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NUMERICAL SOLUTIONS FOR BLUNT AXISYMMETRIC BODIES IN A
SUPERSONIC SPHERICAL SOURCE FLOW

By Mamoru Inouye
Ames Research Center

SUMMARY 2/ 099

The effect of spherical source flow about blunt-nosed axisymmetric bodies
has been studied by solving numerically the inviscid equations of motion. An
inverse method is used in the subsonic-transonic region, and the method of
characteristics is used in the supersonic region. The fluld may be a perfect
gas or a real gas in thermodynamic equilibrium.

Solutions have been obtained for spherical-nosed bodies in perfect gas
flow to demonstrate the effects of source flow in terms of a parameter defined
as the ratio of the nose radius of curvature to the distance between the nose
and source,., In the nose region, the increase in stagnation-point velocity
gradient and decrease in shock standoff distance and surface pressure away
from the stagnation point are of the same order of magnitude as the source
flow parameter., Over the afterbody of a hemisphere cylinder and a blunted 15°
cone, the reductions in surface pressure and outward displacement of the shock
are an order of magnitude larger than the source flow parameter. For a
blunted 30° cone, the reductions in surface pressure are similarly significant,
but the changes in the shock configuration are small.

Results from the present calculation method are compared with predictions
of approximate theories and methods in order to evaluate thelr usefulness. In
addition, comparisons have been made with experimental results obtained from

tests conducted in conical nozzles. //25224;4552}41/

INTRODUCTION

Some high-speed experimentation is unavoidably carried out in facilities
with nonuniform free-stream conditions. Notably, the use of conical nozzles
in wind tunnels results in axial gradients of flow properties and finite
stream angles away from the axis. The effect of these nonuniformities on the
flow around blunt-nosed bodies is naturally of great interest. For example,
the size of the test model is limited by the severity of the free-stream gra-
dients. Alternatively, the experimental results could be corrected for the
effects of the nonuniform stream.

The methods used in the past to study source flow over blunt bodies have
been approximate. For the stagnation region Berndt (ref. 1) used the constant-
density approximation to show the effect of source flow on the shock standoff
distance and stagnation-point velocity gradient. For the aft portion of
blunted slender bodies, Hall (ref. 2) assumed a source flow had effects on



surface pressure and shock-wave shape that could be expressed as small pertur-
bations of the uniform flow values. Baradell and Bertram (ref. 3) used the
method of characteristics with nonuniform free-stream conditions ahead of the
shock; however, lacking a general solution for the subsonic region, the nose
shape was restricted to a sonic wedge or cone. Eaves and Lewis (ref. &) cir-
cumvented this problem by assuming negligible effect of source flow on the
subsonic-transonic region and thereby permitting the use of a uniform flow
blunt-body solution as input for the method of characteristics. A more com-
plete list of references can be found in Hall (ref. 2).

Computer programs developed at Ames Research Center to calculate the flow
field around blunt-nosed bodies in a uniform free stream are described in ref-
erence 5. These programs solve numerically the exact equations of motion for
plane or axisymmetric inviscid flow of a perfect gas or a real gas in thermo-
dynamic equilibrium. Although the use of these programs restricts the type of
problems that can be studied, the solutions are as exact as possible with a
numerical method. It is possible to modify these programs to account for a
nonuniform free stream, provided the conditions of symmetry are maintained;
that is, both the body and free stream must be either plane or axisymmetric.
An arbitrary variation of free-stream properties along and normal to the axis
may be prescribed consistent with the conditions of mass conservation and isen-
tropic flow., Since conical nozzles are of most interest, the present study
will be restricted to axisymmetric bodies in a spherical source flow.

