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fo obtain dynamic stability results from ballistic range flight
testé, angular orientation measurements at discrete points along the
trajectory are used to evaluate parameters in the solutions to vari-
ous equations of motion. A number of factors combine to degrade the
derived dynamic stability result, First, the apparent damping of

the motion can be significantly influenced by errors that are made in
measuring angles from photographs of the model in flight. And second,
the equations of motion are influenced by the approximations that are
made in both setting up the equations and in solving them.

This paper will cover some phases of each of these problems. We
will first review the data reduction procedure presently in use at
Ames. Then the effect of experimental errors on dynamic stability
results will be considered, first from a simple theoretical standpoint,

then from a statistical approach involving perturbations of exact

solutions.

Finally we will consider two assumptions involving the equations

of motion which can give rise to errors: (1) The assumption that the
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resultant angle of attack is the square root of the sum of the squares
of the two orthogonal projected angles, and (2) the assumption that a
linear restoring moment and constant damping coefficient govern the
model oscillation. Exact trajectories will be computed and then
analyzed by our existilng data reduction procedure. Typical examples
will be shown to demonstrate the magnitude of errors that can be
expected, and ways of eliminating or minimizing these errors will be

discussed.
SYMBOLS

A reference area

21, » o « 4 2a constants in equations (l)

Cp drag coefficient

ClLg, lift-éurve slope

Cm pitching-moment coefficient

Cmg, pitching-moment curve slope

Cmq + Cmg, rate of damping in pitch

d reference diameter

Iy moment of inertia about pitch axis

k constant EA/bm

Mo ,Mo constants used to define nonlinear restoring moment
curves

m model mass

N number of observation points per cycle
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nunber of cycles of motion

roll rate

standard deviation in angle of attack due to experi-
mental errors

standard deviation in §

distance along flight path

angles of attack and sideslip

resultant angle of attack

change in pitch amplitude due to damping

distance between observation stations

constants in equations (1)

wave length of pitching oscillation

dynamic stability parameter defined in equation (3)

air density

radius of gyration of model about pitch axis

angle between observation plane and plane of motion

Subscripts

exact value
envelope

envelope at x =0
individual readings

root mean square
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DATA REDUCTION PROCEDURE

The current data reduction procedure consists of curve-fitting
measured values of a, B, and x (this is where experimental errors
enter the problem) with a solution to the equations of motion. This
solution 1s the tricyclic solution of Nicolaides (ref. 1), transformed
to distanée (x) rather than time (t) dependence,' This solution allows
for constant roll rate and small asymmetries. The solution is
a = enlx(al sin w1X + as cos Wix) + enex(as sin wox + a, cos Wwox)

+ (as sin px + ag cos px) (12)

= e1%(a; cos wix - az sin wix) - e"2%(ag cos wex - a, sin wex)

™
|

+ (as cos px - ag sin px) (1b)
where the constants w3,Ws,M1,M2,81, « » « , 8g are determined by the
curve-fitting procedure (p, the roll rate, is related to wy and Ws);
the curve fitting is carried out by a differential correction procedure.

The dynamic stability pérameter is related to 73 and 1z as follows:

£ = 2% (na + n2) (2)
where £ 1is the constant-altitude power-off dynamic stability param-

eter related to the aerodynamic coefficients by

md?
= - C +1(C + Cps —
£ =Cp - C1, <mq m3,> <Iy> (3)
The static stability parameter Cp, 1is related to wy and w, as

~2Wy W
Cmg, = _ppl\_dﬁ (4)
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The major assumptions employed in the derivation of equations (1)
which give rise to apparent errors, particularly in the dynamic sta-
bility parameter, are: (l) the aerodynamic coefficients are assumed
to be constants or linear functions of angle of attack; and (2) the

resultant angle of attack ar is assumed to be given as ar = Na2 + B2

instead of tan"MWtan® o + tan® B. The systematic errors generated
by these assumptions usually appear as an absolute shift in the results
as contrasted to random errors arising in the experimental measurements

of a, B, and x. These two sources of error will be treated independently.
ANATYSIS OF RANDOM EXPERIMENTAIL ERRORS

A statistical analysis will be presented, which consists of
calculating exact trajectories, introducing simulated experimental
errors via a Monte Carlo procedure, and analyzing these perturbed tra-
Jectories with the data reduction procedure just described. For
simplicity we will consider linear aerodynamics and planar motion in
caleulating the exact trajectories. However, before proceeding further
a brief look at a simplified version of the problem will help in
interpreting the statistical results and provide some guidelines as to

what variables might be important.
Simple Theory

We will consider the error involved in determining the dynamic
stability parameter from two data points which represent points on
the envelope of the pitching motion (see sketch (a)). The equation

for the envelope of the arc is given as
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Sketch (a)

kEx

Genv = Tenv,€

where Qenvy = %env at x = 0, and k = pA/km. Equation (5)

rewritten as
a,
_‘?.n_V.~> = kEx
denve
If we now take two data points at x = 0 and x; and write

