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ANALYTICAL METHOD FOR DETERMINING
FLOTATION STABILITY CHARACTERISTICS OF
A RIGHT-CIRCULAR-CONIC FRUSTUM

By Robert L. Wright, John F. Newcomb, James L. Dillon,
and Julie M. Willman
Langley Research Center

SUMMARY

An analytical method has been developed for determining the flotation stability
characteristics of a right-circular-conic frustum with the small face submerged. Gen-
eral nondimensional equations for the center-of-buoyancy location, metacentric height,
righting moment arm, and the special case of the rearmost location of the center of
gravity were derived in which the geometry, the mass, and the angle of inclination of the
floating body with respect to the water line are the only variables. The equations are
limited by the inclination angle for which any portion of the base becomes submerged.
Numerical results were computed to provide the designer a convenient method for deter-
mining the desired flotation stability parameters. Several examples are presented as
guidelines in the use of the method.

INTRODUCTION

Recovery of research payloads is playing an increasing role in free-flight rocket
investigations. Certain biological and materials experiments and data capsules containing
photographic or tape-recorder records require laboratory examination of the various
components for more detailed analysis of the results; hence, recovery of the research
package is necessary. After the recoverable package has landed safely on the water,
location of the package becomes the principal problem of the recovery operation. It
would be of little value to have a safe landing in the water, and then have the recoverable
package oriented so that any location aids (flashing lights, radar reflecting surfaces, and
radio antennas) are submerged. Therefore, knowledge of the flotation stability charac-
teristics of the floating body is essential to effective employment of the location aids.

An analytical method for determining the flotation stability characteristics of a
right-circular-conic frustum with the small face submerged has been developed. In the
analysis, the frustum is always alined so that the small face (nose) is immersed in the
fluid and the inclination (plane of the application of the force or moment) is in the



positive direction. The equations of the analysis are limited for this configuration by
the inclination angle for which any portion of the large face (base) becomes submerged.
General nondimensional equations for the center-of-buoyancy location, metacentric
height, and righting moment arm as functions of the body geometry and mass, and inclina-
tion angle with respect to the water line have been derived. The paper is divided into
two parts, analysis and application. The analysis section serves to introduce a general
development of the method and presents the governing equations. The appendix gives the
complete development of the governing equations. Because of the explicit nature of the
flotation stability equations of the method, it is not necessary to study their development
to use the analysis. In the section on application, several examples are presented as
guidelines in the use of the method. Numerical results were obtained from the governing
equations by using the IBM 7094 electronic data processing system and are presented in
tabular and graphic form for the following ranges of the variable parameters: frustum
half-angles of 6° to 169 in 20 increments, inclination angles of 400 to 90° in 5° incre-
ments, and nondimensional volumes of 1 to 6 in 0.5 increments.

SYMBOLS

A-1.tan%e
tan2¢>

B = sin2¢ cos26 - cos2¢ sin20 or A sin2¢ cos26

C=2%tan g Ve +1
i D3

D diameter of submerged flat face of frustum

hm metacentric height (distance along center line from center of gravity to
intersection of center line and a vertical line from center of buoyancy)

l length of conic frustum, measured along center line

lw length of conic frustum to water line from submerged flat face of frustum,
measured along center line

Lif length from tip to submerged flat face of frustum, measured along center line

Ltw length from cone tip to water line, measured along center line

lwb length from water line to base of cone, measured along center line



B

Yicg

¢

Subscripts:

B

cg

lim

displacement in lateral direction

lateral displacement of center of buoyancy of frustum (perpendicular
to center line)

righting moment arm (horizontal distance between center of gravity and
center of buoyancy)

displacement in longitudinal direction

longitudinal displacement of center of buoyancy of frustum (along center line)
longitudinal displacement of center of gravity of frustum (along center line)
submerged volume

angle between center line of right circular cone and line from apex to center
of base of oblique cone

frustum half-angle

angle of inclination, measured from water line

buoyancy center

base of cone

cone

center of gravity
flat-faced conic frustrum
moment

metacentric

limiting



s slant
t conical tip

w water line
ANALYSIS

After water impact of a recoverable payload, the motions of the buoyant body will
be influenced by the state of the sea and by the inertia and stability characteristics of the
body. Should the state of the sea be calm, the body will probably bob in the water with
little or no rolling or tilting motions. However, under more severe sea conditions, wave
action and body inertia will produce more violent tilting motions of the body. Since the
exact state of the sea cannot be accurately analyzed, design considerations require a
determination of the effects of varying tilt conditions on the flotation stability or righting
capability of the body. In the present analysis, the body inertia is neglected, since this
inertia does not affect the location of the center of buoyancy or metacentric height.

Figure 1 presents the general dimensions of the conic frustum of the analysis. The
analysis requires that the flotation stability parameters be functions only of the body
mass, body geometry, and inclination angle. The body geometry (body length, nose
diameter, and cone half-angle) is fixed for a given body. The inclination angle may vary
to some limiting angle (the angle for which any portion of the base becomes submerged).
This angle is a function of the body geometry (freeboard of the body in the vertical posi-
tion). The buoyant force of a floating body is equal to the weight of a volume of fluid
which is equal to the volume of the submerged portion of the body (Archimedes' principle).
The volume of the submerged portion of a frustum of a cone can be found by

Vi=Ve - Vi (1)

By proper substitution of geometric relations into equation (1), as developed in the

appendix, it is found that

21 3
L cot 6 <1+——D——Wtan 6> 1 (2)

S 1 __
D3 24 A3/2
Equation (2) can be rearranged to produce the nondimensionalized submerged length of
the conic frustum measured along the center line.

ly 1 |f24 vi 3 19
cw__ 1 jés 21 -1
D 2tan9<77 tanfog+1) A (3)



Nondimensionalizing by the nose diameter D gives the submerged length as a function
of 8, ¢, and Vf/D3. Numerical results for this parameter are given in table 1 for
conic frustums for various 6, ¢, and Vf/ D3. Figure 2 presents curves of the tabu-
lated lw/ D data over a range of Vj /D3 and ¢ for a typical conic frustum of 100
half-angle.

Actually, V§ could be computed more easily, since the submerged volume is
equal to the mass of the body divided by the density of water. However, it was necessary
to derive the ZW/ D parameter for later use.

The longitudinal displacement of the center of buoyancy can be found by summing
moments about the tip of the cone parallel to the center line of the right circular cone.

VeYe = Viys + Vvt (4)

Again, geometric substitution produces the nondimensional longitudinal displacement of
the center of buoyancy of the frustum,

YtB 3 c4/3A-1/2 _ 1\ cot 0
—gcot9< CT1 - (5)

Likewise, by summing moments perpendicular to the center line of the right circular
cone, the lateral displacement of the center of buoyancy of the frustum is found to be

0 C4/3A-1/2
an oot 0A ®

eB_3t
D 8t
Numerical results from equations (5) and (6) are presented in tables 2 and 3,
respectively. Figure 3 presents the data from table 2 for a range of Vf/D3 and ¢
for a typical conic frustum of 100 half-angle. Figure 4 shows curves of the data from
table 3 over the same range.

As indicated earlier, the inclination angle will vary to some limiting angle (angle
for which any portion of the base becomes submerged) for which the equations of the
present analysis are applicable. By setting up the relationship between the submerged
center-line length of a cone and the slant height of a cone, the limiting inclination angle
is obtained.

