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NONLINEAR MEMBRANE SOLUTIONS FOR SYMMETRICALLY LOADED
DEEP MEMBRANES OF REVOLUTION

By John N. Rossettos
Langley Research Center

SUMMARY

An explicit closed form solution is given for the equations of a nonlinear
theory for deep membranes of revolution. 1In the theory, it is assumed that
strains are small and rotations are moderately small, that is, of the order of
the square root of the strains. The solution is valid when the nonlinear
behavior is confined to boundary-layer regions near edges. General symmetric
surface loads can be conveniently included in the form of the solution.

Results are obtained for the particular cases of a pressurized membrane and a
rotating spherical membrane, both attached to hubs. Also, results are glven
for a cap of arbitrary shape attached to a cylindrical pressure vessel and for
the arrest of a moving mass by a pressurized spherical membrane.

INTRODUCTION

In the design of space vehicles, membranelike structures (i.e., structures
with negligible bending stiffness) continue to fine wide application. ILarge
displacements of such structures must be considered, for instance, in the design
of deployable space power configurations, radar antennas, and pressure vessels.
Therefore, the solution of membrane shell problems, especially in the nonlinear
deflection range, is a useful tool for establishing rational design procedures.

Several derivations of systems of equations appropriate for the analysis
of a membrane of revolution in the nonlinear range are available. (See refs. 1,
2, and 3.) The analysis in the present paper is based on an approximate system
of equations given by Sanders in reference 3, in which the strains are assumed
to be small and the rotations are moderately small.

For satisfying the common boundary conditions imposed in practice, it is
known that linear membrane theory is inadequate. 1In such cases a linear bending
theory solution is often added to remedy this difficulty. This situation gives
rise to the usual edge zone where bending action insures satisfaction of the
necessary boundary conditions. However, for membranes or very thin shells of
negligible bending stiffness this approach is not realistic, but a nonlinear
membrane theory can yield reasonably accurate results and avoids the greater
complications of nonlinear bending theory. The order of the system of equations



of nonlinear membrane theory, in contrast to linear membrane theory, is found
t0 be high enough so that the usual boundary conditions can be satisfied. This
result was first pointed out by Bromberg and Stoker in reference 4, who also
noticed that nonlinear membrane behavior is confined to a narrow region near

the boundary.

Nonlinear membrane theory has already been used successfully to solve par-
ticular membrane problems. By using an appropriate nonlinear theory, some deep
membrane problems with specific shapes and loading conditions have been con-
sidered. (For example, see refs. 2 and 5.) Also, a linearized large deflection
approach in the case of shallow membranes has been given in reference 6 in which
shallow spherical and conical membranes internally pressurized and fixed at
edges are considered.

The purpose of the present paper is to obtain a general closed form solu-
tion to the equations of nonlinear membrane theory. The solution has not
appeared before and is valid for deep membranes of revolution of arbitrary
shape under symmetric surface loads. For displacement boundary conditions, the
constants of integration are given by closed form expressions. For stress
boundary conditions, the constants of integration can be calculated in a
straightforward manner as indicated in the particular problems treated.

Complete solutions are found for four particular problems. The first two
involve a pressurized spherical membrane and a rotating spherical membrane,
both attached to hubs. The other solutions concern a cap of arbitrary shape
attached to a cylindrical pressure vessel and the arrest of a moving mass by a

pressurized spherical membrane. The solutions obtained by the approach used
are shown to be accurate to within small errors of a stated order of magnitude.

SYMBOLS

a characteristic dimension of membrane

c,cqy,¢p,d4,d; constants of integration
E Young's modulus

fl, . . " f7

g functions of &t which appear in general solutions
q,S

H horizontal component of edge load

h thickness of membrane

kE energy parameter




Ny, N

Py, Py

pn} p-t

w1

V1 ,max

rigid mass

stress resultants

characteristic pressure loading of membrane

horizontal and vertical components of surface load
normal and tangential components of surface load

radius of spherical membrane

radius of cylinder
principal radii of curvature

horizontal distance

arc length

time

horlzontal displacement
vertical component of edge load
velocity

vertical displacement

vertical displacement at hub
maximum vertical displacement at hub (see eq. (B35))

distance along cylinder

vertical distance

factor for arc length along meridian

value of a at juncture of pressure vessel

a
small parameter, %ﬂ

strains

angle in circumferential direction



v Poisson's ratio

13 curvilinear coordinate along meridian

§i value of & at each edge of membrane; i = 1,2

§J value of & at Juncture of pressure vessel

gN lower 1limit on certain integrals which appear in solutions

o! mass density of membrane material

) angle between axis of revolution and normal to middle surface

¥ rotation of the normal to the middle surface in a meridional
plane

we’we,max boundary-layer rotation, and maximum value

WL rotation calculated from linear theory

Q frequency of rotation

Subscripts:

e boundary layer

J Juncture

max maximum

A prime over a symbol denotes differentiation with respect to &§.

A bar over a symbol denotes a physical quantity. When a bar does not
appear, the quantity is nondimensional. (See eqs. (17).) This rule does not
apply to the physical quantities a, E, h, and p.

