTION 

LMITATIO 'NS
JUPITER 

CRITERIAq PAY LOAD _ 

HIGH ACCURACY 
SPACECRAFT DESIGN

CONCEPTS 
JUPITER[ TRAJ. 

PERFORMANCE PROPULSIONI PRELIM 

LV/S.C. CONFIGURATION 
CONCEPTS j THERMAL CONTROL PRELIM 
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P?:O0ETE OF 3MA4OR ASTEPMIS)
 

CERES JUNO VESTA 
PHYSICAL: 

DIA (KA) 700 220 300 
MASS I0Mo 0.3KO 0 .17K104 /1e 
ROTATION PERIOD 9 H 05IV 714 12 M 5H OM 
ALBEDO 3,2 -GO 11.5 -I200 z--26 
ABS. MAG 4.0 G.3 .2 
COLOP..INDEX 0,5 'O.SS 
LIGfT.VARIATION (MAX) 0,04MAG O,I0.MAG 0,13 MAG 

ORB ITAL: 
SEMI-MAJOR AXIS (AU) 
SIDEREAL PERIOD (YR)
ECCENTRICITY 

e,767 
4+cO 
0.079 

2.G70 
4-.3S 
0.256 

2,61' 
3.S3 
0.088 

INCLINATION TO ECLIPTC(oE6) .O.6 13.0 7.! 

12
 



PROPE RTf ,S OF JLINTERI
 

PIYSICAL ORBITAL ELEMENTS 
DIAM6.ETER 1110.97 x Do SEMI MAJOR-AXIS ... 5.203 AU. 
ROTATION PERIOD 91-1R.5OMIN SIDEREAL PERIOD 11.86 YR. 
MASS 31835 x M® SYNODIC PERIOD 399 DAYS 
DENSITY 1.35 GM/CM2- ECCENTRICITY 0.048 
ATMOSPIRERE 1 He, CHO) N-[ INCLINATION TO ECLIPTIC 1JI? I85' 

TURBULENT MOTION, MEAN ORBITALVELOCITY 13.06 KM/SEC.
BELTS AND SPOTS 

INTERIOR CORE METALLIC H,CONTIN-

UOUS CHANGE OF P4ASE
 
TO ATMOSP-ERE 

RADIATION BELTS POSSIBLY 000 ) DTO 3R 
RADIO EISSION DECAMETRIC - BURSTS, CIR-

CULARLY POLARIZED'
 
DECI/AETRIC ' CONTINUOUS,


PLANE POLARIZED
 
TEMPERATURE 1300 I<(CLOUDS)
 
SATELLITES 12 (4- LAI GE)
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ASTEROID BELJ 
I. FLY-THRU, APHELION 2.3 AU 
2. FLY- TI-IRU, APHELION 3 AU 
3. FLY- THRU, APHELION 4 AU 

44.FLY-TFIRU, APHELION 2OIBIT 
5. 	OUT OF ECLIPTIC FLY-THRU
 
6. 	NEAR CIRCULAR ORBIT IN MAJOR ASTEROID BELT
 

MAJOR 	ASTEROID 
-1.LIGHT SIDE 

VARIOUS CHOICES OF ASTEROID
2.DAPK SIDE] 

JUPITER 
"1.LIGHT SIDE VARIOUS. INCLINATIONS TO 2 € C-OWE OFMISS 

2.DARk SIDEJ DISTANCE 
COMPOSITE 

* 	 ,.FLY-THRU BELTS * FLY-BY 2,-
2.FLY-THRU IST BELT 4-FLY-BY ASTEROIO 
3.FPLY-THPU BELTS, FLY-BY'ASTEROID AND JUPITER) 
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PLANNING OF EXPERUIMENTS
 



DESIRED SCIENTIFIC OBSERVATIONS:. ASTEROID BELT AND JUPITER EXPLORATION MISSIONS
 

In general', the present state of knowledge about the Asteroid Belt and Jupiter is poor; many observations 

(particularly of Jupiter) have yielded information which has not yet been theoretically interpreted. A 

hundred years of observation of Jupiter's clouds has not led to a general theory of the Jovian atmospheric 

circulation.
 

The following tables summarize the areas in which valuable inforiation could be obtained and rank the 

desired observations in classes of scientific priority. The range of measurement refers to the conditions 

under which the observations should be made. 

The estimated scientific priority is a preliminary judgement on the value of the information and reflects 

the needs of a variety of disciplines. A high priority (Class 1) may be awarded on several bases. For in­

stance, well-defined measurements likely to give clear positive results that can be used to test current. 

theories have been' assigned a high priority. Measurements that might be correlated with well-known ter-

Srestrial phenomena (e.g. Jupiter's radiation belts), or might be needed for future space missions (e.g. 

meteoroid concentrations) are also considered important. Special consideration has also been given to 

experiments that are extremely difficult or impossible to do from Earth (e.g. Jovian dark-side phenomena) 

and observations that would fill obvious gaps in the present body of knowledge. 

A low priority (Class 2 or 3) has been given to undefined exploratory experiments which might be difficult 

to interpret and to special phenomena peculiar td the Asteroids or 3upiter which might have no relevance 

t6 the rest of the solar system, or even to the overall structure of the system of minor planets or Jupiter. 
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DESIRED SCI WICI 
ASTEROID 

OBSERVATIONS 
BELT 

Quatity to 
be Measured 

Present 
Status 

Range of 
Measurements 

Scientific 
PrioritX 

Particle distribution in 
Asteroid Belts 

a. Flux (density) 
distribution 

b. Size distribution 

Only small area detectors 
have been flown near Earth. 

a. Unknov 

b. I to I km din. 