[1+2Ltan6

®13m = ATC tanL 2(.2_13 Z_W.) (7)

D D

The nondimensionalized submerged length of the conic frustum ZW/ D defined
earlier is noted to be a function of the inclination angle; therefore, an iteration is



required to solve the equation for the limiting inclination angle for which the analysis is
-applicable. Only two iterations are required in most cases to provide sufficiently accu-

rate results.

Thus, with the frustum half-angle and the displaced volume (body mass), values of
the nondimensionalized submerged length along the center line I / D can be obtained
from table 1 for the conic frustum in the vertical position (¢ = 909). Substitution of this
value of 1y /D into equation (7) will produce an inclination angle ¢. By reentering
table 1, a new value of I / D is obtained and substituted into equation (7). This itera-
tion process is continued until the difference between successive inclination angles ¢
is sufficiently small. The resultant inclination angle is the limiting inclination
angle ¢j5,, for which the equations of the analysis are applicable. Tables 2 and 3 are
entered at the computed value of ¢y, for the frustum half-angle and displaced volume,
and the values of the lateral and longitudinal displacements of the center of buoyancy are
determined.

Translating the axis and rotating through an angle -(90 - ¢) produces the coordi-

nate system developed in the appendix (designated by double primes) from which the
righting moment arm is determined.

XiVI =X, Sin ¢ + (ny - yfcg)cos 10) (8)

The metacentric height is defined as the distance along the center line from the
center of gravity to the intersection of the center line and a vertical line from the center

of buoyancy.

hyj =Xcptan ¢ + (ny - yfcg) (9)

The flotation stability parameters XivI and h;,, are shown in figure 5. Positive
values of XiVI and hy, indicate that the conic-frustum configuration is stable, and the
magnitude of these stability parameters provides the degree of stability.

For the designer, the rearmost location of the center of gravity without loss of
flotation stability is of importance. Movement of the center of gravity rearward will
provide the designer with more latitude in the location of internal instrumentation and will
reduce the stringent requirement for small or compact instrumentation. The rearmost
location of the center of gravity for the conic frustum inclined at any angle ¢ (up to and
including ¢lim) is found by setting the metacentric height in equation (9) equal to zero
and solving for Yeg-

Ytcg = Xcp tan ¢ + yip (10)



APPLICATION OF THE METHOD

The following examples were calculated to illustrate the application of this analysis
in determining the flotation stability characteristics of the conic-frustum configuration.

In all the examples, a frustum half-angle of 10° was used. Figures 2, 3, and 4 pre-
sent the data given in tables 1, 2, and 3, respectively, for a 10° half-angle conic frustum
for use with the examples. Figure 2 is used to determine the desired values of ZW/D
for obtaining ¢y, from equation (7). Figures 3 and 4 provide the longitudinal and
lateral displacements of the center of buoyancy.

The units used for the physical quantities are given both in the U.S. Customary
Units and in the International System of Units (SI). Conversion factors are presented in
reference 1.

Example 1

A recoverable body consists of a 109 half-angle conic frustum of 37.8 pounds
(17.15 kg). The length of the spacecraft is 14 inches (35.6 cm) and the nose diameter is
8 inches (20.3 cm), The center of gravity Vicg is located 4 inches (10.2 cm) aft of the
flat-faced nose. Determine the limiting inclination angle within 20 minutes (for which the
equations are applicable) and the magnitude of the stability parameters xiv[ and hp,.

The volume displaced is the mass m divided by the density p of the fluid in
which the body is submerged (64.0 lIbm/ft3 (1025.2 kg/m3) for sea water):

v=1=3T8_ 05913 (0.017 m3)

Thus, V =1024 in3 (16 780 cm3>. Nondimensionalizing by the diameter of the submerged
flat face yields

_1024 _ 5,

v
p3 g3
From figure 2, for ¢ =900
tw =1.55
D

The limiting inclination angle for which the equations of the analysis are applicable can be
determined by using equation (7)



1+2—6tan9

155

l
from which ¢ = 829 57'. From figure 2 for the first iteration, -I—)W = 1.547 for
¢ = 820 57', Substituting into equation (7) yields

$1im = arc tan

1+?rl]5tan9

9|l _ <Z_W>
D \D /y-g20 57'

from which ¢ is determined to be 820 49'. The difference between the calculated solu-
tion and the assumed solution is within the accuracy required; therefore, 82° 49' is the
limiting inclination angle for which the flotation characteristics of this configuration can

$1im = arc tan

be obtained from this analysis.

To determine the magnitude of the stability parameters, equations (8) and (9) are

used

xiw =Xcep Sin ¢ + (ny - yfcg)cos o}
hyp =Xcp tan ¢ + (ny - chg)

X
From figures 3 and 4, X%B— = 0.885 and —%—B = 0.018, respectively, for ¢ = 820 49';

y
“fC8 _ 0.50. Therefore

Xj7 = 0.018D sin ¢ + (0.885 - 0.50)D cos ¢ = 0.527 inch (1.338 cm)
hy, = 0.018D tan ¢ + (0.885 - 0.50)D = 4.22 inches (10.72 cm)

Since XiVI and hp, > 0, a positive righting moment of 19.9 inch-pounds (2.25 J) exists
and the configuration is stable to the limits of the analysis.

Example 2

Example 2(a).- A recoverable body has a mass of 111 pounds (50.3 kg). The flat-
faced nose is 10 inches (25.4 cm) in diameter and the 100 half-angle conic frustum is

8



30 inches (76.2 cm) long. Find the most rearward location of the center of gravity for
which the body is stable (at the limits of the analysis).

The submerged volume is found to be 3000 in3 (49 161 cm3) and from figure 2
lyw/D =2.026 for ¢ =90°.

From equation (7),

the limiting inclination angle ¢ is determined to be 460 35'. For the first iteration,
¢ = 440 33'. A second iteration produces ¢ = 44° 17'. The difference between the
assumed and calculated ¢ 1is now sufficiently small; therefore, ¢y;,, 1s taken to be
440 17'. From figures 3 and 4, ylf)—B = 1.265 and Z¢B - 0.1467.

The most rearward location of the center of gravity is determined from equa-
tion (10)

Yicg = Xcp tan ¢ + yrp
Yicg = 0.1467D tan ¢ + 1.265D = 14.08 inches (35.76 cm)

Thus, for an inclination angle of 440 17" and a center of gravity located 14.08 inches
(35.76 cm) from the flat face, the body is neutrally stable at the limits of the analysis.

Example 2(b).~ The conditions are the same as for problem 2(a) except that Yicg
is 10 inches (25.4 cm). Determine the righting moment and plot the location of the
center of buoyancy for several inclination angles including Plim-

The righting moment arm is found from equation (8):
XiVI =X.p Sin ¢ + (ny - yfcg)cos 0]
xp = 0.1467D sin ¢ + (1.265 - 1.0)D cos ¢ = 2.908 inches (7.39 cm)

For the 111-pound (50.3-kg) body, the righting moment is 322.8 inch-pounds (36.48 J).
The location of the center of buoyancy for this configuration is shown in figure 6 for
several inclination angles including ¢1ipy-



CONCLUDING REMARKS

An analytical method has been developed for determining the flotation stability
characteristics of a right-circular-conic frustum with the small face submerged in the
fluid. General nondimensional equations for the center-of-buoyancy location, metacen-
tric height, righting moment arm, and the special case of the rearmost location of the
center of gravity have been derived. These equations are limited by the inclination
angle for which any portion of the base becomes submerged. Numerical results have
been tabulated for the following ranges of the variable parameters: frustum half-angles
of 60 to 160 in 20 increments, inclination angles of 40° to 900 in 50 increments, and non-
dimensional volumes of 1 to 6 in 0.5 increments. Example problems are presented to
serve as guidelines in the use of the method.

