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EFFECTS OF SIDE-EDGE BOUNDARY CONDITIONS AND TRANSVERSE
SHEAR STIFFNESSES ON THE FLUTTER OF ORTHOTROPIC
PANELS IN SUPERSONIC FLOW

By Deene J. Weidman
TLangley Research Center

SUMMARY

The basic linearized equations for orthotropic panel flutter are solved by
the Galerkin method for simply supported leading and trailing edges and various
side-edge support conditions. In addition, allowance is made for the finite
transverse shear stiffness of simply supported panels. These gualitative
results show that both transverse shear stiffness and side-edge boundary con-
ditions can be extremely important in determining the flutter boundaries for
orthotropic panels.

INTRODUCTION

Panel flutter has received much attention in the past few years (refs. 1
to 8), the analysis of uniform isotropic rectangular simply supported panels
receiving the most attention (refs. 1 to 4). However, aircraft and spacecraft
are now being constructed of various built-up panels (corrugation-stiffened
skin panels or sandwich core panels, for example), and hence an understanding
of the flutter behavior of such orthotropic panels is necessary. Several
recent papers (refs. 7 and 8) have initiated investigation into orthotropic
panel flutter. A theoretical investigation was undertaken of some effects not
considered in these references, but thought to be of importance in the predic-
tion of the flutter characteristics of orthotropic panels.

As the influence of core transverse shear stiffness has been shown to be
of importance for uniform isotropic sandwich-core panels {ref. 6), the general
case of a panel with two arbitrary transverse shear stiffnesses DQx and DQy

has been investigated. The results of the investigation reported herein indi-
cate that these stiffnesses can have a large influence on the flutter phenomena
for orthotropic panels.

Experimental results on orthotropic panels (ref. 9) have shown that the
panel. side-edge boundary conditions (along the edges parallel to the airflow)
have a significant effect on their flutter characteristics. In order to inves-
tigate the importance of these boundary conditions, a Galerkin solution was



used to obtain the flutter equation for flat rectangular orthotropic panels
with general boundary conditions. Specific solutions are also presented for
simply supported, clamped, and free boundary conditions along the side edges,
and it 1s shown that free boundaries can significantly increase the flutter
susceptibility of an orthotroplc panel, especially where the bending stiffness
in the crossflow direction 1s much higher than the bending stiffness in the

flow direction (as is often the case).

SYMBOLS
8pn series coefficilents appearing in expansion of w
a,b x- and y-dimensions of orthotropic panel (see fig. 1)
Ké;),ﬁég) flutter parameters for general orthotropic panels, defined by
equation (5)
K(r),ﬁ(r) flutter parameters for simply supported orthotropic panels

including transverse shear stiffness, defined by equation (25)

Al(p,n),A2(p,n),A5(p,n) coefficlents in free-free mode shape expression
(see eq. (17))

By(p,n),Bs(p,n) coefficients in free-free mode shape expression (see
eq. (17))
E% transverse shearing stiffness parameter in the x-direction,
w2 Dx
052 DQx
6& transverse shearing stiffness parameter in the y-direction,
72 DIC
op2 DQy
Dx,Dy bending stiffnesses of orthotropic panel
DQXJDQV transverse shearing stiffnesses of orthotropic panel
Dxy twisting stiffness of orthotropic panel
Fpn(y) assumed pth mode shape in the y-direction (with p half-waves)
th(x) assumed nth mode shape in the x-direction (with n half-waves)



(r)

qu (m,n) cross—str:am mode shape integral expression,
ax
br'lf Fou(¥) — Fpu(y) dy
m 7
0 q dyl’ b
i,j,m,n,p,q,r,s mode shape numbers (number of half-waves)
Jé;)(q,p) streamvise mode shape integral expression,
w1 () 5 g
a "~ Gpgl(x) —— Gpplx) dx
0 4 dx¥ P
- moRat
k frequency factor —TE;——
2 5t "

K1 (3),K5(3)

I,K

B

X,y

;ﬂ

factors defined by equation (25)

constants defined by equation (19b)
mass of orthotropic panel per unit area

applied bending moments per unit length

Mach number of airflow

applied in-plane forces per unit length for orthotropic panel
(positive in compression)

in-plane shearing force per unit length

dynamic pressure

N, a2 N, a2
and 5 respectively
7Dy

in-plane loading factors,

vertical shearing force per unit length

lateral deflection of orthotropic panel
coordinate axes (see fig. 1)

set of transverse shearing stiffness constants (see eq. (20))

nondimensional set of a, constants (see eq. (23))



D
¥4 boundary condition parameter, uy + 551
qu Kronecker delta
= o b2
8 =p - —
X7 g2
Tm constants defined in equation (19)
2ga5
A dynamilc-pressure parameter, 2D
p's
)cr(m) critical dynamic-pressure parameter for panels with infinite

shear stiffness

Poisson's ratios

p‘x)“’y
5 Dxy
=1+
KDy
w circular frequency

THE INFLUENCE OF SIDE-EDGE BOUNDARY CONDITIONS

General Galerkin Solutions for Panels Simply Supported
at Their leading and Trailing Edges

The orthotropic panels under consideration have a width b (in the
y-direction) and a length a (in the x-direction), and are subjected to a
supersonic airflow of Mach number M flowing over the upper surface in the
x-direction. (See fig. 1.) These panels were assumed to be simply supported
at both the leading and trailing edges and subjected to in-plane loadings Nyx
and Ny considered positive in compression. If simple static strip-theory
(Ackeret) aerodynamics are used and simple harmonic motion is assumed, as dis-
cussed in reference 1, the differential equation for the lateral deflection w
of the orthotropic panel becomes

a”w_,_eryW) dhw Dy o, TRy o TRy v A dw Rt
dx+ Dy v dx2oy°  Dx S;h a2 dx° a® dy° a’ ox al



where
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Figure 1.- Loadings and dimensions for a typical

u xuy << 1 orthotropic panel.

If the product Myl y is not very small with respect to 1, this equation is

still valid if Dy and Dy are redefined by dividing them both by 1 -~ Hyhly e

Generally, the py-factor in the second term of equation (1) is neglected.