The purpose of the present report is to describe the calculation method
used to study spherical source flow around blunt-nosed bodies of revolution
and to present results for perfect gas flow that demonstrate the effects on
shock-wave shape, standoff distance, stagnation-point velocity gradient, and
surface-pressure distribution. Comparisons are made with predictions of
approximate methods in order to assess their usefulness. Comparisons are also
made with pressure distributions measured on models tested in conical nozzles
including real gas effects. The present results may be used as a guide in
applying the calculation method to specific cases of flow conditions and model
geometry, ‘

SYMBOLS
A shock-wave shape parameter (see eq. (1))
. 2
Bb ellipsoid bluntness, <?>
b,c . semiaxes of ellipsoid (see fig. 7T)
C,5C5,C,  shock-wave shape parameters (see eq. (2))
Cp drag coefficient, D_
(l/E)DOVO ﬂsz
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drag force
distance between source and point on bow wave

distance between source and stagnation point on body

Mach number
pressure

radius of curvature of the body at the stagnation point
radius of curvature of the shock wave for y = 0

distance along the surface measured from the stagnation point
velocity

shock-wave shape (origin on shock)

cylindrical coordinates with origin at stagnation point on body
isentropic exponent

shock standoff distance

stream angle

cone angle

density

Subscripts
free-stream conditions at stagnation point location
stagnation point
uniform flow

free-stream conditions Jjust upstream of bow wave

METHOD OF SOLUTION

The flow field around a body of revolution immersed in a spherical source

flow satisfies the condition of axial symmetry (see fig. 1). Therefore, the
computer programs described in reference 5 are applicable, provided the



variations in free-stream conditions upstream of the bow wave are properly
taken into account. The corresponding two-dimensional problem, a plane-
symmetric body in a cylindrical source flow, can also be treated but is not:
considered here. The programs can be described briefly as follows: an
inverse method is used for the subsonic-transonic region; that is, a shock
shape is assumed, and the corresponding body shape is calculated. Iteration
of the shock shape is usually necessary to obtain the desired body shape. The
method of characteristics is then used to continue the solution in the super-
sonic region.

The equations of motion have the same form as those presented in refer-
ence 5. The source flow agppears only through the boundary conditions upstream
of the bow wave. A source flow parameter is defined as Ry/L, where Ry 1is
the radius of curvature of the body at the stagnation point, and L, 1is the
distance between the source and the stagnation point on the body (see fig. 1).
Note that the size of the body relative to the nozzle length is the signifi-
cant parameter and not the nozzle angle. The free-stream conditions at the
apex of the shock wave (x = -A) are assumed known and those downstream are
calculated for classical source flow (see ref. 6). The free-stream conditions
other than the stream angle depend solely on the distance, L; the stream angle
is determined simply from geometrical considerations.

The method of reference 5 is limited essentially by the ability to find a
solution for the subsonic-transonic region. It was found in reference T that
a shock shape described by a one-parameter rational polynomial would yield
spheres and not too blunt ellipsoids. This shock shape has been altered
slightly to provide even symmetry about the axis and can be written as

s A&
S R

where Rg 1s the radius of curvature of the shock at the axis, and A, 1is
the parameter nearly equal to Ag which is plotted in reference 7 for a wide
range of free-stream conditions.

The principal effect of the source flow in the nose region is the finite
stream angle away from the axis. One would expect the shock-wave angle or
slope to change locally in the same manner. After trying various shock shapes,
we found that spheres in a source flow can be obtained by perturbation of the
slope of the shock shape given by equation (1) as follows:

= 1 - Cl/<%>2 + Co f{yg>03 E-C‘md—y—ii (2)
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The equation for the shock shape cannot be written explicitly, but the coordi-
nates can be determined readily by numerical integration. With Cs3 < 1, the
bracketed term in equation (2) behaves as 1 - C1(y/Rg) for large values of y

and as 1 - ClJCg(y/RS)C3 for small values of y. The latter term was found
necessary to obtain a smooth body shape in the stagnation region. For perfect
gas solutions it has been found that C; is a function of both BRy/Lg and

7, Co is just a function of vy, and Cz = 0.125, a constant.