Langley Research Center,

National Aeronautics and Space Administration,
Langley Station, Hampton, Va., September 14, 1965,
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APPENDIX
DEVELOPMENT OF GOVERNING EQUATIONS

In developing the method for determining the flotation stability characteristics of
a right-circular-conic frustum with the small face submerged, the general configuration
of sketch (1la) was considered. By letting the cone be inclined at some angle ¢ less
than 900 (measured from the water line to the geometric center line of the body), the
plane of the water line cutting the inclined cone produces an ellipse whose semimajor
axis a is
_Tw,1 ; Tw,2 (A1)

a
Here, ry 1 and r, o are the distances at the water line along the major axis of the
M 3
ellipse from the cone surface to the intersection of the water line and the geometric
center line, as shown in sketch (1b). The radius of the conic frustum at the intersection
of the water line with the center line is defined as ry,.

Sketch (1a) Sketch (1b)

11



APPENDIX

Iy cos 0
r = —_— A2s
w,1 sin(¢ + 6) (a2a)
r _ Twcos 6 (A2D)

W2 " Sin(¢ - )

Since ry =1l tan 6,
a=1 sin ¢ sin f cos 6 (A3)
sin? ¢ cos2 0 - cos2 ¢ sin2 6

Let G be the distance a - I'y,1 along the major axis between the center line

and the minor axis; then

G =, sin 9(MBSi—n9> (A4)

where

B = sin2 ¢ cos2 0 - cos2 ¢ sin2 ¢

From the right triangle between the geometric center line and the minor axis in
sketch (2), the relations mjy =Gcos ¢ and mg =G sin ¢ are obtained.

m,
\ Water |ine
¢ \—90—gb
Sketch (2)
Then, the use of equation (A4) yields
my = ltw(cosz QBsin2 9> (AS)

0s ¢ sin ¢ sin 6 cos 9) (A6)

my = Iy, tan 9(“ =

12




APPENDIX

Define the distance from the apex of the cone to the plane of the minor axis as
l{p» Such that

lth = Ly + M1
At this plane, the radius of the cone is
q= (ltw + ml)tan 6

Substituting for m; from equation (A5) yields

ind 2
q = Iy tan 9<~1niBgM) (A7)

From the plane of the circle formed by cutting the cone perpendicular to the center line
at distance Iy, (sketch (3)) b= (qz - m22)1/2

Sketch (3)
Substituting for q and mgy yields the semiminor axis

b = ztw(lﬁ)l/ % sin ¢ sin 6 (A8)

The volume of the submerged portion of the cone can now be determined from

Ve = 1=
c7T3

where

liw Sin ¢ sin 6 cos 6
a= B

13




APPENDIX

ltw sin 0 sin ¢
b=
Bl/2

where h is the length of the submerged portion of the cone, (See sketch (1b).) Solving
for V., gives

.3 in2 o 0
Ve =L1 3(sin? ¢ sin Ccos A9a
Subtracting the volume of the tip
Vi = %r3 cos 6 (A9Db)

(where r is the radius of the flat face of the frustum) from the submerged portion of
the cone produces the submerged volume of the conic frustum Vg

in3 02
Vi =% th3<s1n ¢ 1831;1/29 Ccos 9> _ % r3 cot 8 (A10)

Since Ity =lw +s and ly =r cot 0, then nondimensionalizing by D yields

1.3 1 3

Substituting into equation (A10) and simplifying yields

Vi 21 3 1
— =I_cot 6|1 + =X tan 9} —L— - Al2
=3 L co ‘:<+D n>A3/2 ] (A12)
where
A___l_tan29
tan2 ¢

By rearranging equation (A12), the nondimensionalized equation for the submerged length
along the center line of the conic frustum as a function of Vf/D3, 8, and ¢ can be

determined as

l \% 1/3
W - 1 24 ¥£ A1/2 -
D ~3% 9< 3tan9+1> 1 (A13)

14



APPENDIX

Numerical results from the solution of equation (A13) are given in table 1 for conic
frustums with half-angles of 60, 80, 10°, 120, 140, and 16° for a Vf/D3 range from 1
to 6 in increments of 0.5 and for inclination angles measured from the water line ranging
from 900 to 409 in 50 increments. Figure 2 presents curves of ZW/D over the range of
Vf/ D3 and ¢ for a frustum half-angle of 100,

Center-of-Buoyancy Displacement

In order to determine the longitudinal and lateral displacements of the center of
buoyancy, it is first necessary to obtain the angle ¢ between the geometric center line
and the line from the tip to the center of the base of the submerged portion of the cone
(fig. 1).

Sketch (4)
From the geometry of sketch (4),
1/2
ltb = Kltw + ml)z + (mz)zil / (A14)
which simplifies to
Lip = ﬂ%&(sinz [0} cos4 9 + cos2 ¢ sin4 9)1/2 (A15)

15



APPENDIX

But,
+m
CcOs 'y = _l_t_‘K_l
Lo
Thus,
cos y = 1 (Ale)

(1 + cot? [0} tan4 9)1/2

It is now possible to determine the displacement of the center of buoyancy of the
conic frustum by taking moments about the tip of the cone. First, summation of moments
parallel to the center line of the right circular cone yields

Veve = Vive + Vivg (A17)

where V. and Vi are defined by equations (A9a) and (A9b), and

Ve = % Lip COS ¥ (A18a)
Vi = % r cot 0 (A18b)

Substitution of these relations into equation (A17) yields

3g3/2 -
r°B r cot 6 - 4, cos yjcot 6
yt‘z%ltbCOS'y- ( b )

(A19)
Ly (sin3 ¢ sin2 6 cos 9) - r3B3/2 cot 6

Upon substitution for Iy, and cos v, the following relation is obtained:

ye=3 Lty sin2 ¢ cos2 6 r3B3/2(r cot 6 - 14, B! sin2 ¢ cos? 6)cot 6 (A20)
£ 4 B ltw3(sin3 ¢ sin2 6 cos 9) - r3B3/2 cot 6

From equation (All),

™~

Liw

- w ,cot@

D 2

16



APPENDIX

But, from equation (A13),

l 1 1/3,1/2
l = -
D 2 tan G(C A 1)

where

C.—:.ZA‘_,_f_tan9+1
T D3

therefore, the combination of these terms yields

liw = 12—) cl/3a1/2 cot 6 (A21)

Substitution of equation (A21) for 1, in equation (A20) yields

Vg = 3 cot 6 DC1/3A1/2 gin2 ¢ cos? 9 _D- pDcl/3a1/2p-1 gin2 ¢ cos? 9>
8 B cA3/2B-3/2 gin3 0] cos3 6 -1

Since B = A sin2 ¢ cos?2 8, nondimensionalizing and reducing gives

Yi_3 c4/3A-1/2 _ 4
D" 8 cot 9( G (A22)

From the submerged small face of the conic frustum, the location of the longi-
dinal displacement of the center of buoyancy is found to be

V¢p = ¥f - r cot 6

Therefore
4/3,-1/2
HB:%cot@(C/A_{ _1>_co§6 (A23)

Equation (A23) is the nondimensional equation for the longitudinal (along the center
line) displacement of the center of buoyancy of a conic frustum as a function of V/D3,
6, and ¢. Table 2 presents numerical results of the variation of ny/D for conic
frustums with half-angles of 6° to 16° at 20 intervals for a range of Vf/ D3 from 1to 6
in increments of 0.5 and for inclination angles ranging from 90° to 40° at 50 intervals.
Figure 3 presents plots of ygp /D over the range of Vj /D3 and ¢ for a frustum
half-angle of 100.

