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NUMERICAL SOLUTIONS FOR BLUNT AXISYMMETRIC BODIES I N  A 

SUPERSONIC SPHERICAL SOURCE FLOW 

By Mamoru Inouye 
Ames Research Center 

SUMMARY 

The e f f e c t  of spher ica l  source flow about bPmt-ncsed a x i s ~ p n e t r i c .  bodies 
has been studied by solving numerically the  inviscid equations of motion. An 
inverse method i s  used i n  t h e  subsonic-transonic region, and t h e  method of 
c h a r a c t e r i s t i c s  i s  used i n  t h e  supersonic region. The f l u i d  may be a per fec t  
gas o r  a r e a l  gas i n  thermodynamic equilibrium. 

Solutions have been obtained f o r  spherical-nosed bodies i n  perfect  gas 
flow t o  demonstrate t h e  e f f e c t s  of source flow i n  terms of a parameter defined 
as t h e  r a t i o  of t h e  nose radius of curvature t o  t h e  distance between t h e  nose 
and source. I n  t h e  nose region, t h e  increase i n  stagnation-point veloci ty  
gradient and decrease i n  shock standoff distance and surface pressure away 
from t h e  stagnation point a r e  of t h e  same order of magnitude as the  source 
flow parameter. Over t h e  afterbody of a hemisphere cylinder and a blunted 15' 
cone, t h e  reductions i n  surface pressure and outward displacement of t h e  shock 
a r e  an order of magnitude l a r g e r  than the  source flow parameter. For a 
blunted 30' cone, the  reductions i n  surface pressure are s imi la r ly  s i g n i f i c a n t ,  
but t h e  changes i n  the  shock configuration are  small. 

Results from the  present calculat ion method a r e  compared with predict ions 
of approximate theor ies  and metiiods i n  order t o  evaluate t h e i r  usefulness. I n  
addi t ion ,  comparisons have been made with experimental r e s u l t s  obtained from 
t e s t s  conducted i n  conical  nozzles. 

INTRODUCTION 

Some high-speed experimentation i s  unavoidably c a r r i e d  out i n  f a c i l i t i e s  
with nonuniform free-stream conditions.  Notably, the use of conical  nozzles 
i n  wind tunnels r e s u l t s  i n  axial gradients of flow propert ies  and f i n i t e  
stream angles away from the  axis. The effect  of these nonuniformities on the 
flow around blunt-nosed bodies i s  na tura l ly  of grea t  i n t e r e s t .  
t h e  s i z e  of t h e  t e s t  model i s  l imited by the sever i ty  of the free-stream gra- 
d i e n t s .  Alternat ively,  the experimental r e s u l t s  could be corrected f o r  t h e  
e f f e c t s  of the  nonuniform stream. 

For example, 

The methods used i n  the  pas t  t o  study source flow over blunt  bodies have 
been approximate. 
dens i ty  approximation t o  show the  e f fec t  of source flow on t h e  shock standoff 
d i s tance  and stagnation-point veloci ty  gradient.  
blunted slender bodies, H a l l  ( r e f .  2) assumed a source flow had e f f e c t s  on 

For the  stagnation region Berndt ( ref .  1) used the  constant-  

For t h e  aft  portion of 



surface pressure and shock-wave shape t h a t  could be expressed as small pertur- 
bations of t h e  uniform f l o w  values. 
method of cha rac t e r i s t i c s  with nonuniform free-stream conditions ahead of t h e  
shock; however, lacking a general  solut ion f o r  t h e  subsonic region, t h e  nose 
shape was r e s t r i c t e d  t o  a sonic wedge o r  cone. Eaves and L e w i s  ( r e f .  4) c i r -  
cumvented t h i s  problem by assuming negl ig ib le  e f f ec t  of source flow on the  
subsonic-transonic region and thereby permitt ing t h e  use of a uniform flow 
blunt-body solut ion as input f o r  t h e  method of cha rac t e r i s t i c s .  A more com- 
p l e t e  l i s t  of references can be found i n  H a l l  ( ref.  2 ) .  

Baradell  and Bertram ( r e f .  3 )  used t h e  

Computer programs developed a t  Ames Research Center t o  ca lcu la te  t h e  flow 
f i e l d  around blunt-nosed bodies i n  a uniform free stream are described i n  ref- 
erence ?. These programs solve numerically t h e  exact equations of motion f o r  
plane o r  axisymmetric inv isc id  flow of a per fec t  gas o r  a r e a l  gas i n  thermo- 
dynamic equilibrium. 
problems t h a t  can be studied, t he  solut ions are as exact as possible  with a 
numerical method. It i s  possible  t o  modify these  programs t o  account f o r  a 
nonuniform free stream, provided t h e  conditions of symmetry are maintained; 
t h a t  i s ,  both the  body and f r e e  stream must be e i t h e r  plane o r  axisymmetric. 
A n  a rb i t r a ry  var ia t ion  of free-stream proper t ies  along and normal t o  t h e  axis 
may be prescribed consis tent  with t h e  conditions of mass conservation and isen- 
t rop ic  flow. Since conical  nozzles are of most i n t e r e s t ,  t h e  present study 
w i l l  be r e s t r i c t e d  t o  axisymmetric bodies i n  a spher ica l  source flow. 