1 

1 

Physical and Chemical 
Properties of asteroid 
material. 

No data available. Unknown 1 

Velocity distribution 
of Asteroid Material 

Data only on large 
asteroids, 

5 to 12 km/sec rel. 
to S/C 

2 

Mass distribution of 
asteroid material. 

No data available. 10 14 to 10 1 go. I 

Interplanetary 
environment 

Avail. equipment. Particle radiation 
and plasas 

2 

ASTEROID FLYBY 

Gross surface 
features of a major 
asteroid 

Mass of asteroid 

No data available 

No reliable data available 

3I km recol. 
body 

M> 10 " 5 N 

on large 1 

1 

Axis and 
rotation 

rate 'of Estimated from photo-
meter measurements 

Rate > 10/hr 3 

Surface temperature 
distribution 

Ro data available 2 

Composition 

Interplanetary 
environment 

No data available 

Equipment available Meteoroid detector 

2 

3 
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DESIRED SCIENTIFIC OBSERVATIONS: JUPITER ElfltOlRENT 

QU~AITY TO BE NEAsIJE 

adilation Delts 

Magnetic fields; intensity and direction 

Trapped electrop flux, energy spectrum, 
pitch angle diitribubion, and apatibl extent 

PRESENT STATUS OF KVOWLEOC 

Inferred from radio emis ion, 
may he 1000 gauss at surface; 
11-8 assymmrtry 

Inferred from radio emission; 
may be 103 x Intensities in 
earth's trapped radiation belts 

RANGEOF 
MEASURV70(T 

01 H' - 100 H" 
8 ­ 10 -4 - 103 
gausa 

41 -R4 ­ 10 R4
E . 100 cy-100 me 
Flux <106 cm' 

2 

s'c-(EgoO keY) 

Trapped proton flux, spatial extent Net established (I R -10 RD 
E' lO0ket 
Flux unknovr 

Atmospheric composition: 

Visual and ultraviolpt search for R, He, No, N, N20 
03. 

Infrared search for U2, N2 , 20,O C002, ON, free 
radicals, trace constituents 

Mierowave spectra of free radicals and trace constituents 
Direct composition determination by atoospheric probe 

Spectra from 3000 to 10,000 l 
ahoy 09, N3, H2; Obscuratioain infrared by earth's atmos­
phare constituents 

1000 - 6000 

6000 - 80,000 I 

0.i - 2 Cm 

100 - 200 )m 
above clouds 

Atmosphere temperaturc/pressure/dengity structure: 

Direct density masureeut b& atmospheric probe 
Temperature measeuemevt by line or band shape 

extintionScaleScale height or molecular weight from lightextinction 

Padioters yield temperatures 

20 - 20 O 
K for atmosphereabove clds.o 

heighst =3absorption 

Above clouds 

Above strongestboesrog 

High,atmosphereihtoser 

2 

2 

2 

Surface - atmosphere temperatures and radiatlon balance: 

Padiometer scans of. planet at several wavelengths including
bands Of lI 3 and 020 

120 - 200
0 

K. Satellite shadow 
effects seen at 10 microa;
details not resolved at l6nger 
vavelengths 

Entire planet,
Including
terminator and 
red spot 

2 

Far infrared spectrum including most of therml 
radiation to determine radiation balance 

Jupiter may eat sore 
than it absorbs 

radiation 15 -100 acron 

18
 



Surface . cloud stroiture: 

Visual-infrared obscrvation of atmosphere circulation 
cloud strueturet red spot circulation 


Radar reflection from surface to observe surface 
roughnesn and structure 

Ionosphere and radio sources:
 

Honltor Of 1$ - 20 meradio bursts to determine 

vaiation with Jovian time 


Search for x-rays correlated with radio emissior 

Radio transmission measurement of ionospheric electron 

densities 


Nightsky and auroral emissions: 

Ultraviolet-visual search for auroral emisslon 

High sensitivity record of night sky spectra 

Search for twilight Na (D) and N emission2 

Distribution of LO emission around planet 

Jupiter's satellites
 

Determination of surface roughness from variation 
in light scattering with phase angle 

Resolution of surface details of one satellite 
by visual observations 

Search for atmospheric constitUents in spectra 

4icroieeoritee : 

Determne concentration of small particle. 

near Jupiter 

19 

Dust resolution available resolve,
3000 km; no theories of circula.

tion except for red spot which
 
my be Taylor column.
 

Perhaps no sharp transition 
between "surface" and atrosphere; 
red spot may be caused by surface 
irregularity. 

Source may be localized Onsur-
face; time variations may be due 
to ionosphere or sua, rotation
 
effects not separated.
 

Undiscovered, May be produced 

by mechanism responsible for 

radio bursts
 

Ionosphere inferred fro6 radio 
emission; may have electron den­
. iig. Hjklarser than en earth, 

May be inferred from presence of 
Magnetic field and trapped parti-
cles
 

May be inferred from emissions on 
earth 


May be inferred from emissions on 
earth
 

Probably trapped in extersive 

hydrogen atmosphere
 

Albedos poorly known, only for 
bachscattering 


Nothing known ? 

Atmospheres not. yc disconred; 
largest satellites large enaugh 

Concentration may increase near 
a planet; Jovian rings suggested. 