17



APPENDIX

The lateral (perpendicular to the center line) displacement of the center of buoy-
ancy of the conic frustum is found by taking moments about the tip of the right circular

cone perpendicular to the center line

VCXC = Vfo + Vtxt

Xc=

i)

m3

Xt =0
Substitution of equations (A25), (A9), and (A10) into equation (A24) yields

ltw3(sin3 o} sin2 6 cos G)mz

_3
173 003 & sin? 3p3/2
tw~ Sin® ¢ sin<4 6 cos 0 - r°B cot 8

From equation (A6)

0S8 ¢ sin ¢ cos 0 sin 9)

mg = Ly tan 9<° >

therefore

th4B'1 tan 0 sin_4 ¢ cos ¢ sin?’ 6 cos2 0

3
Xf = =
4 LiwS sind ¢ sin2 9 cos 0 - r3B3/2 cot 6

Substitution for 4, from equation (A21) yields

% =3 ptan o/ c4/3A2B-5/2 5ind ¢ cos5 o >
8

tan ¢\CA3/2B" Y2 gin3 ¢ cos3 0 - 1

Nondimensionalizing and reducing gives

XcB _Xf _ 3 tan 0[C%/3A-1/2
D D 8tan¢\ C-1

(A24)

(A25a)

(A25b)

(A26)

(A27)

Equation (A27) is the general nondimensional equation for the lateral displacement
of the center of buoyancy of a conic frustum as a function of Vjg /D3, ¢, and 6. Table 3

18



APPENDIX

presents numerical results for the variation of x.p/D for the conic frustum for a
range of 6 from 6° to 169 at 2° intervals and Vf/D3 from 1 to 6 at 0.5 intervals and
for ¢ ranging from 90° to 40° at 5° intervals. Figure 4 presents curves of ch/D
over the ¢ range and a Vf/D3 range of 2 to 6 in increments of 1 for a frustum half-
angle of 100,

Limiting Inclination Angle

Equations (A13), (A23), and (A27) are limited for this configuration by the inclina-
tion angle for which any portion of the base becomes submerged. This is the limiting
inclination angle ¢, for which the present analysis is applicable.

The limiting inclination angle is found to occur when
Ltw Sin ¢ = hg sin(¢ - 0) (A28)

where hg is the slant height of the right circular cone. (See sketch (5).)

Sketch (5)

Substituting for ¢, and hg and solving for ¢ gives

1+2—I%tan9

¢ = arc tan
2<_L - h&)
D D

(A29)

19



APPENDIX

It is noted that I /D is a function of the inclination angle ¢ and therefore it is
necessary to iterate to determine the limiting inclination angle.

Determination of Stability

In order to determine whether the body is stable, it is necessary to define a new
coordinate system which is obtained by translating the X,Y system such that

X'=x (A30a)
Y=Y - Vieg (A30D)
as shown in sketch (6).
Y,y
|
X
!
\ ]
\\ // yTCg
v !
\ /
\ //
\\/
[ —x
Sketch (6)

A rotation of the X',Y' system through the angle -(90 - ¢) produces the coordi-
nate system of sketch (7), where

x'=x" sin ¢ +y" cos ¢ (A31a)

y' = -x" cos ¢ +y" sin ¢ (A31Db)

20



APPENDIX

(] x'
\ x\

/ Yig-Yfcg

] X'M et — xu

Sketch (7)

Substituting x" =x.p and ¥ =y;p - Vicg into equations (A31a) and (A31b) gives
the righting moment arm

XiVI = Xcpg Sin ¢ + (ny - yfcg>cos 03 (A32)

and the metacentric height

hy =Xcptan ¢ + (ny - chg) (A33)

The righting moment arm is indicative of the stability. Whenever XiVI > 0, a posi-
tive righting moment exists and the flat-faced body is stable. The metacentric height is
also a measure of the stability. The greater the metacentric height, the greater the
stability.

Rearmost Location of Center of Gravity

The rearmost location of the center of gravity without loss of flotation stability at
the limits of the present analysis is determined from equation (A33). By setting the
metapentric height equal to zero and solving for yg. g’ the most rearward location of the
center of gravity at ¢y;,,, becomes

Yicg = VB + XcB tan ¢ (A34)
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APPENDIX
Equation (A34) provides neutral or zero stability at ¢jj,,; that is, the metacentric
height h;, and righting moment arm XivI equals zero at ¢jij;. To provide some

degree of stability, a desired value of the metacentric height can be subtracted from
equation (A33) and the equation can be solved for ygeo:

Vicg = VB + XcB tan ¢ - h, (A35)
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NASA SP-7012, 1964.
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Vi

D3

1.0 | 1.0328
1.5 | 1.4341
2.0 | 1.7892
2.5 | 2.1095
3.0 | 2.4023
3.5 | 2.6730
4.0 | 2.9253
4.5 | 3.1621
5.0 | 3.3854
5.5 | 3.5972
6.0 | 3.7987
1.0 | 0.9791
1.5 | 1.3409
2.0 | 1.6560
2.5 | 1.9370
3.0 | 2.1919
3.5 | 2.4260
4.0 | 2.6431
4.5 | 2.8459
5.0 | 3.0367
5.5 | 3.2170
6.0 | 3.3882
1.0 | 0.9328
1.5 | 1.2634
2.0 | 1.5478
2.5 | 1.7995
3.0 |2.0265
3.5 | 2.2340
4.0 | 2.4259
4.5  2.6046
5.0 | 2.7724
5.5 | 2.9306
6.0 | 3.0806
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TABLE 1.- NONDIMENSIONAL CENTER-LINE DISTANCE FROM

1.0325
1.4338
1.7889
2.1092
2.4020
2.6727
2.9250
3.1617
3.3851
3.5968
3.7983

0.9787
1.3406
1.6556
1.9366
2.1915
2.4256
2.6426
2.8455
3.0362
3.2165
3.3877

0.9323
1.2629
1.5473
1.7990
2.0259
2.2334
2.4252
2.6040
2.7717
2.9299
3.0799

1.0318
1.4330
1.7881
2.1083
2.4011
2.6718
2.9240
3.1607
3.3840
3.5957
3.7972

0.9777
1.3394
1.6544
1.9354
2.1902
2.4242
2.6412
2.8440
3.0347
3.2149
3.3861

0.9309
1.2614
1.5457
1.7973
2.0241
2.2316
2.4233
2.6020
2.7697
2,9278
3.0778

FLAT FACE TO WATER LINE

ZW/D for inclination angle ¢ of —

1.0305
1.4316
1.7866
2.1067
2.3995
2.6701
2.9223
3.1589
3.3822
3.5939
3.7953

0.9759
1.3375
1.6523
1.9331
2.1878
2.4218
2.6387
2.8414
3.0320
3.2122
3.3833

0.9286
1.2588
1.5430
1.7944
2.0211
2.2284
2.4200
2.5986
2.7661
2.9242
3.0740

6 = 6,00
1.0286 | 1.0258
1.4296 | 1.4267
1.7844 | 1.7813
2,1044 | 2.1012
2.3971 | 2.3937
2.6676 | 2.6641
2.9197 | 2.9161
3.1563 | 3.1526
3.3795 | 3.3757
3.5911 | 3.5871
3.7924 | 3.7884

