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EFFECTS OF SIDE-EDGE BOUNDARY CONDITIONS AND TRANSVERSE 

SHEXR STIFFNESSES ON THE Fl;UTTER OF ORTHOTROPIC 

PANELS IN SUPERSONIC FLOW 

By Deene J. Weidman 
Langley Research Center 

SUMMARY 

The basic linearized equations for orthotropic panel flutter are solved by 
the Galerkin method for simply supported leading and trailing edges and various 
side-edge support conditions. In addition, allowance is made for the finite 
transverse shear stiffness of simply supported panels. These qualitative 
results show that both transverse shear stiffness and side-edge boundary con- 
ditions can be extremely important in determining the flutter boundaries for 
orthotropic panels. 

INTRODUCTION 

Panel flutter has received much attention in the past few years (refs. 1 
to 8), the analysis of uniform isotropic rectangular simply supported panels 
receiving the most attention (refs. 1 to 4). 
are now being constructed of various built-up panels (corrugation-stiffened 
skin panels or sandwich core panels, for example), and hence an understanding 
of the flutter behavior of such orthotropic panels is necessary. Several 
recent papers (refs. 7 and 8) have initiated investigation into orthotropic 
panel flutter. A theoretical investigation was undertaken of some effects not 
considered in these references, but thought to be of importance in the predic- 
tion of the flutter characteristics of orthotropic panels. 

However, aircraft and spacecraft 

As the influence of core transverse shear stiffness has been shown to be 
of importance for uniform isotropic sandwich-core panels (ref. 6), the general 
case of a panel with two arbitrary transverse shear stiffnesses (DQx and DQ.) 
has been investigated. The results of' the investigation reported herein indi- 
cate that these stiffhesses can have a large influence on the flutter phenomena 
for orthotropic panels. 

Experimental results on orthotropic panels (ref. 9 )  have shown that the 
panel side-edge boundary conditions (along the edges parallel to the airflow) 
have a significant effect on their flutter characteristics. In order to inves- 
tigate the importance of these boundary conditions, a Galerkin solution was 
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used to obtain the flutter equation for flat rectangular orthotropic panels 
with general boundary conditions. Specific solutions are also presented for 
simply supported, clamped, and free boundary conditions along the side edges, 
and it is shown that free boundaries can significantly increase the flutter 
susceptibility of an orthotropic panel, especially where the bending stiffness 
in the crossflow direction is much higher than the bending stiffness in the 
flow direction (as is often the case). 

SYMBOLS 

series coefficients appearing In expansion of w 

x- and y-dimensions of orthotropic panel (see fig. 1) 

apn 

a,b 

-b) 44 flutter parameters for general orthotropic panels, defined by 
equation ( 3 )  JBSp 

- 
Ab) ,Rr) flutter parameters for simply supported orthotropic panels 

including transverse shear stiffness, defined by equation (23) 

A1( p,n) ,%( p,n) ,A3( p,n) coefficients in free-free mode shape expression 
(see eq* (17)) 

B1(p,n),%(p,n) coefficients in free-free mode shape expression (see 
eq* (1.7)) 

- 
transverse shearing stiffness parameter in the x-direction, CX 

Dx -- 
2a2 D Q ~  

transverse shearing stiffness parameter in the y-direction, 
-Y 2 
2b2 D% 

Dx, Dy bending stiffnesses of orthotropic panel 

D Q ~  J D Q ~  transverse shearing stiffnesses of orthotropic panel 

Dxy 

Fpn( Y) 

twisting stiffness of orthotropic panel 

assumed pth mode shape in the y-direction (with p half-waves) 

Gnp(x) assumed nth mode shape in the x-direction (with n half-waves) 
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i, j,m,n,p,q,r, s mode shape numbers (number 