FUNDAMENTAL EQUATIONS

The geometry of the undeformed middle surface of a general membrane of
revolution is shown in figure 1. Also shown is the notation for the membrane
stress resultants along the meridional and circumferential directions Ng

and ﬁé, respectively. The positive directions of the displacements u and W
and the rotation V¥, the rotationally symmetric loads per unit area ﬁH and ﬁv
(or §n and ﬁt), and the edge stress resultants HE and V are given in the

figure.

N



The middle surface is defined by the parametric equations
T = 7(8) z = z(g) (1)

The parameter £ is the curvilinear coordinate in the meridional direction.
Arc length on the undeformed middle surface is given by

as2 = 3242 + v2de? (2)

where

_ 1/2
m=(f'2+2'2) ' =3 cos @ Z' =& sin @

and primes denote differentiation with respect to E. ILines of curvature coor-
dinates are used, and the principal curvatures are given by

=-2 L -89 (3)

§§ a Re r

The governing equations are based on a nonlinear theory for thin shells
given by Sanders in reference 3 in which small strains and moderately small
rotations are assumed. The system of equations of the nonlinear membrane theory
are derived by utilizing the principle of virtual work with appropriaste strain-
displacement relations given in reference 3. In this manner equilibrium equa-
tions with a consistent set of boundary conditions can be derived.

In terms of the notation used, the strain-displacement relations are

g = é(ﬁ' cos p + W' sin cp) +-é—\j_12 (4)
2. =4
€ =3 (5)
v = %(ﬁ' cos @ - 4' sin @) (6)
&

The stress-strain relations are

Eg = %ﬁ(ﬁg - vﬁ%) (1)



mi

o = (o - Re) (8)

The principle of virtual work (which equates the internal virtual change
in strain energy to the external virtual work of the loads PH and pV and

the edge stresses H and V) is expressed in the following form:

f§2 fen € ort,
N, 8¢, + N, B5E,)ar de dt = f f 8u+p & Jar de 4t
AT . o

2% 35
+ f (Vo + ® Su)] 7 de (9)
0 £

If the relations in equations (4) to (8) are now used in equation (9), and the
indicated variations are carried out, integration by parts gives

2x
f {[ coscp-ﬂrsinq) -]5u+[N§sincp+\choscp —Vﬁw}
§2 on
f f {[Ng cos o - ﬂr sin cp)] - a.Ne + a.rpH}Su de dg
52 2 ([ _ _ Y
f f {[rNg(sin @ + ¥ cos cp):l + a.rpv} Sw de d¢ = O (10)
€1

By equating to zero the coefficients of the variations of the displacements in
equation (lO), the following equilibrium equations and boundary conditions are

obtained:

Equilibrium equations:

-t

;ﬁg (sin ® + ¥ cos q))J = -aTpy (11)
,:;ﬁg(cos ® - ¥ sin cp)_l - Jﬁe = -Qrpy (12)



Boundary conditions: At an edge (gl or 52) prescribe

i or Ng(cos ¢ - ¥ sin cp) =H (13)

%)

or ﬁg(sin P + ¥ cos cp) =V (1h)

The surface loading may be divided into two general classes. In one type
of loading, the directions of the load components ﬁv and ﬁH are always

parallel and perpendicular, respectively, to the axis of revolution of the mem-
brane; the magnitude does not change with deformation. ©For instance, in the
case of a membrane spinning about the axis, ﬁv = 0, and 5H is given by the

centrifugal forces. In the second general loading situation, the loads are
fixed in magnitude but are always normal ﬁn and tangential ﬁt to the middle

surface during the deformation. In this case, for the moderately small rota-
tions considered, the components perpendicular and parallel to the axis of
revolution are given by

f)'t(cos ® - V¥ sin q>) + ﬁn(sin P + ¥ cos cp) (15)

%

By

It

ﬁi(sin ® + ¥ cos Q) - ﬁn(cos ® - ¥ sin w) (16)

For example, for a pressurized membrane, P, = O and P, equals the internal
P} t n

pressure. In the present theory, it is noted further that the terms with f
in equations (15) and (16) can be dropped and still be within the accuracy of
the present solution.

It is convenient to introduce the following nondimensional variables and
parameters where bars denote physical quantities:

(Mg, N, V,E ) = E}&(ﬁg,ﬁeﬁ,'ﬁ) )

(u,w) = ég(ﬁ,ﬁ)

(0 0r¥) = £(%e-%7) > (17)

l —
(r,CL,Rg,Re) = E(T,Q,RE,RG)

_lfs 5 5 =
(pH,pv,pt,pn) = E(PH’PV’Pt’Pn)



where € = PE-;-‘ is a small parameter which is of the order of magnitude of the

strains. The quantity p 1s some characteristic loading which in a given case
shall be selected so that it has units of force per unit area. The quantity a
is some characteristic dimension of the membrane.

