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NATTIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

COOLING CHARACTERISTICS OF AN EXPERIMENTAL TATL~-PIPE
BURNER WITH AN ANNULAR COOLING-AIR PASSAGE

By William K. Koffel and Harold R. Kaufman

SUMMARY

The effects of tall-pipe fuel-air ratio (exhaust-gas temperatures
from approximately 3060° to 3825° R), radial distribution of tail-pipe
fuel flow, and mass flow of combustion gas on the temperature profiles
of the combustion gas and on temperature profiles of the inside wall of
the combustion chamber were debtermined for an experimental taill-pipe
burner cooled by alr flowing through an insulated cooling-alr passage
1/2 inch in height. The effects on inside-wall temperature of varying
the mags-flow ratio of cooling-air to combustion-gas mass flow from
approximately 0.067 to 0.19, inlet cooling-air temperature from about
520° to 1587° R, and combustion-gas mass flow from 22.3 to 13.8 pounds
per second were also determined.

Large clrcumferential variations existed in the combustion-gas tem-
perature near the inside wall. Thesge variations resulted 1n similar
variations in the inslde-wall temperature. The circumferential varia-
tions formed consistent patterns that were similar, although different
in magnitude, for all configurations tested.

The two extremes in radial distribution of tail-pipe fuel flow, high
fuel concentration toward the combustion-chamber wall and high fuel con-
centration in the center of the combustion chamber, changed the circum-
ferential average inside-wall temperature 235° F at a station 48 inches
downstream of the flame holder. The configuration having a high fuel
concentration near the wall presented a more severe cooling problem as
the circumferential variation was greatest for this configuration.

The spread of flame to the inside wall, as determined from measure-
ments of combustion-gas temperature near the wall, was practically
unaffected by fuel-air ratio. However, the flame spread to the wall was
a function of radial fuel distribution. At no time did the flame impinge
on the wall within 24 inches downstream of the flame holder. Radiant
heat transfer to this section of the inside wall was insufficient to
require wall cooling in the first 24 inches, if the tall-pipe materials
could withstand nonafterburning operation without cooling.
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With the most uniform distribution of taill-pipe fuel tested and an 1
inlet cooling-air temperature of 520° R, an average inside-wall tempera-
ture of 1300° F at a station 48 inches downstream of the flame holder
required mass-flow ratios of 0.12 and 0.09 with exhaust-gas temperatures
of 3825° and 3435° R, respectively. When the distance was increased to
56 inches downstream of the flame holder, a mass-flow ratio of 0.115 was
necessary with an exhaust-gas temperature of 3435° R.

At a mass-flow ratio of 0.145, the inside-wall temperature 48 inches
downstream of the flame holder was increased about 4/10° per degree
increase in Inlet cooling-alr temperature.

The temperature of the structural wall of an insulated tail-pipe
burner having an inner liner would be practically the same with or with-
out tail-pipe burning.

INTRODUCTION

The combustion-chamber walls of tail-pipe burners must either with-
stand high operating temperatures or be cooled to temperatures that give i
adequate strength and service life. The trend toward nonstrategic mater- .
ials and improvements in performance and the operating range of tall-pipe
burners have made cooling more critical. Many methods have been consid-
ered for cooling the walls of a tall-pipe combustion chamber including
the flow of air through an annular passage surrounding the combustion
chamber, the flow of turbine outlet gas through an annular passage
formed by a concentric inner liner, the establishment of a cool-air film
between the walls and the combustlon gas by means of a porous wall or a
geries of annular nozzles, as well ag ceramic coatings and fuel additives
that coat the walls and reduce the radiant heat transfer to the walls or
lower the wall temperature by their insulative properties. Many combi-
nations of these methods have been and are being investigated at the
NACA Lewls laboratory. Considerable attention has been given to the ann-
ular cooling-air shroud and to the imner liner and to their use in com-
bination.

An analytical method was developed (reference 1) for calculating
the maximum average wall temperature In tail-pipe combustion chambers
cooled by the parallel flow of alr through an annular cooling passage
or cooled by turbine discharge gases flowing between an inner liner and
the combustion-chamber wall. The method was based on the simplifying
assumptions of a uniform transverse temperature profile, a linear rise

in combustion-gas temperature from flame holder to exhaust-nozzle exit, S

and the fact that radiation fram the combustion gas to the wall was
twice the nonluminous radiation of a completely burned stoichiometric
mixture of octane and air. Wall temperatures or coolling-air flows cal-
culated by the method of reference 1 have checked well with values

QNFR2
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measured on experimental -tail-pipe burners in which a uniform transverse
temperature profile was approached. Agreement was poorer for burners
producing nonuniform profiles. Some effects of changing the flame-
holder design and tall-pipe fuel distribution, and consequently the
transverse temperature profile, are glven in reference 2.

The cooling and pumplng characteristics of a tail-pipe burner hav-
ing an inner liner and an external cooling-alr shroud with an eJjector
nozzle are presented 1In reference 3, and an analytical method is devel-
oped In reference 4 for predicting the pressure drop through the cooling
passages. These investigations on tall-pipe-burner cooling had limited
ranges of cooling~alr flows and inlet cooling-asir temperature and no
attempt was made to determine the combustion-gas temperature proflles as
effected by changes in internal configuration and to relate them to the
temperatures of the combustion-chamber walls.

This report includes some results of an experimental investigation
on a tall-pipe burner which was extensively instrumented. Ranges of
independent control of the cooling-air temperature, flow, and pressure,
as well as the combustion-gas temperature and flow wider than those given
in the references are presented herein. The data presented were obtained
with a combustion chamber having a constant-flow area and an annular cool-
ing passage of constant height. The effects of exhaust-gas temperature
level, distribution of tail-pipe fuel across the turbine annulus, and
mass flow of combustion gas on the temperature profiles of both the com-
bustion gas and the inside wall are presented.