3000 - 00 sic- 3 
ron 

Frequency>20 m0. 2 

4 t = 1 sec. 2 

6 t - i - 10 see 3 
2 - i0
 

Frequencies18 mc I 

Darkoide 2 
3500 - l1,000 f 

Darkaide 
3500 - 11,000 R 

Terminator 3 

0 - 10 R 3 

approach to 2 
satellite; visual 
light 

within 50,000 k. 2 
of astellite 

approach to 2 
satellite; 

to 4 R3 



EXPERI1MN METHODS: ASTEROID BELT ANl]D JUPITER EXPLORATION MISSIONS 

Specific techniques an& instrumentation that will facilitate the desired scientific observations 

are listed.in the following tables. Where'several techniques are available for similar obser­

vations, they are listed in order of preference. Also listed are the desired accuracy) the 

total number of bits of information resulting from a successful experiment and particular 

advantages and disadvantages of' each experiment. The ease of measurement classification takes 

account of development status of the instruments, weight and power requirements, information 

retrieval requirements and the limitations imposed on th experiment by the vehicle subsystem 

t e.g. guidance accuracy and control). 

The project priority represents an estimate of the overall priority assigned to the experiment 

for the purpose of this study. It was formulated on the assumption of a single mission only 

being available to achieve each overall objective and combines all considerations relating to 

the probability of extracting useful information'from the mission. 
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EXEUI4UITAL MUTHODS 
ASTKROID BELT 

•Quantity Range &Info. 
Total Advantages (4) Ease

of Project 

Measured Instrument Accuracy Bits Disadvantages (-.) Meas. Priority 

Particle distribution Thin foil impact Speed - 5 to 23/impact + Wide range of 2 1 
in velocity, size & detector 12 km/sec measurement. Density 
mass ± 5% from size & mass may 

Direction -
± 800 w/resp. 

indicate composition. 

to normal + - Limited area cover­
100 age. 

Ene~s 
10- to 720 
joules 
Mass - 10 -14 

to.10­ 2 gm. 
Size - 0.25 mm 
to 5 mm 

Microphone 
gauge 

Mass - l01 
to lO 5 gm 

5/impact + Simple, available 
- Limited area cover­

1 1 

age 

Impact flash Mass-. 5/impact - Requires development. 2, 3 

detector 10-14 gm Limited area coverage. 

Pressure can Size 10 3/reading + Simple, available 1 3 

-,Limited area cover­
age. Limited lifetime 

Surface erosion Change in str- 3/reading + Simple, available 2 3 
meter face pr6perties - Limited area. Limit­

ed lifetime & accuracy. 

Particle deflection Electric/magnetic Miss, speed, 10/part- - Requires investigation. 3 3 
analyzer charge iele Complex. 
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EXPERDENTAL METHODS: ASTEROID BELT (Cont d.) 

Light reflected 
from particles 

Photometer 
Array 

Intensity 
Polarization 

12/particle + Simple, light wt. 
-, Uncertainty in 

2 i 

size of particle 

Light reflected 
from particles at 
various wavelengths 

Laser Range 
Radial speed 

Ref. inten-ty 

15/part-
Icles 

+)Size can be estim-
ated from range and
brightness 

Size, weight and 

33 

sity power req. 

Radio waves reflected 
rrom particles 

Radar Range 
Radial speed 

14/part-
icle 

+ Size'can be estim~ted' 
from range & bright­
ness 

-: Size, weight and 3 2 
power req. 

Composition Impact mass 12/impact t) Accurate 3 1 
spectrometer " ; Requires investi­

gation 

Composition Impact optical 
spedtrometer' 

2000 to 
lOOORe 
I resolution 

12/impact +9 Accurate 
s 

Requires investi­

3 2 

gation 
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EXPERIMENTAL METHODS: ASTEROID FLYBY 

Quantity 
Measured 

Surface features, 
rotation 'rateand 
axis Ct t 

Instrument 

1. TV camera 

Range & 
Accuracy 

I km resol. 
20 Dictures 

iTotal 
Info. 
Bits 

3 x 1077 

Advantages (+) 

Disadvantages () 

Uses current tech-
niques '&equipment

(3 Requires pointing 

Ease 
of 

Meas. 

1 

Project 
Priority 

1 

of S/C • 

2. Impact probe 1 m. resol. 
10 pictures 

1.5 x 107 Q Weight and complex-
ity 

3 '3 

Mass 1. Trajectory 
perturbation 
by DSIF 

Mass of aster-
oid gre er 
than 10 kg 

0 C) Simple 
Limited ac6uracy. 

Requires altimeter. 

2 1 

2. Auxiliary 
probe observed 
from space-
craft 

(Dia. ? 300 km) 100 O Good accuracy 

C Weight & complex­
ity 

3 

Temperature, IR or microwave 
radiometer 

1-5O beam 

10 scans 

4,000 C Simple measurement 

(a Requires pointing 
of S/C 

1 2 

Heflected ligbt 
and luminescence 
of-surface 

Spectrometer/ 
Polarimeter 

n k-- IbR 5,400 0+ May give indication 
of composition 

2 2 
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sWEnfl1 T VADhODS FOR JUPITER PLY-B 

QUANTITY MEASURED 

Magnetic field intensity on 
three axes 

INSTRlENT 

Flux gate Magnctometer - two rangms 

M wBITS
B qUIRENT 

AND ACCURACY 

lynnale rnnoc 
10 - 0.2% 

OF
LUMMA[TION 

COLISCTED 
200 x 32 

ADVANITAGES (W) 

DISADVAAiS (-) 
) requires clone approach 
to planet 

sAS.OF
MWARS 

MEN 
1i 

PROJECT 

PRIORITY 

Trapped electron rlues 
at several energies 

Scintillation detectors (low cns.) -
geigorcounters (high sens.),,owni-
directional{E)10 " 