In terms of these nondimensional variables the governing equations are

E‘Ng(sin P + € cos cp)]' = —arpy (18)
E‘Ng(cos ® - e¥ sin cp)]' - aNg = -arpg (19)
€ = é(u‘ cos @ + w' sin @) + % ey (20)
€ = llf- (21)

¥ = Z(w' cos @ - u' sin Q) (22)

€ = N - vNg €g = Ny - VN (23)

From equations (20), (21), and (22) the following compatibility equation may be
obtalned:

1
T
cos @ - ¥ sin @ = (__2)_ + % ey®cos @ (24)

€t a

This equation will be used In the next section to obtaln a solution for the
rotation V.
General Solution of the Equations

A closed form solution of the governing equations (egs. (18) to (23)),
which is accurate to within errors of order of magnitude O(el 2) with respect

to unity, is obtained by using boundary-layer methods and asymptotic integration.

(See, for example, refs. 7, 8, and 9.) At the start, assumptions which involve
orders of magnitude are made which are verified later by the solution. Near an
edge where boundary or continuity conditions are prescribed, it is assumed that
a boundary layer exists. Within the boundary layer it is further assumed that

the rotation ¥ = 0(e"1/2), ana ' = o(e-/2)y = o(e-1), f ¥ dt = 0(1), and




(rNg)' = 0(1). The stresses Ny and N, are assumed to be 0(1) everywhere.
Outside the boundary layer, ¥ = O(1).

The solution is to be obtained first by solving the equilibrium equations
(eas. (18) and (19)) for N and Ny in terms of the rotation ¥, and then by

substituting these results via equations (23) into the compatibility equation
(eq. (24)) to obtain a single equation for V. ZEquation (18) is integrated to
give

rNg(sin ® + e cos ) =c - g(&) (25)

where ¢ 1s a constant of integration and

3
a(t) = [ arpy o (26)

Since € is small, equation (25) is used to write Ng as

N = %—ézggél(l - ey cot @) + 0(€) (27)

This step limits this method to values of ¢ that are not too small (i.e.,
those for deep membranes) so that cot @ does not become too large. It is
also noted that the term with e} in equation (27) is retained because it will
be differentiated later, and therefore its order of magnitude will be increased.

Now, in order to calculate NG’ it is necessary to differentiate rNg;

this term is given by

L a cos @ ey' cos g\ PV 1/2 8
(rNg) (e g)<R§ sinp * sinZp ) sin @ * O(e ) (28)

The term Ny is obtained by using equations (19), (27), and (28) and is
written as

o L‘ég—)(ﬁg w o) =y cor g+ xeg + o) (29)
P

The stress-strain equations (egqs. (23)) are used next to write the compatibility
equation (eq. (24)) in the form



(Ng - vNé)cos ©® - V¥ sin @ = gfggl— - é(rNg)' + % e¥°cos @ (30)

If the expressions for the stress resultants are now substituted into equa-
tion (50), the following equation for the rotation ¢ is obtained:

(c -glcosp (e - g)cos 9/a :
r sin ¢ * o sinap (ﬁg + ey ) + I'Py COS @ cot ¢ - rpy COs @

1

- E (rpH - rpy cot w) - éi—i;f%;(zé eW'>' - <§§_§;§§5>'(1 + 25 ey)
- vr(pv sin ¢ + py cos w) =¥ sin @ + % eVocos @ + 0(61/2) (31)
The solution for V¥ in equation (31) can be written as
Vo=V + Vp (32)

The term wL is the result of linear membrane theory and is of the order of
magnitude unity. The solution for Yy can be obtained readily from equa-
tions (18) to (23) by setting € = O. The first term in equation (32),

namely vV, is of the order of magnitude 0(6'1/2) and represents a homogeneous
edge solution which decays rapidly away from an edge.

When equation (32) is substituted into equation (31) various terms of
linear membrane theory are canceled identically by the linear expression
for Vg (i.e., WL is subtracted out at this stage) so that what remains is

given by

- R '
V. sin p = (¢ - g)cos ¢ evg! + I Lg_;_g)_(_g - .) L1 eweecos v

o sinp Re sinfp\® ¢ 2
'R
c-8 g ' 1/2
+ ey, + Ole (33)
<R§ sinam> < © ( )

The assumption is now made that the membrane geometry is sufficiently smooth so
that differentiation does not increase the order of magnitude of the quantities
@, r, and Rg. Furthermore, if previous boundary-layer assumptions are

invoked and only large terms of order 0(6'1/2) are retained in equation (33)
which has a relative error of O(el/e) compared with unity ), the following

10




boundary-layer equation for V., 1s obtained:

Vo' + = a(E,c)ye = O (34)
where
24513
q(g,c) = m
r(ec - g)

The solution of equation (34) can be found by noting first that it is a differ-
ential equation which contalns a large parameter, namely, l/e. Such equations
are discussed in reference 8. Accordingly, it is convenient to make the fol-
lowing transformations for dependent and independent variables. Let

B = oMMy, ax = oX/2at (35)
Equation (34) becomes
2
g [ _
— - I:-e-+ pl(x)]ﬁ =0 (36)

where

_1q" 5 (a9
Py (x) L g2 16 3

The quantity pl(x) is continuous and order of magnitude unity <this holds for

smooth loading so that q" = E—% = 0(1) | and can therefore be neglected with

ag
respect to l/e. This approximation is well within the accuracy of the present
solution. The solution for B, then, is clearly of the exponential type and
taking the solution, which decays away from the edge gl, gives the following

boundary-layer solution for Vg :
g
¥o = da~1/*(g)exp[- L f a1/2(¢)at (37)
Ve £,

The assumption that We is 0(6‘1/2) implies that the constant of integra-
tion d in equation (37) is 0(6'1/2).