APPARATUS

Engine

AAAAAAAAAAA P I e I - I I XB b ol o T T T=

A conventional and axial-flow uu¢uudct enginc
investigation. The sea-level static thrust of the engine was approxi-
mately 3100 pounds at a rated engine speed of 12,500 rpm and a maximum
turbine-outlet temperature of approximately lZOOO F (1660° R). At this
condition the air flow was slightly less than 60 pounds per second.

. .
waa 1 A 3 +thia
was usSed 1n Lnls

The fuel used in the engine and the tall-pipe burner was MIL-F-5572,
grade 80, unleaded gasoline and had a lower heating value of 19,000 Btu
per pound and a hydrogen-carbon ratio of 0.185.

Installation
The standard tail plpe was replaced by an experimental tail-plipe-

burner assembly attached to the turbine flange. The engine and the tail-
pipe burner were mounted on a wing section in the 20-foot-dlameter

p



NACA RM ESI1KZ23

® -
test section of the altitude wind tunnel. Refr‘igérated ajr vas
supplled to the compressor inlet through a duct from the tunndél make-up
alr system. Thils duct was comnected to the engine with a labyrinth seal,
which made possible measurement of thrust with the tunnel balance system.
Aly was throttled from approximately sea-level pressure to the desired
pressure at the compressor inlet; whlle pressure in the tunnel test sec-
tion wes maintained at the desired altitude. Cowlings and falrings were
omitted from the englne and the tail-pipe burner in order to simplify
the installation and %o facilitate inspection and servicing of englne,
tall-plpe burner, and instrumentation.

Tall-Pipe-Burner Assembly

The entire tail-pipe-burner assembly was fabricated of 1/16-inch
Inconel. The over-all length of the engine and tall-pipe burner was
approximately 16.1 feet, of which the tail-pipe diffuser, the combustion
chamber, and the nozzle were 2, 5, and 1 feet, respectively. Figure 1
is a schematic drawing of the Ilnstallation showing the fuel-spray bars
in the annular diffuser, the cylindrical combustion chamber with insula-
ted cooling passage, and the fixed-conical exhaust nozzle. The flame
holder had a single V-gutter with sinusoidal corrugations on the trall-
ing edges. The V-gutter had a mean diameter of 18 inches, a mean width

across the corrugatlons of 14§ inches, and an included angle of 359, The

blockage at the downstream face of the flame holder was about 23 percent

and the velocity at the flame holder under the conditions of thls inves-

tigation was approximately 480 feet per second. The cooling passage had

a congtant height of 1/2 inch and was insulated with 1 inch of refractory
cement.

Fuel-gpray bars. - Twelve radial fuel-spray bars were equally spaced
8.75 Inches downstream of the turbine flange and 13.25 inches upstream of
the flame-holder center line. Each bar had seven holes (number 76 drill)
that sprayed fuel normal to the gas flow. Three different sets (twelve
bars per set) of spray bars were used to vary the fuel distribution across
the turbine discharge annulus. The first set (fig. 2(a)) produced a
nearly uniform fuel distribution with a slightly higher fuel concentra-
tion at the very center for fleme stabllity and piloting action. The
gsecond set (fig. 2(b)) increased the fuel concentration toward the
combustion-chamber wall and decreased the fuel flow in the center of the
combustion chamber. The third set of spray bars (fig. 2(c)) concentrated
more fuel at the center and decreased the fusl concentratlon near the
combustion-chamber walls,

Configurations. - The three sets of fuel-spray bars were used 1n
combination with four different exhaust nozzles to form essentially three
configurations as follows:

0%
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Configuration Fuel-spray | Exhaust-nozzle Figure
bars exit area
(sq ft)
A Set 1 1.846 3(a)
1.903
1.980
2.160
B Set 2 1.903 3(b)
c Set 3 1.903 3(c)
2.160
INSTRUMENT ATION

Because it was recognized that the combustion pattern would be
irregular and the temperatures to be measured were severe on thermocou-
Ples, as many thermocouples as practicable were used in order to obtain
representatlve average temperatures and to provide sufficlent thermocou-
ples 1f gome thermocouples should falil. Six instrumentation stations,

B to G (fig. 3), were provided along the length of the cylindrical com-
bustion chamber. Thermocouples were installed at station B for measure-
ment of the inlet cooling-air temperature. Stations C to F had six
groups of ingtrumentation, equally spaced around the circumference, for
measuring the temperatures of the inslide and outside walls of the tail-
Pipe burner and of the cooling air as well as the static and total pres-
sures of the cooling air. The temperatures of the inside and outsilde
walls were also measured at four points around the circumference at
station G, and the cooling-ailr temperatures and pressures at station G
were measured in the dlscharge ducts on the downstream plenum chamber.
The locations of the instrumentation at each of these stations, at the
exhaust nozzle, the cooling-alr metering nozzle, and the upstream plenum
chamber are shown in figure 4. The cross sectlion of a typical group of
ingtrumentation at stations C through F is shown in figure 5.

The means of providing for longitudinal movement due to thermal
expansion can be seen in figure 5. The platinum-rhodium - platinum
thermocouple probes extended through sliding seals in the outside wall
and the sliding channels connecting the inside and outside walls per-
mitted longitudinal movement of the walls.

The usual pressure and temperature instrumentation was installed at
several measuring stations through the engine. Fuel flows to the engine
and tail-pipe burner were measured with calibrated rotameters.

Wall-temperature measurement. - The temperature of the inside wall
of the tail-pipe burner was measured with chromel-alumel thermocouples
spot-welded to the outer surface of the wall (fig. 5). Conductive
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cooling of the Jjunction was reduced by strapping the leads to the wall
for 3/4 inch downstream of the Junction before extending the leads across
the cooling passage. The temperature of the outside wall was measured
by a chromel-alumel thermocouple welded into the head of a hollow oval-
headed screw (fig. 5). Conductive cooling of the Junction was negligible
because the stem of the screw was burled under the cooling-passage
insulation.