In the appendix the solution of equation (1) is determined by the Galerkin
method for general boundary conditions. To illustrate the influence of side-
edge boundary conditions, however, several explicit examples are computed in
this section. The Galerkin method is used here for generality, even though in
a few cases an exact solution of equation (1) is possible.

For panels simply supported at their leading and trailing edges (the
boundaries parallel to the y-axis) the deflection must satisfy

\
‘ax:O,a =0
2
pga = -D QEE + éEK =0 > (2)
x=0,a  F\a? Y 2)|
=l ,a
7
To satisfy these boundary conditions, the deflection was selected as
. nux
W = Z B.Pn sln T Fpn(y) (3)
n



Only a one-term expansion in the y-direction has been assumed in this case and,
thus, a sumation with respect to p does not appear. The function Fpu(y)
has the subscript n because of possible coupling of the x and y functions
through the particular side-edge boundary conditions used in some cases. The
Galerkin procedure is applied by substituting equation (3) into equation (1),

multiplying the resulting equation by sin Ii%E-Fpm(y), and integrating over
the area of the plate. The following equations then result:

0
( b w(m)y2 —-(m)) 2A Z mn [ m+n Il(')P)(m’n) _
m - App'® - Bpp apm*‘ﬂ—u. apn(m)(—l) o= 'I-Z-G)—(—-—)—O
n m,m
(nn) P
(%)
where
1 [P r h
Ié;)(m,n) = b fo ) j—y—r— Foa(v) dy
(2)
{r) _= 20y )ﬁ Tgp (r57)
Agp = By + ﬂz(px * oMy b2 I(O)(r r) f (3)
ap
E(r) =2 = 1 a° Iés)(r,r) 1 EZ alt Ié%)(r,r)
@ " Ty 72 b2 Iég](r,r) o D o Iégz(r,r) J

For any specific boundary conditions in the crossflow direction, then, the
functions Fpn(y) must be chosen to satisfy all the y boundary conditions

and the integrals Iég)(m,n) must be evaluated. Substituting these expressions

into equations (4) yields a set of homogeneous linear algebraic equations for
the coefficients @pn and the condition for a nontrivial solution is that the

determinant of the coefficients be zero. This determinant yields an algebraic
equation that must be solved for the dynamic pressure parameter A.

These general equations (egs. (4)) are examined for the special case of
only two terms in the series expansion for w. Although this two-term solution
is not exact, it does yield the qualitative results necessary for the evalua-
tion of the effect of crossflow boundary conditions. If only a two-term
expansion (in which m + n is odd) is used, the condition for a nontrivial
solution yields for the flutter parameter A

6



(0) (0)
Ipp (m,m) Ipp (n,n)

|n_2|J _ ) 5 (ot 4+ n2 (n)+ n)
Bpp )( Bp ) Il()g)(m’n) Il()g)(n;m)

(6)

The critical value of A is determined by solving for the lowest value of A
at which the frequencies for the two modes coalesce. Thus, .2-(-7*‘) =0 (since

2
the frequency appears only in E2, this relation is equivalent to —87‘2 = )
oK'

yields the critical value

)mm )nn
.%r_gln'm_nq(mu_nn_mzﬂl(); n28(8) 4 F(n) Bém)) Ipp(,)lpp(,)

éo)(m)n) I(O)(n)m)

(1)

If the boundary conditions in the y-dlrection are such that the function
Fpn(y) is independent of the mode number n in the x-direction, the critical

flutter parameter becomes the simple expression

Wl

her = Bamle - 02) (s + 02 - ) (&)
il I
b | ~
-0 n
A |
1 | ll
|

=100 -10

Aop

Figure 2.~ The value of m for minimum A., as a function of KPP for panels simply supported
at the leading and tralling edges (Galerkin solution using m and m + 1 half-waves).



If, in addition, two consecutive values of m and n are chosen (n=m+ 1),
the minimum %cr is found at one of the two integer values m nearest the

1( , _ ok ; = . : .
value 5(:14—Jl + \2 EAPP)' A plot of m against App is shown in fig

ure 2, and values of A,, for several values of m and App are given in
table I. Table I indicates that m = 1 does not give the minimum for this
process for large negative values of Eﬁp. However, a difference of only

10 percent is incurred in the range investigated by using m = 1.

TABLE I.- VALUES OF A, FOR A PANEL SIMPLY SUPPORTED AT THE LEADING
AND TRAILING EDGES AND EITHER SIMPLY SUPPORTED OR CLAMPED ON

THE SIDE EDGES (TWO-MODE GALERKIN SOLUTION)

Values of A.y for values of Kpp of -
m,n S
’ -10 -100 -1000 -10 000

1,2 0.822 x 107 5.753 X 107 5.507 x 10 5.482 x 10°
2,3 1.167 5.73% 5.139 5.080

3,4 1.740 6.215 5.096 It o84

4,5 2.515 6.953 5.13k4 h.952

5,6 3.487 7.907 5.211 .okl

6,7 | =mmmmmmmmee | mmmmmmeeem | mmememeee - 4.ok1

Since end fixity is to be investigated, only the modes m =1 and n = 2
are used {even though it is possible that other modes might be critical in cer-
tain situations). The cases of simply supported, clamped, and free boundary
conditions along the edges parallel to the flow are discussed.

Panels with the side edges simply supported.- The boundary conditions in
the y-direction are satisfied by Fpn(y) = sin E%X. Thus, the cross-stream

integral expressions are independent of n and can be written as
(r) _ r/2r rfl
qu = (-l) P -2—

since p =9 and r 1is even. The parameter Eﬁp (for the single pth term in

the y-direction) becomes

_ 2
Bpp = By - 2(;52 + “7)%5 p° (9)



The value of is obtained by substitution of A into equation (8) and
T 1Y

selection of m =1 and n = 2. The results are the same as those of refer-
ence 1, where the lowest term in the y-direction (p = 1) was used for a uniform
plate. These results are shown in figure 3, where the critical flutter param-
eter A, 1is plotted against Eil'
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Figure 3.- Flutter results from a two-mode Galerkin solution (lowest two
terms) for orthotropic panels simply supported at their leading and
trailing edges.