- 
k 

vY 

W 

X, Y 

an 
% 

streamwise mode shape in t eg ra l  

frequency factor ,  

f ac to r s  defined by equatlon (25) 

of half  -waves) 

expression, 

constants defined by equation (lgb) 

m a s s  of orthotropic panel per un i t  area 

applied bending moments per uni t  length 

Mach number of a i r f low 

applied in-plane forces per un i t  length f o r  orthotropic panel 
(posi t ive i n  compression) 

in-plane shearing force per uni t  length 

dynamic pres sure 

Nxa2 
in-plane loading factors ,  - and - Np2, respectively 

2 D X  $D, 

v e r t i c a l  shearing force per un i t  length 

la teral  def lect ion of orthotropic panel 

coordinate axes (see f ig .  1) 

set of transverse shearing s t i f f n e s s  constants (see eq. (20)) 

nondimensional set of % constants (see eq. ( 2 3 ) )  
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$ = 

Y 

A 

DXY 
DY 

boundary condition parameter, px + - 

Kronecker delta 

constants defined in equation (19) 

zqa3 
$DX 

dynamic -pre s sure parameter, 

critical dynamic-pressure parameter for panels with infinite 
shear stiffness 

Poisson’s ratios 

circular frequency 

THE INFLUENCE OF SIDE-EDGE BOUNDARY CONDITIONS 

General Galerkin Solutions for Panels Simply Supported 

at Their Leading and Trailing Edges 

The orthotropic panels under consideration have a width b (in the 
y-direction) and a length a 
supersonic airflow of Mach number M flowing over the upper surface in the 
x-direction. 
at both the leading and trailing edges and subjected to in-plane loadings 
and Ny considered positive in compression. If simple static strip-theory 
(Ackeret) aerodynamics are used and simple harmonic motion is assumed, as dis- 
cussed in reference 1, the differential equation for the lateral deflection w 
of the orthotropic panel becomes 

(in the x-direction), and are subjected to a 

(See fig. 1.) These panels were assumed to be simply supported 
Nx 
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Figure 1 - Loadings and dimensions f o r  a typ ica l  
orthotropic panel. 

If the product p p 

still valid if D, and Dy are redefined by dividing them both by 1 - pxpy. 
Generally, the py-factor in the second term of equation (1) is neglected. 

is not very small with respect to 1, this equation is X Y  

In the appendix the solution of equation (1) is determined by the Galerkin 
method for general boundary conditions. To illustrate the influence of side- 
edge boundary conditions, however, several explicit examples are computed in 
this section. The Galerkin method is used here for generality, even though in 
a few cases an exact solution of equation (1) is possible. 

For panels simply supported at their leading and trailing edges (the 
boundaries parallel to the y-axis) the deflection must satisfy 

= o  WJ x=O,a 

To satisfy these boundary conditions, the deflection was selected as 

n 
( 3 )  
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Only a one-term expansion in the y-direction has been assumed in this case and, 
thus, a summation with respect to p does not appear. The function Fpn(y) 
has the subscript n because of possible coupling of the x and y functions 
through the particular side-edge boundary conditions used in some cases. The 
Galerkin procedure is applied by substituting equation ( 3 )  into equation (l), 
multiplying the resulting equation by 
the area of the plate. 

mnx 
a sin - Fpm(y), and integrating over 

The following equations then result: 

where 

For any specific boundary conditions in the crossflow direction, then, the 
functions Fpn(y) must be chosen to satisfy all the y boundary conditions 

and the integrals I&)(m,n) must be evaluated. Substituting these expressions 
into equations (4) yields a set of homogeneous linear algebraic equations for 
the coefficients and the condition fo r  a nontrivial solution is that the 
determinant of the coefficients be zero. This determinant yields an algebraic 
equation that must be solved for the dynamic pressure parameter 

”pn 

A. 