Qenvy = %envy TAQ

equation (6) becomes

in (i + A > = kExXj
\

Genvo,

(5)

can be

(6)

Qeny, 88

(1)

If there is now some error in determining aepv at each point (the

probable error at each point can be represented as SDa),l then Aa

is determined to within J§ SDa. and therefore there will be some prob-

able error in £, noted as SDE. From these ldeas we can write

equation (7) as

18D refers to standard deviation and has its usual statistical

n
definition SDa = ‘%Ez(ai - ag)® where o4 are individual readings,

i=1

agp is the exact value, and n is the number of readings.
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n <1 s Do N2 SD“) = k(tg + SD&)x (8)

denvo Obenvo
If

Jave? Jé SDa,

1
Qenve OLenvo <

we can expand the logarithm, and to first order we get

A 2 S
s ;;nvlg“ =~ k(tg + SDE)xy- (9)

We can now associate exact and error terms such that the GSDE can be

expressed as

~ Sha 1
SDE = W2 Tenvg xy (10)

If we now consider X3 to be located at the end of the observed tra-
Jectory and replace x; by nA, wvhere n is the number of cycles and

A is the wave length of the pitching motion, we get

v () ) )

Equation (11) gives an indication of what to expect from a statistical
analysis. DNote that this equation states that SDE does not depend
on &. This fact will be used to simplify the analysis; however, it
will also be checked for validity by comparison with some statistical
results.

Note that equation (11) tells nothing about the effect of the
number of data points considered. Therefore, in addition to the
parameters given in equation (ll), we will also consider the number
of observation points per cycle (N) defined as N = A/Ax, where Ax
is the distance between cbservation stations. Note that the total

number of observation stations is given as nN + 1.
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Statistical Analysis

The procedure that was followed was to assume an arbitrary set
of linear aerodynamic coefficients <?ma? Cmg + Cm&; etc.> and generate
at discrete points a number of planar trajectoriles (we will refer to
these trajectories as a group). In this group, fhe only varlation was
the positlion of the first station relative to the first maximum in the
angle of attack; that is, the phase relationship between observation
stations and the motion history was varied. A Monte Carlo technique
was then used to introcduce errors in both the angle and distance
readings, simulating experimental errors. In most cases, a uniform
error distribution was used, but several cases were investigated
using a normal error distribution as well. This group of trajectories
was then analyzed with the existing data reduction procedure and the
standard deviations in the parameters of interest were determined
(e.g., SDt and SDA). This process was repeated for different groups
varying the values of G5Do, aGRMS, m/pAk, E, n (number of cycles), and
N (number of data points per cycle).

Before considering the results, however, we must decide how many
trajectories will form a meaningful statistical sampling. This ques-
tion was considered in a reverse manner as follows. It was felt that
perhaps 20 independent trajectories would be sufficient to be statis-
tically meaningful. To check this, three different groups of 22 runs
each (allowing for the possibility of rejecting several ill-conditioned

runs) were statistically analyzed and compared, and it was felt if
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each of the three groups showed the same gross results, 22 runs was

a big enough sample. This is what happened, as 1s shown in figure 1.
In this figure, the pgrcentage of runs that resulted in an error (in
absolute value) in ¢ less than some value At 1is shown as a function
of At. Note that the standard deviation of E 1in the three different
groups (indicated by arrows on the abscissa) agrees within about %15
percent and that, in general, the three sets of ?esults describe a
similar curve. For reference a uniform distribution curve and a normal
distribution curve which approximate the results are shown.

Effect of number of cycles and points per cycle on SDE.- Shown in

figure 2 i1s the standard deviation in &, SDE, versus the nunber of
observed cycles of motion for several values of N (observation points
per cycle)., These results are for the case where the exact value of

g 1is zero., Note that ©SDE increases rapidly below 1—1/2 cycles of
motion. Furthermore the effect of N 1s generally small for values
of N greater than about 4. The theoretical curve for the simple two
point theory is shown by the upper solid line. It appears ©o have the
proper dependence on n for values of n greater than about 1-1/2;
however, the level of the curve is too high in this range. The fact
that the shape of the curve is not predicted by the simple theory for
values of n less than 1-1/2 is not too surprising since there are
fewer than three peaks in the pitching motion and the data reduction
procedure has difficulty distinguishing between trim and damping.
Also shown in the figure are two curves besides the simple theory

curve; one of these is the simple theory adjusted by a constant to
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give the best fit to the results. Tﬁe other curve is an exponential
which gives a better fit over the range of variables considered but
has no theoretical justification, as is indicated by the fact that it
approaches a nonzero asymptote.