The procedure used to obtain the blunt-body solutions described in the
present report can be outlined as follows:

1. The value of the shock-wave parameter, A, is found for a uniform
flow.

2. A value of Co 1is selected, depending on 7.

3. For the given value of Rb/LO, the value of Cp is optimized to
obtain the best fit to the desired body shape.

Neither the procedure nor the shock shape employed in this study is to
be considered unique; however, they have been successful in obtaining satis-
factory solutions over a wide range of free-stream conditions. For extreme
source flow problems, it may be advantageous to modify this procedure somwhat
although in these instances numerical difficulties described in reference 7
may preclude any satisfactory sclution. As in the uniform flow case, the
numerical difficulties arise with decreasing Mach number and increasing values
of body bluntness and 7.

The flow field in the supersonic region is calculated by the method of
characteristics beginning with data along a noncharacteristic line obtained
from the blunt-body solution. The body shape is an arbitrary input, and the
shock shape is computed. The sole change made in the program described in
reference 5 is the allowance for nonuniform conditions upstream of the bow

wave.
RESULTS AND DISCUSSION

Perfect gas solutions have been obtained for the following range of free-
stream conditions

y = 1.2, 1.4, 1.6667

M, = 10, 20, Lo
0 < 13]9-5.0.08
O



in order to demonstrate the quantitative effect of source flow on shock-wave
shape, standoff distance, stagnation-point veloclty gradient, and surface-
pressure distribution., These results should indicate qualitatively the effect
of source flow for other free-stream conditions including dissociated and
ionized streams and also serve as a guide in using the present calculation
method to obtain solutions for specific cases of flow conditions and model
geometry., The flow 1n the subsonic-transonic region of spherical and ellip-
soidal noses calculated by the inverse method will be considered initially.
Then the flow in the supersonic region around hemisphere-cylinders and spheri-
cally blunted cones calculated by the method of characteristics will be
studied, Comparisons will be made with predictions of approximate methods,
wherever possible, in order to evaluate their usefulness.

Spherical Nose

A résumé of solutions for a spherical nose is presented in table I.
Values of the shock parameter, C,;, required in equation (2), are shown in fig-
ure 2 for My = 20 as a function of the source flow parameter, Rb/Lo° The
dependence on Mach number is negligible so that these values apply for
10 < My < 40, Values of Co are presented in table I, and a value of 0.125
was used for Cg. Because of numerical difficulties described in reference 7,
satisfactory solutions were not obtained for the complete range of free-stream
conditions (for the larger values of y and smaller values of Mach number),
at least by using the procedure outlined previously in the Method of Solution
section.

The effect of the source flow is to decrease the standoff distance and
radius of curvature of the shock at the axls so that it lies inside the uni-
form flow shock in the stagnation region and outside the uniform flow shock
over the afterbody. A typical comparison of shock shapes is shown in figure 3
for 7 = 1.4 and M, = 20. (The portion of the shock for y/R, 3 0.8 was
calculated by the method of characteristics.) The ratio of the nose radius to
the shock radius, the shock standoff distance, and the stagnation-point veloc-
ity gradient are shown in figure 4 for My = 20. The dependence of these quan-
tities on the source flow parameter is nearly linear. The shock standofi dis-
tance decreases as noted previously; whereas, the ratio of the nose radius to
the shock radius and the stagnation-point velocity gradient increase with
source flow. Normalized by their respective uniform flow values as in fig-
ure h, the dependence of these gquantities on Mach number for 10 M < 4o is
nearly eliminated and the dependence on 7y is minimized. The results for
7 = 1.2 and 1.4 are nearly the same, but the results for 7 = 1.6667 are
affected more by source flow.

Shown for comparison in figure U4 are the predictions of Berndt (ref. 1),
who used the constant-density approximation to study analytically the effect
of source flow in the stagnation region., Berndt's theory underestimates the
effect of source flow on the shock standoff distance and stagnation-point
velocity gradient, 1In addition, Berndt's theory predicts that these quanti-
ties normalized by their uniform flow values are essentially independent of
7, Wwhereas, the present method shows some dependence on 7.