These general equations (eqs. (4)) are examined for the special case of 
only two terms in the series expansion for w. 
is not exact, it does yield the qualitative results necessary for the evalua- 
tion of the effect of crossflow boundary conditions. 
expansion (in which 
solution yields for the flutter parameter 

Although this two-term solution 

If only a two-term 
m + n is odd) is used, the condition for a nontrivial 

h 
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The c r i t i c a l  value of A i s  determined by solving f o r  the lowest value of h 
at which the frequencies f o r  the two modes coalesce. Thus, = o ( s ince  

the frequency appears only i n  2, t h i s  re la t ion  i s  equivalent t o  - = 
aE2 

yields  the c r i t i c a l  value 

If the boundary conditions i n  the y-direction a re  such tha t  the function 
Fpn(y) i s  independent of the  mode number n i n  the x-direction, the  c r i t i c a l  
f l u t t e r  parameter becomes the simple expression 

-10, ooo 

Figure 2.- The value of m 

00 -ID 

- 
for minimum A,, as a function of %p for panels simply supported 

a t  the  leading and t r a i l i n g  edges (Galerkin solution using m - - a n d  m + 1 half-waves). 
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If, i n  addition, two consecutive values of m and n a re  chosen (n  = m + l), 
the  minimum A,, i s  found at one of the  two integer  values m nearest the 

value - 1 ( -1+ { n j .  1 + 2 A p lo t  of m against  %p i s  shown i n  f ig-  

ure 2, and values of A,, f o r  several  values of m and % a re  given i n  
tab le  I. Table I indicates  t h a t  m = 1 does not give the  minimum for t h i s  
process f o r  large negative values of 
10 percent i s  incurred i n  the range investigated by using 

2 

P 

Tipp. However, a difference of only 
m = 1. 

TABLE I.- VALUES OF hr FOR A PANEL SIMPLY SUPPORTED AT TRE LEADING 

AND TRAILING EDGES AND EITHER SIMPLY SUPPORTED OR CLAMPED ON 

THE SIDE EDGES (TWO-MODE GALERKLN SOLUTION) 

I Values of br f o r  values of App of - 

-100 

5.753 x IO3 
5 733 
6.215 
6.953 
7 907 ----------- 

-1000 

5.507 X 10 
5.139 
5.096 
5.134 
5.211 

4 

_---------- 

-10 000 I 
5.482 x lo5 
5.080 
4.984 
4.952 
4.941 
4.941 

Since end f i x i t y  i s  t o  be investigated, only the modes m = 1 and n = 2 
are  used (even though it i s  possible t h a t  other modes might be c r i t i c a l  i n  cer- 
t a i n  s i t ua t ions ) .  The cases of simply supported, clamped, and f r ee  boundary 
conditions along the edges p a r a l l e l  t o  the. flow are  discussed. 

Panels with the  side edges simply supported.- The boundary conditions i n  
the y-direction a re  s a t i s f i e d  by F (y )  = s i n  E. Thus, the cross-stream 

in t eg ra l  expressions a re  independent of 
Pn b 

n and can be wri t ten as 

since p = q and r i s  even. The parameter qp (for the  single pth term i n  
the  y-direction) becomes 

GP = R, - 2(2 + py)% 2 2  P 

a 

(9) 



The value of br i s  obtained by subst i tut ion of %p in to  equation (8) and 
select ion of m = 1 and n = 2. The r e su l t s  are the same as those of refer-  
ence 1, where the lowest term i n  the y-direction (p = 1) w a s  used f o r  a uniform 
pla te .  These r e su l t s  a r e  shown i n  figure 3, where the c r i t i c a l  f l u t t e r  param- 
e t e r  br is  p lo t ted  against  xll. 

1 
-100 -10, m 

Figure 3 . -  F l u t t e r  r e s u l t s  from a two-mode Galerkin solution (lowest two 
terms) f o r  orthotropic panels simply supported a t  t h e i r  leading and 
t r a i l i n g  edges. 