6 = 8.0°
0.9731 | 0.9693
1.3345 | 1.3304
1.6492 | 1.6448
1.9298 | 1.9252
2.1844 | 2.1796
2.4182 | 2.4131
2.6350 | 2.6298
2.8376 | 2.8322
3.0281 | 3.0225
3.2082 | 3.2025
3.3791 | 3.3733

6 = 10.0°
0.9250 | 0.9200
1.2549 | 1.2495
1.5388 | 1.5330
1.7900 | 1.7838
2.0165 | 2.0100
2.2236 | 2.2169
2.4150 | 2.4080
2.5934 | 2.5862
2.7608 | 2.7534
2.9187 | 2.9111
3.0684 | 3.0606

1.0221
1.4227
1.7171
2.0968
2.3891
2.6594
2.9112
3.1475
3.3704
3.5818
3.77829

0.9641
1.3248
1.6388
1.9189
2.1730
2.4063
2.6226
2.8248
3.0150
3.1947
3.3653

0.9132
1.2421
1.5251
1.7754
2.0012
2.2077
2.3985
2.5764
2.7432
2.9006
3.0499

1.0171
1.4173
1.7714
2.0908
2.3829
2.6529
2.9045
3.1406
3.3634
3.5745
3.7755

0.9571
1.3172
1.6307
1.9104
2.1640
2.3970
2.6130
2.8149
3.0047
3.1841
3.3545

0.9039
1.2320
1.5143
1.7641
1.9893
2.1953
2.3856
2.5630
2.7295
2.8865
3.0354

90 785 I 80 J 75 I 70 l 65 I 60 | 55 l 50

1.0102
1.4100
1.7637
2.0827
2.3744
2.6441
2.8954
3.1312
3.3537
3.5646
3.7654

0.9474
1.3068
1.6196
1.8987
2.1518
2.3843
2.5998
2.8013
2.9907
3.1698
3.3398

0.8913
1.2183
1.4996
1.7485
1.9730
2.1782
2.3680
2.5448
2.7106
2.8672
3.0155

| 45 | 40
1.0007 | 0.9872
1.3998 | 1.3853
1.7529 | 1.7376
2.0714 | 2.0554
2.3627 | 2.3460
2.6319 | 2.6145
2.8828 | 2.8648
3.1182 | 3.0997
3.3403 | 3.3213
3.5509 | 3.5314
3.7513 | 3.7313
0.9341 | 0.9150
1.2923 | 1.2717
1.6043 | 1.5824
1.8825 | 1.8594
2.1349 | 2.1107
2.3666 | 2.3415
2.5815 | 2.5555
2.7824 | 2.7555
2.9713 | 2.9435
3.1498 | 3.1213
3.3193 | 3.2901
0.8737 | 0.8486
1.1992 | 1.1719
1.4792 | 1.4500
1.7269 | 1.6960
1.9503 | 1.9179
2.1546 | 2.1208
2.3434 | 2.3084
2.5194 | 2.4832
2.6845 | 2.6471
2.8403 | 2.8019
2.9879 | 2.9485 |




el

Vi

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

90 l 85 I 80 | 75 I 70

g =
0.8921 | 0.8916 | 0.8898 | 0.887 0.8824
1.1972 | 1.1966 | 1.1947 | 1.1914 |} 1.1866
1.4573 | 1.4566 { 1.4546 | 1.4511 | 1.4459
1.6860 | 1.6853 | 1.6832 | 1.6794 | 1.6739
1.8914 | 1.8906 | 1.8884 | 1.8845 | 1.8787
2.0786 | 2.0778 | 2.0755 | 2.0714 | 2.0653
2.2512 | 2.2504 | 2.2480 | 2.2437 | 2.2374
2.4118 | 2.4109 | 2.4084 | 2.4040 | 2.3975
2.5622 | 2,5613 | 2.5587 | 2.5542 | 2.54%75
2.7039 | 2.7030 | 2.7004 | 2.6957 | 2.6888
2.8381 | 2.8372 | 2.8345 | 2.8297 | 2.8225

o=
0.8559 | 0.8553 | 0.8532 | 0.8495 | 0.8441
1.1396 | 1.1388 | 1.1366 | 1.1326 | 1.1266
1.3796 | 1.3788 | 1.3764 | 1.3721 | 1.3657
1,5898 | 1.5889 | 1.5863 | 1.5817 | 1.5749
1.7778 | 1.7769 | 1.7742 | 1.7694 | 1.7622
1.9489 | 1.9479 | 1.9450 | 1.9400 | 1.9326
2.1063 | 2.1053 | 2.1023 | 2.0971 | 2.0893
2.2524 | 2.2514 | 2.2483 | 2.2429 | 2.2349
2.3892 | 2.3882 | 2.3850 | 2.3794 | 2.3711
2.5180 | 2.5169 | 2.5136 | 2.5079 | 2.4993
2.6398 | 2.6387 | 2.6353 | 2.6294 | 2.6206

g =
0.8233 | 0.8225 | 0.8200 | 0.8157 | 0.8093
1,0887 | 1.0878 | 1.0851 | 1.0803 | 1.0732
1.3119 | 1.3109 | 1.3080 | 1.3029 | 1.2953
1.5066 | 1.5055 | 1.5024 | 1.4970 | 1.4888
1.6803 | 1.6793 | 1.6759 | 1.6702 | 1.6616
1.8380 | 1.8369 | 1.8335 | 1.8275 | 1.8185
1.9830 | 1.9818 | 1.9782 | 1.9720 | 1.9626
2.1174 | 2.1162 | 2.1125 | 2.1060 | 2.0964
2.2432 | 2,2419 | 2.2381 | 2.2314 | 2.2214
2.3614 | 2.3601 | 2.3561 | 2.3493 | 2.3390
2.4732 | 2.4719 | 2.4678 | 2.4607 | 2.4502

TABLE 1.- NONDIMENSIONAL CENTER-LINE DISTANCE FROM

FLAT FACE TO WATER LINE -~ Concluded

lyw /D for inclination angle ¢ of —
65 | 60 ] 55 | 50 | 45 | 0

12.0°

0.8761 | 0.8676 | 0.8560 | 0.8401 | 0.8180 | 0.7843
1.1797 | 1.1704 | 1.1577 | 1.1403 | 1.1161 | 1.0814
1.4385 | 1.4285 | 1.4148 | 1.3962 | 1.3702 | 1.3330
1.6661 | 1.6555 | 1.6410 | 1.6212 | 1.5937 | 1.5543
1.8705 | 1.8593 | 1.8441 | 1.8233 | 1.7944 | 1.7530
2.0568 | 2.0451 | 2.0292 | 2.0076 | 1.9773 | 1.9341
2.2285 | 2.2164 | 2.1999 | 2.1774 | 2.1460 | 2.1011
2.3883 | 2.3758 | 2.3587 | 2.3354 | 2.3029 | 2.2564
2.5380 | 2.5250 | 2.5074 | 2.4834 | 2.4499 | 2.4019
2.6790 | 2.6657 | 2.6476 | 2.6228 | 2.5884 | 2.5390
2.8125 | 2.7989 | 2.7803 | 2.7549 | 2.7195 | 2.6688
14.00