Consistent with the increase in the stagnation-point wvelocity gradient
shown in figure M(c) is the decrease in the surface pressure away from the
stagnation point with source flow as shown in figure 5 for ¥ = 1.4 and
Mg = 20. The pressure distributions for 7 = 1.2 and 1.6667 and M, = 10 and
40 are practically identical with the distributions shown in figure 5. Shown
for comparison are the predictions of modified Newtonian theory which includes
both the effect of finite stream angle and varying free-stream properties but
does not include any centrifugal corrections. Although modified Newtonilan
theory predicts higher surface pressures than the present method, the theory
does predict quite satisfactorily the reduction in surface pressure with
source flow.

Tﬂ% pressure distributions over the hemisphere have been integrated to
obtain the drag coefficient shown in figure 6. (The flow in the supersonic
region for the present method was calculated by the method of characteristics.)
The reduction in drag coefficient with source flow is nearly linear and of the
same order of magnitude as Rb/Lo. Modified Newtonian theory predicts higher
drag coefficients than the present methed, but it does predict satisfactorily
the reduction in drag coefficient with source flow.

Ellipsoidal Nose

A résumé of solutions for an ellipsoidal nose with bluntness, By = 2.25,
is presented in table II for My = 20 and 7y = 1.2 and 1.4. The method of
solution was essentially the same as the one used for a spherical nose. First,
the value of A, 1in equation (1) was found for an ellipsoidal nose in a uni-
form stream; then the optimum value of C; in equation (2) was found with
source flow. The values of C; are shown in figure 7 as a function of the
source flow parameter Rb/LO, where Ry, 1s the radius of curvature of the
ellipsoid at the stagnation point. The use of Ry as the reference length
results in Ci having nearly the same values as shown in figure 2 for a spher-
ical nose. Since the program does not work as well for blunt ellipsoids as it
does for sphercs, more scatter is evident in the present results.

The ratio of nose radius to shock radius, the shock standoff distance,
and the stagnation-point velocity gradient for the ellipsoidal nose are shown
in figure 8, with all the guantities normalized by their respective uniform
flow values, With Rb/Lo as the source flow parameter, the results are simi-
lar to those for a spherical nose shown in figure 4. The dependence on vy 1is
not clearly defined; at least, the differences in the results for y = 1.2 and
1.4 as normalized in figure 8 are not appreciable,

The preceding solutions for the subsonic-transonic region have shown that
the effect of source flow on the ratio of nose radius to shock radius, shock
standoff distance, stagnation-point velocity gradient, and surface pressure
distribution is proportional to the source flow parameter, Rb/Lo' In addi-
tion, the changes in these quantities are of the same order of megnitude as
the value of Rb/Lo'



Hemisphere Cylinder

The flow in the supersonic region of a hemisphere cylinder has been calcu-
lated by the method of characteristiecs for y = 1.4 and M, = 20 to demonstrate
the effects of source flow for values of Rp/Lo up to 0.06. The shock wave
is displaced outward as shown in figure 9. Before considering the surface
pressure distributions, it is of interest to examine the effect of source flow
on the local free-stream properties just upstream of the shock wave. Marked
reductions of pressure and density occur as shown in figure 10. The Mach num-
ber increases slightly, but the velocity, which is not shown, changes negligi-
bly. For small values of the source flow parameter, essentially the same
conditions prevail along the nozzle axis. On the basis of isentropic flow
relationships, the changes in free-stream conditions would be larger for larger
values of 7.

The surface-pressure distributions normalized by the stagnation-point
pressure and the reductions in surface pressure normalized by the local uniform
flow value are shown in figures 11l(a) and 11(b), respectively. The effect of
source flow is to cause significant reductions in surface pressure that are an
order of magnitude greater than the value of the source flow parameter. The
fluctuations on the hemisphere (see fig. 11l(b)) are partially due to small
errors resulting from defining the body shape with polynomials passing through
a discrete set of coordinates., This method of specifying the body shape was
necessary in order to Jjoin the method of characteristics solution smoothly to
the inverse solution for the subsonic-transonic region. Otherwise, errors in
the body slope of a few percent in the inverse solution at the matching point
would have caused an imbedded shock in the flow field.