Panels with side edges clamped.- In  the case of clamped panels, several  
functions fo r  Fpn(y) could be used t o  s a t i s f y  the clamped boundary conditions 

iIy=O,b = O 1 
"1 = o  J 

y=O,b 
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, IIIIII I I1 111ll 

The Iguchi function (ref. 10) is assumed here and is defined as 

sin EX b 2 
Fpn(Y) = x((" b b  - 1) + (-l)'(Er($ - 1) - Pfl 

Therefore the integrals become (see ref. 11) when q = p 

With these functions, if the lowest term in the y-direction with p = 1 is 
considered 

"he critical values of the flutter parameter are given by equation (8) by rede- 
fining xll according to equation (12). The flutter boundary which has been 
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plo t ted  on f igure 3 f o r  simply supported side edges i s  iden t i ca l  t o  the f l u t t e r  
boundary f o r  these clamped s ide edges. 

Panels with the  side edges free . -  Panels having f r ee  edges i n  the cross- 
flow direct ion must have mode shapes sat isfying the  following boundary 
conditions : 

51 y=O,b = -% 

-3($+pxq = o  
ax y=O,b 

= o  
y=O,b 

2 2  
2 and since - a2w = -- ' w, the  function of y must s a t i s f y  the boundary 

ax2 a 
conditions: 

where 

In order t o  s a t i s f y  boundary conditions (l3), the  general function of 
y (Fpn(y)) must of necessity be a function of n ( the number of waves i n  the 
x-direct ion) .  The function selected herein is  

I 



where 

2 a 

f o r  any a rb i t r a ry  A3(p,n). 
slope at  the f r ee  ends would become zero, an unnatural condition; however, a 
s l igh t  curvature of the panels a t  the  side edges i s  caused by using a value for 
A (p,n) i n  such cases. The integrals  then become 

For even values of p with A3(p,n) = 0, the 

3 
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20 

(q and p both even) 

(q and p both zero) 

(For other combinations of q and p) 



(9 and p both even) 

(q  and p both zero) 

(For other combinations of q and p) 
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(q  and p both zero) 

(For other combinations of q and p )  (4)  I~ (m,n) = o 

where 

These integrals  are seen t o  be functions of t he  mode numbers 
terms i n  the x-direction. 
factor,  m equals n; whereas i n  the  aerodynamic loading factor  m is  not 
equal t o  n, since an odd derivative appears oniy i n  t h a t  term. Thus, the dis- 

t inc t ion  between m and n need only be made f o r  the  expression I(O)(m,n) 

tha t  multiplies the A-factor. 
dynamic-pressure parameter can be written, i n  general, as given i n  equation (6) 
( i f  m + n 
e i the r  

m,n of the two 
I n  a l l  factors  except the aerodynamic loading 

9p 
If a two-mode solution i s  considered, the 

i s  odd), and the  c r i t i c a l  value of t he  f lu t te r  parameter becomes 

f or upon expanding 



Rewriting the  constants A,, - +, B l ,  and B2 appearing i n  the  integral  
expressions i n  terms of only two parameters yields 

J 
where 

2 2  - rcb 
2 a 

0 = b -  

and 

If the  zeroeth term i n  the y-direction (p = 0 )  and the lowest two terms i n  the  
x-direction are considered, hcr i s  given by e i the r  equation (13) or  (16). 

As an example of the e f fec t  of f r ee  edges on the f l u t t e r  boundary, the  
f l u t t e r  conditions f o r  t he  following s e t  of panels ( typ ica l  of corrugation- 
s t i f fened panels with s t i f feners  running perpendicular t o  the  airflow direc- 
t i on )  w i l l  be computed: 

N x = N  = o  Y 

- 
e = 0.01 

- 
cp = 10 000 
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then 

where 

A comparison of the critical dynamic-pressure parameter for panels with 
free side edges (eq. (18)) with the corresponding expressions for simply sup- 
ported side edges (using eq. ( 9 ) )  and clamped side edges (using eq. (12)) is 
shown in figure 4. 

hr 

The lowest two terms in the x-direction and the lowest 

1 

-100 -1000 -10. ooo 

Figure 4.- The influence of side-edge boundary conditions on the  f l u t t e r  of 
orthotropic panels simply supported a t  t h e i r  leadlng and t r a i l i n g  edges 
(two-term Galerkin solut ion) .  
x-direction; lowest pth term i n  the  y-direction. 