Panels with side edges clamped.- In the case of clamped panels, several
functions for Fpn(y) could be used to satisfy the clamped boundary conditions

ﬂ y=0,b 0
(10)



The Iguchi function (ref. 10) is assumed here and is defined as

y 2 2 sin BL
Fou(y) = HT - 1) + (0R(E)(E-1) - —= (11)
Therefore the integrals become (see ref. 11) when Q=D
(0 _1 _8/f1), _1 (a odd)
@ 30 A\ og2.2
(o) 1 2 f1 1
I = e
ap 5T o ;E e (¢ even)
(2) 1,81} 1
qu =-3+ Z2\2 -5 (¢ odd)
(2) _ 1, 24/1 1
qu =-5+ ZlE) -2 (¢ even)
2.2
Iég) = -4 4 q; (@ odd)
2.2
I(h) = .10 4+ 47 (¢ even)

ap 2

With these functions, if the lowest term in the y-direction with p =1 is
considered

A7 =R - 2.472 ﬁ(?—)xxl + uy) (12)

b2

The critical values of the flutter parameter are given by equation (8) by rede-
fining All according to equation (12). The flutter boundary which has been

10



plotted on figure 3 for simply supported side edges is identical to the flutter
boundary for these clamped side edges.

Panels with the side edges free.- Panels having free edges in the cross-
flow direction must have mode shapes satisfying the following boundary
conditions:

MY:]y—O b 'DY<§ T Hx :_EZ) =0
x ¥y=0,b
3. D 3
v) Dy 2 g + o aew =0
y=0,b dy? v | ox=dy
=0,b
3w 252
and since 5= "5 Vs the function of y must satisfy the boundary
X a
conditions:
_ ~
2
d“Fpn(y) n2x2
d§2 - = uxFpn(y) =0
L & y=0,b
) (13)
PFpn(y)  p22  aF(y) .
5 T a2 7T & =0
L dy a y=0,b
J
where
D
7 = My Dy

In order to satisfy boundary conditions (13), the general function of
y (Fpn(y)) must of necessity be a function of n (the number of waves in the
x-direction). The function selected herein is

Fon(y) = cos P—“l [1 + (-1)13 I}l + Ae(— - igL-) + A3( - l)lil
e -] Eal(_ - 3) + ] (1)



where

2.2

bguxn ti4

AQ(P:n)

6B2(p,n)a2

B, (p,n)
SRLgs 23,2

] 7baneﬁe>

ynr 8a2

€
2.2
-7(P T+ My

6ux(1_ ZPEEEEE)

b2n2ﬂ2>

al

BQ(P)n) =

-1+
Mx 1282

4852

for any arbitrary Ai(p,n). For even values of p with Aj(p,n) = 0, the

slope at the free ends would become zero, an unnatural condition; however, a
slight curvature of the panels at the side edges 1s caused by using a value for

A3(p,n) in such

(0) _1
qu (m,n) = 5
+

-+

12

cases. The integrals then become

N 4 22 N
5 - B (p,n) - —[2 ¢ - G)B (p,n) - B, (q,m)
W 2,2 1M qnnu(u anild p2r2 1+
Bl(Q.:m) BQ(PJn) BQ(Q;m) B]_(P:n) 4 3 oo
20 * 20 - Puﬂu(ﬁ p - 6)32(q’m)

BQ(QJm) B2(P,l’1) 1

+ =

B]_(q’m) B]_(P;n)

112 3

(¢ and p both odd)




1£0)

©

£(0)

L b (422 22 Lo (p,n)

, A(eon) + As(a,m)  MAx(q,m) As(p,n) As(q,m) + Ax(a,m) As(p,n)
576 p2r2 112

+ AQ(Q.)m) AQ(P’n)

=5 + 4A;(q,m) A;(p,n)

Ay(a,m) Ay(p,n) + 4y (p,m) Ay(a,m)

* 20

. A‘g(}j;n) »A_l((%)m) + Al(P)n) AQ(Q:m)

3 (¢ and p both even)

ABN(AO,n) + A3(o,m) . A3(O,n) A5(O,m)

(m,n) =1+ 578

+ el':t;l(o,n) + 4, (0,m)]

N Ae(o,m)6+ Ap(0,n)  21(0,n) A3(o,m)ég A,(0,m) A5(0,n)

, A3(0,m) A5(0,n) + 45(0,n) Ax(0,m)
112

+ kA, (0,m) A;(0,n)

As(0,m) Ax(O,n)  A;(0,m) Ax(O,n) + A;(0,n) As(0O,m)
T i 3

(¢ and p Dboth zero)

(myn) =0 (For other combinations of q and p)

15



p2r2 2kBy(p,n)  24By(q,m)

(3
gp (@1n) = - Z5— 8, + By (q,m) - B2 T o2 3Re(em)
+ 2B (q,m) Bo(p,n) + = Bg(q,m) By(p,n) (@ and p both odd)

2.2 Az(q,m)  Az(p,n)
B + 48 A P At + 4A A

+ f%-AQ(P:n) A5(q,m)-+ E%K'AB(P’H) - %]Aﬁ(q,m)

+ [% AB(P;H) - 4 Ag(‘l,m) + 8A2(P’n) A]_(Q;m) + I]"é' AQ‘(qu)]

(@ and p both even)

12 (a,m) = 2240, 2)[1 + 289(0,m) + 2 as(0,m) + 25 45(0,m)]

+ has(0,n)]1 + Tu})' Az(0,m) + 24, (0,m) + Ae(g’m)]

(@ and D both zero)

2
( )(m,n) =0 (For other combinations of qQ and p)

() et

qp (m,n - 4pPx®By (q,m) - (5p21r2 - 24)Bg(q,m)

(¢ and p both odd)

) phatt
c(]p)( mn) = £ 5 + 283(q,m)|p°n° - 2k + % A3(p,n)]

+ 4a(q,m) Ezﬁe + 2A3(p,nﬂ + 964, (a,m) As(p,n)

(¢ and p both even)

14




i
Iép)(m,n) = 48 + % A5(O,m) A5(o,n) + 96A5(0,n) A,(0,m) + 84,(0,m) A5(o,n)
(¢ and p both zero)
(4)(m,n) =0 (For other combinations of q and p)
where
Bgp = O (p # )
8qp = 1 (p =a)