The reductions in surface pressure shown in figure 11(b) display two dis-
tinct regions. Over the hemisphere the reduction in surface pressure increases
sharply with axial distance; over the cylindrical afterbody the variation is
not so steep. The effect is greater for increasing values of ., An examina-
tion of figures 10 and 11 shows that the reduction in surface pressure with
source flow at a given body station is of the same order of magnitude as the
reduction in free-stream pressure at the same axial location. This occurs even
though the portion of the free stream that influences a particular body station
is located much closer to the nose, To illustrate this point, a right-running
characteristic is sketched in figure 9 for Rb/LO = 0 to indicate the portion
of the shock wave that influences the flow over the afterbody for x/Rb < 10.

In reference 2, Hall presents a theory that assumes the effect of source
flow on shock-wave shape and surface-pressure distribution can be expressed as
small perturbations of the uniform flow values. This theory predicts quite
well the displacement of the shock wave as shown in figure 9, but fails to pre-
dict quantitatively the surface pressures except for isolated regions as shown
in figure 11(a). 1In figure 11(b) Hall's theory is shown to predict a reduction
in surface pressure that varies linearly with axial distance from the nose,

The magnitude of the reduction is directly proportional to the source flow
parameter, Ry/L,, and is larger for increasing values of 7 (not shown). It

is apparent that the surface pressure would eventually vanish according to this
theory, for instance, at X/Rb = 10 for Rb/Lo = 0.06., However, these

8




reductions in pressure are not small perturbations so the theory would not be
expected to be valid under these circumstances. In general, Hall's theory
Predicts only qualitatively the effect of source flow on surface pressure
distribution.

Calculations have been performed for an ellipsoid cylinder with
Bp = 2.25, y = 1.4k, and M, = 20 and for b/, = 0, 0.02, 0.04, Although the
surface-pressure distributions along the cylindrical afterbody for uniform
flow were somewhat different from the spherical nose solutions, the reductions
in surface pressure with source flow were within a few percent of the curves
shown in figure 11(b)s The effect of the nose shape is apparently negligible
if the reduction in surface pressure is normalized by the uniform flow wvalue.

The fact that the effect of the nose shape or solution on the afterbody
flow appears negligible suggests an approximate technique. Eaves and Lewis in
reference 4 performed calculations for blunt-nosed bodies in source flow with
the assumption that the flow in the subsonic-transonic region was identical to
that for a uniform flow. It has been shown previously that this assumption is
not correct, that differences of the same order of magnitude as the source
flow parameter do occur. However, the effect on the afterbody flow may be
negligible. Calculations have been performed to test the validity of this
assumption. In figure 12, there is shown the pressure distribution on a hemi-
sphere cylinder for y = l.4, M, = 18, and Rp/L, = 0.0219. The abscissa in
this figure is the distance along the surface normalized by Rp. The results
from reference L4 and the present method agree within acceptable limits.

The present method was also modified to solve the source flow problem
with input points provided by a uniform flow blunt-body solution, similarly to
the method of reference L. These results are also in agreement. A close exam-
ination of the flow field showed that an expansion wave propagates from the
initial shock point to the body surface, quickly adjusting the pressure to
nearly the correct value with source flow. A comparison of exact and approxi-
mate solutions for Rp/Lo = 0.06 in figure 12 again shows reasonable agreement.
One can conclude that as far as the pressure distribution over the afterbody
is concerned, the use of a uniform flow blunt-body solution for the subsonic-
transonic region provides satisfactory results.

Spherically Blunted Cones

The flow fields around spherically blunted 15° and 300 cones have been
calculated for 7 = l.4 and My = 20 to demonstrate the effects of source flow
for values of Rp/L, up to 0.06. The shock-wave configurations are shown in
Tigure 13. The outward displacement of the shock wave for the 150 cone with
source flow is similar to that shown for a hemisphere cylinder in figure 9.