X 100 key 
E 00 eva 

Scintillation detector, - directianal 

E)>1001ce 

Dynamaic rnne 
I 

BIuamdo range 
107, iv 

I 
50 x 48 requires close approach 

to planet, within 2R 
1 1 

Trapped proton flux. Scintillation detector, directional 
E >imv 

Dynamic range 
A 107, t 1% 

50 x 12 Q requires close approach 
to planet 

1 1 

Infrared spactrq'of 
saulit side \ 

Infrared grat DE spectrometer, 
- i,00photoreslstivo

detec0tor 

A iof1.8 x lO5 0 heavy 2 1 

InfMr.e 
absorptio 

pcoti'a in 
against cun 

AX 
pointing t 
at <2 see 

-
lo x 1.8 x 105 0 "long optical path for 

detection of trace eon­
stituento 

3 1 

Ultraviolet spectra of 
sunilit side 

Ulraioetspcta nultraviltgrting spectrocater, 

absorptin agains Bumsorption aainst sun Jpointing 
at 

X ix1.2 

± 10 
42 Bec 

x lo0 

~ 
heiavy, high power 

c~i2-10 onu pti n h 

@Cong ptialpt 
for detection of trat! 
constituents 
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2 

Intenities Of expected 
ultraviolet lines 

Piotoneter with narrow ban later. 
ference filters) 10 spectral regions 

An X4uOK 10 x 120 2 2 

Micronave 
spectrum 

absorption Microwave spectrometer, 0.1 - 2.0 m W o.o1 cm 2000 heavy; high power 
eonsumption; requires 
antenna 

2 3 

Dehalty, scale height of 
upper twspbere 

Atmospbere probe vith accelerometer At 40.00. see 1000 
-

E require$ ejectlon of 
probe at aORj; burn-up 
above cloud layers 

3 
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Experimental Methods for Jupiter Fly-by (Contd.)
 

Shape of band 6s fuction 5 fMst photometers with narrow band inter-
of height in atmosphere to ference filters 
determine temperature, 
pressure. 


Shape of spectrel line Fast scanning interferometer directed 

or 
band as function of at sun through atmosphere 

height in atmonphcro.to 

determine tempcrature 


Intensities of rwan lines' Excitation of raman lines by laser 

to determine temperature directed toward Earth 


Fading of sun or star Photometer - telescope with narrow band 
occulted by Jupiter to filters 

determine atmosphere scale 

height 


Atmospheric density IRadio occultation of spacecraft 

Direct analysis of Atmospheric probe with ss 

constituents spe trometer 


Thermal microwave emission Microwave radiometer scanning across 

from surface and clouds planet at wavelengths 1.28, 1.35, 


and 2.0 cmz 


Thermal infrared emission Infrared radiometer sconning across 

from surface and clouds planet at wavelengtha 10, 10.7 micron 


Infrared pictures of 5 - 10 micron television camera, moderate 

thermal structure of clouds resolution 

and red 
spot 

Infrared pictures of . 5 - 10 micron facsimile television 
thermal structure of clouds 

Land red spot 

0 
pointing - 1 
4 t < 0.2 see 

le 0.01 
over line lX wide 
pointing - 10 
A t (one scap) 
c0.2 see
 

pointing< + 0.110 
A t < 1 see 

pointing < - 0.1 
At 40.2 soc 

Beam width < 5%; 
10 scans 

Uae idth < 10 
scan across ter­
minator and red
 
spot, 10 scanes 

100 line scan 

200 line sean 

100 x 50 

20 x Boo 

50 x 12 

500 

i 1000 

200 x 20 

500 x 20 

10 x §M 

10 x 240000 

Cj requires high sensi ­
tivity; solar spectrum
 
not well suited as source
 

(2) not developed; rapid 
scan 

not developed; requires
high power 

pointing0 Star tracking may re-quire very high 
accuracy, more easily done
 

ra, msr e l
 
from Thrth
 

no additional equipment
needed
 

Composition must be 
assumed. Frequency limit­
ations
 

ejection and thermal 

protectilO of probe
 

0 heavy, requires bulky 

autenas 1.28 Ce and
 
1.35 cm lines nmst be
 
resolved
 

requires Image con-
verter, sot fully developed 

E) not developed 

. 

3 

3 

3 

3 

3 

3 

1 

3 

3 

3 

3 

.3 

2 

3 

3 

1 

3 

3 
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Experizental Methods for Jupiter Fly-by (Conti.) 

Far infra 	red spectrum, 
theral radiation balance 

Time sequence pictures of 
cloud structure, red spot' 

Time sequence pictures of 
cloud structure, red spot 

Surface structure, red spot 
structure 	from time delay 
of reflected radio signal 

Time variation of 18-20 mc 
radio bursts 

X-ray emission intensity 
correlated with radio bursts 

Height and electron 
density of ionosphere layers
from critical transmission 
frequency and tine delay 

of reflected signal 

Electron density of Ionos-
phere layers from fading of 
radio signals transmitted 
through ionosphere 

-Infrared interferometer spectrometer, 
bolometer detector or filter wedge 

50 field television comers, high 

resolution 

409 field 	television camera, high 
resolution
 

50, 400 photographic scanning system 

Radar transmitter-recelver directed at 
surface 

Radio receiver continuously monitoring
signals at 18, 20 mc 

Gas-proprtional x-ray counters, wide 
acceptance angle, continuously recording 
two counters directed toward and awy 
from planet 

Swept frequency ionospheric sounder 
transmitting and receiving signals 
reflected 	from ionosphere and surface 


Telemeter transmitter switched to con-
tinuous signal as probe passes behind 
planet, fading observed on Earth 

5 -100 micron 
1 micron 

800 line Og 

pointing -t 5 
red spot 

1000 line scan 

same as above 

Small beam %dth 
pointing - 5 

't i see 

6t ,,I see 
2- i0 

10 - 500 W (T)
+ 0 

pointing ­

4 x 540O 

100 x 3.8 x 106 

20 x 6 x 106 

200 x 400 

3 x 105 x 	 10 

3 x 105 x 	 10 
-

10 x 1200 

2 x 500 

2 

Pf heau; high information 
retrieval ability 2 3 

9 very heavy, requires 2 3 
radiation shielding,
 
processing on board of
 
photogrphs
 
& photographs my be 
scanned during return 
voyage 

Q high power, large 3 3 
antenna; red spot investi­
gation requires trajectory 
directly over spot 

9 small size 
requires large inform­

tion storage capacity 

G reqyfres large inform- 2 2 
tion storage capacity; my
be confused by solar x-rays; 
present counters have short
 
lives
 

W locates surfacee requires antenna; 
cri requense 
critical frequencies very
 
uncertain. 