Now if the membrane has two edges it is assumed that they are sufficiently
far apart so that the boundary-layer solutions can be treated independently of
each other. (Note that, in general, d can take on a different value for the
boundary layer near the other edge 52.) Once the rotation is calculated with

equation (32), all other quantities that are expressed in terms of V¥ can be
determined. In particular the expressions for the stresses Ng and ‘Ne are

given by equations (27) and (29).

The displacements u and w are now to be determined. For brevity the
symbol &; (i = 1 or 2) will represent the value for either of the edges £y
or £,. By using equations (21) and (23) together with the expressions for the
stress resultants Ng and Né, the displacement u near edge gi can be

determined:

;
u= - -rfcllﬁ - rs(¢) + % rf (€ Jexp| - —lﬁ f’g dM/2at || + oet/2)  (38)

i
where

£ (e) = o®sin o) + va?sinaw
1 TR

S(&) = rpy cot ¢ - rpy

The first two terms in equation (38) represent the linear membrane solution
for u, and the third term (a decaying exponential) is a boundary-layer contri-
bution due to the rotation We'

From equations (20) and (22) and from previous relations the following
expression for w' 1is obtained:

3
w'=°°(c‘g)(1+ L2 )+'/Ed Y exp(- = f o*/2a¢
g

r Ry sin @ @3/ sin @ © Ve .
i

+ avS sin @ + o cos @ - % eVCsin @ + 0(61/2) (39)

Equation (39) can be integrated to give

12



:
= o, (&) - £, (&) o at + ofl/2 (40)
w = cfy " + “/;N cos ¢ + (e )

where

3
f = & _va'—.d_
5(&) L/;N (r * Rg sin ¢) 3

3
£, (&) = k/; (%? + ﬁgzg%ﬁ—$ - avS sin @)dg
N

The constant of integration in equation (40) has been incorporated into the
Jower limit EN of the integrals which appear. If the expression for the

rotation ¥ (given by egs. (32) and (37)) is used in equation (40), the dis-
placement w near the edge gi can be written as

w=c —E—d e <- q(gi) - > l/2 L
£5(8) + £5(8) qi/h(gi) fo(81)exP —L |t - &y + o(el/2) (n)

where

13
f5(§) = L/;N @ cos @y dE - fh(g)

f6(§) = a cos @

The first two terms in equation (41) are the result of linear membrane theory.
In arriving at equation (41), the facts that the boundary layer is exponentially
decaying and that q(¢) and fg(&) are smooth functions (i.e., q'(&) and

f6'(§) are 0(1)) have been used to evaluate approximately (within the accuracy

of the present solution) the following integral:

fg; (8D, dE =~ Z—i% f: exp<- \/a(%_i)lg - gi|>
- Zifiz;)r ( F & - ) (42)

13



The lower limit &y of the integral in equation (42) is replaced by o with
negligible error because of the rapid decay of the integrand and because gN

has a value which is outside the boundary layer (given in the section on bound-
ary conditions).

Boundary Conditions

If the boundary conditions are prescribed with respect to displacements,
and if the membrane is attached to the hubs at each edge §&; (i = 1,2), the

displacements must vanish there. If the two hubs are equal in size and the
membrane shape and loading are symmetrical about a midpoint between the hubs,
then the lower limit £y in the integrals assoclated with equation (41) is

taken to be the value of & at this midpoint. From symmetry, it is clear that
w(gN) = 0.

The constants of integration ¢ and d are now evaluated explicitly for
the class of problems where boundary conditions are prescribed on displacements.
If the membrane of revolution is attached to hubs, the boundary conditions at a
hub, say at & = gl (the hub at €, can be treated similarly and independently

of gl), are given by

u(ty) =0 (43)

“(e2)

The solutions for the constants of integration are given for the case of sym-
metry between hubs since they will be used for the particular problems treated
in appendix A. The extension to the case of no symmetry between hubs, although
not considered in this report, offers no new difficulty. In the symmetrical
case it is sufficient to consider only one hub at £ = §;. The two boundary

conditions (eqs. (43) and (L44)) yield two equations for the constants c
and d. From equations (38) and (41) the following two conditions are obtained:

(k)

]
Qo

) fl(gl) . /Edf2(§l)

- st = N
a(15¢) q5/4(gl,c) 5(81) = © (45)
and
Ved
cfz(&1) + T=(t) - ——mM8— £, (E. ) =0 (46)
5(82) + *5(51) SP(t0) 6(*1)

1k




When equations (45) and (46) are solved, ¢ and d are given by

(st6 - fofp)riasin o - efife (47

rf £ Jsin ¢ - £,f
372 176 E=Ey

3/4
q f= + f
q = L2 (° 3 5) (48)
Ve e
§=§l

Note that the order of magnitude of 4 is O(e'l/ 2) for smooth loading. Equa-
tion (37) then shows that the assumed order of magnitude of V. is confirmed.