These integrals are seen to be functions of the mode numbers m,n of the two
terms in the x-direction. In all factors except the aerodynamic loading
factor, m equals n; whereas in the aerodynamic loading factor m 1s not
equal to n, since an odd derivative appears only in that term. Thus, the dis-~

tinction between m and n need only be made for the expression Igg)(m,n)

that multiplies the A-factor. If a two-mode solution is considered, the
dynamic-pressure parameter can be written, in general, as given in equation (6)
(if m+n is 0odd), and the critical value of the flutter parameter becomes
either

—(n) —(m) =(m) 4_(n)
Aoy = F%(m? ‘MPQ)(m% - nt + PRy - wPA - By’ + By ) (m > n) (15)

<”mn>é“mm)
I(O)(m m) I(O)(n n)

or upon expanding

 t(m® - n?) n

Aepy = m' - n + n4K(n)
(O)(m n) I( )(n m)
I(O)(m m) I(O)(n n)

_25(m) _ @ By (2)(n n) 1(2)(m,m)
P T 22 (o)(n n) (6)(m )
s Tpp '8

& o[ n) 1) m,m)
ot Dxlfég)(n,n) Iég)(m,m)

(m > n) (16)

15



Rewriting the constants A,,

Lo,

By, and By appearing in the integral

expressions in terms of only two parameters yields

~

2.2 1 3Asz(p,n)fo _ 25
o) <~ EE - 20 220005 o L a)
2n-0 ney \5 n<g
1 1
AQ(P:n) = (“5%:‘" ‘)A5(P’n)
n“-6o >
B;(p,n) = Bg(p,n)(- % + 26__>
n<oy
— 2 0 o=
Ba(p,n) - - G2 20
- n=eo
q)"l"' 12 S
where
2.2
B = b
Hx 2
and
D
- Y Xy
=t = ] +
A Hx Dy

(17)

If the zeroeth term in the y-direction (p = 0) and the lowest two terms in the

x~direction are considered, A.,

As an example of the effect of free edges on the flutter boundary, the
flutter conditions for the followlng set of panels (typical of corrugation-

is given by either equation (15) or (16).

stiffened panels with stiffeners running perpendicular to the airflow direc-

tion) will be computed:

16

|
i

0.01

10 000

<l
I

A3(P:n) =1




then
8. 261 ( L 3)_(1-) I(()g)(r,r) (18)
Ao = 18.264(15 - (7.147 x 10-9)B. 0 SO T 18
o % 1(2)(r:r)
00
where
(o)
7@ Too 7)o 2fbey
00 ) 220 T
Ino (r,r)

A comparison of the critical dynamic-pressure parameter A, for panels with
free side edges (eq. (18)) with the corresponding expressions for simply sup-
ported side edges (using eq. (9)) and clamped side edges (using eq. (12)) is
shown in figure 4. The lowest two terms in the x-direction and the lowest

i i !
Ll |1|muhll u[lil: i |
AWl
HE L AL
- L i (5 - 1) || L
. L e
» 3 I % -dm”?“’"’ supported ‘l"””ﬁnl i e
N | L [HA
LT il I il
o % ﬁﬂm
il |
30 ) %“j m| i|‘ B
N G mg i
| .
| Ao i
| | i
oHI il il i '
i _ Free (p = O)mlir
“ A i
; T [l AN . :
—1o00 —1000 -10,000
2 .

Figure %,- The influence of side-edge boundary conditions on the flutter of
orthotropic panels simply supported at their leading and trailing edges
(two-term Galerkin solution). Ny = Ny = 0. First two terms in the

x~-direction; lowest pth term in the y-direction.
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allowable term in the y-direction have been used in all cases. The allowance
of a rigid-body or "zeroeth" mode shape for the free edges is the governing

condition and can cause the lowering of the flutter dynamic pressure q by as
much as an order of magnitude for the example series shown in figure 4. Some

of this difference might be caused by the low value of p (or the relatively

large value of EX) selected for this example, but free side edges can cause

Dy

significant flutter differences as shown.

Four-Mode Galerkin Solutions for Panels Simply Supported
in the Flow Direction

The general Galerkin equations (eqs. (4)) can be examined not only for the
two-term expansion but for the special case of a four-term expansion as well.
Even though this solution is not exact, it yields more accurate results than
the two-term expansion shown in the previous section.

For simply supported and clamped side-edge boundary conditions, a compari-
son between the two- and four-mode solutions and an “exact" solution (presented
later) indicates that convergence is still not accomplished, and some caution
should be exercised In using these values for design. For the free side-edge
boundary conditions, however, the results of this analysis may be more useful.

By still selecting only a single p term in the y-direction, and four
terms (m, m+ 1, n, n + 1) in the x-direction, the flutter parameter becomes

: 2 T e
?\=’—f;— (-1 4,1 - LomH ndl (198
LK2
where
Iég)(m-*-l,m) II()g)(m,nHl) If;g)(n!m'l) Il()g)(n+l,n) W

L=

1
Em +1)2 m2:]2En +1)2 - n2]2 Ir()g)(m+l,m+l) II(Jg)(m,m) Iég)(n,n) Iég)(ml,n—r-l)

1 Igg)(m,n) Iég)(n,m) Iég)(m+l,n+l) Iég)(n+l,m+l)

. - 3
(02 - 22 [n + 2 - @+ 1 1Pmm) ¥ wn) D @a,mn) 1l (ma,n0)

Ir(’g)(m,n) Il()g)(m+l,m) Il()g)(n+l,m+l) Iég)(n,n+l) + Il()g)r(.m+l,n+l) Il()g)(n+l,n) .Iég)(n,m) Iég)(m,m-;.l)

(n2 - m2) ,:(m + 1)2 - mz:, &n + 1)2 - ng:, [(n + l)2 - (m + l)zjllgg)(m-l-l,xml) I}Eg)(m,m) Ilgg)(n+l,n+l) Ilgg)(n,n)

(m +n odd)

(Equation continued on next page)
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T 1 Ilgg)(n+l,m) I;(,g)(m,n+l) Iég)(n,nwl) ]:L()g)(m+l,n)

En + 1)2 - mEJeEla - (m + 1)2]2 Il()g)(n+l,n+i) Iég)(m,m) Il()g)(n,n) II(Jg)(m+l,m+l)

1 (o)(m m+l) I(o)(m+l m) (0 (n,n+l) I(o)(n+l n)