0 Absolute height of 3 2 
layers not known with ret­
erence to surface or 
visible features 
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Experimental Mthods, for Jupiter Fly-by (Conti.) 

I _ 

Electron density of ion-
Osphere layers from fading 

of radio signals treas-
Litted through ionosphere 

Fading of transmitter on atmospheric 
probe entering atmosphere as observed 
from fly-by probe 

t 4.001 sec 1000 4 height of layers known 
only with respect to 
atmospheric density; probe 
my burn up before traversal 

3 3 

of ionosthere; (conditional 
to use of probe for density 

Intensity and location of Scanning high sensitivity photometers 50 line scan lo x 48 1 
auroral emissions, es- with filters across darkaide -

pecialy HC and N2 , 
and N emissions 

N2 + 

Auroral spectra 
Fast spectrograph (interferometer?) 6 

z o 
lOX 

0x90 
10 x0 9 

eurssac 
requires search 

o 
for 3 2 

Night sky spectra 3500 - lO2 x 9000 0 ot developed, requires 
advanced optical system for 
might list collection 
abillty 

Na (D) and Nt twilight 
emission inensity 

Telescope-photometers scanning across 
terminator with narrow band filters 

80 x 36 Mgh sensitivity 2 3 

Lo emission intensity 
from H around planet 

Ultraviolet scanning photo 
Wrrow band filter at 121. 

eter with 
50 line scan to 

.10 x 12 Confusion with solar 
-radiation scattered from 

3 3 

iOR nearby ato 

location of auroral emis- 400 low resolution - high sensitivity 100-200 line 20 x 2. 4 x 105 Heavy; image intensifier 3 3 
ions 

side 
oan pictures of dark television with red, 

and perhaps infrared 
blue-Violet, 
filters 

Ha scan my be needed 

IEation of auroral emis- 400 facsimile television with red, 1001200 line 20 x 2.4 x 10. S heavy 3 3 

$ions 

ide 

on pictures of dark blue-violet, 
filters 

H, N2 band, and infrared scan 

Light scattering of satellite Telescope-photometer directed at one Tracking of 50 a 12 q Trajectory must not 2 2 
As function of phase angle,
and albedo 

satellite sateflito t 0.1 allow Jupiter to enter field 
of telescope. 2nd mideourse 
correction reqd. Launch 
restrictions 

High resolution pictures 50 high resolution television camera 800 line yan .0z 3.8 a 0 .4 Trajectory must bring 3 2 
of satellite pointing - 1o probe very close to satellit 

Infrared 
satellite 

spectra of Infrar grating spectrometer, 6000 
O00X,.pointing 

- A
oaig: 

=t A 
± i 

6 x 10 4 heavy 22000 2 

Kicrometeoroite-du t Micrseteorite detector - low 50r 12 
density near Jupiter sensitivity 
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FREQUENCY-MASS DISTRIBUTIONS FOR INTERPLANETARY DEBRIS 

The larger asteroid infrared mass distribution and the observed meteoroid
 

distribution in the vicinity of the Earth contribute to this chart. The,
 

ordinate measures the expected impacts per unit area per second of particles
 

greater than a given mass (the abscissa). The shaded area represents the
 

region of concern for structural damage, bounded in mass'by the particles
 

that are stopped by the thin-foil impact detector and in frequency of impact 

by the low probability over the mission duration. 
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THIN FIU METEOROID DETECTOR
 

The thin film impact detector consists of multiple spaced films of aluminized polyester 

of varying thickness.., An impact causes an electrical breakdown of potential between the 

metallic surfaces on each side of the polyester film thus generating'an electrical signal. 

The mass of the particle is'proportional to the number of films penetrated. The velocity 

is determined by the time-of-flight between the first two films. 
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SIZE AND VELOCITY MEASURIT
 

Th& 'particle velocity vector direction of arrival can be determined by measuring the points 

of impact on the first two films of'the thin film meteoroid detector by means of a matrix of 

metallic bands applied to both sides of the first two films. The fine structure pattern on 

the back of. the first film enables the size of the impacting particle to bemeasured by the 

increase in resistance when the fine bands are broken.
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INTERPLANETARY INSTRUMENTATION 

Some instruments concerned with the primary objective of Asteroid/Jupiter missions
 

serve also for interplanetary observations, e.g., magnetic field, micrometeoroid and 
ionizing radiation detectors. A moderate additional weight of instruments is sufficient 

to provide comprehensive capability for interplanetary experiments. An interplanetary 

package of instruments is suggested here that might be expected to go on every deep-space 

mission of appreciable magnitude. About half the weight of the package consists of 

instruments (indicated by asterisks) that are part of the primary payload of a Jupiter 

mission. The remaining instruments are selected to round out the interplanetary aspects 

of the package while contributing to the capability for determining space environmental 

conditions near Jupiter. 
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IThERPLANETARY INSTRUMENIATION 

ISTUMZNT SIZE WTI PWIR. 
(in) (b) (watt) 