0.8365 | 0.8261 | 0.8120 | 0.7926 | 0.7656 | 0.7267
1.1183 | 1.1068 | 1.0913 | 1.0700 | 1.0403 .9976
1.3567 | 1.3444 | 1.3277 | 1.3047 | 1.2727 | 1.2268
1.56564 | 1.5523 | 1.5346 | 1.5102 | 1.4762 | 1.4274
1.7522 | 1.7384 | 1.7197 | 1.6941 | 1.6584 | 1.6070
1.9221 | 1.9077 | 1.8881 | 1.8614 | 1.8240 | 1.7703
2.0784 | 2.0634 | 2.0431 | 2.0153 | 1.9764 | 1,9206
2.2236 | 2.2081 | 2.1871 | 2.1582 | 2.1180 | 2.0601
2.3594 | 2.3435 | 2.3217 | 2.2920 | 2.2504 | 2.1907
2.4873 | 2.4709 | 2.4485 | 2.4179 | 2.,3751 | 2.3137
2.6083 | 2.5914 | 2.5685 | 2.5370 | 2.4931 | 2.4300
16.0°

0.8003 | 0.7879 | 0.7710 | 0.7479 | 0.7155 | 0.6688
1.0632 | 1.0496 | 1.0310 | 1.0055 .9697 .9182
1.2845 | 1.2697 | 1.2497 | 1.2221 | 1.1836 | 1.1280
1.4774 | 1.4617 | 1.4404 | 1.4111 | 1.3701 | 1.3109
1.6496 | 1.6331 | 1.6106 | 1.5797 | 1.5365 | 1.4742
1.8059 | 1.7886 | 1.7651 | 1.7328 | 1.6876 | 1.6224
1.,9495 | 1.9316 | 1.9071 | 1.8735 | 1.8265 | 1.7586
2.0828 | 2.0642 | 2.0388 | 2.0040 | 1.9553 | 1.8850
2.2074 | 2.1881 | 2.1620 | 2.1260 | 2.0757 | 2.0031
2.3245 | 2.3047 | 2.2778 | 2.2408 | 2.1890 | 2.1143
2.4353 | 2.4150 | 2.3873 | 2.3493 | 2.2961 | 2.2193
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Do s W
OO OO0 O UOoO U o Lo

0.5500
L1793
.9882

1.1809

1.3604

1.5289

1.6878

1.8386

1.9822

2.1195

2.2511

R R
S OO O Ulo g O Lo

0.5288
71407
.9310

1.1046

1.2649

1.4143

1.5545

1.6868

1.8124

1.9319

2.0462
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5.0
5.5
6.0

0.5100
.7076
.8829

1.0415

1.1870

1.3220

1.4482

1.5668

1.6791

1.7857

1.8874

TABLE 2.- NONDIMENSIONAL LONGITUDINAL DISPLACEMENT

OF CENTER OF BUOYANCY

ny/D for inclination angle ¢ of —

85 ‘ 80 , 5 l 70 l 65 ] 60 , 55 ' 50
6 =6.00
0.5504 | 0.5517 ( 0.5539 | 0.5571 | 0.5617 | 0.5680 | 0.5765 | 0.5881
LTT9T .7808 .7827 .7855 .7895 .7950 .8024 .8126
.9886 .9896 .9914 .9941 .9978 | 1.0029 | 1.0099 | 1.0194
1.1813 | 1.1823 | 1.1840 | 1.1866 | 1.1902 | 1.1952 | 1.2019 | 1.2111
1.3608 | 1.3618 { 1.3635 | 1.3660 | 1.3696 | 1.3745 | 1.3811 | 1.3902
1.5292 | 1.5302 | 1.5319 | 1.5344 | 1.5380 | 1.5428 | 1.5494 | 1.5584
1.6881 | 1.6891 | 1.6908 | 1.6934 | 1.6969 | 1.7018 | 1.7084 | 1.7174
1.8389 | 1.8399 | 1.8416 | 1.8442 | 1.8477 | 1.8526 | 1.8592 | 1.8683
1.9826 | 1.9835 | 1.9853 | 1.9878 | 1.9914 | 1.9963 | 2.0030 | 2.0121
2.1198 | 2.1208 | 2.1226 | 2.1251 | 2.1288 | 2.1337 | 2.1404 | 2.1496
2.2514 | 2.2524 | 2.2542 | 2.2568 | 2.2604 | 2.2654 | 2.2722 | 2.2814
s = 8.00
0.5293 | 0.5308 | 0.5335 | 0.5374 | 0.5430 | 0.5506 | 0.5609 | 0.5750
L7412 .1426 .1450 .1486 .1536 L7605 .7698 .7826
.9314 .9328 | .9351 .9385 .9434 .9500 .9590 .9713
1.1050 | 1.1063 | 1.1086 | 1.1120 | 1.1168 | 1.1233 | 1.1322 | 1.1444
1.2653 | 1.2666 | 1.2689 | 1.2723 | 1.2771 | 1.2836 | 1.2925 | 1.3046
1.4147 | 1.4160 | 1.4183 | 1.4217 | 1.4265 | 1.4331 | 1.4420 | 1.4542
1.5549 | 1.5562 | 1.5585 | 1.5620 | 1.5668 | 1.5734 | 1.5824 | 1.5948
1.6873 | 1.6886 | 1.6909 | 1.6944 | 1.6993 | 1.7060 | 1.7151 | 1.7276
1.8128 | 1.8142 | 1.8165 | 1.8201 | 1.8250 | 1.8318 | 1.8410 | 1.8536
1.9324 | 1.9338 | 1.9362 | 1.9397 | 1.9447 | 1.9516 | 1.9609 | 1.9737
2.0467 | 2.0481 | 2.0505 | 2.0541 | 2.0592 | 2.0661 | 2.0756 | 2.0885
6 = 10.0°
0.5106 | 0.5124 |- 0.5155 | 0.5202 | 0.5267 | 0.5357 | 0.5480 | 0.5648
.7081 .7098 L7127 L1171 L7232 L1316 .7430 L7587
.8834 .8851 .8879 .8922 .8982 .9064 L9176 .9330
1.0420 | 1.0437 | 1.0465 | 1.0508 | 1.0568 | 1.0651 | 1.0763 | 1.0917
1.1876 | 1.1893 | 1.1921 | 1.1965 | 1.2025 | 1.2108 | 1.2221 | 1.2377
1.3226 | 1.3242 | 1.3272 | 1.3315 | 1.3377 | 1.3461 | 1.3575 | 1.3733
1.4487 | 1.4504 | 1.4534 | 1.4578 | 1.4640 | 1.4726 | 1.4842 | 1.5002
1.5674 | 1.5691 | 1.5721 | 1.5766 | 1.5830 | 1.5917 | 1.6035 | 1.6197
1.6797 | 1.6814 | 1.6845 | 1.6891 | 1.6955 | 1.7043 | 1.7163 | 1.7328
1.7863 | 1.7881 | 1.7912 | 1.7959 | 1.8024 | 1.8114 | 1.8236 | 1.8404
1.8880 | 1.8899 | 1.8930 | 1.8977 | 1.9044 | 1.9135 | 1.9259 | 1.9429