Although the  use of these  programs r e s t r i c t s  t he  type of 

The purpose of t h e  present report  i s  t o  describe t h e  ca lcu la t ion  method 
used t o  study spherical  source flow aro-md blunt-nosed bodies of  revolution 
and t o  present r e s u l t s  f o r  per fec t  gas flow t h a t  demonstrate t h e  e f f e c t s  on 
shock-wave shape, standorf dis tance,  stagnation-point ve loc i ty  gradient ,  and 
surface-pressure d is t r ibu t ion .  Comparisons are made with predict ions of 
approximate methods i n  order t o  assess  t h e i r  usefulness.  Comparisons a r e  a l s o  
made with pressure d i s t r ibu t ions  measured on models t e s t e d  i n  conical  nozzles 
including r e a l  gas e f f e c t s .  
applying t h e  ca lcu la t ion  method t o  spec i f i c  cases of flow conditions and model 

The present r e s u l t s  may be used as a guide i n  
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SYMBOLS 

shock-wave shape parameter ( see  eq. (1)) 

e l l ip so id  bluntness,  ($7 
semiaxes of e l l i p s o i d  (see f i g .  7)  

shock-wave shape parameters (see eq. ( 2 ) )  

D drag coef f ic ien t ,  
( 1/2) Povo2flRb2 



D 

L 

LO 

M 

P 

Rb 

RS 

P 

drag force 

distance between source and point  on bow wave 

distance between source and stagnation point on body 

Mach number 

pres  sure 

radius  of curvature of t h e  body a t  the  stagnation point 

radius  of curvature of t h e  shock wave for y = 0 

distance along t h e  surface measured from t h e  stagnation point 

veloci ty  

shock-wave shape ( o r i g i n  on shock) 

cy l indr ica l  coordinates with or igin a t  stagnation point  on body 

isentropic  exponent 

shock standoff distance 

stream angle 

cone angle 

densi ty  

Subscripts 

0 f ree-  st  ream conditions a t  stagnation po i n t  l o  c a t  ion 

s t  stagnation point  

unif  uniform flow 

to free-stream conditions j u s t  upstream o f  bow wave 

METHOD OF SOLUTION 

The flow f i e l d  around a body of revolution immersed i n  a spherical  source 
flow satisfies t h e  condition of axial symmetry ( see  f i g .  1). 
computer programs described i n  reference 5 a r e  applicable,  provided the  

Therefore, the  
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variat ions i n  f ree-s t ream conditions upstream of t he  bow wave are  properly 
taken in to  account. The corresponding two-dimensional problem, a plane- 
symmetric body i n  a cy l ind r i ca l  source flow, can a l s o  be t r e a t e d  but  i s  no t .  
considered here.  The programs can be described b r i e f l y  as follows: an 
inverse method i s  used f o r  the  subsonic-transonic region; t h a t  i s ,  a shock 
shape i s  assumed, and the  corresponding body shape i s  calculated.  I t e r a t i o n  
of the  shock shape i s  usual ly  necessary t o  obtain the  desired body shape. The 
method of cha rac t e r i s t i c s  i s  then used t o  continue the solut ion i n  the  super- 
sonic region. 

The equations of motion have the  same f o r m  as those presented i n  r e f e r -  
ence 5 .  The source flow appears only through the  boundary conditions upstream 
of the bow wave. A source flow parameter i s  defined as %/Lo where Rb i s  
the  radius of curvature of the body a t  the  s tagnat ion point ,  and Lo i s  t h e  
distance between the  source and the  s tagnat ion point  on the  body (see  f i g .  1). 
Note tha t  t h e  s i z e  of  the  body r e l a t i v e  t o  the  nozzle length i s  t h e  s i g n i f i -  
cant parameter and not the  nozzle angle .  The free-stream conditions a t  the  
apex of t h e  shock wave ( x  = -A) are  assumed known and those downstream are  
calculated f o r  c l a s s i c a l  source flow (see re f .  6 ) .  The free-s t ream conditions 
other  than t h e  stream angle depend so le ly  on the  dis tance,  L; t he  stream angle 
i s  determined simply from geometrical considerat ions.  

The method of reference 3 i s  l imi ted  e s s e n t i a l l y  by t h e  a b i l i t y  t o  f i n d  a 
solut ion f o r  t he  subsonic-transonic region. It w a s  found i n  reference 7 t h a t  
a shock shape described by a one-parameter r a t i o n a l  polynomial would y i e l d  
spheres and not too blunt  e l l i p so ids .  
s l i g h t l y  t o  provide even symmetry about t h e  axis and can be wr i t t en  as 

This shock shape has been a l t e r e d  

where Rs i s  the  radius  of curvature of t h e  shock a t  t h e  axis, and A7 i s  
t h e  parameter near ly  equal t o  A5 which i s  p l o t t e d  i n  reference 7 f o r  a wide 
range of free-stream conditions.  

The p r inc ipa l  e f f e c t  of the  source flow i n  the  nose region i s  the  f i n i t e  
stream angle away from the  axis. 
slope t o  change loca l ly  i n  the  same manner. 
we found t h a t  spheres i n  a source flow can be obtained by per turba t ion  of the  
slope of t he  shock shape given by equation (1) as follows: 

One would expect t h e  shock-wave angle o r  
After t ry ing  various shock shapes, 

r 7 
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. 
The equation f o r  the  shock shape cannot be wri t ten exp l i c i t l y ,  bu t  the  coordi- 
nates  can be determined readily by numerical in tegra t ion .  With C 3  < 1, the  
bracketed t e r m  i n  equation (2) behaves as  1 - Cl(y/R,) f o r  l a rge  values of y 

and as 1 - C 1 , / z  for small values o f  y .  The latter t e r m  w a s  found 
necessary t o  obtain a smooth body shape i n  the s tagnat ion region. 
gas so lu t ions  it has been found t h a t  C 1  i s  a funct ion of bo th  %/Lo and 
y ,  C2 i s  j u s t  a funct ion of 7 ,  and C 3  = 0.125, a constant.  

