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The Orbiter Program is one of three U n i t e d  States unmanned lunar 

exploration programs designed t o  advance sc ien t i f ic  knowledge of the  moon and 

i ts  environment, and t o  provide engineering and mapping data i n  support of 

future manned lunar landings. 

duced the  first close-range photographs of the lunar surface, and have provided 

new detailed infomation on lunar topography. 

soft-land on t he  lunar surface, and w i l l  analyze the  dynamics of lunar touch- 

down, perform lunar surface bearing tests, and transmit detailed TV pictures of 

the area surrou- the  spacecraf't. 

States '  first close s a t e l l i t e  of the  moon, and w i l l  transmit high-resolution 

photographs of considerable areas of the lunar surf'ace which w i l l  be used f o r  

mapping and for selecting landing s i t e s  for unmanned and manned spacecl.aft. 

Lunar Orbiter will also carry instrumentation for measuring micrameteroid flux 

and high-energy particle flux near the moon. 

The highly successful Ranger flights have pro- 

The surveyor spacecraft w h  

The Lunar Orbiter will be the United 

The 

The Idmar Orbiter flights w i l l  provide an opportunity, perhaps the first 

opportunity, fo r  significant improvement i n  knowledge of the  lunar gravitational 

f i e l d  through analysis of the  tracking data from a close lunar satellite. These 

new data on the lunar gravitational f i e l d  will be of considerable in te res t  t o  

s c i en t i s t s  concerned with the origin of the moon and the earth-moon system, the 

internal  composition of the  moon, and related problems. The knowledge of the  

gravitational f i e l d  w i l l  also enable precise determination of lunar satellite 



ephemerides, which i n  turn w i l l  contribute t o  the analysis of the photographic; 

data for selenodetic purposes. 

Overall policy direction of the Lunar Orbiter Program i s  provided by the 

Office of Space Sciences and Applications, Lunar and Planetary Programs, at 

NASA Headquarters. 

t o  the NASA Langley Research Center, which has the overall responsibil i ty f o r  

Technical project management and direction has been assigned 

project implementation. A prime contractor has been selected t o  provide the 

spacecraft and auxiliary ground equipment, t o  perfom associated analyses, and 

t o  be responsible fo r  integration of spacecraft subsystems. Tracking and telem- 

e t ry  data from the spacecraft w i l l  be acquired through the NASA Deep Space 

Network, operated by the J e t  Propulsion Laboratory. It has been proposed tha t  

responsibility f o r  analysis of the tracking data f o r  determination of the lunar 

gravitational f i e l d  parameters and other astrodynamic constants be assigned t o  

a team composed of members of the technical staffs of the  J e t  Propulsion 

Laboratory and the Langley Research Center. Prompt, preliminary determinations 

of parameters w i l l  be u t i l i zed  i n  mission planning f o r  the Lunar Orbiter, and 

more comprehensive determinations w i l l  be performed f o r  general use by the 

sc ien t i f ic  community. If sufficient in te res t  i s  indicated by other investiga- 

tors, consideration w i l l  be given t o  procedures fo r  making the tracking data 

available t o  them f o r  t h e i r  own analyses. 

Current funding f o r  the Lunar Orbiter makes provision f o r  f ive  f l igh ts ,  

which w i l l  be primarily designed fo r  photographic coverage of the lunar surface. 

The parameters of the lunar orbi t  of the spacecraft w i l l  be specified t o  accom- 

modate the photographic coverage, and therefore w i l l  not constitute a se t  which 

i s  ideally suited t o  determination of the gravitational f ie ld ,  particularly 

with respect t o  inclination of the orbi ts .  Nevertheless, preliminary analyses 
-,. 
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indicate tha t  considerable improvement i n  knowledge of the gravitational f i e l d  

w i l l  be obtainable. There i s  also the possibil i ty t ha t  additional f l i gh t s  may 

be scheduled later, and these may w e l l  provide more variety i n  orb i ta l  

parameters. 