+
Bm +1)2 - me:lzl:(n +1)2 - :l (0)( m,m) Ipp (m+l m+l) Iég)( n,n) Ipp (n+1,n+1)

. Il()g)(m+l,m) Ir()g)(m,m-l) Ilgg)(n,ml) II()g)(n+l,n) + Il()o)(m,m+l) I(O)(m-l, (0)(m+l n) I(o)(n,n+l)

I:(m + 1)2 - m2] I:(n +1)2 - n2] [n2 - (m+ 1)2] En +1)2 _ mg_] ]'1313 (m,m) Ipp (m+l m+l) Ipp)(n n) Iég)(n+l,n+l)

(m + n even)

g. 4 e (n n+l) I(O)(u+l n) Ty Il()g)(n+1,m+l) Il()g)(m+l,n+l)
2L Bn + 1)2 - 2]2 I(O)(n n) I(O)(n+l,n+l) En +1)2 - (o o+ l)"ﬂ2 Il()g)(n+l,n+l) Iég)(m+l,m+l)
Talne1 I(o)(m+l m) I(o)(m,m+1) e 1Ml Iég)(m,n) Iég)(n,m)
' Em +1)% - ___] (m+l m+l) (0)(m m) " (n2 m2)2 I(O)( ) I(O)( ) (men oad)
Ty (oo : pp 7 Tpp VMR
gL LI II()S)(n,IHl) Ilgg)(xﬁl,n) LS Il()g)(m+l,n) Ir()g)(n,uwl)

o8 +
[(n +1)2 - n2]2 Ilgg)(n,n) Ilgg)(n+l,n+l) Em +1)° - nﬂe Iég)(m+l,m+l) Iég)(n,n)

Mgt (O (m+l m) I( )(m,m+l) M1 Ir()g)(n+l,m) Il()g)(m,rnl)

(m + n even)

"
Em +1)2 - mej pp (m+l,m+1) II()P)(m,m) [(n +1)2 - m2]2 Iég)(n+l,n+l) Iég)(m,m)

(i)
SRLTEE

If, for some particular boundary conditions under investigation, the
y-expression Fpn(y) is not an explicit function of the x-direction mode

number n, the integral expressions Ié;)(m,n) are also independent of m

and n, and all the integral ratios used in equations (19) become 1. TFor
example, the expression for L then becomes simply

2 (19p)
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1

1 2
{(2&1 ¥ D(en + 1) [0 - @+ 1)][(n + 1)2 - me]}

(m + n even)

=
!

i

i 1 Y (m +n odd)
{(2&1 + 1)(en + 1) [(n +1)2 - (m+ 1)2](n2 . m2)}

—(z) =(r) - = . . .
and A.pp and Bpp become App and Bpp) respectively. Since Fpn(y) is
often independent of n (for example, simply supported or clamped side-edge

boundary conditions), this case is discussed in some detail below.

For a given value of Eﬁp the condition ?} = 0 determines the value

OBpp

of Nep- A plot of A against ﬁpp for a selected value of Zﬁp must be

made, from which the lowest value of ﬁﬁp can be found at which %% = 0. This
value of Efp is substituted back into equations (19) to determine xcr for
that value of Eﬁp' If the problem is to be calculated on a computer, it is

4 4 i (m? + n2) —

helpful to start ﬁpp at the value = z a 5 App and decrease Epp

by Eﬁp X 10'2 until the value of A starts to decrease. All that needs to

be known are the assumed mode shapes for particular cases.

The lowest two terms in the x-direction for a two-mode solution were
selected, and the resulting critical flutter parameter was plotted as a func-
tion of All in figure 5. Also the lowest four terms in the x-direction were

used in a four-mode solution as noted in figure 5. The "exact" solution curve
is the value to which the Galerkin solution would limit if the number of
x-terms became very large. This solution is determined from the solution of
reference 1 for simply supported plates and is based on the fact that the
flutter boundary for panels with cross-stream boundary conditions other than
simply supported can be computed from simply supported results by merely rede-
fining App and Bpp' Thus, these exact results are not strictly exact, since

only a single approximate mode shape term was used in the y-direction. It can
be seen from figure 5 that the two- and four-term solutions agree fairly well
with each other, but a large discrepancy exists between these solutions and the
exact solution and indicates that these solutions are not well converged with

only four terms.
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THE INFLUENCE OF TRANSVERSE SHEARING STIFFNESSES

Basic Equations - General Case of Simply Supported Panels

The two transverse shearing stiffnesses DQ and DQy of the panels
X

shown in figure 1 can be included in the differential equation for deflection,
provided the equation is expanded to the sixth-order (see ref. 12) equation:

bw by 3w 3w o [ 1
o] — + —_— t gz ———t Q) —— =~ D —_— - 21D 1l = + =
1 NG 2] Bxh 5 2 NN Iy : o'y Bxh xy( “x“y) > by Dy

L. I 6
+ 1 D]_B_w__ i _ o[y L4 N - oglw
2 (e T Y ok Tt T a? P oy a6\"x 7,

b 3w Pw b b Hw
+NYW+2NWW>'°"7<NXW+NYSE+2N’WW R

Ot St Sty o Mty
+ N + 2N + N + N.,, =—= + 2N —
Y &2 Xy 5x55y> a9<x 3x23y2 y oy ¥ x 32

3%y
_(1_ux%)(mxa_x—+my$2—+zmwaxay>_?a5_

Y > dw
-Gsa—x—;‘%g%;g*(l’ux“y)&:bmwz&g*%gm*%g

2
- ag g;% - a9 gsg + (l - “X“y)%} =0 (20)

where N, and Ny are in-plane loads that are positive in compression, and
a, are functions of the shear stiffnesses; specifically,

e2



@ = 1 nyDx
__2.%
e By, @0
Q‘E_d‘lDQx DQ:y
[ £
_ 1090y
d,)_l_—'g m’x
=3
O‘5‘DQX
- 10
" 0o, Dy,
oy
°’7=Ey'
1 ny Dy
% =3 Ty (* T M) * oy

D
i = B RL(t - wey) * B
a1 = DDy = 3 Dey(Dhty + Dyisy)