With ¢ and d +thus determined by equations (47) and (48) all relevant quan-

tities may be calculated. Stresses and displacements are calculated in appen-

dix A for particular problems by specializing the foregoing general results.

If the boundary conditions are prescribed with respect to stresses, the
following equations must apply at an edge:

It
[=s

Ng(cos’m - ef sin @) (49)

Ng(sin ® + ey cosp) =V (50)

These equations are the nondimensional form of equations (13) and (14). The
stress resultants given by H and V cannot be prescribed independently of
each other but must be related by the following expression which is obtained
from equations (49) and (50):

Vecoso - Hsino = 0(61/2) (51)

Equation (51) is necessary in order to insure that rotations are not greater in
magnitude than the order of the square root of the strains, since this is the
basis for the present theory. However, for the physical problems involving
deep membranes which actually occur in practice, the behavior implied by equa-~
tion (51) is the usual case. This is clarified by the cases treated in appen-
dix B, which presents more specific indications of actual stress boundary
conditions.

15



RESULTS AND DISCUSSION

Particular problems are solved in the appendixes which illustrate the use
of the general results obtained. Stresses and displacements are calculated in
appendix A for the special cases of a spherical membrane under internal pres-
sure and of a rotating spherical membrane, both attached to hubs. These calcu-
lations are performed by specializing the general formulas in the text. The
results of these calculations, which give stresses and displacements, are shown

in figures 2 to L.
In figure 2 the maximum physical rotation Eé,max at the hub is plotted
against hub angle £ for several values of, the small parameter € = %E. In

the parameter €, R 1is the radius of the membrane, whereas the quantity p
represents the internal pressure for the pressurized membrane and the centrif-

ugal force per unit area (p = theR) for the rotating membrane. In the case of
the pressurized membrane, Wé,max is independent of the hub angle gl whereas

in the case of the rotating membrane it decreases with gl. Figures 3 and 4
show the nondimensional stress resultants Ng and Ne and the displacement w

in each case, which occur near a hub having a hub angle gl = 450. The differ-

ences between linear and nonlinear membrane theory are clearly indicated by the
boundary-layer regions near the hub. The curves for the displacement w show
that linear theory does not allow satisfaction of the boundary condition at the
hub (i.e., w(gl) = O) s0 that nonlinear membrane boundary layers are needed

here to accomplish this condition.

Although the stresses are positive for the pressurized spherical membrane,
it is interesting to note that, in the case of the rotating spherical membrane,
the circumferential stress Ne becomes negative in a small region near the hub

so that wrinkling can occur in that region.

In appendix B, two problems are given for which boundary conditions are
prescribed on both stresses and displacements. In the first problem, juncture
stresses are calculated for a cylindrical pressure vessel. Equations (52)
(egqs. (B19) in appendix) give the result of computing the membrane stress
resultants Ng and Ne at the juncture of an arbitrarily shaped cap and a

cylinder. The stresses are

l._l

Ng=1- . (52)

N:. =
3
MRE,J

2
The results in equations (52) show that Ng is always positive, whereas Ne
can become negative when the ratio of the meridional radius of curvature of the

cap at the juncture to the radius of the cylinder is less than 1/4 (i.e.,

Rg g <5)- It is interesting to note that the result of linear membrane theory,
>

L
16




obtained by dropping ey.' in equation (53) (eq. (BS) in the appendix), indi-
cates that Ne becomes negative when RE,J is only less than 1/2.

2 a r
Ny = - —— (= ' - :
0= - Sin%(Rg + b ) s (53)

Also, in contrast to nonlinear membrane theory, linear theory yields discontin-
uous stresses at the juncture. These stresses are shown in figures 5 and 6 for
the case of a spherical and a torispherical cap, respectively. The stress Ny

is plotted in these figures, with the boundary layers necessary to maintain con-
tinuous stresses.

The second problem in appendix B concerns the arrest of a moving rigid
mass attached to a pressurized spherical membrane. This problem shows that the
general results in the text offer a convenient means of obtaining the necessary
relation between the unknown edge stress resultant and deflection at points of
contact between the mass and membrane (i.e., relations similar to influence
coefficients). Maximum stresses and displacements are calculated for a range
of values of initial velocity of mass. The results are shown in figure 7 where
the quantities are plotted against a kinetic energy parameter

el )

€pR3 by sin £y
CONCLUDING REMARKS

Closed form analytical solutions have been obtained for the equations of a
nonlinear membrane theory in the case of deep membranes of revolution under
arbitrary but otherwise axially symmetric surface loads where the membrane
geometry and loading are also assumed to be smoothly varying. The solutions
are found to be accurate to within errors of the order of the square root of €
with respect to unity, where € 1s a small parameter which has a magnitude
characteristic of strains. The nonlinear behavior is represented by exponential
type terms which decay rapidly away from the boundary.