*Cosmic Dust Detector 5 x 5 x 5 2.5 0.2 
*Micrometeoroid Detector 6 x 10 x 10 8 0.5 

*i4 agnetometer 4 x 4 x 6 5 5 

*Bi-Static Radar 4 x 4 x 12 5 1.5 

Ion Chamber 5 diam. 1.3 0.1 

Particle Flux Detector 4 x 5 x 6 2.5 0.35 

X-Ray Detector 4 x 5 x 6 5 3 

High-Energy Proton Monitor 3 x 4 x 4 4 0.5 

Medium-Energy Proton Monitor 4 x 5 x 5 3 1 

Low-Energy Plasma Monitor 6 x 8 x 8 7 1.25 

Totals 1i. ft.3 43.3 lb. 13.4 watt 
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EARTH-JUPITER SPEED CONTOUR CHARTS 

These two charts show the hyperbolic excess speeds at Earth departure and at Jupiter arrival 

for launch periods existing in 1970 and in 1974. As noted, the unit of. speed is Earth Mean 

Orbital Speed (EOS) of 97,719 ft/sec. The Line which runs almost vertically up each chart 

and separates the speed requirements into two rather distinct regions is the locus of points
 

for which the Earth at departure and Jupiter at arrival are 180 degrees apart in heliocentric 

longitude. The manner of presentation is icentical to that associated with missions to Mars 

and Venus contained in the NASA Planetary Flight Handbook. 

The synodic period between Earth and Jupiter is 399 days. Thus launch opportunities occur
 

about 13 months apart.
 

The minimum energy velocity requirements show moderate variation from year to year, the 

minimum departure speed varying from 0'.292 EMOS ( AV', 20,4oo ft/sec) in 1970 to 

0.321 EMOS CA V 22,200 ft/sec) in 1978. In order to take advantage of the lowest of these 

velocities, however, trip times of up to 1000 days would be needed. 
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EARTH-JUPITER MISSIONS - DEPARTLUBE VELOCITY AND TRAVEL TIME
 

This figure illustrates the strong influence that travel time exerts on Earth departure energy
 

requirements for trips to Jupiter using the 1974 launch period as an example. Two classes of
 

missions are considered. The first, represented by the dashed curves, refers to a constant trip
 

time (assumed in this example to be two years). The second, represented by the solid curves,
 

refers to a situation in which the trip time is chosen so that on any given Earth departure date 

the departure velocity is idnimized.*
 

Notice first that the,minimum departure velocity is 2i,300 ft/5ec from a 100 nm circular orbit
 

(circular velocity = 25,582 ft/see). The associated trip time is two years. If the trip time is
 

maintained at two years, it is seen that the velocity increases rapidly both before and after the 

nominal departure date (J.D. 2442187). If the trip time is allowed to vary, however, the increase
 

in velocity associated with departure delays is much less. The slight decrease in velocity that
 

occurs at about J.f. 2442230 is due to the vehicle arriving at Jupiter near the Earth-Jupiter nodal
 

point.
 

While a variable trip time is obviously desirable insofar as reducing.departure velocity require­

ments, the large variation (e.g., from 730 days for the minimum energy mission to 1000 days if 

departure is delayed by 20 days) could cause a large variation in requirements for spacecraft re­

liability, power supply and communications systems. 

*The data shown here refer only to trajectories of less than 180 degrees. A similar curve could be 
diawn for the trips of greater than 180 degrees, but the trip times would be considerably longer.
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FATH-JUPITER MISSIONS - COMMUNICATION DISTANCE 

This figure shows the communication distance comparison between the two'year
 

missions and the missions which employ the optimum travel times that are shown 

In the preceding figure. The communication distance requirements associated 

with the optimized travel times are quasi-periodic with h period of about 

thirty days measured at Earth departure. This is because,, from the preceding 

figure, the -traveltime increase during thirty days-is slightly longer than 

one year, causing Earth and Jupiter to 'nearly repeat their relative positions 

at arriVal. This figure only reflects the Earth-Jupiter communication distance 

at arrival - not during transit. 
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TYPICAL JUPITER .APPROACH U1YPERBOLAS
 

This figure depicts two typical close approach passages of Jupiter. As showm, the peri-' 

center disbance is 2 Jupiter radii (i radius = 11h,320 niles). In neither case does a 

lightside 'pericenter occur. The pericenter of the dashed trajectory, however, is within 

30 deg. of the terminator. 

The approach conditions correspond to a representative "fast" trip (610 days) between Ear.,. 

and Jupiter in 1974. The basic characteristics of this mission ave as follows: 

Leave Earth Arrive Jupiter 

Julian Date 2442170 2442780 

Speed. (EMOS) 0.344 0.300 

Right Ascension 3ki.2 209.6 

Declination -28.6 2.4 

By making the appropriate mideourse correction, the approach conditions can be made to yield 

any inclination relative to Jupiter subject only to the limitation that the inclination be not
 

less than the arrival declination. Sihce the arrival declination for this trip is only 2.4 

-degrees, it is apparent that essentially any inclination can be achieved without recourse to a 

plane change maneuver. The generality of low arrival declinations j and of Earth departure 

declinations low enough to -be compatible with easterly launches from Cape Kennedy, have yet to 

be detrmined. 

.Note that the angle between the Jupiter-Sun line and the Jupiter-Earth line for this particular 

mission (and all lower energy missions with similar mission times) is 11 degrees. This is the 

maximum value that this quantity can achieve. 