Cooling-alr temperature measurement. - The cooling-air temperatures
were measured by means of National Bureau of Standards type (fig. 6)
shielded thermocouples (reference 5). The radiation shield consisted of
a 1/4-inch length of 1/8-inch silver tubing which was slid over the bare
Junction and campressed to a biconvex alrfoil section.

Combustion-gas temperature measurement. - Combustion-gas tempera-
tures near the inside wall were measured by means of the platinum-
rhodium - platinum thermocouples shown in figure 7. Each thermocouple
probe had a water-cooled supporting stem and two thermocouples 1in para-
llel having a common hot Junction. The leads from the Junctlon were
axrranged 1n a cross to give mechanical support at high temperatures.
Negligible conduction error was obtained by means of the high length-
diameter ratio of the leads between the Junction and the cooled support-
ing stem. No radiation shleld was used because of the low emissivity
and absorptivity of the platlnum and platinum-rhodium wires.

Ges temperature profiles at station F were obtained by means of a
rake having seven sonic-flow orifice temperature probes (fig. 8). The
temperature of a gas sample flowing into one of these probes 1s obtalned
from a thermodynamic equation and 1s theoretically independent of radia-
tion effects (see reference 6).

The exhaust-gas temperature was computed (as given in appendix A)
from rake measurements of total pressure at the exhaust-nozzle exit and
the measured gas flow.

Accuracy

Four flight recorders were used because of the large number of ther-
mocouples and in order to reduce the recording time while maintalning
equilibrium conditions. The estimated over-all accuracy of the tempera-
ture measurements are as follows:

Wall temperature, OF « . « « ¢ v ¢ v 4 v 4 v 4 4 o o s e e o o oo %15
Cooling air, °F . . . . . . . O +10
Gas temperatures near the wall, "F . . . . . . . . ¢« « « « o« o « o +20
Sonic-flow orifice probe, °F . . . . . . . . v v « ¢« o « o « o« « o« #150
Exhaust gas temperature, OF e i e e e e e e e e e e e +50

[ala¥ 2z
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PROCEDURE

The geometry of the tail-pipe diffuser and the flame holder in com-
bination with the fuel-spray bars producing approximately uniform distri-
bution of fuel across the turbine annulus (configuration A) was shown,
in preliminary tests on a similar burner, to give good performance
and operating characteristics over a wide range of altitudes and
fuel-air ratios. Cooling characteristics of the experimental tail-pipe
burner were obtained with the seven combinations of exhaust-nozzle exit
area and fuel-spray bars, at pressure altitudes of 30,000 and 40,000 feet,
a flight Mach number of 0.52, and an engine speed of 12,500 rpm. It was
impossible to run the teste at lower pressure altitudes because the flow
of dry cooling air, at approximately atmospheric pressure from outside
the tunnel, was dependent on the difference in the atmospheric pressure
and the pressure 1n the tunnel test section. Dry refrigerated air was
supplied to the engine at 5050150 R. The total pressure at the engine
inlet was regulated to correspond to the desired pressure at each alti-
tude with complete free-stream total-pressure recovery.

Most of the data were obtalned by adjusting the tail-pipe fuel flow
to maintain an average turbine-outlet temperature of 1633°412° R; an
approximately constant exhaust-gas temperature was thus obtained for each
nozzle-exit area and mass flow. The remainder of the data were taken at
lower turbine-outlet temperatures.

The cooling-air flow and the cooling-air temperature were system-
atically varied while holding all other quantities constant.

The approximate range of variables investigated with a limiting
turbine-outlet temperature of 1633° are given in the following table:
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Configuration |Altitude Exhaust~ | Combustion- Mass Cooling-
(£t) gas temper-| gas flow ratio |air inlet
a;ure W, W /W i teilper-
g (1b/sec) ature
(°R) Te
(°R)
A 30,000 3060 22.1 0.0672 500
to to
.1872 1587
30,000 3240 22.2 0.1002 500
to to
.1917 1222
30,000 3435 22.3 0.0953 502
to to
.1796 1408
40,000 3265 13.8 0.1440 528
to
1340
30,000 3825 22.8 0.1374 515
to
.1906
B 30,000 3215 22.2 0.0985 495
to to
.1891 1223
c 30,000 3235 22.3 0.1420 524
to
1450
30,000 3764 22.4 0.1912 524

The cooling-~aly mass flow was controlled by flap valves on the out-
let ducts of the downstream plenum chamber. The static pressure in the
coolling passage was balanced agalnagt the statlic pregsure of the combus-
tion gas at station F by means of pressure-regulating valves upstream of
the air-metering nozzle in conjunctlon with the flap valves. When the
pressures were balanced, large pressure forces were transferred from the
hot, and consequently weaker, inside wall to the cooler outside wall.
This transfer tended to minimize any changes in cooling-passage height.
The cooling-air temperature was varied by means of a turbojJet can-type
combustor in the cooling-air supply duct downstream of the alr-metering
nozzle.

RESULTS AND DISCUSSION

Typical results of this cooling investigation are presented graph-
ically and the performasnce of the three configurations are tabulated in

SR
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tables I and II. The effects of exhaust-gas temperature level, radial
distribution of tail-pipe fuel flow, and combustion-gas mass flow on the
temperature profiles of the combustion gas are presented flrst because
of the influence these profiles have on the temperatures of the inside
wall.

Reproducibllity of Combustion-Gas Temperature Profiles

Circumferential profiles. - The combustion-gas temperatures near the
inslde wall, the temperature of the inside and outslde walls of the cool-
ing pagssage and the cooling-alr tempersture are plotted against the group
positions around the circumference at station F in figure 9. The repro-
ducibility of the data 1s indicated in figures 9(a) to 9(c) for a check
point having an exhaust-gas temperature of approximately 3060° R, mass-
flow ratio of 0.098, and an inlet cooling-air temperature of 530° R. The
profiles are similar as the accumulated afterburner time increased from
32 minutes to 9 hours and 22 minutes. The profiles with an exhaust-ges
temperature of 3484° R (fig. 9(d)) are similar although the temperature
levels are higher. The profiles shown in figure Y were obtained with
the first set of fuel bars, which produced the most uniform fuel distri-
bution. The reproducibility shown is typical of data obtained with the
other configurations. The large variations in gas temperatures around
the circumference are reflected in the inslde-wall temperature. The dif-
ference between the highest and the lowest gas temperatures around the
circumference, as measured by the platinum thermocouples at station F,
was approximately 500° to 900° F, and the difference for the inside-wall
temperatures was about 400° to 600° F. The larger circumferential varia-
tions in gas temperature are believed to be caused by assymetrical dis-
tributions in the engine fuel-air ratio and in turbine-discharge gas
flows because daily inspections disclosed no plugging of the fuel-spray
bars in the tail-pipe burner.