For per fec t  

The procedure used t o  obtain the  blunt-body solut ions described i n  the  
present repor t  can be out l ined as follows: 

1. The value of t he  shock-wave parameter, A7, i s  found f o r  a uniform 
f l o w .  

2. A value of C 2  i s  selected,  depending on y .  

3. For the  given value of €$,/L,, t h e  value of C 1  i s  optimized t o  
obtain t h e  best  f i t  t o  the  desired body shape. 

Neither t he  procedure nor the  shock shape employed i n  t h i s  study i s  t o  
be considered unique; however, they have been successful i n  obtaining satis- 
f ac to ry  so lu t ions  over a wide range of free-stream conditions.  For extreme 
source flow problems, it may be advantageous t o  modify t h i s  procedure somwhat 
although i n  these  instances numerical d i f f i c u l t i e s  described i n  reference 7 
may preclude any sa t i s f ac to ry  solut ion.  As i n  the  uniform flow case, the  
numerical d i f f i c u l t i e s  a r i s e  with decreasing Mach number and increasing values 
of body bluntness  and y .  

The flow f i e l d  i n  the  supersonic region i s  ca lcu la ted  by the  method of 
c h a r a c t e r i s t i c s  beginning with data  along a noncharacter is t ic  l i n e  obtained 
from t h e  blunt-body solut ion.  The body shape i s  an a r b i t r a r y  input, and the  
shock shape i s  computed. The sole  change made i n  the  program described i n  
reference 5 i s  the  allowance f o r  nonuniform conditions upstream of  t h e  bow 
wave . 

~ RESULTS AND DISCUSSION 

Perfec t  gas solut ions have been obtained f o r  t h e  following range of f r e e -  
stream condi t ions 

= i . 2 ,  1.4, 1.6667 

M, = 10, 20, 40 
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i n  order t o  demonstrate t h e  quant i ta t ive  e f f ec t  of source flow on shock-wave 
shape, standoff distance,  stagnation-point veloci ty  gradient,  and surface- 
pressure d is t r ibu t ion .  These r e s u l t s  should indicate  qua l i t a t ive ly  t h e  e f f e c t  
of source flow f o r  other  free-stream conditions including dissociated and 
ionized streams and a l s o  serve as a guide i n  using t h e  present ca lcu la t ion  
method t o  obtain solut ions for spec i f ic  cases of flow conditions and model 
geometry. The flow i n  t h e  subsonic-transonic region of spher ica l  and e l l i p -  
so ida l  noses calculated by t h e  inverse method w i l l  be considered i n i t i a l l y .  
Then the f l o w  i n  the  supersonic region around hemisphere-cylinders and spheri- 
c a l l y  blunted cones calculated by t h e  method of cha rac t e r i s t i c s  w i l l  be 
studied, Comparisons w i l l  be made with predict ions of approximate methods, 
wherever possible ,  i n  order t o  evaluate t h e i r  usefulness.  

Spherical  Nose 

A r&mrnG of solut ions f o r  a spher ica l  nose i s  presented i n  t a b l e  I.  
Values o f  t h e  shock parameter, C1, required i n  equation (2), a r e  shown i n  f ig-  
ure  2 f o r  as a function of t h e  source flow parameter, Rb/Lo. 
dependence on Mach number i s  negl ig ib le  so  t h a t  these  values apply f o r  
10 - < & 5 40. Values of C 2  are presented i n  t a b l e  I, and a value of 0.12'3 
w a s  used f o r  C3. Because of numerical d i f f i c u l t i e s  described i n  reference 7, 
sa t i s fac tory  solut ions were not obtained f o r  t h e  complete range of free-stream 
conditions (for t h e  l a rge r  values of y 
a t  least by using the  procedure out l ined previously i n  t h e  Method of Solution 
sect ion.  

M, = 20 The 

and smaller values of Mach number), 

The e f fec t  of t h e  source flow i s  t o  decrease t h e  standoff dis tance and 
radius  of curvature of t he  shock a t  the  a x i s  so  t h a t  it l i e s  ins ide  the  uni- 
form f l o w  shock i n  t h e  s tagnat ion region and outs ide t h e  uniform flow shock 
over the  afterbody. A t yp ica l  comparison of shock shapes i s  shown i n  f igu re  3 
fo r  y = 1 .4  and M, = 20. (The port ion of t h e  shock f o r  y/Rb 5 0.8 w a s  
calculated by the  method of cha rac t e r i s t i c s . )  The r a t i o  o f  t he  nose radius  t o  
t h e  shock radius,  the  shock standoff dis tance,  and t h e  stagnation-point veloc- 
i t y  gradient are shown i n  f igure  lt f o r  
t i t i e s  on t h e  source flow parameter i s  near ly  l i n e a r .  The shock stnndofi' d i s -  
tance decreases as noted previously; whereas, t h e  r a t i o  of t h e  nose radius  t o  
the  shock radius  and t h e  stagnation-point ve loc i ty  gradient increase with 
source flow. 
ure  4, t h e  dependence of these  quan t i t i e s  on Mach number f o r  10 < M, < 40 
nearly eliminated and the  dependence on y i s  minimized. The results-for 
y = 1.2 and 1 .4  are near ly  t h e  same, but  t h e  r e s u l t s  f o r  
a f fec ted  more by source flow. 