The shear stiffnesses can be determined by a method of approach similar to the
method shown in reference 13. The boundary conditions for simple supports (in
which all points along an edge are restricted from moving parallel to the edge)
are
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_ =
ﬁ]x=0,a =0
Y =0
Dg
Y1x=0,a
Méj - Dy w fu d%w o1 Qe _ aQy _0
x=0,a 1 - PLx”'y\Bx2 v o2 Do, 3x DQy &
x=0,a
r (21)
ij=0,b =0
]%c_ -0
Qx y=0,Db
M&] _ Dy Pw iy Fw 1 BQy _ Hx 0Qy _ 0
y=0,b 1- 2 Dy Oy Dy Ox
) Hyhy \3y2 dx Qy Qe =0,
-’
These boundary conditions are satisfied by the assumptions
_ - rox . STy
Q,x— ZZ 8pg cos—a—s1n-—b—
r s
_ = . mIx ny
Qy = }Z }: apn Sin —— cos —=
m n
(where grs and g;n are constants) and finally
_ . IMX gp I
W o= }: E: ajy sin —= sin <= (22)
i J

Application of the Galerkin method yields the following set of homogeneous
eqguations

ok




gl + “5( r6n6'+ rhs2n6> + (Nx rlg2:6 + N r2shn6>

g et Y I Iz Y ook
I'QSLI".IT6 s61r6) ( rl*'n:b' 1‘25211?)4'>
+ap|Ny —— + N + ag(N + N, ———
a7( x a2b y b6 B\ x a.h y a2p2
r2g2 M ok b 2.2 622
+ <1\TX Sp Ny " + (1 - uxp.y) N, > + N =
L ) 2.2 4 L N 2 2 2 2
o ro s s'r
+mm<%?:—+% a2b2 +a,-(—br+a,8 a2+a,9b2+l-pxp_y>
+ §g Z lrais ill-ﬂ)'" + 125231:4 . Sl‘-ﬁll- + i2T[2 + Sgﬂ'2
ap T '(12 - r2) = au % azb2 “ bi e a2 a9 b2
i+r odd
16 ijrsaq P 123 2.
+ (1 = pgpy )| = Npr — z Z 4,_(@5 + g —I
( X y)} X &b 8 ; (12 - rz)(jz - 62) ol a2p2
i+r odd Jj+s odd
RIgpTS .2 2 22
J'n i“x Jen _
tor Tt T3 +°‘9b2+l'“X“y)“o (23)

where r and s take on all values. If the usual case where Nky =0 is
considered and the constants are redefined as
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— CLlif2 — (18'11'2
= 5L2DX = as
= aeng ~ ag,rg
2 = w2, %9 T 2
_ 0.51112 - Nxaz
"> " v, & D, 7t
_ auﬂ2 — N 32
a, = = —L
b v2p Ty D,
. 2qa)
— T q
= a5 T A= ==
a5 > 4 BD,
* 4
66 - ag “1;2 — mw2a
a2'b2 Dy
— 0071t4
1T F
the following set of homogeneous equations appears:
6- bo- _ 2k - 6 at - e e ' wat Dy
a.rs{-ra,l-rsae b—aB-sbhau—r - or2g? ;Elgl-p.xpy)b— ~L 2Dx -8 ;E-]-);

— 2 _ - — a2 — _ — al — - — a2 =
+ 55(1612}{ + rll'se & Ry) + q,6<rl‘”seRx + rzsl" o8 Ry) + a,?-(rgs)*Rx + 56 o5 Ry) + q,8<r)"'Rx + r2s? - Ry)

26

— a2 — _ - - - - -
(res R, + s &2 Ry> (1 - pxp,y_)<r2§x + s° = Ry) + 1:2(1'%5 + rPsf5g + s)"Lor,7 + r5g + 52a9 +1 - p,xpy)}

Z .11'8-15 (:151 + ‘161 52 + ou—(s + a,81 + a95 + 1 - p_xp_y) (2k)
i
i+r odd




where r and s +take on all values. To determine the effect of the shear
stiffnesses, a two-mode solution was completed and compared with the two-mode
solution with infinite shear stiffnesses. Selecting a single term s in the
y-direction and any two terms i,r in the x-direction (one even and one odd),
and setting the determinant of eqpations (24) equal to zero yields the fol-
lowing expression for the flutter parameter A:

N Eilie _ rel Ky(r) + r A(r) + B(r) Ko(1) - izﬂti) - B(1) (25)
b 2@. + Kl(r 12E_ + Kl(i)]
where
Kl(j) = j4&5 + 3232&6 + 54&7 + 32&8 + 82&9 - Hghy
2 l
K5(3) = J6ocl + 3 32‘12 + jgsu:— az + e i— Q) + JlL
—_ 2
R0 = o 0T - 2 T ) ¢ 2 22
§(J)=[1+K( H(sea—g— +Ts'2) sh aMD_y
1 w2 Y T oF D

The critical value of A 1s found by setting the partial derivative of A
with respect to of equal to zero and solving for the value of w2 at  Agps

and then resubstituting this value into equation (25) to yield

rgl-&(r)' - Kp(r)  Ko(1) - i2E(4)
1+ Kq(r) i Kq(1)

|12 - r2|

(1 + r odd) (26)

N K1(r) - X3(1) N .EY_
|'_i + Kl(i)] [1 + Kl(r] Dx

bl
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The value of %cr for the case of infinite shear stiffnesses is

2 -
Aep(®) = (12 - 2) (12 + +2 - %) (1 +r odd) (27)

8ir

where A(i) and A(r) both become
2/D
Y 2 a Xy
A=R -2822 (X,
& SbE(Dx “3’>

and the assumption HycHy << 1 and the fact “ny = uny have both been used.

To illustrate the influence these transverse shear stiffnesses can have
on panel flutter, the flutter conditions for the following series of panels are
computed:

N, =0

& .1

b

EX = 1,000
Dx

Hy = 0.15
i=1

r =2

s =1

These conditions correspond to a square panel (typical of the corrugation-

Aer

(™)

- - (- 2D - [_ 2D
against A for several values of Cy [Cy = —1%5-35— and Cy Cy = —EE--QL-
2a= Do 2p= Doy

stiffened panels of ref. 7) without in-plane loading. A plot of

is shown by the solid curves in figure 6, and the values used in this plot are
also presented in table II.
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=1 x 10°L,

Cy

(b) Small Dg, stiffness.