Longitudinal profiles. - Typical longitudinal profiles of the
combustion-gas temperature measured by the platinum-rhodium - platinum
thermocouples 1/2 inch from the inside wall are shown in figure 10. The
general reproducibility of the combustion pattern for a given set of fuel-
apray bars can be seen by comparing the relative positions of the temper-
ature profiles for each circumferential group as the exhaust-gas temper-
ature is increased (fig. 10). Similar reproducibility of the relative
positions of each group was observed in the longitudinal profiles for the
combustion-gas temperature measured 1/4 inch from the inslde wall and for
the temperature of the inside wall.

Inasmuch as the longitudinal temperature profiles for various cir-
cumferential positions reproduced in a consistent manner in spite of
large circumferential temperature variations, the effects of exhaust-gas
temperature, of fuel distributions, and of combustion-gas mass flow are
based on circumferential average temperatures. (The temperatures in
table IT are circumferential averages.)

N
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Effect of Varlables on Average Longitudinal Profiles
of Combustion-Gas Temperature

Exhaust-gas temperature. - The effect of Increased exhaust-gas tem-
perature (or tall-pipe fuel-air ratio) and the spread of the flame toward
the inslde wall are shown in figure 1l. The combustion-gas temperature
within 1/4 inch of the wall (fig. 11(a)) remains at approximately turbine-
discharge temperature as far downstream as station D indicating that, for
the same fuel distribution, the spread of bthe flame toward the inside
wall is practically unaffected by fuel-air ratio (exhaust-gas temperature
level) although the transverse temperature gradients between stations C
and D increase with fuel-air ratio as can be seen from figure 11(b).
Consequently, no cooling would be required for configuration A in the
first 24 inches downstream of the flame holder if the burner walls could
withstand the nonafterburning operation without cooling. Downstream of
this point, the cooling requirements increase as the transverse gas tem-
perature gradients near the wall increase with both distance from the
flame holder and with exhaust-gas temperature level.

[\V)
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Fuel distribution. ~ The effects of marked changes in tall-plpe fuel
distribution across the turbine-dlscharge annulus on the gas temperatures
near the inside wall are shown in figure 12. Figure 12(a) shows that the
flame spreads out to the wall between 24 and 36 inches downstream of the
flame holder depending on the radial dlstribution of fuel. The flame
intercepted the wall flrst with configuration B, which had a high fuel-
alr ratio near the wall, and last with configuration C, which had a high
fuel~air ratio in the center of the burner. The cooling problem appar-
ently can be altered by changes in fuel digtribution at a given exhaust-
gas temperature level. It is not, however, always possible to alleviate
the cooling problem by altering the radial dlstribution of fuel because
of possible adverse effects on performance and operational characteristics
of the tall-plpe burner. For example, configuration C produced low inside-
wall temperatures with the third set of fuel-spray bars, and had very
smooth combustion and the exhuast nozzle was colder than for configura-
tion A at the same exhaust-gas temperature, but it was impossible to
obtain & turbine-outlet gas temperature of 1633° R with these fuel-
spray bars when the exhaust-nozzle exlt area was 2.160 square feet. On
the other hand, configuration B, which produced high inside-wall tempera-
tures, was difficult to 1lgnite, burned roughly, and blew-out whenever
the turbine-outlet gas temperature dropped below 1615° R.

The corresponding changes in transverse temperature profiles with
changes in fuel distributlon will be discussed in the section Fuel
Distribution.

Combustion-gas mass flow. - The effect of decreasing the combustion-
gas mass flow on the gas temperatures near the inside wall is shown in
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figure 13. The decrease in mass flow of cambustion gas from 22.29 to
13.85 pounds per second, resulting from increasing the altitude from
30,000 to 40,000 feet, lowered the combustion-gas temperatures between
stations E and F, abowt 400° and 200° F at distances from the inside
wall of 1/4 and 1/2 inch, respectively. These temperature reductions,
however, would be about one-half as great if cross-plotted data from
figure 11 were used to estimate the longitudinal temperature profile at
the same exhaust-gas temperature as with the lower mass flow. The
decrease in exhaust-gas temperature occurred because the tall-pipe fuel
flow was adjusted for a constant indicated turbine-outlet gas temper-
ature, but the mean turbine-outlet gas temperature decreased because

of a change in the radlal temperature profile as altitude was changed.

Variation of Gas Temperatures Near the Wall with
Cooling-Air Flow and Temperature

The temperature of the combustlon gas near the wall was affected
8lightly by the inside-wall temperature, and consequently, by the mass
flow and the temperature of the cooling air. The influence of cooling-
air flow and the inlet cooling-ailr temperature on the gas temperature
measured 1/4 inch from the Inside wall was found to be negligible at
stations C and D. The effect of cooling-air flow at stations E and F is
given by the approximate equation

Wa
A Tg,l/4 = 1000 A { == (1)

g

and. the effect of Inlet cooling-alir temperature is about l/lOO per degree
rise in inlet cooling-air temperature. (The symbols used are defined in

appendix B.)

Effects of Variables on Transverse Gas-
Temperature Profile at Station F

Some of the more representative transverse profiles of the combustion-
gas temperature at station F were selected for presentation. The temper-
atures in the combustion zone were obtalned by means of the sonic-flow
orifice rake and the temperatures near the wall were measured by the
platinum-rhodium -~ platinum thermocouples 1/4 inch fraom the Inside wall.