M, = 20. The dependence of these  quan- 

Normalized by t h e i r  respect ive uniform flow values as i n  f ig-  
is 

y = 1.6667 are 

Shown for comparison i n  f igu re  lt are t h e  pred ic t ions  of Berndt ( r e f .  1) , 
who used t h e  constant-density approximation t o  study ana ly t i ca l ly  t h e  e f f ec t  
of source f l o w  i n  the  s tagnat ion region. Berndt's theory underestimates t h e  
e r f ec t  of source flow on the  shock standoff dis tance and stagnation-point 
ve loc i ty  gradient.  I n  addition, Berndt 's  theory p red ic t s  t h a t  these  quanti- 
t i e s  normalized by t h e i r  uniform flow values are e s s e n t i a l l y  independent of 
y ,  whereas, t he  present method shows some dependence on y .  

6 



Consistent with the  increase i n  the  stagnation-point ve loc i ty  gradient  
shom i n  f igu re  4(c) i s  the  decrease i n  the  surface pressure away f r o m  the  
stagnation point  with source flow as shown i n  f i g u r e  5 f o r  
Q = 20. M, = 10 and 
40 are  p r a c t i c a l l y  i d e n t i c a l  with the  d i s t r ibu t ions  shown i n  f igu re  5 .  Shown 
f o r  comparison are  the  predict ions of modified Newtonian theory which includes 
both t h e  e f f e c t  of f i n i t e  stream angle and varying free-stream proper t ies  bu t  
does not include any cent r i fuga l  correct ions.  Although modified Newtonian 
theory p red ic t s  higher surface pressures  than t h e  present method, t he  theory 
does pred ic t  qu i t e  s a t i s f a c t o r i l y  the reduction i n  surface pressure with 
source f l o w .  

y = 1 . 4  and 
The pressure d i s t r ibu t ions  f o r  y = 1 . 2  and 1.6667 and 

The pressure d i s t r ibu t ions  over the  hemisphere have been in tegra ted  t o  
obtain the  drag coef f ic ien t  shown i n  f igu re  6.  (The f l o w  i n  the  supersonic 
region f o r  the  present method w a s  calculated by the  method of cha rac t e r i s t i c s .  ) 
The reduction i n  drag coef f ic ien t  with source f l o w  i s  near ly  l i n e a r  and of the  
same order of magnitude as Modified Newtonian theory p red ic t s  higher 
drag coe f f i c i en t s  than t h e  present method, but it does pred ic t  s a t i s f a c t o r i l y  
the  reduction i n  drag coef f ic ien t  w i t h  source f l o w .  

%/Lo. 

El l ip so ida l  Nose 

A r:sumg of solut ions f o r  an e l l i p s o i d a l  nose with bluntness,  % = 2.25, 
i s  presented i n  t ab le  I1 f o r  
solut ion w a s  e s s e n t i a l l y  the  same as  the  one used f o r  a spherical  nose. F i r s t ,  
t h e  value of A7 
f o r m  stream; then the  optimum value of i n  equation ( 2 )  w a s  found with 
source flow. The values of C1 are  shown i n  f i gu re  7 as a funct ion O f  the  
source flow parameter Rb/Lo, where Rb i s  the  radius  of curvature of  t he  
e l l i p s o i d  a t  the  stagnation poin t .  The use of F$, as the  reference lengLh 
r e s u l t s  i n  C 1  having near ly  the same values as shown i n  f igu re  2 f o r  a spher- 
i c a l  nose. Since the  program does not work as w e l l  f o r  blunt  e l l i p s o i d s  as it 
UUCD lUI u y r r L L b U ,  x x e  scat.t,er i s  evident i n  t h e  present r e s u l t s .  

M, = 20 and y = 1 . 2  and 1 . 4 .  The method of 

i n  equation (1) w a s  found f o r  an e l l i p s o i d a l  nose i n  a uni-  
C1 

A - - -  - P ~ M  m m h o v n c  

The r a t i o  of nose radius  t o  shock radius,  t h e  shock standoff dis tance,  
and t h e  stagnation-point ve loc i ty  gradient for t h e  e l l i p s o i d a l  nose a r e  shown 
i n  f igu re  8, with a l l  t h e  quant i t ies  normalized by t h e i r  respect ive uniform 
flow values. With Rb/Lo a s  t h e  source f l o w  parameter, t he  r e s u l t s  a r e  simi- 
lar  t o  those f o r  a spher ica l  nose shown i n  f igure  4. The dependence on y i s  
not c l e a r l y  defined; a t  l e a s t ,  t h e  differences i n  t h e  r e s u l t s  f o r  y = 1.2 and 
1 .4  as normalized i n  f igure  8 a re  not appreciable. 