! 45 ] 40
0.6043 | 0.6274
.8266 | .8468
1.0326 | 1.0515
1.2239 | 1.2422 |
1.4028 | 1.4208 |
1.5709 | 1.5888
1.7299 | 1.7478
1.8809 | 1.8988
2.0247 | 2.0428
2.1623 | 2.1805
2.2943 | 2.3126
0.5947 | 0.6230
.8005 | .8261
.9885 | 1.0131
1.1613 | 1.1857
1.3216 | 1.3459
1.4712 | 1.4957
1.6119 | 1.6366
1.7449 | 1.7699
1.8712 | 1.8964
1.9915 | 2.0171
2.1065 | 2.1325
0.5884 | 0.6225
1807 | .8125
.9546 | .9858
1.1133 | 1.1445
1.2595 | 1.2910
1.3954 | 1.4273
1.5226 | 1.5550
1.6425 | 1.6754
1.7560 | 1.7894
1.8639 | 1.8978
1.9668 | 2.0013




Vi

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

90 I 85 | 80 |
0.4931 | 0.4937 | 0.4958
.6'784 .6791 .6811
.8414 .8421 .8440
.9879 .9886 .9906
1.1216 | 1.1223 | 1.1243
1.2452 | 1.2458 | 1.2479
1.3605 | 1.3610 | 1.3631
1.4683 | 1.4690 | 1.4711
1.5702 | 1.5710 | 1.5731
1.6669 | 1.6676 | 1.6699
1.7590 | 1.7597 | 1.7620
0.4776 | 0.4'784 | 0.4808
.6525 .6533 .6556
.8050 .8058 .8081
.9414 .9422 .9445
1.0654 | 1.0662 | 1.0686
1.1796 | 1,1804 | 1.1829
1.2857 | 1.2865 | 1.2891
1.3851 | 1.3859 | 1.3885
1.4787 | 1.4796 | 1.4822
1.5674 | 1.5683 | 1.5710
1.6517 | 1.6526 | 1.6554
0.4634 | 0.4643 | 0.4670
.6291 .6299 .6326
L1726 7135 L7162
.9003 .9012 .9040
1.0161 | 1.0170 | 1.0199
1.1224 | 1.1234 | 1.1263
1.2210 | 1.2220 | 1.2250
1.3133 | 1.3143 | 1.3174
1.4000 | 1.4011 | 1.4042
1.4821 | 1.4832 | 1.4864
1.5601 | 1.5612 | 1.5644

TABLE 2.- NONDIMENSIONAL LONGITUDINAL DISPLACEMENT

OF CENTER OF BUOYANCY - Concluded

ysg/D for inclination angle ¢ of —

75 I 70 | 65 | 60
6 =12.00
0.4995 | 0.5049 | 0.5125 | 0.5230
.6846 | .6897 | .6970 | .7071
.8475 | .8526 | .8599 | .8699
.9940 | .9992 | 1.0066 | 1.0166
1.1279 | 1.1332 | 1.1406 | 1.1509
1.2515 | 1.2569 | 1.2645 | 1.2749
1.3668 | 1.3723 | 1.3800 | 1.3906
1.4749 | 1.4805 | 1.4884 | 1.4992
1.5770 | 1.5827 [ 1.5907 | 1.6018
1.6738 | 1.6796 | 1.6878 | 1.6990
1.7660 | 1.7719 | 1.7802 | 1.7917
8 = 14.0°
0.4850 | 0.4912 | 0.5000 | 0.5121
.6596 | .6657 | .6742 | .6860
.8122 | .8183 | .8269 | .8387
.9487 | .9549 | ,9637 | .9757
1.0728 | 1.0792 | 1.0881 | 1.1005
1.1872 | 1.1937 | 1.2028 | 1.2155
1.2935 | 1.3001 | 1.3095 | 1.3224
1.3931 | 1.3999 | 1.4094 | 1.4226
1.4869 | 1.4938 | 1.5036 | 1.5171
1.5757 | 1.5828 | 1.5928 | 1.6065
1.6602 | 1.6674 | 1.6776 | 1.6916
6 = 16.00
0.4718 | 0.4788 | 0.4889 | 0.5027
.6373 | .6443 .6542 | .6678
.7809 | .7880 | .7981 | .8120
.9089 | .9161 | .9264 | .9407
1.0249 | 1.0323 | 1.0429 | 1.0575
1.1314 | 1.1391 | 1,1499 | 1.1649
1.2303 | 1.2381 | 1.2493 | 1.2646
1.3227 | 1.3308 | 1.3422 | 1.3579
1.4097 | 1.4180 | 1.4296 | 1.4457
1.4920 | 1.5004 | 1.5123 | 1.5288
1.5702 | 1.5788 | 1.5909 | 1.6077

| s |

0.5374
L7207
.8835

.0304

1649

2892

.4051

5140

6169

7144

8073

e e e e

0.5287
.7022
.8550
.9923

L1174

.2328

.3401

4407

.5355

.6254

.'7108

e e e

0.5217
.6867
.8311
.9602
.07176
.1855
.2858
.3796
.4679
.5514
1.6308

e T N = S S

0.5571
.7396
.9023
.0494
.1842
.3089
.4252
.5345
L6377
.7356
.8289

[ Y

0.5517
.7246
.8716
.0152
.1408
.2567
.3646
.4658
.5611
.6515
L1375

e el e

0.5483
L7129
.8578
.9876

1.1056

1.2143

1.3153

1.4098

1.4988

1.5830

1.6631

‘ 45 I 40
0.5850 | 0.6256
.7663 .8051
.9288 .9674
1.0762 | 1.1152
1.2114 | 1.2510
1.3366 | 1.3769
1.4534 | 1.4946
1.5633 | 1.6052
1.6671 | 1.7098
1.7655 | 1.8091
1.8594 } 1.9037
]

0.5844 | 0.6324
.7563 .8031

.9095 .9566
1.0478 | 1.0957
1.1741 | 1.2231
1.2908 | 1.3409
1.3994 | 1.4507
1.5014 | 1.5538
1.5975 | 1.6510
1.6886 | 1.7432
1.7753 | 1.8310
0.5864 | 0.6431

L7505 .8066

.8960 .9529
1.0267 | 1.0850
1.1458 | 1.2056
1.2555 | 1.3169
1.3575 | 1.4205
1.4531 | 1.5176
1.5431 | 1.6091
1.6283 | 1.6957
1.7093 | 1.7781
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TABLE 3.- NONDIMENSIONAL LATERAL DISPLACEMENT