Expressions for the constants of integration which appear in the solutions
have been obtained in general form for the class of problems in which boundary
conditions are prescribed on displacements. The general results can be special-
ized in a straightforward manner to handle specific problems. This specializa-
tion is accomplished in the particular cases of a pressurized membrane and a
rotating spherical membrane, both attached to rigid hubs. The stresses and
displacements for these two examples exhibit the expected boundary-layer behav-
ior. Also, whereas the stresses are always positive in the pressurized mem-
brane, the circumferential stress can become negative in the rotating membrane
for certain values of the parameter €, so that wrinkling can occur.

17



For problems in which boundary conditions are prescribed on stresses, it
is found that, according to the present theory, the vertical and horizontal
edge stress resultants cannot be prescribed independently of each other but
must be related in a particular way. Two examples are given in which boundary
conditions are prescribed on both stresses and displacements. The first con-
cerns Juncture stresses for a cylindrical pressure vessel for which boundary
layers eliminate the usual stress discontinuities characteristic of linear mem-
brane theory. Also, in this case, nonlinear theory predicts that negative cir-
cunferential stresses at the Jjuncture can be avoided if the ratio of the merid-
jonal radius of curvature of the end cap to the radius of the cylinder at the
Jjuncture is greater than 1/4. (Linear membrane theory gives 1/2 for this
ratio.) The second example involves the arrest of a moving rigid mass attached
to a pressurized spherical membrane. For this example, the general solution
provides a convenient linearized form for the necessary relation between edge
stress and corresponding edge deflection (i.e., similar to influence coeffi-
cients). This allows a straightforward determination of maximum stresses and
deflections for a range of initial velocities of the mass.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., November 22, 1965.
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APPENDIX A

PARTICULAR PROBLEMS WITH BOUNDARY CONDITIONS ON DISPLACEMENTS

Two examples are given for deep membrane problems in which boundary condi-
tions are prescribed on displacements only (i.e., the membranes are attached to
rigid hubs). The solutions are obtained by a straightforward specialization of
the general results given in the text.

Pressurized Spherical Membrane Attached to Hubs

In the special case of a spherical membrane attached to a hub and of rad-
ius R and internal pressure p, the various quantities defined for the general
problem are specialized. From equations (1), (2), (3), and (17) and from other
relations the quantities are reduced as follows:

Re = Ry = 1 a=1 P =t r = sin ¢ gN=g
(A1)
a =R Pp =P p, =1 Py = 0 € = %g
From equations (15), (16), and (17)
Py = sin € + ey cos & (A2)
py = -(cos & - ey sin &) | (A3)

The solution for the rotation given by linear membrane theory WL can be found
from equations (18) to (23) by setting € = 0. 1In this case

¥, =0 (Ak)

The various other relevant quantities which appear in the general solution given
in the text may now be evaluated.
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g(8) = -  sint

() =1+ v

fg(g) =1
3
_ 1+ v _ é
f5(§) = ;/; , Sin dt¢ = (1 + v)log tan A
3 > (85)
£, (&) = - \/P = é Y sin £ 4t = = ; Y cos &
n/2
(1 -
f5(§) = ( 5 ) cos E
f6(§) = cos §
s(e) =1 J

The constants of integration ¢ and d given by equations (47) and (48) can
now be calculated by using equations (A5). The solution for c is

-1+

1+ v 1l -v
cos gl( 5 5 )
=0 (A6)

Cc =

£
(1 + v)(log tan 2% - cos &y csczgl)

Then from the definition of q(&) obtained from equation (34), aq(t) =2 so
that the solution for d is

1 1-v
d=-= A
7e o/ (AT)
The maximum rotation at the hub & = &; 1is (see eq. (37))
“1/% 1-v
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The solutions for the stresses and displacements are determined from the gen-

eral results given by equations (27), (29), (37), (38), and (41). For this
problem they are

N = 3 \
oororea VI

.. '(—}Q_i—vl e_\/é_ |e-5, | ) (A9)
R T )

wz'(l_g“’)_cosg+ =V cos gle_E'Hll J

The solution given by equations (A9) is accurate to within errors of order

O(el/E) with respect to unity, as was indicated by the general results in the
body of the paper. Also note that the linear membrane solution is exactly what
remains when the exponential terms are dropped from equations (A9).