The preceding solut ions f o r  t he  subsonic-transonic region have shown t h a t  
t h e  e f f ec t  of  source flow on t h e  r a t i o  o f  nose radius  t o  shock rad ius ,  shock 
standoff d i s tance ,  stagnation-point veloci ty  gradient,  and surface pressure 
d i s t r i b u t i o n  i s  proport ional  t o  t he  source flow parameter, Rb/Lo. I n  addi- 
t i o n ,  t h e  changes i n  these  quan t i t i e s  a r e  of t h e  same order of magnitude a s  
t h e  value of R ~ / L ~ .  

7 



Hemisphere Cylinder 

The flow i n  t h e  supersonic region of a hemisphere cyl inder  has been calcu- 
M, = 20 t o  demonstrate l a t e d  by t h e  method of c h a r a c t e r i s t i c s  f o r  

t h e  e f fec ts  of source flow f o r  values of R b / b  up t o  0.06. The shock m v e  
is  displaced outward as shown i n  f igure  9. Before considering t h e  surface 
pressure d is t r ibu t ions ,  it i s  of i n t e r e s t  t o  examine t h e  e f f e c t  of source flow 
on t h e  loca l  free-stream propert ies  j u s t  upstream of t h e  shock m v e .  
reductions of pressure and densi ty  occur as shown i n  f igure  10. The Mach nun- 
ber  increases s l i g h t l y ,  but t h e  veloci ty ,  which i s  not shown, changes negligi-  
bly.  For small  values of t h e  source flow parameter, e s s e n t i a l l y  t h e  same 
conditions p r e v a i l  along t h e  nozzle axis. 
re la t ionships ,  t h e  changes i n  free-stream conditions would be l a r g e r  for ' l a rger  
values of y .  

y = 1.4 and 

Marked 

On t h e  b a s i s  of isentropic  flow 

The surface-pressure d i s t r i b u t i o n s  normalized by t h e  stagnation-point 
pressure and t h e  reductions i n  surface pressure normalized by t h e  l o c a l  uniform 
flow value a r e  shown i n  f igures  l l ( a )  and l l ( b ) ,  respectively.  
source flow is  t o  cause s igni f icant  reductions i n  surface pressure t h a t  a r e  an 
order of magnitude grea te r  than t h e  value of t h e  source flow parameter. 
f luctuat ions on the  hemisphere ( see  f i g .  l l ( b ) )  are p a r t i a l l y  due t o  small 
e r r o r s  resu l t ing  from defining t h e  body shape with polynomials passing through 
a d iscre te  s e t  of coordinates. This method of specifying t h e  body shape w a s  
necessary i n  order t o  j o i n  t h e  method of c h a r a c t e r i s t i c s  so lu t ion  smoothly t o  
t h e  inverse solut ion f o r  t h e  subsonic-transonic region. Otherwise, e r r o r s  i n  
the  body slope of a few percent i n  t h e  inverse so lu t ion  a t  t h e  matching point 
would have caused an imbedded shock i n  t h e  flow f i e l d .  

The e f f e c t  of 

The 

The reductions i n  surface pressure shown i n  f igure  l l ( b )  display two dis- 
t i n c t  regions. Over the  hemisphere the  reduction i n  surface pressure increases 
sharply with axial distance; over t h e  c y l i n d r i c a l  afterbody t h e  v a r i a t i o n  i s  
not s o  steep. The e f f e c t  is  grea te r  f o r  increasing values of y .  A n  examina- 
t i o n  of figures 10 and 11 shows t h a t  t h e  reduction i n  surface pressure with 
source f l o w  at a given body s t a t i o n  is  of t h e  same order  of magnitude as t h e  
reduction i n  free-stream pressure a t  t h e  same axial location. This occurs even 
though the port ion of t h e  f r e e  stream t h a t  influences a p a r t i c u l a r  body s t a t i o n  
i s  located much closer  t o  t h e  nose. To i l l u s t r a t e  t h i s  point ,  a right-running 
charac te r i s t ic  i s  sketched i n  f igure  9 f o r  F$,/Lo = 0 t o  ind ica te  the  port ion 
of the shock wave t h a t  influences the  flow over the afterbody for x/% < 10. 

I n  reference 2, H a l l  presents  a theory t h a t  assumes t h e  e f f e c t  of Source 
flow on shock-wave shape and surface-pressure d i s t r i b u t i o n  can be expressed as 
small perturbations of t h e  uniform flow values. 
well  t h e  displacement of the  shock wave as shown i n  f i g u r e  9, but f a i l s  t o  pre- 
d i c t  quant i ta t ively the  surface pressures  except f o r  i s o l a t e d  regions as shown 
i n  f igure  l l ( a ) .  I n  f igure  l l ( b )  H a l l ' s  theory i s  shown t o  pred ic t  a reduction 
i n  surface pressure t h a t  var ies  l i n e a r l y  with axial dis tance from t h e  nose. 
The magnitude of the  reduction is  d i r e c t l y  proport ional  t o  t h e  source flow 
parameter, Rb/Lo, and i s  l a r g e r  f o r  increasing values of y (not  shorn).  
i s  apparent t h a t  the  surface pressure would eventually vanish according t o  t h i s  
theory, f o r  instance,  a t  X/Rb = 10 f o r  R ~ / L ~  = 0.06. However, these  

This theory predic t s  qu i te  

It 
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reductions i n  pressure are not s m a l l  per turbat ions so t he  theory would not be 
expected t o  be v a l i d  under these circumstances. 
p red ic t s  only q u a l i t a t i v e l y  the  e f f e c t  of source f l o w  on surface pressure 
d is t r ibu t ion .  