Figure 6.- Concluded.

Pqy

is generally of more importance

Infinite Shear Stiffness,

By con-

a relatively simple relationship can be

Cx
(at least for nearly square panels of this stiffness ratio).

E&
sidering the

stiffness only,

%

derived for the critical flutter parameter for panels with relatively small

It can be seen from figure 6 that
D

than

(25) become

, the constants in equation

= oo

If D
U

stiffness.

DX
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TABLE II.- THE EFFECT OF TRANSVERSE SHEARING STIFFNESSES ON TEE FLUTTER OF SIMPLY SUPPORTED

PANELS FOR AN EXAMPLE SERIES (IWO-MODE GALERKIN SOLUTION)

Aer
Acr()
A | (26): =15, = ; = ; 6): 2=1; p, = 0.15 1 = 1,2,1; s
q. T §=1 ky = 0.15 1,58 = 1,2,1; _ Eq. (26): $ =1 wy =015 L,r,s = L,2,15 | gy, (29): Cy = 0; 1,r = 1,2;
& _ Eq. (30): Cy=0 D. _ Re=1
B = 10005 Ty = 05 Ny = 0 B;‘f=o.001;cy=o.1,nx=o
T, =0
100 1.0000 1.0000 0.831k 1.0000
300 1.0000 1.0000 L7938 1.0000
1 000 1.0000 1.0000 .6929 1.0000
3 000 1.0000 1.0000 4987 1.0000
10 000 1.0000 1.0000 2228 1.0000
T, = 1x 107k
100 0.9943 0.9950 0.8267 0.9950
300 .9845 .9852 7820 .9852
1 000 .9512 .952h 6652 .9523
3 000 .8690 .8696 k597 .8695
10 000 6664 6667 .2078 6666
a T =1x 1073
100 0.9456 0,952k 0.7866 0.9519
300 8641 8696 .6909 .8691
1 000 .6638 L6667 4891 L6663
5 000 -3993 4000 2663 .3998
10 000 1668 L1667 .02k 1666
= -2
G, =1x10
100 0.6390 0.6667 0.5326 0.6635
300 +3935 -Looo 3222 . 3980
1 000 .1678 1667 1356 1658
3 000 L06357 .06250 .05112 .06218
10 000 . 02003 . 01961 .01607 .01951
T =1x10t
100 0.1752 0.1667 0.1%29 0.1587
300 .07252 . 06250 .05876 .05942
1 000 L0237k .01961 .01919 .01863
3 000 .00812 . 006622 00656 .006292
10 000 .00246 . 00200 .00199 .00190
= (52, 282Dk
K1(J) = Cf23” + s° & XL
b2 Dx
 (28)
(3) = @ b 2 a2 Dyy 5 2 a*Dy  Dyy 626 Dy Dyy m
Kld) =Clds" S5 =+2is g - W)+ —Z 5.5, |+
b X b X X b X X
-
D D

Now, since L and XL are both large quantities (for small values of Dx)

Dx Dy

of the same order of magnitude, only those terms in equations (28) that are

underlined are retained. Therefore, %br can be written (for any two modes

and arbitrary stiffnesses) as
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(29)

where A(i) has become

A= {1+ Cys 2—-~§2>Rx - 28 & Dxy + By
»2 Dy 52\Dy

This expression is extremely easy to evaluate in comparison with equa-

tion (26). Also, if A is substituted into equation (29) directly, the effect
of in-plane loading is seen to be linear. Thus, an increase in compressive
loading lowers the critical dynamic-pressure parameter, and an increase in
tensile loading raises it. This equation also shows that the influence of Rx

decreases for the higher modes, and the largest effect is for i and r equal
to 1 and 2. Finally, the influence of Rx is greater for panels with smaller

Aer

values of 6% (or larger values of DQx)' A plot of () with A for two

representative values of ﬁ% and a series of values of 6% is ghown in fig-

ure 7. The values used for plotting figure 7 are also given in table II for
easy reference.

The validity of the approximation used to obtain equation (29) may‘be seen
if a comparison is made with the example given in figure 6. Thus, if Ny = 0,
equation (29) can be rewritten in the follow1ng form (for any planform ratio
and any two modes):

A
cr _ 1 (50)

Aoy () L Aoy

The dashed curves drawn in figure 6(a) are the flutter curves specified by
equation (30). These values are also presented in table II. The approximation
is extremely good in all regions and indicates that for this case, expres-

sion (29) is accurate. It must be mentioned, however, that these conclusions
are all based upon a two-mode Galerkin solution and it is known (ref. 1) that
the Galerkin two-mode solution is conservative when compared with the exact
solution, particularly for large negative A values.
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Dy.-

relatively small values of

CONCIUDING REMARKS

Some important conclusions can be made on the effects of both side-edge

boundary conditions and transverse shearing stiffnesses on panel flutter phe-

Since these two effects were investigated independently, separate con-

clusions are presented.

nomenas..

However, it must be emphasized that comparisons are

exact solutions may not yield

2

made on the basis of two-term Galerkin solutions

the same quantitative results, although the qualitative results are expected to

remain the same.
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Side-Edge Boundary Conditions

The influence of side-edge boundary conditions can be very significant.
Changing boundary conditions from simply supported to clamped causes a rela-
tively small increase in the critical flutter parameter N\.,., but changing

these boundary conditions to free edges causes a significant decrease in xcr‘

This decrease is primarily caused (for the examples analyzed) by the fact that
the panels were not forced to bend between their side edges (their stiffest
direction). Thus, if free boundary conditions exist along the side edges of a
panel, flutter of that panel may occur at much lower dynamic pressures than
expected for simply supported panels.