Effect of & on ©SDE.- Since the results in figure 2 were

obtained for & = 0, it was of interest to see if the simple theoret-
ical model which indicated that the SDE was independent of E did
indeed hold. Recall that for large values of £ +the amplitude change
can be large and thus the relative error in a, SDa/ﬁenvo will be
different at different points along the trajectory. Therefore in
considering the results for large values of € it would seem logical
that the results should be compared for the same value of SDa/dRMS
where agyg 1s the root-mean-square angle of attack over the trajec-
tory. Shown in figure 3 are results for various values of £. The
solid points are the results as obtained for a constant value of
SDa/denvo. Note there may be a slight effect of £ on the SDE.

The open points are the same results corrected to the same valuc of
SDa/aRMS as in the case of & = O, The correction was made using
the linear approach suggested by the simple theory. This simple cor-
rection does appear to reduce the small effect of €&r on the GSDE.

It is therefore felt that for most practical cases ©SDE 1is essentially
independent of E.

Effect of SDa on SDE.- In figure 4 the SDE is plotted versus

SDa/mRMS for a series of different conditions. Both ©SDa and aRrM3

were varied, as well as the type of error function used to generate
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the errors in «. The correlation about a straight line is very
good, thus supporting the simple theoretical model. In addition to
these considerations a group of runs was treated as though every
station had been read twice and both sets of readings analyzed as one
run. Theoretically this should be equivalent to reducing SDa by
l/JE. This is indeed realized as shown by the triangular data points.
The s0lid point is the result as obtained; the open point has been
shifted by l/JE, which brings it back to the curve.

Effects of m/pAK and SDx on ©SDE.- Several different groups

of 22 runs were considered with different values of m/pAk. All of
these groups showed excellent agreement with the simple theoretical
model.

In addition to the errors in a, errors were also introduced
into x. The effect of errors in x was so small as to be hardly
detectable. Therefore all of the results that have been presented
included errors in x of up to 0.006 inch.

Estimation of ©SDE.- Combining all of the previous results it

is possible to write an equation which expresses ©SDE in terms of

all the variables considered. This equation can be expressed as:

= o(2) (22) o) (22)

where C 1is a constant and f(n) is a function which describes the
effect of the number of cycles. 1If we take the function f(n) as that

given by the simple theoretical model, equation (12) can be written as:

o - 28) @) 8
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On the other hand if we take the best fit to all the data given in

figure 2 we get the equation
3.07

SDE = 0.183<£7\> @?RiMS e (14)

Either one of these equations can be used to estimate the standard

deviation ¢E.

It should be noted that these equations do not include the effect
of the number of observation points per cycle (N) as it is generally
quite small. Its influence, however, was systematic in that the more
points per cycle the better were the results. It would require con-
siderably more statistical results to adequately define the functional
effect of this parameter over the range of variables considered; how-
éver, it would be a relatively simple matter to apply the procedure
outlined to a given test facility.

Implications of equation (13).- At first glance equation (13) would

appear to indicate that the best results would be obtained with the
most cycles, and this would be true except that usually the term 1/n
is not truly independent of m/pAA. If we substitute n)\ = x, where

X 1is the length of the testing range, we get

SDE = 1.70(9%) %) (15)

Therefore the longer the facility the smaller ©£DE. For a given facility
x 1is fixed; therefore we minimize ©SDE by minimizing m/pA, being

sure that we have more than 1-1/2 cycles. A good optics system yield-
ing a clear image will also minimize errors in angle readings (i.e.,

reducing SDa) thus minimizing SD&. This may require resorting to
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Kerr cells for very high speed tests to reduce blur and to reduce
fogging due to model radiation. One can also make multiple readings

of each picture to reduce SDa. However, this will not work unless

the errors are truly random. Errors that are not random deserve atten-
tion also. Examples of factors which can introduce nonrandom error

are the facility reference system, dimensional stability of the film
used, extraneous "noise" on the film, and uncorrected optical distor-
tion either in the optics or due to refraction. The use of focussed
shadowgraphs can minimize the effect of refraction.