I n  general, H a l l ' s  theory 

Calculations have been performed f o r  an e l l i p s o i d  cylinder with 
& = 2.25, y = 1.4, and M, = 20 and f o r  b/Lo = 0, 0.02, 0.04. 
surface-pressure d i s t r ibu t ions  along the  cy l ind r i ca l  afterbody f o r  uniform 
flow were somewhat d i f f e ren t  from the  spherical  nose solut ions,  t he  reductions 
i n  surface pressure with source flow were within a few percent of  t he  curves 
shown i n  f igu re  l l ( b ) .  The e f f e c t  of t h e  nose shape i s  apparently negl ig ib le  
if  the reduction i n  surface pressure i s  normalized by the  uniform fiow value. 

Although the  

The f a c t  t h a t  the e f f e c t  of the  nose shape o r  so lu t ion  on the  afterbody 
f l o w  appears negl ig ib le  suggests an approximate technique. Eaves and Lewis  i n  
reference 4 performed ca lcu la t ions  f o r  blunt-nosed bodies i n  source f l o w  with 
the assumption t h a t  t he  flow i n  the subsonic-transonic region w a s  i d e n t i c a l  t o  
t h a t  f o r  a uniform flow. It has been shown previously t h a t  t h i s  assumption i s  
not cor rec t ,  t h a t  differences of the  same order of  magnitude as t h e  source 
f l o w  parameter do occur. However, the  e f f ec t  on the  afterbody flow may be 
negl igible .  Calculations have been performed t o  t es t  t he  v a l i d i t y  of  t h i s  
assumption. I n  f igure  12, there  i s  shown the pressure d i s t r ibu t ion  on a hemi- 
sphere cyl inder  f o r  b / L 0  = 0.0219. 
t h i s  f i gu re  i s  t h e  dis tance along the  surface normalized by 
f r o m  reference 4 and the  present method agree within acceptable l i m i t s .  

y = 1.4, M, = 18, and The absc issa  i n  
F+,. The r e s u l t s  

The present  method w a s  a l s o  modified t o  solve the  source flow problem 
with input po in t s  provided by a uniform flow blunt-body solut ion,  s imi la r ly  t o  
the  method of reference 4'. These r e s u l t s  are a l s o  i n  agreement. A c lose exam- 
ina t ion  of t h e  flow f i e l d  showed t h a t  an expansion wave propagates f rom the  
i n i t i a l  shock poin t  t o  the body surface,  quickly adjust ing the  pressure t o  
near ly  the  co r rec t  value with source f l o w .  A comparison of exact and approxi- 
mate so lu t ions  f o r  
One can conclude t h a t  as far as the  pressure d i s t r i b u t i o n  over the  afterbody 
i s  concerned, t h e  use of a uniform flow biunt-body solutivri Poi- the  subsonic- 
t ransonic  region provides sa t i s f ac to ry  r e su l t s .  

€$,/Lo = 0.06 i n  f igu re  12 again shows reasonable agreement. 

Spherically Blunted Cones 

The flow f i e l d s  around spherical ly  blunted 15' and 30' cones have been 
ca lcu la ted  f o r  y = 1.4 and 

f o r  values o f  %/Lo up t o  0.06. The shock-wave configurations are shown i n  
f igu re  13. 
source flow i s  s i m i l a r  t o  t h a t  shown f o r  a hemisphere cylinder i n  figure 9. 
On the  o ther  hand, t he  shock wave f o r  the  30' cone i s  not a f fec ted  appreciably 
by the  source flow. This difference i n  behavior can be described as follows: 
For blunted s lender  cones, including the hemisphere cyl inder  as a l imi t ing  
case, t h e  shock-wave shape i s  determined e s sen t i a l ly  by the  forebody shape, 
which i s  a hemisphere, and i s  displaced outward with source f l o w .  For blunted 
cones with l a rge  ver tex angles including the 30' cone, t he  shock wave conforms 
t o  the af terbody shape and i s  influenced only s l i g h t l y  by the  source flow. 

M, = 20 t o  demonstrate t he  e f f e c t s  of source flow 

The outward displacement of t h e  shock wave f o r  the  1.5' cone with 
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Consequently, caution should be exercised i n  evaluating source flow e f f e c t s  on 
blunted cones from shock-shape measurements. 

The surface-pressure d i s t r i b u t i o n s  normalized by t h e  stagnation-point 
pressure a r e  shown i n  f igure  14, and t h e  reductions i n  surface pressure normal- 
ized by the uniform flow value a r e  shown i n  f igure 15. The predict ions of mod- 
i f i e d  Newtonian theory a r e  shown f o r  comparison. 
pressure on the  conical surface does not asymptotically approach t h e  sharp cone 
value a f t e r  the  over expansion behind t h e  nose, but instead eventually decays 
t o  zero. 
nose, the reduction i n  surface pressure i s  of t h e  same order of magnitude f o r  
both a hemisphere cylinder and blunted cones. Downstream from the  nose, t h e  
reductions i n  pressure a r e  grea te r  f o r  t h e  blunted cones. I n  t h i s  region of 
the  30' cone, modified Newtonian theory predic t s  qu i te  w e l l  t h e  reduction i n  
surface pressure with source flow as shown i n  f igure  15. This r e s u l t  i s  con- 
s i s t e n t  with t h e  r e l a t i v e  i n s e n s i t i v i t y  t o  source flow of t h e  shock shape, 
which i n  t h e  Newtonian approximation i s  assumed t o  conform t o  t h e  body shape. 