Nx = Ny = 0. F i r s t  two terms i n  the  
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allowable term i n  the y-direction have been used i n  a l l  cases. 
of a rigid-body or "zeroeth" mode shape f o r  the f r ee  edges i s  the governing 
condition and can cause the  lowering of the f l u t t e r  dynamic pressure q by as 
much as an order of magnitude f o r  the example ser ies  shown i n  figure 4. 
of t h i s  difference might be caused by the low value of 

large value of 

s ignif icant  f l u t t e r  differences as shown. 

The allowance 

Some 

CL, or the  re la t ive ly  ( 
selected f o r  t h i s  example, but f r ee  side edges can cause ") Dx 

Four-Mode Galerkin Solutions for  Panels Simply Supported 

i n  the Flow.Direction 

The general Galerkin equations (eqs. ( 4 ) )  can be examined not only f o r  the 
two-term expansion but f o r  the special  case of a four-term expansion as well. 
Even though t h i s  solution i s  not exact, it yields more accurate r e su l t s  than 
the two-term expansion shown i n  the previous section. 

For simply supported and clamped side-edge boundary conditions, a compari- 
son between the two- and four-mode solutions and an "exact" solution (presented 
l a t e r )  indicates t h a t  convergence i s  s t i l l  not accomplished, and some caution 
should be exercised i n  using these values f o r  design. For the f r ee  side-edge 
boundary conditions, however, the r e su l t s  of t h i s  analysis may be more useful. 

By s t i l l  select ing only a s ingle  p term i n  the y-direction, and four 
terms (m, m + 1, n, n + 1) i n  the x-direction, the f l u t t e r  parameter becomes 

where 

1 
(m + n odd) I 

(Equation continued on next page) 
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(m + n odd 

If, for some particular boundary conditions under investigation, the 
y-expression Fpn(y) 

number n, the integral expressions 

and 
example, the expression for L then becomes simply 

is not an explicit function of the x-direction mode 

I(r)(m,n) are also independent of m 
PP 

n, and all the integral ratios used in equations (19) become 1. For 



and A 

often independent of n (for example, simply supported or clamped side-edge 
boundary conditions), this case is discussed in some detail below. 

and B -(.) become %., and qp, respectively. Since Fpn(y) is 
PI? PP 

For a given value of $p the condition - " = 0 determines the value 
- p'pp must be 

%P 
of br. A plot of h against BPp for a selected value of 

- 0. This made, from which the lowest value of qp can be found at which - - 
value of BPp is substituted back into equations (19) to determine br for 
that value of %p. 

helpful to start BPp at the value 

by ;BP X until the value of A starts to decrease. A l l  that needs to 
be known are the assumed mode shapes for particular cases. 

ah 
- am 

If the problem is to be calculated on a computer, it is 
+ n2) - 

- zpp and decrease Bpp 
m 4 4  + n  

2 2 

The lowest two terms in the x-direction for a two-mode solution were 
selected,-and the resulting critical flutter parameter was plotted as a func- 
tion of All in figure 5. Also the lowest four terms in the x-direction were 
used in a four-mode solution as noted in figure 5. The "exact" solution curve 
is the value to which the Galerkin solution would limit if the number of 
x-terms became very large. This solution is determined from the solution of 
reference 1 for simply supported plates and is based on the fact that the 
flutter boundary for panels with cross-stream boundary conditions other than 
simply sugported can - be computed from simply supported results by merely rede- 
fining and BPp. Thus, these exact results are not strictly exact, since 
only a single approximate mode shape term was used in the y-direction. It can 
be seen from figure 5 that the two- and four-term solutions agree fairly well 
with each other, but a large discrepancy exists between these solutions and the 
exact solution and indicates that these solutions are not well converged with 
only four terms. 

20 
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Figure 5.- Accuracy of the Galerkin approximation for the  f l u t t e r  of panels 
simply supported at  t h e i r  leading and t r a i l i n g  edges. 
i n  the  y-direction. 