On the other hand, the shock wave for the 300 cone is not affected appreciably
by the source flow. This difference in behavior can be described as follows:
For blunted slender cones, including the hemisphere cylinder as a limiting
case, the shock-wave shape is determined essentially by the forebody shape,
which is a hemisphere, and is displaced outward with source flow. For blunted
cones with large vertex angles including the 300 cone, the shock wave conforms
to the afterbody shape and is influenced only slightly by the source flow.



Consequently, caution should be exercised in evaluating source flow effects on
blunted cones from shock-shape measurements.

The surface-pressure distributions normalized by the stagnation-point
pressure are shown in figure lh, and the reductions in surface pressure normal-
ized by the uniform flow value are shown in figure 15. The predictions of mod-
ified Newtonian theory are shown for comparison. With source flow, the
pressure on the conical surface does not asymptotically approach the sharp cone
value after the over expansion behind the nose, but instead eventually decays
to zero. Comparison of figures 11(b) and 15 shows that in the vicinity of the
nose, the reduction in surface pressure is of the same order of magnitude for
both a hemisphere cylinder and blunted cones. Downstream from the nose, the
reductions in pressure are greater for the blunted cones. In this region of
the 30° cone, modified Newtonian theory predicts quite well the reduction in
surface pressure with source flow as shown in figure 15. This result is con-
sistent with the relative insensitivity to source flow of the shock shape,
which in the Newtonian approximation is assumed to conform to the body shape.

COMPARISONS WITH EXPERIMENTAL RESULTS

Both the Ames arc-heated plasma facility and the 1-foot shock tunnel uti-
lize conical nozzles., Data obtained in these facilities will now be compared
with the predictions of the present numerical method. Lacking knowledge of
the actual distribution of free-stream conditions in the nozzles, ideal spheri-
cal source flow will be assumed. The distance from the source to the model,
Lo, is calculated from the nozzle geometry without any boundary-layer correc-
tions. The free-stream conditions are assumed known at the stagnation point
of the model (essentially the same conditions prevail at the apex of the bow |
shock), and the free-stream conditions downstream are readily calculable, No
boundary-layer corrections are made for the model, The predictions from the
present method thus represent the maximum probable effect of source flow.

Hemisphere Tested in Arc Tunnel

The Ames arc-heated plasma facility produces stagnation enthalpies ranging
from 10 to 20 MJ/kg with nitrogen as the test gas. For the tests conducted by
Mr. Lewis Anderson and reported here, the value of the ideal source flow param-
eter, Rp/Lo, was 0.08L4 (see fig. 16). The stream was believed to be frozen
with 7 ~ 1.46 and M, a~ 7.3 according to pressure measurements. Perfect gas
flow with » = 1.k and My = 8 was assumed in the present method. It has been
shown previously that the effect of » on the surface pressure distribution
in the subsonic region is negligible. Since the free-stream conditions were
outside the range covered in table I, the method used to optimize the shock
shape parameters was modified slightly. The value of A+ in eguation (l) was
optimized to be 0.047 after setting in equation (2), C1 = 0.036, Cz = 10.0,
and Cs = 0.0625.

Unpublished surface pressure data for a hemisphere normalized by the
stagnation-point pressure is shown in figure 16. The present method predicts
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the surface pressure for s/R < 1, but the data for s/Rp > 1 appears to have
some extraneous afterbody or tunnel effect. The stagnation-point velocity
gradient was calculated from the measured surface pressures by Mr. Lewis
Anderson with the assumption of isentropic flow away from the stagnation point.
The gradient was found to be 20 percent larger than the value determined in =
tunnel with a uniform stream. This increase was consistent with the higher
measured stagnation-point heat-transfer rates. However, the present numerical
method predicts only g 1lO-percent increase in the stagnation-point wvelocity
gradient with source flow.