With source flow, t h e  

Comparison of f igures  l l ( b )  and 15 shows t h a t  i n  t h e  v i c i n i t y  of t h e  

COMPARISONS WITH EXPERIMENTAL RESULTS 

Both t h e  Ames arc-heated plasma f a c i l i t y  and t h e  1-foot shock t u n n e l u t i -  
l i z e  conica lnozz les .  Data obtained i n  these f a c i l i t i e s  w i l l  now be compared 
with t h e  predict ions of the  present numerical method. 
t h e  actual  d i s t r i b u t i o n  of free-stream conditions i n  t h e  nozzles, i d e a l  spheri- 
c a l  source flow w i l l  be assumed. The dis tance from t h e  source t o  t h e  model, 
Lo, i s  calculated from t h e  nozzle geometry without any boundary-layer correc- 
t ions .  The free-stream conditions a r e  assumed known at  t h e  s tagnat ion point 
of t h e  model ( e s s e n t i a l l y  the  same conditions p r e v a i l  a t  the  apex o f  t h e  bow 
shock), and t h e  free-stream conditions downstream a r e  r e a d i l y  calculable .  
boundary-layer corrections a r e  made f o r  t h e  model. The predict ions from t h e  
present method thus represent t h e  m a x i m u m  probable e f f e c t  of source flow. 

Lacking knowledge of 

No 

Hemisphere Tested i n  Arc Tunnel 

The Ames arc-heated plasma f a c i l i t y  produces stagnation enthalpies  ranging 
from 10 t o  20 MJ/kg with nitrogen as t h e  tes t  gas. 
M r .  Lewis Anderson and reported here, t h e  value of the  i d e a l  source flow param- 
e t e r ,  %/Lo, w a s  0.084 ( see  f i g .  16).  
with y x 1.46 and % 7.3 according t o  pressure measurements. Perfect  gas 
flow w i t h  It has been 
shown previously t h a t  the e f f e c t  of y on the  surface pressure d i s t r i b u t i o n  
i n  the subsonic region i s  negl igible .  Since the free-stream conditions were 
outside the range covered i n  t a b l e  I, t h e  method used t o  optimize the shock 
shape parameters was modified s l i g h t l y .  The value of A7 i n  equation (1) w a s  
optimized t o  be 0.047 a f t e r  s e t t i n g  i n  equation (2), C1 = 0.036, C 2  = 10.0, 
and C 3  = 0.0625, 

For the  t e s t s  conducted by 

The stream w a s  bel ieved t o  be frozen 

y = 1.4  and M, = 8 w a s  assumed i n  t h e  present method. 

Unpublished surface pressure data f o r  a hemisphere normalized by the 
stagnation-point pressure i s  shown i n  f i g u r e  16. The present  method predic t s  
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t he  surface pressure f o r  
some extraneous afterbody or tunnel  e f f ec t .  The stagnation-point ve loc i ty  
gradient  w a s  calculated from t h e  measured surface pressures  by M r .  L e w i s  
Anderson with the  assumption of i sen t ropic  flow away f r o m  the  stagnation point .  
The gradient w a s  found t o  be 20 percent larger  than the  value determined i n  a 
tunnel  with a uniform stream. This increase w a s  cons is ten t  with the  higher 
measured stagnation-point heat - transf e r  ra tes .  However, t h e  present numerical 
method p red ic t s  only a 10-percent increase i n  t he  stagnation-point ve loc i ty  
gradient with source flow. 

s/F$, < 1, but the  data f o r  s/& > 1 appears t o  have 

EIemisphere Cylinder Tested i n  Shock Tunnel 

The Ames 1-foot shock tunnel has been operated with various t e s t  gases at 
a s tagnat ion enthalpy o f  8 MJ/kg. 
been reported by Marvin and Akin i n  reference 8, from which t h e  following 
r e s u l t s  a r e  taken. The value of t h e  i d e a l  source flow parameter was equal t o  
0,0278. 
rim. The procedure followed t o  obtain a solut ion f o r  a r e a l  gas i s  t h e  same 
a s  f o r  a per fec t  gas. 
values of  t h e  shock parameters f o r  a spherical  nose were A, = 0.0357, 

Pressure and heat- t ransfer  measurements have 

With argon a s  t h e  t e s t  gas, t he  f l o w  was bel ieved t o  be i n  equilib- 

For t h e  shock-tunnel conditions l i s t e d  i n  f igure  17, t h e  

C 1  = 0.01343, C2 = 10.0, and C 3  = 0.125. 

The surface pressure measurements on a hemisphere cylinder reported i n  
reference 8 a r e  reproduced i n  f igure  17. The t e s t  da ta  l i e  below the  predic-  
t i o n s  from t h e  present method f o r  a uniform flow. The predicted reduction of 
surface pressure with source flow is  s igni f icant ;  f o r  s/Rb = 7, t h e  reduction 
is  40 percent.  The experimental r e s u l t s  now l i e  properly above t h e  predic- 
t i o n s ,  p a r t  of t h e  difference being a t t r i bu tab le  t o  viscous e f f ec t s  on both 
t h e  nozzle and t h e  model. 
of t h e  flow. 