Lowest pth term 
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THE INFLUENCE OF TRANSVERSE SHEARSNG STIFFNESSES 

Basic Equations - General Case of Simply Supported Panels 

The two transverse shearing s t i f fnesses  D and D% of the panels 
QX 

shown i n  f igure 1 can be included i n  the d i f f e r e n t i a l  equation f o r  deflection, 
provided the equation is  expanded t o  the sixth-order (see r e f .  12) equation: 

where Nx and Ny a re  in-plane loads t h a t  are  posi t ive i n  compression, and 
are functions of the shear s t i f fnesses;  specif ical ly ,  
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a1 

The shear s t i f fnesses  can be determined by a method of approach similar t o  the 
method shown i n  reference 13. The boundary conditions f o r  simple supports ( i n  
which all points along an edge a re  r e s t r i c t ed  from moving p a r a l l e l  t o  the edge) 
are 

23 



These boundary conditions are  s a t i s f i e d  by the  assumptions 

rJlx sny % = 11 zrS cos - a s i n  - b 

r s  

m n  

- 
(where ars and =% are  constants) and f i n a l l y  

i7cx jw s i n  - w = 11 a i j  s i n  - 
b a 

i j  



2 a2b2 
- Dx-- 

4 a 

r s x  2 4 6  + Ny e) + u$kx 4 4  + Ny 

b6 

2 2 4  2 2  

+ .(.. a2b2 
r s x  

- k%)(Nx a 2 + Ny e) b2 

2 2  S J I  2 2 4  i s x  
a 1 

i+r odd 

i jrsaij 1232x4 +c6 
a2b2 

16 

i 
i+r odd j+s odd 

where r and s take on a l l  values. If the  usual case where Nw = O  i s  
considered and the  constants a r e  redefined as 

25 
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a4 = g 

the following set of homogeneous equations appears: 



where r and s take on a l l  values. To determine the e f fec t  of the shear 
stiff 'nesses, a two-mode solution was completed and compared with the two-mode 
solution with i n f i n i t e  shear s t i f fnesses .  Selecting a s ingle  term s i n  the 
y-direction and any two terms 
and se t t i ng  the determinant of equations (24) equal t o  zero yields the fo l -  
lowing expression f o r  the f l u t t e r  parameter 

i,r in  the x-direction (one even and one odd), 

A: 

where 

- A( j) = [l + K1( j! - 2s2 g[*(l - h%) + 9 + *] 
b2 ?x 2 2% 

g(j) = [l + K 1 ( j ) l ( s 2  5% 2 +z2) - s 4 FDk a4 Dy 
b2 

The c r i t i c a l  value of A i s  found by se t t ing  the p a r t i a l  derivative of A 
with respect t o  m2 equal t o  zero and solving f o r  the value of w2 a t  her, 
and then resubst i tut ing t h i s  value in to  equation ( 2 5 )  t o  y ie ld  



The value of br for the case of infinite shear stiffnesses is 
2 

9-r4(i2 - r2) (i2 + r2 - A) 
8ir (i + r odd) (27)  h r ( m )  

where x(i) and x(r) both become 

and the assumption h% << 1 and the fact p.$lx = pxDy have both been used. 

To illustrate the influence these transverse shear stiffnesses can have 
on panel flutter, the flutter conditions for the following series of panels are 
computed : 

Nx = 0 

a 
b 

= 1,000 
D, 

py = 0.15 

i = l  

r = 2  

s = l  

These conditions correspond to a square panel (typical of the corrugation- 

stiffened panels of ref. 7) without in-plane loading. A plot of - 

against A for several values of Tx (- cX = - 2:z - 2) and 
is shown by the solid curves in figure 6, and the values used in this plot are 
also presented in table 11. 