Transverse Shearing Stiffnesses

The two stiffnesses (DQX and qu) can cause extremely large variation in

the critical flutter parameter )cr’ some reductions being as large as two

orders of magnitude. These conclusions are based upon flutter calculations for
an example series of panels that closely approximate typical corrugation-
stiffened panels currently in use, and for such panels (with relatively small
bending stiffness in the flow direction), it was noted that if there is a
finite transverse shearing stiffness in the flow direction (DQx)’ the effect

of DQy is small. Therefore, a simple expression was derived for infinite
DQy that showed the influence of DQx’ in-plane load, and the mode numbers on

the critical flutter parameter. This expression is extremely easy to use and
agrees well with the more exact expression. Therefore, an estimate of the
flutter parameter )cr may be easily calculated.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., September 17, 1965,
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APPENDIX

GENERAL, GALERKIN SOLUTION FOR THE FLUTTER OF ORTHOTROPIC PANELS

TN SUPERSONIC FLOW USING STATIC STRTP THEORY

The orthotropic panels under consideration here are shown in figure 1,
with arbitrary boundary conditions on all four edges. The differential equa-
tion for the lateral deflection w, both static strip theory and simple har-
monic motion being assumed, is (eq. (1))

o% o= -
éﬁz + 2 Dyy + dtw + Dy St + ¥ Ry 3w + T Ry 3w + A ow _ K2xt 0
y ax23y2  Dx agt a2 3x2 a2 3y2 a3 Ox ol

Dy

dxt

where

For the Galerkin solution, the deflection w was expanded in the series

w = }Z E; 8on an(x) Fpn(Y) (A2)

n p

where each term a;, an(x) Fpn(y) must be chosen such that all the boundary

conditions are satisfied. Substituting this function for w into equa-
tion (Al), multiplying by qu(y), and integrating across the panel yields (for

each value of q)
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X b

2 Z [Dlég)(m,n) oTV(x) + %(%{ . uy)I((lg)(m,n) @ () + 2 9%3‘_) (") (m,n)
n p

bR, 7 L0 Ryn® (2) K2t (0)

F o Tp (mm) G (x)+ba (%) Tgp (,>-ka Tgp (m,0) Gyp(x)

+ 2190 06 <:| (43)
5 o *)%pn = ©

for q equal to all values taken by p and where primes denote differentia-
tion with respect to x and

(r)

r-1 b d.r

Multiplying equation (A3) by qu(x) and integrating along the panel yields
(for each combination of q and m)

z Z [“‘) 02) 100w + 2 (051 )5 0,0 12

¥ gz 0 39 (q,p) 1( Y(mm) + B x23(2)(q,p) I(O)(m n)

7 w2a® (0)

+ Ry (1) 0)

(m,n) + Ny (a,p) Iép

(2)

(mJn)

m (2,P) Ty

(AL)

I
o

- ¥ox J(O)(q,p) I( )(m nE‘apn

for q equal to all values taken by p and for m equal to all values taken
by n and where
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ey = o7t [ a0 Eoe () ax

0 axf 1P

~

For any given boundary conditions on all four edges of the panel, func-
tions are selected that satisfy all the boundary conditions. These functions

are then used to calculate the integral expressions Ié;)(m,n) and Jé;)(q,p)

and the determinant of equation (Ak4) yields a relationship to solve for the
flutter parameter A. When generalized flutter parameters are introduced,
equation (Ak4) becomes

(m;m)

(
(%)
z 8o |Tgm (25P) W)__—

P + JI(ni)(q,p) ﬂgﬂgg’m) - Jn(mz)(q,p) ﬂuﬁg;l’m)
P

), Imm) n 1.9 (m,n)
+ M A(e,p) Z z 250 |Imn (2,P)

x<0)<m,m> (°)< m)
n#m
(o)
_ _ I ’(m,n)
+ Jl(fl)(q,p) ﬂeAég’n) - J;g)(q,p) n“Bé;"n) + ani)(q,p) —-——I?ﬁ)(z - =0  (a5)
qq. ~’

for q equal to all values taken by p and for m equal to all values taken
by n and where

(O)mn (2)mn
K(m’n)=§XIQP( ’)+%£(D;Cy+uy)lqp(,)

P Iég)(m,m) 2 p2 \D Ié:)(m,m)
and
) el mn) 121 ny g b1l )
qp 1 Omm) 72202 1O (mm)  Dxxt o 10 m)

If only one term is considered in the y-direction (as is often done), these
equations become (for each value of m)
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() (g,0) + 58 (g,q) 22E=™) _ 5(0)(q,q) iélqn’m) + M;i)(q,qgl

qm [ um aq
(0)
(b, Tag (mm) () 2-(m,m) _ (0) 4=(m,n)
+ Z aanmn (a,q) m I (@) A 7 - 0 (ee) OB
(l) I(o)(m,n
+ M7 (a,a) ————?g) =0 (46)
Iqq (m,m)

for m equal to all values taken by n.

As an example of the use of equation (A6), the flutter parameter for a
two-mode Galerkin solution can be written directly as a solution of the alge-

braic equation

I((lg)(m,n) Iég) (n,m)

Az Jlgi)(q,q) Jr(ull)(q,q) - JI(ni)(q,q) Jr(li)(q,q) ©) ON
Iqq (m,m) Iqq_ (n,n)

+ A Jéli)(q,q) Eﬁ)(q,q) + Jl(]i)(q,q) Kc(;’n) - Jg)(q,q) 5((13’n)

+ Jr(nll)(q,q)lzTﬁ)(q,q) + 388 (g,q) —A'g’m) - 389(q,q) §é§’mj

(0) (o)
1 L 2 —(m, 0 ~(m, I (m,n) I (n,m)
- 38 (q,q) E’n(m)(q,q) +38)(q,q) A((;; )~ 509)(q,q) Bgﬁ nﬂ ((lg) ?g) -
Iqq (m,m) Iqq (n,n)

n,

- J;Ill)(q,q) Eﬁ)(q,q) + Jéi)(q,q) Kc(lg’m) - Jr(lz)(q,q) _ﬁc(lq M

Ic(lg)(n,n) I((lg)(m,m)

m?] I(O)(n,m) Ic(lg)(m,n)

(Equation continued on next page)
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[( Nayq) + L2 )(q a) A((;;,m) (O)(q a) B(m’m)] [(h)(q,q)

+ 32 (0,0) 2™ - 51 (q,0) B2 n’:l [“*)(q @) + 32 (q,0) A

5{o )(q a) B(m n):l l:“”(q q) + G )(q a) Aél(;’m)

1(0) (0)
(O)(q,q) B(n’m:l qa (n;m) Iqq_ (m m,n n) -0

a4 I(o)(n,n) I(o)(m m)
qq qq

These solutions are utilized in the text of this paper where applicable.

(AT)
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