There s t i l l  remains t h e  uncertainty i n  t h e  chemistry 

CONCLUDING l?BWBKS 

The e f f e c t  of spher ica l  source f l o w  about blunt-nosed axisymmetric bodies 
has been s tudied by modifying ex i s t ing  computer programs t o  account f o r  t h e  
nonuniform f r e e  stream. 
per fec t  gas f l o w  f o r  values of t h e  source flow parameter up t o  0.08, where t h e  
parameter i s  defined as t h e  r a t i o  of t h e  nose rad ius  o f  curvature t o  t h e  ais- 
tance  between t h e  source and t h e  nose. These r e s u l t s  demonstrate t h e  following 
q u a l i t a t i v e  e f f e c t s  of source flow. 
stagnation-point ve loc i ty  gradient increases and t h e  shock standoff dis tance 
and surface pressure decrease with source flow, t h e  r e l a t i v e  changes being of 
the same order  of magnitude as the  source flow parameter. I n  t h e  supersonic 
region over c y l i n d r i c a l  and conical  afterbodies,  t h e  surface pressure decreases, 
with the  percentage reduction being an order of  magnitude grea te r  than the  
source f l o w  parameter. 
s m a l l  f o r  a spher ica l ly  blunted 30' cone. 

Solutions have been obtained f o r  spher ica l  noses i n  

In  the subsonic-transonic region, t h e  

The shock wave i s  displaced outward, bu t  t h i s  e f f e c t  i s  
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. 
Comparisons with predict ions of approximate theor ies  and methods showed 

t h e  following r e s u l t s :  
estimated the  e f f e c t s  of source flow on standoff distance and stagnation-point 
veloci ty  gradient.  
turbations of t h e  uniform flow solut ion f a i l e d  t o  predict  quant i ta t ive ly  t h e  
surface-pressure d i s t r i b u t i o n ,  but it did predict  t h e  displacement of t h e  shock 
wave. Modified Newtonian theory w a s  shown t o  predict  qu i te  c lose ly  t h e  reduc- 
t i o n  i n  surface pressure with source flow i n  the subsonic region of a spher ica l  
nose and over the  conical  port ion of a blunted 30' cone. Since t h e  nose solu- 
t i o n  does not a f f e c t  g r e a t l y  t h e  flow over t h e  afterbody, an approximate method 
t h a t  joins a method of c h a r a c t e r i s t i c s  solut ion including source flow with a 
blunt-body solut ion f o r  a uniform flow was found t o  y i e l d  s a t i s f a c t o r y  r e s u l t s .  
Comparisons have a l s o  been made with experimental r e s u l t s  from models t e s t e d  i n  
conical  nozzles; these  r e s u l t s  indicate  t h a t  source flow e f f e c t s  can be pre- 
d ic ted  s a t i s f a c t o r i l y .  

For t h e  nose region, a constant-density solut ion under- 

For t h e  afterbody region, an analysis  based on small per- 

I n  conclusion, source flow e f f e c t s  have been found t o  be s i g n i f i c a n t ,  
especial ly  on afterbody pressure d is t r ibu t ions .  
using approximate theor ies  t o  pred ic t  source flow e f f e c t s .  
l a t i o n  method can be used t o  solve numerically t h e  exact equations of motion 
over a wide range of free-stream conditions. The examples presented i n  t h i s  
report  should serve as a guide i n  obtaining solut ions f o r  a p a r t i c u l a r  s e t  of 
free-stream conditions and model geometry. 

Caution should be exercised i n  
The present calcu- 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  Cal i f . ,  Jan. 17, 1966 
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T A B U  11.- &SW' OF SOLUTIONS FOR ELLIPSOIDS, % = 2.23 
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Figure 3. - Shock-wave shape f o r  spherical nose; y = 1.4, M, = 20. 
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Figure 4 . -  Ratio of nose radius  t o  shock radius ,  shock standoff dis tance,  and 
stagnation-point ve loc i ty  gradient  normalized by uniform f l o w  values for 
spherical  nose; = 20. 
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Figure 5 . -  Surface-pressure d i s t r ibu t ion  for spherical nose; y = 1.4 ,  = 20. 
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(a) R a t i o  of  nose rad ius  t o  shock radius.  
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( c )  Stagnation-point ve loc i ty  grad ien t .  

Figure 8 . -  R a t i o  of nose radius t o  shock rad ius ,  shock standoff dis tance,  and 
stagnation-point ve loc i ty  gradient  normalized by uniform f l o w  Values f o r  
e l l i p so ida l  nose; €$, = 2.25, & = 20. 

24 



0 



I 

o m  (D d 

0 
Q 
\ 

Q 
8 

0 

I 

d 
c - cu 

I 

26 



I .o 
.8 

.6 

.4 

2 

.I 
.08 

.06 

.02 

.o I 
,008 

,006 

,004 

,002 

0 
.oo I 

3 7 8 

(a) Ratio of  l o c a l  pressure t o  stagnation-point pressure.  
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Figure 16.-  Pressure d i s t r ibu t ion  on hemisphere i n  an arc-heated nitrogen 
stream f o r  s tagnat ion enthalpies  from 10 t o  20 W/kg; Rb = 1.27 cm, 
Lo = 15.10 cm. 
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Figure 17.- Pressure distribution along hemisphere cylinder in Ames 1-foot 
shock tunnel with argon as the test gas; V, = 3.96 km/s, po = 0.954 g/m3, 
po = 0.586 N/m2, @ = 2.54 cm, Lo = 91.5 cm. 
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