Rotating Spherical Membrane Attached to Hubs
For a rotating spherical membrane the radius of the membrane attached to
a hub is also denoted by R. However, the characteristic loading quantity p,

which is discussed in relation to equations (17), arises from centrifugal
forces and is given as

where p is the mass density of membrane material and Q 1is the frequency of
rotation. The relevant quantities used for the rotating spherical membrane are
given as

Rg‘——-Re‘—"l a =1 CP=§ I‘=Sin§

rja

2 2 (A11)

W
Il

R P = phﬂeR Pg=rT € =
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The linear solution for the rotation wL is obtained from equations (18)

to (23) by setting e = 0. The result is
¥y, = -(3 + v)sin & cos ¢

Under these conditions the functions of & are given by

g(e) =0
£1(6) =1+ v
f2(§) =1
) + v £
f5(g) = U/\ . dt = (1 + v)log tan =
x/2 sin 3 2
£
£, (&) = \/P v sindt dt = -v cos & + v cos’t
n/2
f5(g) = cosdt + v cos ¢t
fg(E) = cos &

s(t) = -sin?t

The constant c¢ given by equation (47) then reduces to

cos &4

£
cos §l csc2gl - log tan 2%

For this case, from equation (34),

sin2§
q(élic) - c -

(a12)

(A13)

(A1k)

This result, together with equation (48), gives the following result for d:
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d = ql/u(gl,c)we’max (A15)

The expression for We,max is now

c(l + v)ese &7 - sin5§l
we,ma.x = ) VE

The stresses and displacements are then given by

(A16)

c
N, =
€ sinZe A
cos &7 - cos gl
Ny = - ¢ l-\/ssing sin €& V¥ exp I +sin2E
6 sin2§ c 1 e,max -/EE

|cos €1 - cos &I

- (3 + v)sin & cos &

Ve > (A17)

C—e(1 + V) /ec sin &7 |cos E1 - cos 51 3
u = oin t + oin £ we,max exp —JEE + sin-”€

w = c(l + v)log tan % + cosdt + v cos &

V = Ve max €XP

sin §l
- Jec cot glﬂfe’max exp| - _J—G—C— 'E, - E,ll J

The form of these equations and the numerical results based on these equations
are essentially the same as those given in reference 2.
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APPENDIX B

PARTTICULAR PROBLEMS WITH BOUNDARY CONDITIONS

ON BOTH STRESSES AND DISPLACEMENTS

End Cap Attached to a Cylinder Under Internal Pressure

Stresses and displacements are calculated at the juncture of an end cap of
arbitrary but rotationally symmetric shape and a cylinder under internal pres-
sure. Solutions are first obtained separately for the cap and cylinder by
using the general results found previously. Then the constants of integration
are evaluated by using suitable matching conditions at the Jjuncture. For this

problem a boundary layer is expected at the juncture (i.e., ® = g, fig. 5).

Cap solution.- The internal pressure p 1is taken as the characteristic
loading quantity of equations (17). For the cap solution then, p, = 1 and

Py = 0 so that the horizontal and vertical loads are

Py = sin @ + €y cos ¢ (B1)

Py = -(cos @ -~ eV sin @) (B2)

Also, for the cap solution, the quantity a wused in equations (17) is taken as
the radius of the cylinder Rj so that the small parameter 1s given by

PR
e:._L
Eh
Now, from equation (26) and with the relation r' = a cos @
2
r
g(e) = - - (B3)

Equation (27) is next used to obtain an expression for Ng. The constant of

integration ¢ is taken to equal zero so that the solution reduces to the
linear membrane solution outside of the boundary layer. The stress result-
ant Ng is then given by

Ne = ——— (Bh)

2l




From equation (29) Ny is obtained:
2
r T
Ny = - ————— + el ——— (B5)
0 2m 51n%p( ) sin @

The boundary-layer solution for the rotation V¥, 1is given by equation (37) and
in this case becomes

t5
- 1
¥ = da~/*()exp - = 'fg aL/2(¢)at (B6)
where
_ 2a2sin5¢
a(e) = 03

and EJ is the value of & at the Jjuncture. The displacements can be obtained

with the help of equations (38) and (41) and are given by

_ e a . r v
v 20, sinZ$(§E * GWe ) * sin ¢( i 5) (B7)

-
f7(§) /u( ) EJ eXp< \/ IEJ - §|> + ey (B8)

where
f,(¢) = \jpé @ cos QY + = + ——ZEEE——— avr \dg (B9)
T 0 v, 2~ 2R sin @
Cylinder solution.- For the cylinder solution, o =1, r =1, and ¢ = g .

Note also, for this solution, that the coordinate & 1s the ratio of the dis-
tance along the cylinder to the radius Rj. The corresponding solutions for

stresses and displacements are obtained and, to an accuracy with an error of

0(61/2) compared to unity, give
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Ng =1 - coel’ (B11)

u=1-coef,' - vey (B12)
W = (02 - v)§ (B13)
Ve = 4y exp<— iee |t - gJ[) (B1k)

The constants of integration are now evaluated by requiring that the displace-
ments are continuous and the forces are in equilibrium at the Jjuncture of the
cap and cylinder. The general form for the boundary conditions is given by
equations (13) and (14), so that the matching conditions are as follows. At

the Jjuncture, where o = g, these conditions require that

Ueyl = Ueap (B15a)
Yeyl = Veap (B15Db)
(We)eyr = (e )cap (B16a)
Meovr = Mecap (B16Db)

The subscripts cyl and cap vrefer to the cylinder and cap. The constant c¢q

appears only in equation (Bl5b), so that the other three conditions can be
solved directly for d, cp, and d;. Equations (Bl6a) and (B16b) yield