Exhaust-gas temperature. - Transverse temperature profiles are shown
for configuration A in figure 14. Temperature peeks in figure 14(a)
corresponding to the wake of the single-V flame holder tend to disappear
and the profile to become more uniform as the exhaust-gas temperature 1s

increased (figs. 14(b) and (c)).
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The gas temperatures 1/4 inch from the inside wall and in the center
of the combustion zone increased 600° to 700° R as the average exhaust-
gas temperature increased approximately 440° R.

Fuel distribution. - The effects of changing the radiasl distribution
of fuel across the turbine amnulus on the transverse profile of combustion-
gas temperature are shown in figure 15. Figure 15(a) shows that the
transverse temperature profile of configuration A at an exhaust-gas tem-
perature of 3266° R had a temperature peak in the wake of the flame-holder
gutter similar to the peaks exlsting at an exhaust-gas temperature of
approximately 2926° R (fig. 14(a)). The high fuel concentrations near the
inside wall in configuration B (fig. 15(b)) resulted in much higher gas
temperatures near the inside wall at the bottom of the burner and the gas
temperature at the center of the burner was greatly reduced because the
tall-plpe fuel-alr ratio and exhaust-gas temperatures were practically
constant. The average gas temperatures 1/4 inch from the inside wall
were approximately 400° R higher for configuration B than for configura-
tilon A at a mase-flow ratio of 0.143 and an exhaust-gas tempersture of
epproximately 3240° R. The fuel distribution of configuration C moved
the peak temperatures toward the center of the burner and the average gas
temperature 1/4 inch from the inside wall was about 350° R lower than for
configuration A at & mass-flow ratio of 0.143. For the three radial fuel
distributions tested, the increase in fuel concentration in the center of
the burner produced a slightly smaller effect on the gas temperatures near
the inside wall than did the increase in the fuel concentration toward the
walls. This fuel distribution also aggravated the circumferential temper-
ature variations. The relation of these profiles to the average inside-
wall temperature will be discussed in the next section.

Effect of Variables on Iongitudinal Profiles of
Average Inside-Wall Temperatures

Because the variations in longitudinal and circumferential tempera-
ture profiles of the inside-wall temperature were consistent, circumfer-
ential average temperatures are used in the following comparisons.

Exhaust-gas temperature. - The variations in the longltudinal pro-
file of the average inslde-wall temperature with exhaust-gas temperature
level i1s shown in figure 16. The inside-wall temperature Iincreases from
the flame holder to the exhaust-nozzle inlet with exhaust-gas temperature
level. The variation of wall temperature with exhaust-gas temperature
level is slight at stations C and D because the flame has not spread to
the wall. The wall temperatures at thege stations are influenced more by

the mass flow and inlet temperature of the cooling alr than by the exhaust-

gas temperature level. Downstream of station D, the wall temperature

AR

80%2



8072

ee 00 L] L] . [ 24 o o 08e o 00O oo
e o & o & o ® o o . L 2 J e o [ N 4
e o o0 L] L ] e o [ [ ] o oe e o6 ¢ o
® o O . [ ] (] 4 ® o o e
[ ] . e eas o

[ ] [ XX ] [ X ]

NACA RM ES51K23

i

increases because the temperature gradients near the wall and the

radiant heat transfer Increase as exhaust-gas temperature level increases.
The profiles shown were obtained with a mass-flow ratio of approximately
0.145. The effect of mass-flow ratio on the wall temperature will be
shown in the Combustion-Gas Mass Flow section.

Fuel distribution. ~ The effect of fuel distributlion on the inside-
wall temperatures is shown 1n figure 17 for an average exhaust-gas tem-
perature of 3290° R and a mass-flow ratio of 0.145. The curves have been
extrapolated linearly to station G, as indicated by the data of figures 16
and 18, because only two thermocouples were functlioning during these
readings and the temperatures at these positions were usually higher than
the clrcumferentlial average temperature. Configuration B had the highest
average Inside-wall temperature as & result of the very high gas tempera-
tures at the bottom of the burner; the average inside-wall temperatures
of configuration A are intermediate, whereas confilguration C had the
lowest wall temperatures as a result of the lower gas-temperature gra-
dients near the walls of the burner. For the two extremes In fuel dis-
tribution tested, the spread In average inside-wall temperatures at
station F was 235° F, but the circumferential variations in wall temper-
ature were greatest with conflguration B.

Combustion-gas maess flow. - With an average mass-flow ratio of 0.144,
the average inslde-wall temperature was lowered 40° to 100° at stations F
and G when the mass flow of combustlon gas was decreased from 22.29 to
13.85 pounds per second (fig. 18). Comparison of the wall temperatures
at the lower mass flow with wall temperatures interpolated from figure 16
indicates, however, that these reductions resulted primarily from the
decresse in exhaust-gas temperature level.

Effect of Massa-Flow Ratio and Cooling-Alr Temperature on
Average Inside-Wall Temperatures

Mass-flow ratio. - The effect of cooling-air mass-flow ratio on the
average inside-wall temperature is shown in figure 19. The limiting
values of the average inside-wall temperature at stations C, D, and E
with no cooling-air flow were assumed to colncide with their respectlve
average gas temperatures 1/4 inch from the inside wall with no cooling-
air flow.

As previsouly discussed, the inside-wall temperatures at gtations C
and D are nearly independent of the exhaust-gas temperature level and
vary inversely with mass-flow ratio. The higher wall termperatures at
gtation D result from increased radiant heat transfer from the combustion
zone. Both radiant and convective heat transfer became important down-
atream of station D as a result of the higher gas-temperature level and
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the flame impingement on the walls. Thus, from station D on downstream,
a distinct curve results for each tgil-pipe fuel-air ratio (exhaust-gas
temperature level) as shown in figure 19. Figure 19(a) shows that no
cooling alr is required in the first 24 inches downstream of the flame
holder (station D) if the tall-pipe materials can withstand nonafter-
burning operation without cooling.