Alsosbown in the figure are the orbits of the three innermost satellites of Jupiter - No. V, 

to, and Europa. Each of these satellites moves in a circular orbit in the plane of Jupiter's 

equator. 
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PROBE VELOCITY RELATIVE TO JUPMR
 

This figure shows the velocity profile of the approach hyperbola shown in the,
 

preceding figure. Note the high pericenter velocity of over l40,oOO ft/sec.
 

Pericenter velocity is influenced',alost entirely by pericenter distance. This
 

is because most of the energy of the approach hyperbola is potential energy
 

due to Jupiter's large mass; kinetic energy is only a,small portion of the
 

total energy even for the higher energy trajectories being considered.
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ASTEROID BELT FLYBY TRAJECTORIES
 

This figure illustrates the heliocentric trajectories of three asteroid belt flyby missions.
 

Two of these have aphelion distances of 3.2 A. U. and 4.0 A. U. The third trajectory shown
 

is typical of a fast trip to Jupiter, arriving at Jupiter's orbit 600 days after Earth departure
 

The values of 2.6 A. U., 3.2 A. U. and 4.0 A. U. correspond to the outer radii of the three
 

asteroid belts. The following table shows the times spent within the belts for the three
 

trajectories considered. In every case the value quoted is the sum of the outbound and inbound
 

times through the belt.
 
Time Between Various Radii (Days) 

Trajectory 2.0 - 2.6 2.6 - 3.2 2.6 ­ 4.0 3.2. 4.0 

Aphelion = 3.2 A. U. 220 560 -

Aphelion = 4.0 A. U. 
"Jupiter" Mission 

16o 
120 

240 
150 

960 
390 

730 
240 
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ASTEROID BELT FLYBY TRAJECTORIES - RELATIVE VELOCITIES 

This figure shows the spacecraft velocity relative to particules 
moving in circular orbits of various radii. 
The three cases
 

correspond to those discussed in the previous figure. The three 

circled points at 1 A.U. are the hyperbolic excess speedrequlire­

ments at Earth departure. 
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EARTH-CERES SPEED CONTOUR CHARTS
 

Energy and trip time requitements for trips to particular asteroids will show more variation
 

betwen successive launch opportunities than for trips to Jupiter. This is because of the
 

higher eccentricities (0.089 for Vesta, 0.076 for Ceres) and higher orbit inclinations (7.13
 

deg. for Vesta, 10.61 deg. for Ceres). Corresponding values for Jupiter are 0.048 and J31 deg.
 

Although complete trajectory data to the asteroids is not yet available the requirements shown 

here for trips to Ceres in 1970 and 1971, bear out the expected variation. In 1970 the nodal 

crossing occurs about eighty days before a vehicle launched on ,a "Hohmann" transfer would 

arrive. The minimum departure speed, which occurs near the nodal drossing, is 0.221 EMOS.* 

The corresponding travel time is 360 days. In 1971, however, the nodal crossing ocburs about 

110.days after a vehicle launched on a "Hohmann" transfer would arrive. Thus, the low energy 

transfers to Ceres in 1971 will require about 570 days. Further illustrating the contract, a 

360-day trip in 197l would require an Earth departure speed of 0. 38 EMOS. This is ar increase in AV 

of 9600 ft/sec compared to a 360-day trip in 1970. 

*Hohmann departure speed = 0.21 EMOS.
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TYPICAL CERES APPROACH HYPERBOLAS 

As observed from the figure the hyperbolas relative to Ceres (and, therefore, hyperbolas 

relative to the less massive asteroids) degenerate to essentially straight lines, the
 

asymptote bend angle being only 1.2 deg. for the trajectory shown.
 

The time spent near Ceres is short, requiring only 486 sec. to approach from 10 radii to 

pericenter (assumed, in this instance, to be 2 radii). The variation in velocity along the 

trajectory is small. The increase of 30 ft./see. from the hyperbolic excess velocity to 

pericenter velocity, however, could be detected by vehicle-borne sensors as an aid to re­

fining the mass estimate of Ceres.* The perturbation on the spacecraft motion by Ceres wil 

cause the heliocentric velocity and path angle before and after passage to differ by about 

20 ft./sec. and 0.7 deg, respectively. 

The approach conditions are based on the minimum departure velocity mission of 1970. Earth 

departure speed is 0.221 mos,(nv = i6,6oo ft./sec,). Transit time to Ceres is 360 days. 

*In this example the mass of Ceres is assumed to be 1/8000 of the Earth's mass. 
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SUBSYSTEMS
 



SUBSYSTEM DIAGRAM
 

Basically, the vehicle subsystems are similar to those used In previous space missions.
 

The utilization of the component parts is rearrahged to suit the specific operational
 

requirements. The major differences for each of the missions - asteroid belt, asteroid
 

inspection, or Jupiter flyby are in the data handling sequences) the instrumentation
 

compliment, and the power utilization; The re4uirements for the three basid missions
 

are as follows:
 

Asteroid Belt data acquisition is accomplished over a period of one to three years at
 

relative low data rates.
 

Asteroid Inspection, the asteroid experiments must be performed in a relative short. 

interval (4 to 5 hours). 

Jupiter flyby, similar to the asteroid inspection mission except the period of encounter
 

is several days with an increased data acquisition rate.
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COMMUNICATIONS SENSITMTIES 

A model of the communicatiqn subsystem has been extrapolated from the basic Mariner 6oncept. 

7-foot parabolic antenna and.iO-watt transmitter has been selected. Exam-
For this model, a 

ination of the effect of Jupiter's radio noise (assumed 2000
0K at 2.2 IO) has been made for 

the available data .transmission rate at a lO- 3 bit error rate for distances of 4.., 4.8, 

5.0, and 6 AU. The data rate has been calculated for a 20-watt and 70-watt transmitter 

at a nominal range of 4.8 AU. The time required to transmit five miili6n bits of data at 

4.8 AU'is indicated for each of the above systems plus the time required at 33-1/3 and 8-1/3 

bits per sedond. Five million bits represents the nominal storage capacity of the magnetic 

tape system used on the Mariner C system. 