Hemisphere Cylinder Tested in Shock Tunnel

The Ames l-foot shock tunnel has been operated with various test gases at
a stagnation enthalpy of 8 MJ/kg. Pressure and heat-transfer measurements have
been reported by Marvin and Akin in reference 8, from which the following
results are taken, The value of the ideal source flow parameter was equal to
0.,0278. With argon as the test gas, the flow was believed to be in equilib-
rium, The procedure followed to obtain a solution for a real gas is the same
as for a perfect gas. TFor the shock-tunnel conditions listed in figure 17, the
values of the shock parameters for a spherical nose were A, = 0,0355,
Cy = 0.01345, Co = 10,0, and Cz = 0,125,

The surface pressure measurements on a hemisphere cylinder reported in
reference 8 are reproduced in figure 17, The test data lie below the predic-
tions from the present method for a uniform flow, The predicted reduction of
surface pressure with source flow is significant; for s/Rb = 7, the reduction
is L0 percent., The experimental results now lie properly above the predic-
tions, part of the difference being attributable to viscous effects on both
the nozzle and the model, There still remains the uncertainty in the chemistry
of the flow.

CONCLUDING REMARKS

The effect of spherical source flow about blunt-nosed axisymmetric bodies
has been studied by modifying existing computer programs to account for the
nonuniform free stream., Solutions have been obtained for spherical noses in
perfect gas flow for values of the source flow parameter up to 0.08, where the
parameter is defined as the ratic of the nose radius of curvature to the dis-
tance between the source and the nose, These results demonstrate the following
gqualitative effects of source flow, In the subsonic-transonic region, the
stagnation-point velocity gradient increases and the shock standoff distance
and surface pressure decrease with source flow, the relative changes being of
the same order of magnitude as the source flow parameter. In the supersonic
region over cylindrical and conical afterbodies, the surface pressure decreases,
with the percentage reduction being an order of magnitude greater than the
source flow parameter. The shock wave is displaced outward, but this effect is
small for a spherically blunted 300 cone.

11



Comparisons with predictions of approximate theories and methods showed
the following results: For the nose region, a constant-density solution under-
estimated the effects of source flow on standoff distance and stagnation-point
velocity gradient. For the afterbody region, an analysis based on small per-
turbations of the uniform flow solution failed to predict quantitatively the
surface-pressure distribution, but it did predict the displacement of the shock
wave, Modified Newtonian theory was shown to predict quite closely the reduc-
tion in surface pressure with source flow in the subsonic region of a spherical
nose and over the conical portion of a blunted 30° cone. Since the nose solu-
tion does not affect greatly the flow over the afterbody, an approximate method
that joins a method of characteristics solution including source flow with a
blunt-body solution for a uniform flow was found to yield satisfactory results.
Comparisons have also been made with experimental results from models tested in
conical nozzles; these results indicate that source flow effects can be pre-
dicted satisfactorily.

In conclusion, source flow effects have been found to be significant,
especially on afterbody pressure distributions. Caution should be exercised in
using approximate theories to predict source flow effects, The present calcu-
lation method can be used to solve numerically the exact equations of motion
over a wide range of free-stream conditions. The examples presented in this
report should serve as a guide in obtaining solutions for a particular set of
free-stream conditions and model geometry.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Jan. 17, 1966
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TABLE I.- RESUME OF SOLUTIONS FOR SPHERES