A megs~flow ratlo of 0.12 1s requlred in order to maintain an
average inside-wall temperature of 1300° F, 48 inches downstream of the
flame holder (station F) with an exhaust-gas temperature of 3825° R, and
the mass-flow ratio is about 0.09 wilth an exhaust-gas temperature of
3435° R. An average inslde-wall temperature of 1300° F, 56 inches down-
stream of the flame holder (station G), requires a mass-flow ratio of
approximately 0.115 at 3435° R. An average inside-wall temperature of
1300° F was selected as representative in order to allow for possible
hot spots as high as 1600° F.

80%2

Cooling-air temperatures. - The variation of inside-wall temperature
with inlet cooling-air temperature (fig. 20) is similar for all exhaust-
gas temperatures but differs In temperature level. The wall temperature
increased with a slightly increasing rate as the cooling-air temperature
was Increased. When the inlet cooling-air temperature was increased
1000° F, the inside-wall temperatures increased at stations F and G
about 400° F at a mass-flow ratio of 0.145. The inslde-wall temperatures
at station G (fig. 20(b)) were about 100° F higher than at station F
(fig. 20(a)) with an exhaust-gas temperature of approximately 3060° R,
and about 150° higher with an exhaust-gas temperature of 3435° R.

Interrelation of Temperatures

The interrelation of the exhaust-gas temperature, gas temperatures
near the wall, lnside-wall temperature, and cooling-air temperatures are
shown in figure 21 for station F. The cooling-alr temperature rise to
station F 1s the vertical distance between the cooling-alr temperature
curve and the diagonal dashed line. This rise in cooling-air temperature
becomes small as the inlet cooling air is raised to temperatures of 1500°
to 1700° R, indicating that a combustion chamber with an inner liner
maintains a layer of gas at approximately turbine-outlet temperature
next to the outside structural wall. Consequently, the temperature of
the structural wall of an insulated tail-pipe burner having an inner
liner would be practically the same with or without tail-pipe burning.

The data of flgure 22 can be shown to better advantage by means of

T -T
the parameter -§LE—-—TELE which 1s obtained from a heat balance across
wv,F = *a,F

the 1nside wall at station F. This parameter is the ratio of the over-

—
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all heat-transfer coefficients on the cooling-air and combustion-gas
sides of the inside wall Ha/Hg. The ratio Ha/Hg is a function of the

inlet cooling-alr temperature, exhaust-gas temperature, turbine-discharge
gas temperature, and mass-flow ratio for a given fuel distribution and
burner geomstry. This parameter can be plotted against the ratio of the
inlet cooling-alr temperature to the exhaust-gas temperature T, B/'I‘8
for given mass-flow ratios, turbine-discharge gas temperatures, and
radial fuel distributions. Inasmuch as the cooling-air temperature Ta,F
end the effective-gas tempersture Tg F are not generally known, and

because these temperatures are functigns of the same varlable as the

T, -T
ratio H /H , the more convenient parameter & wF is plotted in
a’g Ty, - Ta,B
2 2
Ta,B Tg - w,F
figure 22 agalinst _TL_' The parameter T T varles approximately
w,F ~ ~a,B
linearly with —%42— %ut varies in level and slope with the radial fuel

digtribution andgmass—flow ratlo. The upper curve is for configuration C
with a mass-flow ratio of 0.143. The second curve from the top is the
mean line through the data of configuration A with mass flows of combus-
tion gas of 22.3 and 13.8 pounds per second at a mass-flow ratio of
approximately 0.143. The effect of exhaust-gas temperature level from
3064° to 3845° R is not apparent within the scatter of the data. The
large discrepancy between the data points and the curve for configura-

T
tion A at —;ﬁ = 0.5¢ amounts to only 41° R in T, p. The parameter
J

g

Tg - “w,F
—d—— ig very sensitive to small changes in T for values of
Tv,F = Ta,B v, F

b b
Ta,B
—TL— greater than approximately 0.50.

g

The third curve 1s for configuration A at a mass-flow ratio of 0.098.
The data of configuration C fall along the lowest curve at a mass-flow
ratio of 0.143.

COOLING-ATR PRESSURE DROP

The pressure drop through the cooling passage is shown in figure 23
agalnst the cooling-air flow. The use of 0 based on 1lnlet temperature
and pressure satisfactorily correlated the data. The pressure drop
increases with exhaust-gas temperature because of increased momentum
pressure drop accompanying higher heat transfer to the cooling air.
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The isothermal friction factor for the instrumented cooling passages
is shown in figure 24. The turbulence created by the instrumentation and
the interlocking stringers was great enough to make the friction factor
practically independent of Reynolds number. The value was about 0.009
for a Reynolds number range of 1.6x104 to 1.3x10°. Without the instru-
mentation the friction factor should lie closer to the line for commercial

pipe.

SUMMARY OF RESULTS

The effects of tall-pipe fuel-alr ratio (exhaust-gas temperature
level), radial distribution of tail-pipe fuel, and mass flow of combus-
tion gas on the temperature profiles of the combustion gas and Inside
wall of the combustlon chamber were determined for an experimental tall-
pipe burner cooled by alr flowing through an lnsulated cooling-air
passage 1/2 inch in heilght.

Large clrcumferential varilations existed in the combustilon-gas tem-
perature near the inside wall. These variatlons In combustion-gas tem-
perature resulted in similar variations in the inside-wall temperature.
The difference between the highest and the lowest gas temperatures around
the circumference 1/4 inch from the inside wall was approximately 500°
to 900° F, whereas the corresponding difference in the inside-wall tem-
peratures was 400° to 600° F. These circumferential variations formed
consistent patterns that were similar, although different in magnitude,
for all configurations tested.