1
C2 = -é'
a (B17)
d. =
b
Equation (Bl5a) is then used to get
a
g=-—= |9 (B18)

21/413&’J he
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where RE,J and Ly denote values of RE and o at the juncture. If the
stresses are now computed at the cap-cylinder juncture, it is found that Ng
and Ne are given by

1

1
N, == N, =1- (B19)
E 2 e uRg’J

Arrest of a Moving Mass by a Pressurized Spherical Membrane

The fact that masses may be attached to pressurized spherical membranelike
structures during deployment of space vehicle packages makes it of interest to
calculate the maximum stresses which would occur in the arrest of such masses.
The general solutions in this paper offer a convenient means for calculating
these stresses. 1In the present problem it is assumed that, in the deployment
operation, no extensional strains are suffered by the folded membranelike
material as it unfolds until the spherical shape is completely formed; it is
also assumed that the velocity of the moving mass is known (from other consid-
erations) at this instant. From then on membrane strains exist and contribute
to the arrest of the moving mass.

For the pressurized spherical membrane (see fig. 8),

Ry = Ry = 1 «=1 Q= ¢t r = sin ¢ Ex = g
(B20)
- PR
a =R pn:.p pt=o €=ﬁ
From equations (15), (16), and (17)
Dy = -(cos & - ey sin E) (B21)
py = sin & + e cos & (B22)
From equation (26)
2
g(t) = - = : (B23)

The edge of the membrane which is attached to the rigid mass M will suffer
no displacement U while the mass is moving (fig. 8). At the same time there
will be a vertical edge force V because of the deceleration of the mass, so
that the appropriate boundary conditions at £ = £y, in dimensionless form, are
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u(gl) =0 (B2k)
Ng(sin g, + ey cos ?»1) =V (B25)

Equation (B23) and equation (27) yield

o+ sin2§

N - — 2 (1 - ey cot £) + 0(e) (B26)
sin2§

If this expression for N, is substituted into equation (B25), the terms
O(el/g) cancel ildentically so that the following relation is obtained:

¢ 1 .
V = EEE_EI + 3 sin £, + 0(e) (B27)

Next, an expression for Ne is obtained from equation (29):

1l . 2)
¢ + = sin<t 3
Ny =1 - ( 2 5 1 - JRagt/ exp - f /24 (B28)
sin=¢ -ye gl
where
q = sin2§
sin2§
¢+ —5

If the boundary condition (eq. (B24)) is now applied and terms of order

0(61/2) are neglected since they are small compared to unity, the following
equation is obtained:

- [, 1 - 1/4 =
u(gl) <sin2§l * 2)E vy - e (gl)] 0 (829)
Equation (B29) can be used to calculate the constant d:
1/h
1
c + = sin®¢
gl 2 1 (B30)

€ .2
sin §l
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An expression for the displacement w at & = §l will be needed. TFirst, note
that

s(g) = -1 )

f3(§) = (1L + v)log|tan %' > (B31)

£,(8) = == cos ¢ ]
Equation (41) evaluated at ¢ = &, gives

w(81) = A(E)V - B(%) (B322)
or

_ Y1 B
V== = (B32b)

where

£y \
tan - | - cot gl/

3
tan f%l}

Equations (B32) provide a relation between the as yet unknown V and the dis-
placement w at & = gl. Another relation is needed to determine the maximum

A(gl) = (1 + v)(sin g, log

B(gl) = %lgl - v)cos £, + (1 + v)sin2§l log

deflection wmax(gl), which occurs during the arrest of the mass. This relation

can be obtained by equating the work done by the edge resultant V to the
kinetic energy of the moving mass at the instant the spherical shape is formed.
When written in terms of physical quantities this relation is

-

W
l,max .. _ -
-2nR sin & f ’ Vawy = %— 2 (B33)
0

Equation (B33) can be written in terms of nondimensional quantities:

W
- [ v e =g (B34)
0]
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1 M2
by sin Eq epR

where the nondimensional parameter kE <kE = > 1s seen to be

.proportional to the initial kinetic energy of the mass. The integration in
equation (B34) can be performed directly if the relation between V and wy

given by equations (B32) is used. The following result is then obtained:

W%,max B(gl)

A(t1) ’ A(&y)

The maximum deflection Wi max can be determined from equation (355). Equa-
J

tions (B27), (B30), and (B32) are associated with this deflection and can be
used to calculate e, d, and V, and therefore the maximum stresses. Maximum
values of Ng, Né, w, and ¥, at & = & (gl = 150) are plotted in figure 7

Wi,max = -kg (B35)

against the parameter kE.
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Figure 3.- Displacement w near hub (gl = 1#50) for pressurized and rotating
spherical membranes (v = 0.3).
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Figure 7.- Maximum stresses Ne’max(gl) and Ng,max(gl), dis-

placement wmax(gl), and rotation quantity el/zwe,max(gl)
plotted against kinetic energy parameter kE (§l = l5°; v = 0.3).
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