R Ry A A By /g
e w [ B e | B & | & 2@,

1.2 5.0 10 [0.0956 | © 0 0.84% {0.,0655 [0.0779 0,473
.01 .00705 .850 L0654 L0770 L1480

.02 .01353 .859 L0653 L0760 486

.03 .01958 .868 L0652 L0751 .43

LOb .02437 87 L0650 L0743 o7

.05 .03043 885 L0649 L0734 505

.06 .03606 8ok L0648 0726 511

.07 LW o902 L0647 Q717 ,518

20 .1006 | © 0 .853 L0619 L0725 160
.01 .00720 .863 .0618 L0716 LL66

.02 .01355 872 L0617 L0708 473

.03 .0197L .882 L0616 L0699 478

L0l L02546 .890 L0615 L0691 8L

.05 .03096 899 L0614 L0683 L1490

06 .03658 .908 L0613 L0676 .498

.07 .04185 917 0612 L0668 505

.08 L0L68Y .925 L0611 L0660 513

Lo 1018 | © 0 856 .0610 L0712 .55
.01 .00729 867 .0609 L0703 62

.02 .01360 876 .0608 .069L 169

.03 .01977 .885 L0607 L0686 L5

ol .02560 .89L . 0606 L0678 L1481

.05 .03111 .902 0605 L0671 86

.06 .03665 .912 +060k .0663 L5

.07 .0k178 .920 L0603 L0656 .501

.08 L0468 .929 . 0602 L0648 .509

1.k 10,0 10 L0780 [ o 0 . 761 .1032 1356 599
Noil .00502 770 .1030 1337 .607

.02 .01005 . 780 .1028 .1318 616

.03 L0152 . 789 1027 L1302 622

LO4 .01938 . 798 L1025 ,1283 .631

.05 .02360 808 102k 1267 .637

.06 .02896 .819 .1021 L1246 .649

20 L0815 | 0 0. Nrdan .100% . 1302 .592
.01 .004o8 . 780 L1002 .128L4 .600

.02 .00982 <790 .1000 L1267 .609

.03 L0Lk3h <799 .0999 .1250 616

.0k .01892 .808 0997 .1234 621

.05 .02325 .818 .0996 .1218 .628

.06 LO27hY 827 . 099k L1202 .636

ko 0827 [ o 0 JTTH +0997 .1289 .590
.01 .00500 .783 .0995 Jd271 <599

.02 . 01000 « 792 «0993 .1253 .608

.03 .01432 .8o1 .0992 .1238 612

.Oh .01891 811 .0990 1221 .620

.05 .02321 .820 .0988 .1205 627

06 .02737 .829 ,0987 L1190 .635

1.6667 [40.0 10 L0665 | © 0 687 L1401 .2039 . 700
.01 .00307 698 .14%00 . 2004 . 713

20 | .0692 | o 0 .696 [ .1380 | .1983 .693
Nol .00301 . 707 .1379 1951 . 707

.02 .00596 .718 .1377 .1918 . 719

.03 ,00881 . 729 1375 . 1886 . 736

Lo L0700 | © 0 .698 L137h .1970 .693
.01 .00301 . 709 1373 .1937 . 706

.02 L0059 . 720 .1372 .1905 .718

.03 .00877 731 .1370 L1874 . 732




TABLE II.- RETSUI\/IE'Z OF SOLUTIONS FOR ELLIPSOIDS, B, = 2.25

R R R
M 2} c b oy 2 b ( AV
4 Co 0 A7 T 1 Re Ao Ry {/.—o- a‘g>st
1.2 5.0] 20} 0.2628 |o. 0.904 | 0.0622 | 0.0688| 0.478
.015| .01176| .918 | .0622 0677 487
.030( .02092 | .930 | .0620 | .0667 RIS
Ohs) .03332 LOLT | L0621 | L0656 .509
.060| .OW650 | 966 | L0623 | .06LL .523
.075] 05711 .982 | .0623| .0634 .535
1.4 110,020 .1998 LBU6 | .1013 1197 419
.015| .00T7h7 | .B58 | .1009 1176 432
.030| .01LO6 | .869 | .1006 1158 ity
.0k51 ,02040 | .881 | .1003 1139 CLh6
L0601 .02687 | .893| .1002 1122 <456
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Figure 3.- Shock-wave shape for spherical nose; y = 1.4, My = 20.
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(c) Stagnation-point velocity gradient.

Figure k.- Ratio of nose radius to shock radius, shock standoff distance, and

stagnation-point velocity gradient normslized by uniform flow values for
spherical nose; M, = 20.
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Figure 5.- Surface-pressure distribution for spherical nose; y = 1.4, My = 20.
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Figure 8.- Ratio of nose radius to shock radius, shock standoff distance, and
stagnation-point velocity gradient normalized by uniform flow values for
ellipsoidal nose; By = 2.25, My = 20,
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(a) Ratio of local pressure to stagnation-point pressure.

Figure 11.- Pressure distribution along hemisphere-cylinder; y = L.k, M,
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Figure 15.- Reduction of pressure along blunted cones
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