The two extremes in radial distribution of tail-pipe fuel flow, high
fuel concentration toward the combustion-chamber wall and high fuel con-
centration in the center of the combustion chamber, produced a spread in
circumferential average inside-wall temperatures of 2350 F at a station
48 inches downstream of the flame holder. The configuration having a
high fuel concentration toward the wall presented more of a coolilng
problem than is indicated by the difference in average inside-wall tem-
peratures because the circumferential variation in temperature was
greatest for this confilguration.

The distance downstream of flame holders at which the flame spread
to the inside wall, as determined from measurements of combustlon-gas
temperature near the wall, was practically unaffected by tall-pipe fuel-
alr ratio. However, the spread of the flame toward the wall was a
function of radial fuel distribution. At no time did the flame lmpinge
on the inslde wall closer than 24 inches downstream of the flame holder.
Rediant heat transfer to thia sectlon of the inside wall was insufficient
as to require wall cooling in the first 24 inches if the tall-pipe mater-
ials could withstand nonafterburning operation without cooling.

Sy

80%2
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With the most uniform distributlon of tail-pipe fuel tested and an
inlet cooling-air temperature of 520° R, an average inside-wall temper-
ature of 1300° F at a station 48 inches downstream of the flame holder
required mass-flow ratios of 0.12 and 0.09 at exhaust-gas temperatures
of 3825° and 3435° R, respectively. Increasing the distance to 56 inches
downstream of the flame holder necessitated a mags-flow ratio of 0.115
with an exhaust-gas temperature of 3435° R.

At a mass-flow ratio of 0.145, the Inside-wall temperatures at a
station 48 inches downstream of the flame holder were Ilncreased approxi-
mately 4/10O per degree increase in inlet cooling-air temperature.

It was shown that the temperature of the structural wall of an insu~-
lated tail-plpe burner having an Inner liner would be practically the
same with or without tail-pipe burning.

Tewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohilo.
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APPENDIX A
CALCULATION OF EXHAUST-GAS TEMPERATURE

The exhaust-gas temperature was calculated from the following
equation when the nozzle was choked:

(78 + 1) 8 (%n Cp Cp An>2 (B1)

T = v
V4

g g z R W

g
where Cn = 0.965.
-6 2
Cp = [; + 9%10 (tn - 70ﬂ

and b, was obtained from the critical pressure ratio corresponding

to
Vg Vg
y_ o+ 1 1
p_ =P —£_ 78—
n n 2
When the nozzle was unchoked
- i)
r e~ g 1 3 (82)
g 7. wZ2 2R 7 ) \C,

g 7g
8
1-<_°>7g
P
n

where CJ = 0.97.

2408
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APPENDIX B
SYMBOLS
area of exhaust-nozzle throat &t 70° F, sq ft
ratlo of scale Jet thrust to ideal Jet thrust
exhaust-nozzle flow coefficlent
area thermal expansion coefficient

hydraulic diameter of cooling passage (twice cooling passage
height), ft

scale Jjet thrust, 1b

isothermal friction factor

fuel-alr ratio

tall-pipe fuel-air ratio
acceleration due to gravity, ft/sec?

combined coefficient of heat transfer on the cooling-air side,
Btu/(hr)(sq £t)(°R)

combined coefficient of heat transfer on combustion-gas sids,

Btu/(hr)(sq £t)(°R)
flow distance between stations B and F, ft
total pressure at exhaust-nozzle throat, 1b/sq ft abs.
turbine-outlet total pressure, lb/sq ft abs.
exhaust-nozzle total pressure, 1b/sq ft abs.
gtatic pressure in tunnel test section, lb/sq ft abs.
static pressure at exhaust-nozzle throat, 1b/sq ft abs.
average dynamlc pressure between stations B and F, 1b/sq ft
gas constant, ft-1b/(1b)(°R)

Reynolds number

m
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cooling-alir temperature, °R or °F
exhaust-gas temperature at nozzle exit, °R

combustion-gas temperature measured 1/4 inch from inside wall,
OR or °F

combustion-gas temperature measured 1/2 inch from inside wall,
OR or OF

outside-wall temperature, °F

turbine-outlet total temperature, °R
inside-wall temperature, °R or °F
englne-inlet total temperature, °R

average temperature of exhaust nozzle 1lip, Op
cooling-air flow, 1b/sec

engine fuel flow, 1b/hr

tail-pipe fuel flow, 1b/hr

combustion gas flow, 1b/sec

mass~-flow ratio

ratio of specific heats of exhaust gas corresponding to total
fuel-air ratio and exhaust-gas temperature

tail-pipe combustion efficiency

ratio of density at prevailing temperature and pressure to
density at standard temperature and pressure

Subscripts:

B to G

longitudinal stations
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® Thermocouple

(a) Station B, cooling-passage inlet, looking downstream.

Figure 4.

- TLocation of instrumentation.
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(b) Stations C through E, looking downstream.

Figure 4. - Continued. ILocation of instrumentation.
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(c) Station F, looking downstream.

Figure 4. - Continued.

Location of instrumentation.
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Figure 4. - Continued. Location of instrumentation.
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Figure 4. - Concluded. Location of instrumentation.
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temperature measurement.
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(2) Accumulated afterburner time, 32 minutes; exhaust-gas
total temperature, 2993° R; mass-flow ratio, 0.1006;
inlet cooling-air temperature, 526° R.

Figure 9. - Circumferential temperature variations at station F,
configuration A,
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(b) Accumulated afterburner time, 3 hours and 36 minutes;
exhaust-gas total temperature, approximately 3060° R; mass-
flow ratio, 0.0949; inlet cooling-air temperature, 536° R.

Figure 9. - Continued. Circumferential temperature variations
at station F, configuration A.
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(c) Accumulated afterburner time, 9 hours and 22 minutes;

exhaust-gas total temperature, 3102° R; mass-flow
ratio, 0.0985; inlet cooling-air temperature, 529° R.

Figure 9. - Continued. Circumferential temperature variations
at station F, configuration A.
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(d) Accumulated afterburner time, 3 hours and 48 minutes;
exhaust-gas total temperature, 3484° R; mass-flow
ratio, 0.1050; inlet cooling-air temperature, 530° R.