28

OF CENTER OF BUOYANCY

| s |

0.0756
.0659
.0618
.0598
.0589
.0586
.0586
.0588
.0592
.0596
.0601

0.0913
.0828
L0797
.0786
.0785
.0790
.0797
.0806
.0815
.0826
.0836

0.1080
.1008
.0989
.0989
.0998
.1011
.1026
.1043
.1060
L1077
.1094

Vi ch/D for inclination angle ¢ of -
D3 ‘ ’
90 85 | 80 I 75 | 70 | 65 ‘ 60

6 = 6.00
1.0 | 0.0000 | 0.00942 | 0.0190 | 0.0289 | 0.0392 | 0.0503 | 0.0623
1.5 .00821 .0166 .0252 .0342 .0438 .0543
2.0 .00770 .0155 .0236 .0321 .0411 .0509
2.5 .00746 .0150 .0228 .0310 .0398 .0493
3.0 .00734 .0148 .0225 .0306 | .0392 .0486
3.5 .00730 .0147 .0224 .0304 .0390 .0483
4.0 .00730 .0147 .0224 .0304 .0390 .0483
4.5 .00733 .0148 .0225 .0305 .0391 .0485
5.0 .00737 .0149 .0226 .0307 .0393 .0487
5.5 .00743 .0150 .0228 .0309 .0396 .0491
6.0 .00749 .0151 .0229 .0312 .0400 .0495

6 = 8.00
1.0 | 0.0000 | 0.01136 | 0.0229 | 0.0348 | 0.0473 | 0.0606 | 0.0752
1.5 .01029 L0207 .0315 .0429 .0550 .0681
2.0 .00990 .0200 .0304 .0413 .0529 .0656
2.5 .00978 .0197 .0300 .0407 .0522 .0647
3.0 .009717 .0197 .0299 .0407 .0522 .0647
3.5 .00982 .0198 .0301 .0409 .0524 .0650
4.0 .00991 .0200 .0304 .0413 .0529 .0656
4.5 .01002 .0202 .0307 .0417 .05635 .0663
5.0 .01014 .0204 .0311 .0422 .0542 L0671
5.5 .01027 .0207 .0315 .0428 .0548 .0680
6.0 .01040 | 0.0210 .0319 .0433 .0555 .0689

6 = 10.0°
1.0 | 0.0000 | 0.0134 0.0270 | 0.0411 | 0.0558 | 0.0716 | 0.0889
1.5 .0125 .0252 .0383 .0521 .0669 .0829
2.0 .0123 .0247 .0376 .0511 .0656 .0813
2.5 .0123 .0247 .0376 .0511 .0656 .0814
3.0 .0124 .0250 .0379 .0516 .0662 .0820
3.5 .0125 .0253 .0384 .0523 .0670 .0832
4.0 .0127 .0257 .0390 .0531 .0681 .0844
4.5 .0129 .0261 .0396 .05639 .0691 .0858
5.0 .0131 .0265 .0403 .0548 .0703 .0872
5.5 .0134 .0269 .0409 .0557 .0714 .0886
6.0 .0136 .0273 .0416 .0565 .0725 .0900

0.09074
.07908
.07414
.0'7180
.07071
.07031
.07031
.07057
.07099
.07151
.07211

0.1097
.0994
.0957
.0944
.0943
.0948
.0956
.0967
.0979
.0992
.1004

0.1299
1212
.1189
.1189
.1200
.1216
.1234
.1254
1274
.1295
.1315

|45!4o

0.1083 | 0.1294
.0944 .1128
.0885 .1057
.0857 .1024
.0844 .1008
.0839 .1003
.0839 .1003
.0842 .1006
.0847 .1012
.0854 .1020
.0861 .1028

0.1311 | 0.1569
.1188 .1422
.1143 .1368
.1128 .1351
L1127 .1349
.1134 .1357
.1144 .1369
.1156 .1384
L1170 .1401
.1185 .1419
.1201 .1437

0.1555 | 0.1866
.1452 .1742
.1424 .1708
.1424 .1709
.1437 L1724
.1456 .1747
.1478 .1773
.1501 .1801
.1526 .1831
.1550 .1860
.1575 .1890




e

Vi

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

90

0.0000

0.0000

0.0000

85

0.0145
.0137
.0135
.0136
0137
.0140
.0142
.0145
.0147
.0150
.0152

0.0178
.0173
.0174
0177
.0181
.0186
.0190
.0194
.0198
.0202
.0206

0.0202
.0199
.0203
.0207
.0213
.0219
.0224
.0230
.0235
.0240
.0245

80

0.0313
.0299
.0298
.0301
.0306
.0312
.0318
.0324
.0330
.0336
.0342

0.0359
.0349
.0352
.0358
.0366
.0374
.0383
.0391
.0400
.0408
.0416

0.0407
.0402
.0409
.0418
.0430
.0441
.0452
.0463
.0474
.0484
.0494

TABLE 3.- NONDIMENSIONAL LATERAL DISPLACEMENT
OF CENTER OF BUOYANCY - Concluded

ch/D for inclination angle ¢ of —

75

0.0477
.0455
.0453
.0458
.0465
.0474
.0483
.0492
.0502
.0511
.0520

0.0546
.0532
.0535
.0545
.0557
.0569
.0582
.0595
.0608
.0620
.0633

0.0620
.0612
.0622
.0637
.0654
.0671
.0688
.0705
.0721
.0737
.0752

70
0=

0.0649
.0619
.0616
.0623
.0633
.0645
.0657
.0670
.0683
.0696
.0708

g =

0.0744
.0723
.0728
.0741
.0757
.0775
.0793
.0810
.0827
.0844
.0861

8 =

0.0844
.0834
.0847
.0867
.0890
.0914
.0931
.0960
.0982
.1003

.1024

65
12,00

0.0832
.0795
.0791
.0799
.0812
.0827
.0844
.0860
.0876
.0893
.0909

14.00

0.0955
.0929
.0935
.0952
.0973
.0995
.0181
.0407
.0630
.0846
.1058

—_ = = =

16.00

0.1085
.1072
.1089
.1115
.1145
L1175
.1205
.1234
.1262
.1290
L1317

60

0.1033
.0987
.0982
.0992
.1008
.1027
.1047
.1068
.1088
.1108
.1128

0.1187
.1155
.1162
.1183
.1209
.1237
.1265
.1293
.1321
.1348
L1374

0.1350
.1334
.1355
.1388
.1424
.1462
.1499
.1535
L1571
.1605
.1638

55

.1258
.1201
.1196
.1208
.1227
.1250
.1275
.1300
.1324
.1349
.1373

.1447
.1408
.1417
.1442
.1474
.1508
.1542
.1576
.1610
.1643
L1675

.1648
.1628
.1654
.1694
L1739
.1785
.1830
.1875
.1918
.1960
.2000

50

.1515
.1441
.1440
.1454
.1478
.1506
.1535
.1565
.1595
.1625
.1654

.1746
.1699
.1710
.1740
L1718
.1819
.1861
.1902
.1943
.1982
.2021

.1993
.1970
.2001
.2049
.2103
.2159
.2213
.2287
.2319
.2370
.2419

45

0.1818

.1736
L1728
.1745
L1774
.1807
.1842
.1878
.1914
.1950
.1985

0.2101
.2044
.2057
.2094
.2140
.2189
.2239
.2289
.2338
.2386
.2432

0.2407
.2378
.2416
.2474
.2539
.2606
.2673
.2738
.2801
.2862
.2921

40

0.2188
.2090
.2080
.2101
.2135
.2175
.2218
.2261
.2304
.2347
.2389

0.2539
.2471
.2487
.2531
.2587
.2646
L2707
L2767
.2826
.2883
.2940

0.2924
.2889
.2935
.3006
.3085
.3166
.3247
.3326
.3402
.3477
.3548
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Figure 1.- General dimensions of the conic frustum.
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Figure 5.- General configuration of conic frustum showing flotation stability parameters,
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