Additional bit rate calculations are shown for the command link utilizing either the omni­

directional or the high gain antenna
 

Also included on the chart are the signal transit times at the various ranges expected on 

the Jupiter flyby mission. These transit times seriously affect the operational sequences 

for, the spacecraft and DS1 since a minimum of two transit periods are required to insure 

coherent communications. 
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GUIDANCE AND CONTROL CONCEPTS 

Determination of tbe vehicle's position entirely by DSIF tracking wil provide 

adequate accuracy for all experiments. Either two-way doppler or range tracking 

may be used. The possibility of using on-board optical equipment which tracks 

an asteroid as an aid to guidance is being studied. For an asteroid fly-by a 

correction shortly after launch and another several days before encounter will 

be required. For the Jupiter fly-by the first correction gives sufficient
 

acuracy for the experiments so far considerc-


A continuously operating attitude control system has been considered. 
The 

weight required to implement such a system appears reasonable. The major 

problem area is concerned with the reliability that may be expected during 

operation for 600 days or longer. 
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o MANEUVER EXECUTION ERROR-O. T mTSEC 
o RN\S MISS AT JUPITER WITH ONE CORRECTION r---2000 KM 
0 RMS MISS AT ASTEROID WITH TWO CORRECTIONS '--,350KM 

ATTITUDE CONTROL
 
0 SUN REFERENCED PITCH AND YAW STABILIZATION 
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SOLAR POWER REQUIREMENTS
 

These two figures show the operating capabilities of solar panels. Panel area
 

and solar intensity as a function of distance from the sun are given. The
 

use of solar panels as a primary power source for the Asteroid Belt or Asteroid
 

Flyby missions appears feasible at continuous power output levels of 100 watts.
 

For these applications the solar array area would be approximately 200 square
 

feet (including a 100% contingency for normal degradation effects) at a weight
 

o: 350 to 400 pounds. Secondary batteries would provide peak power require­

ments for maneuvers and communications at levels of 200 watts for periods of 

3 to 4 hours at each contact. 

The use of solar panels for the Asteroid missions is not recommended, however,
 

because of panel degradation (due to asteroidal particles) resulting in a
 

potter output below the minimum requIred for the mission. The required solar 

arrays (for all missions) result in a gieater weight penalty than that imposed
 

by Radioisotope Thermoelectric Generators (RTG).
 

64
 



SOLAR POWER 0TQWUJAEflTh
 
/000, lO0
 

TOTAL SOLMR4A{PA Y
600 - 50k IrEd/IrI-1Y 115,5foo 4o o l 
1--200 lA D/1SMYC - I 0 tY-'A 

.
,,k -I E 606 INN 

,o, k..
/00 

0 

, .,. , I' 2, I , , 

/A4ND/57/CtFP8/A sf 4)A~ mANDI-MT/V k/J YCt,6f&AI 3 ('gI6 

65 



VEHICLE DESIGNI
 



TYPICAL PAYLOAD SPACE CONSTRAINT 

All the potential booster arrangements investigated have either a Centaur or
 

a small high energy kick stage as the final propulsion,unit. This figure
 

shows typical spacecraft volumes available with a Surveyor type shroud. The
 

configuration using & Centaur final stage defines the least available volume 

and this criterion was used for all spacecraft concepts.
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JAAB FL'YBY- TYP SPACE CONSTRAINT
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TYPICAL CONCEPT WEIGHTS
 

Weights for four concepts are shown. The Jupiter mission versions
 

differ primarily in, their structural configuration because of dif­

ferent arrahgements of the scientific instruments. 
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JAAB FLYBY-TYP CONCEPT WEIGHTS
 

STRUCTURE 

COMM.< DATA P-MD. 
GUID. 4CONTROL 
POWER SYSTEM 
PROPULSION 
TIENTIFIC EQUIP 
T-ERMAL CoN-f, 

TOTAL WEIGHT 


JUPITER FLYBY-i 


215.5 


?27.O 

1G3.O 

185.0 

105.0 

331.0 

113.0 


1539.5 


JUPITFR FITBY-2 


.53.0 


2270 

163.0 

185.0 


105.0 

.0 


1359.0 


ASTEROID rLYbY 


196.5 


Z270 

IG5.0 

185.0 

105.0 

175.5 

595.0 


114.7.0 

TEROD BENT FYBY
 

239.5
 
227.0
 
1G3.O
 
185.0
 

0
 
Z5(0.0
 
95.0
 

1165;5
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BOOSTER CAPABILITY 

Payload versus characteristic velocity for several typical booster.systems
 

are shown. The effect on performance of usinga high energy third stage is 

indicated by curves 1, 2 and 7. A typical Jupiter mission is shown indicating 

a trip time difference of approximately one year. The choice of booster to 

be used will depend on a trade-off between the effects of trip time, design
 

payload and booster availability.
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PRELI4INARY SPACECRAFT CONCEPTS 

The next two figures illustrate spacecraft design concepts for the 

Asteroid Belt and Jupiter missions, based on the minimum available
 

volume (Centaur and Surveyor shroud combination). Both designs in­

corporate a 7 ft parabolic unfurlable antenna and nine SNAP-9A type 

radioisotope power generators. The particle detector for the 

Asteroid Belt mission c6nsists of four sheets of polyester film 

representing 100 ft2 of surface area when extended. The erection 

mechanism would be similar-to that for the unfurlable antenna. The 

stowed weigbt of the detector is 110 lb.
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