&r 

(Zy = --$ g) 
her (m> 



-10 
A 
- ) -10,000 

- 
D% s t i f fhess .  C = 0. Y ( a )  I n f i n i t e  

Figure 6.- The influence of transverse shear s t i f m e s s e s  on the f l u t t e r  of repre- 
sentative orthotropic panels simply supported on a l l  sides.  Two-mode Galerkin 

solution: N, = 0 -  2 - 1- = 1000; i y r y s  = 1y2y1 and py = 0.15. ' b -  'Dx 

From f igure 6 several  - findings are  evident. For very s m a l l  shearing 
s t i f fnesses  ( large C, values), the f l u t t e r  parameter can drop t o  l e s s  than 
1 percent of the value for i n f i n i t e  shear s t i f fnesses  and, thus, can have an 
extremely important role  i n  panel f l u t t e r .  It caa a l so  be seen by comparing - 
figures 6(a) and 6(b)  that ,  for large values of C,, the influence of Cy is  
negligible, par t icu lar ly  f o r  small negative values of x. Thus, Cx i s  con- 
sidered t o  be of  more importance than 
only 

- 
- 

- 
Cy, and a simplified analysis including - 

C, i s  presented i n  the next section of t h i s  report .  



1. oc 

.1c 

.01 
--1oOo -10,ooo - -100 

A 

- 
(b) Small DQ stiffness. Cy = 1 X 10-l. 

Figure 6.- Concluded. 
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It can be seen from figure 6 that C, is generally of more importance 

than FY (at least for nearly square panels of this stiffness ratio). By con- 
sidering the 

derived for the critical flutter parameter for panels with relatively small 
D, stiffness. If D% = 03, the constants in equation ( 2 5 )  become 

stiffness only, a relatively simple relationship can be 
DQx 
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u ”’ and 3 are both large quantities ( f o r  small values of %) Now, since - 
of the same order of magnitude, only those terms in equations (28) that are 
underlined are retained. Therefore, her can be written (for any two modes 
and arbitrary stiffnesses) as 

Dx Dk 



where A(i) has become 

I I 

This expression is extremely easy to evaluate in comparison with equa- 
tion (26). Also, if is substituted into equation (29) directly, the effect 
of in-plane loading is seen to be linear. Thus, an increase in compressive 
loading lowers the critical dynamic-pressure parameter, and an increase in 
tensile loading raises it. This equation also shows that the influence of 
decreases for the higher modes, and the - largest effect is for i and r equal 
to 1 and 2. Finally, the influence of Rx is greater for panels with smaller 

values of (or larger values of 
"QX) * 

A plot of with 
- 
A for two 

- 
representative values of R, and a series of values of 2, is shown in fig- 
ure 7. The values used for plotting figure 7 are also given in table I1 for 
easy reference. 

The validity of the approximation used to obtain equation (29) may be seen 
if a comparison is made with the example given in figure 6. 
equation (29) can be rewritten in the following form (for any planf&m 
and any two modes) : 

Thus, if N, = 0, 
ratio 

( 3 0 )  

The dashed curves drawn in figure 6(a) are the flutter curves specified by 
equation (30). These values are also presented in table 11. The approximation 
is extremely good in all regions and indicates that for this case, expres- 
sion (29) is accurate. It must be mentioned, however, that these conclusions 
are all based upon a two-mode Galerkin solution and it is known (ref. 1) that 
the Galerkin two-mode solution is conservative when compared with the exact 
solution, particularly for large negative 7i values. 
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Figure 7.- The combined ef fec t  of D Q ~  and Nx on the  f l u t t e r  of a simply - 
supported orthotropic panel (two-mode Galerkin solu:ion, 
re la t ive ly  small values of D,. 

Cy = 0) f o r  

CONCLUDING REMARKS 

Some important conclusions can be made on the effects of both side-edge 
boundary conditions and transverse shearing stiffnesses on panel flutter phe- 
nomena. Since these two effects were investigated independently, separate con- 
clusions are presented. 
made on the basis of two-term Galerkin solutions; exact solutions may not yield 
the same quantitative results, although the qualitative results are expected to 
remain the same. 