Effect of random experimental errors on the determinstion of A.-

For all of the cases considered the errors in the determination of A
were less than 1/2 percent, As in the case for damping, the nunber

of cycles of motion had a significant influence on this error. This
effect of the nunber of cycles is shown in figure 5. Note the similar
appearance to that shown for SDE in figure 2. ©Since the errors are

so small, this subject was not considered any further.
ANALYSIS OF VARIOUS ASSUMPTIONS

As was stated earlier two assumptions which appear to affect the
dynamic stability parameter to a considerable degree are: (1) the

resultant angle of attack is the square root of the sum of the squares

of the projected angles instead of ar = tan"INtanZ a + tan2 B; and
(2) the aerodynamics are linear. The method of analysis that follows
is similar to that in the previous section except that no random

experimental errors are introduced.
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Analysis of the Resultant Angle-of-Attack Assumption

This effect was studied by considering a planar trajectory
which is observed at different angles of rotation, ¢, with respect

to the plane of the motion (see sketch (b)).

, /
" &
\5// PLANE OF MOTION
s/
/

/
OBSERVATION PLANE
/
v

7 [] -

Sketch (b)
Note that for @ = 0° or 90° there is no assumption because op = a
or ar = B. To illustrate the magnitude of error that this assumption
can introduce at intermediate values ¢ we will consider a particu-
lar example. For our example we will take 11 stations at 4-foot
intervals, pA/m = 0.006/ft and A = 25.7 £t. We consider various
values of oagumg, ¢, and &.

Figure 6 shows the results of this analysis for three values of
the dynamic stability parameter, £. Plotted here are the apparent
values of & as a function of ¢ for various values of apmg. DNote
that both arMg and ¢ have a strong influence on §. Note further
that this effect is a strong function of the size of E&pe. Figure 7
shows the induced errors (g - §E) for ¢ = MBO as a function of ¢&g
for two values of agyge Note the nearly linear dependence of the
induced error on Ep. Remember that here we are considering exact
angle readings and that these errors are introduced by the method of

analysis.
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These errors can be eliminated completely for planar motion by
a simple rotation of coordinates before the data are analyzed. Further-
more for motions which are not planar the influence of this assumption
can be minimized by rotating the coordinate system so that most of

the angular motion is confined to either the o or the B plane.
Analysis of the Assumption of Linear Aerodynamics

In many cases of practical interest the aerodynamic coefficients
are nonlinear functions of angle of attack; the question then arises
as to the relationship that exists between the gquasi-linear values
obtained from the present data reduction procedure and the true values.
Nonlinear moments with zero damping have received considerable atten-
tion (e.g., refs. 2 and 3). The more complicated cases have received
little or no attention.

Here we will consider a slightly more complicated case, that is,
E = const # O, and -Cp = Mo@ + Mpa®. Again exact planar trajectories,
with 11 stations at 4-foot intervals, will be used. Two cases are
considered; in both, My gave a stabilizing moment. One case had M
stabilizing and one had My destabilizing, referred to as stable-

stable and stable-unstable, respectively.
Results of Linear Aerodynamic Assumption

Two questions are of interest here. First, does the nonzero demp-

ing significantly affect the determination of the nonlinear pitching
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moments as outlined by Rasmussen and Kirk (ref. 3)% Second, does the
presence of the nonlinear moment significantly affect the measured
value of E?

For the amounts of demping considered here there was no detectable
influence of & # 0 on the nonlinear pitching moment (i.e., the correct
pitching-moment curve could be determined using phe existing data reduc-
tion procedure in conjunction with the method of Rasmussen and Kirk).

This was not usually true for determining the damping. Here the
nonlinear moment had a large influence on the damping determined with
the present data reduction procedure., These results are shown in fig-
ure 8. The circles are the results for a pitching moment which is
stable-stable. The scatter is due to the finite number of ocbservation
stations. Similar results for a stable-unstable pitching moment are
indicated by squares. The sign of the nonlinear term determines
whether the observed value of £ will be larger or smaller than the
exact value and that the angle of attack (more precisely the quantity
Mpa®) determines the magnitude of the difference between apparent and
exact values of £. The size of the nonlinearities considered are
given in the figure.

Note particularly what this figure demonstrates. A system has
been defined where the damping parameter, &€, is a constant. However,
after the analysis £ appears to be a function of amplitude. Care
must be taken that these effects of the nonlinear moment on the damp-
ing are interpreted correctly, and some theoretical work toward this

end has been done.
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Theoretical comparison.- Also shown in figure 8 are some theoret-

ical estimates of the degree of interaction of a nonlinear moment on

€. This work was done by Maurice Rasmussen and supplied by private
communication. His analysis starts by assuming that the nonlinearity
is small. A perturbation solution can then be obtained showing the
effect of the nonlinearity in the moment. The theory gives the correct
trend but not necessarily the correct magnitude. The work of Rasmussen

is being expanded and will be published in the near future.
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