Figure 9. - Concluded. Circumferential temperature variations
at station F, configuration A.
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Figure 10. - Longitudinal gas-temperature

from inside wall, confiiuration A.
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ratlio, 0.1374; inlet cooling-air temperature, 538° R.

Figure 10. - Concluded.

Longitudinal gas-temperature profiles 1/2 inch
from 1nside wall, configuration A.
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(b) Temperatures 1/2 inch from inside wall.

Figure 12. - Effect of fuel distribution on gas temgeratures near inside wall.
Exhaust-gas total temperature, approximately 3230° R, mass-flow ratio, 0.145;
cooling-air inlet temperature, 510° R.
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Exhaust-gas Mass-flow Inlet cooling- Tail-pipe Combustion~ Turbine- Turbine~
total ratio air temper- fuel-air gas flow outlet discharge
temperature ature ratio total temperature
pressure
Tg LAE Ta,B f/a Wg
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(a) Temperatures 1/4 inch from inside wall.
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(b) Temperatures 1/2 inch from inside wall.
Figure 13. - Effect of combustion-gas mass flow on gas temperatures near inside wall for

confi atio .
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Exhaust-gas Mass-flow Inlet cooling- Tail-pipe Average Combustion- Turbine-outlet
total ratio air temper- fuel-air inside-wall gas flow total pressure
temperature ature ratio temperature
EE Wa/Wy Ta,B f/a W Wg
(°R) (°r) (°F) (1b/sec)  (1b/sq £t abs.)
2994 0.0672 541 0.0325 1198 21.89 1373
2858 .0814 530 .0315 1107 21.98 1350
3306 .1418 1340 .0363 1298 13.61 847
A 3272 .1415 548 .0385 1065 13.78 853
v 3425 21411 771 .0450 1158 22.04 1394
D 3403 L1412 1408 .0444 1401 22.38 o 1409
3400 R e T /Q - —
// - O \—\
3000 T 1 = = / .
// i | R
2600 / Saie s el \\ -
2200 / \\\é T
1800 - -
(a) Exhaust-gas temperature, approximately 2926° R.
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BN JL T
L R
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2600 7 = o A I — T \\:\
4o Joo 1 _ B
A |
2200 ? T - -
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(b) Exhaust-gas temperature, approximately 3290° R.
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Distance along dlameter of burner, in.
(c) Exhaust-gas temperature, approxlmately 3414° R.
Figure 14. - Transverse profiles of combustion-gas temperature at station F, configuration A.

80¥2



80%2

NACA RM ESIK23

Gas temperature, °R
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gas total flow cooling fuel-air inside- gas flow total pressure temperature
temper- ratio air temper- ratio wall 1/4 in. from
ature ature temper- Inside wall
ature
T, wa/wg T, .5 £/a T, W, Ty, 1/4
(°R) (°R) (°F)  (ib/Sec) (ib/sq ft abs.) (%K)
O 0.1430 534 0.0393 22.37 2448
3266 .1917 513 .0391 866 22.01 2354
3305 .1449 495 .0409 1164 22.02 1416 2870
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(a) Configuration A.
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(b) Configuration B.
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Distance along diameter of burner, in.
(c) Configuration C.
Figure 15. - Effect of fuel distributlon on transverse profiles of combustion-gas temper-

ature at station F.
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Distance downstream of flame holder, 1in.

Figure 16. - Effect of exhaust-gas temperature on longltudinal profiles of average
inside-wall temperature for configuration A.

Configu- Exhaust-gas Mags-flow Inlet cooling- Combustion- Tall-pipe
ration total ratio alr temper- gas flow fuel-air
temperature ature ratio
g Wa/Wg Ta,B g t/a
(°R) (°R) (1b/sec)
1600 B 3305 0.145 495 22.02 0.0409
A 3317 .144 513 21.95 .0409
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Distance downstream of flame holder, in.

Filgure 17. - Effect of fuel distributlon on longitudinal profile of average inside-
wall temperature.

Exhaust-gas Mass-flow Inlet cooling- Combustion- Tall-pipe Turbine-
total ratio air temper- gas flow fuel-air outlet
temperature ature ratio temperature
Tg Wa/Wg T%,B We f/a o
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Figure 18. - Effect of combustion-gas mass flow on longitudinal profile of inside-
wall temperature for configuration A.
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Mass-flow ratio, wa/wg
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Figure 19, - Variation of average inside-wall temperature with mass-flow ratio of cooling air to combustion

gas for configuration A. Approximate inlet cooling-air temperature, 520° R.
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Figure 20. - Variation of inside-wall temperature with inlet cooling-air

temperature for configupation Lo glass-flow ratio, 0.145.
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Combustion gas 1/2 in.
from inside wall

Combustion gas 1/4 in.
from inside wall
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Cooling air
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~ —— Inlet cooling-air
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(a) Configuration A; exhaust-gas (v) Configuration A; exhaust-gas
temperature, 3064° R; combustion- temperature, 3095° R; combustion-
gas flow, 22.3 pounds per second; gas flow, 22.3 pounds per second;
mass-flow ratio, 0.098. mass-flow ratio, 0.148.

Figure 21. - Relation of temperatures at station F.
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(c) Configuration A; exhaust-gas (d) Configuration A; exhaust-gas
temperature, 3224° R; combustion- temperature, 3422° R; combustion-
gas flow, 22.3 pounds per second; gas flow, 22.3 pounds per second;
mass-flow ratio, 0.143. mass-flow ratio, 0.143.

Figure 21. - Continu%,. _Relation of temperatures at station F.
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(e) Configuration A; exhaust-gas (f) Configuration B; exhaust-gas
temperature, 3265° R; combustion- temperature, 3225° R; combustion-
gas flow, 13.8 pounds per secondj gas flow, 22.3 pounds per second;
. mass-flow ratio, 0.143. mass-flow ratio, 0.144.

Figure 21. - Continued. Relation of temperatures at station F.
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Figure 21. - Concluded. Relation of temperatures at station F.
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