However, it must be emphasized that comparisons are 
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Side-Edge Boundary Conditions 

The influence of side-edge boundary conditions can be very significant. 
Changing boundary conditions from simply supported to clamped causes a rela- 
tively small increase in the critical flutter parameter 
these boundary conditions to free edges causes a significant decrease in her. 
This decrease is prlmarily caused (for the examples analyzed) by the fact that 
the panels were not forced to bend between their side edges (their stiffest 
direction). Thus, if free boundary conditions exist along the side edges of a 
panel, flutter of that panel may occur at much lower dynamic pressures than 
expected for simply supported panels. 

&,, but changing 

Transverse Shearing Stiffnesses 

can cause extremely large variation in ("Qx and "QY) The two stiffnesses 
the critical flutter parameter 
orders of magnitude. These conclusions are based upon flutter calculations for 
an example series of panels that closely approximate typical corrugation- 
stiffened panels currently in use, and for such panels (with relatively small 
bending stiffness in the flow direction), it was noted that if there is a 
finite transverse shearing stiffness in the flow direction (DG), the effect 

D that showed the influence of D in-plane load, and the mode numbers on 

the critical flutter parameter. This expression is extremely easy to use and 
agrees well with the more exact expression. 
flutter parameter $r may be easily calculated. 

br, some reductions being as large as two 

is small. Therefore, a simple expression was derived for infinite 
Of "QY 

QY Qx' 

Therefore, an estimate of the 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station,. Hampton, Va., September 17, 1965. 
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APPENDIX 

GENERAL GAI;ERKIN SOLUTION FOR THE FLUTTER OF ORTHOTROPIC PANELS 

I N  SUPERSONIC FLOW USING STATIC STRIP TKEORY 

The orthotropic panels under consideration here are  shown i n  f igure 1, 
The d i f f e ren t i a l  equa- with a rb i t ra ry  boundary conditions on a l l  four edges. 

t i on  for  the l a t e r a l  deflection 
monic motion being assumed, i s  (eq. (1)) 

w, both s t a t i c  s t r i p  theory and simple har- 

where 

- Nya2 
% = -  8 D X  

-2 m2a4 k =  

For the Galerkin solution, the deflection w was expanded i n  the se r i e s  

where each term 
conditions a re  sa t i s f i ed .  Substi tuting t h i s  function f o r  w i n to  equa- 
t i o n  ( A l )  , multiplying by Fqm(y), and integrat ing across the panel yields  ( f o r  
each value of q)  

apn Gnp(x) Fpn(y) must be chosen such tha t  a l l  the  boundary 
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f o r  q equal t o  a l l  values taken by p and where primes denote d i f fe ren t ia -  
t i o n  with respect t o  x and 

Multiplying equation (A3)  by Gmq(X) 
( fo r  each combination of q and m) 

and integrat ing along the  panel yields  

I 
f o r  q equal t o  a l l  values taken by p and for  m equal t o  all values taken 
by n and where 
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For any given boundary conditions on a l l  four edges of the  panel, func- 
t ions  a re  selected t h a t  s a t i s f y  a l l  the  boundary conditions. 

a r e  then used t o  calculate the  in t eg ra l  expressions I(r)(m,n) and J g ) ( q , p )  

and the determinant of equation (Ab) y ie lds  a re la t ionship t o  solve f o r  t he  
f l u t t e r  parameter A. When generalized f l u t t e r  parameters a re  introduced, 
equation (A4)  becomes 

These functions 

4p 

for q equal t o  a l l  values taken by p and f o r  m equal t o  a l l  values taken 
by n and where 

and 

If only one term i s  considered i n  the  y-direction ( a s  i s  often done), these 
equations become ( f o r  each value of m)  
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for m equal t o  a l l  values taken by n. 

A s  an example of the use of equation ( A 6 ) ,  the  f l u t t e r  parameter for  a 
two-mode Galerkin solution can be writ ten d i r ec t ly  a s  a solution of the alge- 
braic  equation 

f 

J 

(Equation continued on next page) 



These solutions a re  u t i l i z e d  i n  the  t e x t  of t h i s  paper where applicable. 
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