DESCRIETION OF THE LUNAR ORBITER SPACECRAFT AND MISSION 

A schematic drawing of the mission profi le  f o r  a typical  Lunar Orbiter 

f l i g h t  i s  shown i n  figure 1. 

an Atlas-Agena  booster vehicle, and w i l l  be injected in to  an  earth parking orbit .  

The vehicle vili be launched from Cape Kennedy by 

l After coasting t o  the proper position i n  the parking orb i t  the Agena engine w i l l  

1 be reignited t o  inject  the spacecraft into the translunar trajectory, i n  which 

1 it coasts t o  the vicini ty  of t he  moon. Up t o  two midcourse corrections may be 

m a d e  t o  place the  spacecraft a t  the desired point with respect t o  the moon. 

Near the position of closest approach t o  the  moon, a retrorocket w i l l  be fired 

t o  place the  spacecraft i n  an i n i t i a l  lunar orbit. After a number of orbits, 

during which the  i n i t i a l  o rb i ta l  properties will be determined, the rocket w i l l  

1 be f i r e d  again t o  establish the final orbi t  f o r  talrine; the photographs. This 

1 f i n a l  orbi t  w i l l  have a relat ively low inclination t o  the lunar equator, nomi- 

nally about l5', and w i l l  have nominal pericentron and apocentron al t i tudes of 

46 and 1850 kilometers, giving an eccentricity of 0 .3 ,  and an orb i ta l  period of 

~ about 3.5 hours. 

The parameters of the nominal orbit  are specified t o  sa t i s fy  the require- 

, ments of the  photographic mission. The area of the lunar surface of primary 

in te res t  i n  s i t e  selection for  early manned landings i s  shown i n  figure 2. 

area i s  bounded within 30 i n  la t i tude and k45O in  longitude, re la t ive t o  the  

This 

~ lunar equator and the intersection of the mean earth-moon l ine .  An orbi t  with 
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low inclination is required t o  provide side overlap for  photographs f r o m  SUC- - 
cessive orbits t o  achieve continuous coverage. The pericentron a l t i tude  

d i rec t ly  affects  the resolution of the photographs, so a l o w  a l t i tude  is  desir- 

able; and the orb i ta l  period i s  chosen t o  provide a sufficient r a t io  of time i n  

sunlight t o  t i m e  i n  shadow t o  sat isfy spacecraft power requirements. 

Two camera lenses i n  the spacecraft provide nominal lunar surface photo- 

graphic resolution of 1 meter f o r  the high-resolution, 95-mm focal-length lens, 

and 8 meters f o r  the  medium-resolution, 16-DI~ focal-length lens, from the 46-km 

al t i tude.  Surface coverage provided by a single flight is  40,000 sq km at 

8-meter resolution and 8,000 sq km a t  1-meter resolution. 

trated i n  f igure 2. 

high-or-medium-resolution m o d e  can be used. The overlapping coverage, i n  effect, 

provides data f o r  stereoscopic analysis. 

which i s  developed i n  the spacecraft, then scanned, and the data transmitted t o  

earth f o r  reconstruction. 

surface coverage can be found i n  reference 1. 

The coverage is  i l lus -  

Several different schemes of overlapping coverage i n  the 

me photographs are taken on f i l m  

Additional details on the photographic system and 

A sketch of the Lunar Orbiter spacecraft i s  shown i n  figure 3. Identi- 

f iab le  components are the solar panels, the photographic camera package, the 

rocket engine and tankage, the high-gain antenna, and the  omnidirectional ( low-  

gain) antenna, which w i l l  be used f o r  tracking data transmission f r o m  the space- 

craft .  Additional communication and power equipment, a transponder, the flight 

programer, sensors, and other equipment are  si tuated around the photographic 

package. The a t t i tude  control system maintains the spacecraft i n  the cruise 

mode with the longitudinal axis directed toward the sun and the other reference 

axis directed toward Canopus, a first-magnitude southern hemisphere star. For 

execution of thrusting maneuvers and f u r  taking a set of photographs, the  
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spacecraft i s  oriented i n  the proper direction by the a t t i tude  control jets, on 

ground command, w i t h  use of the i n e r t i a l  reference uni t .  

thrusting maneuver or  after taking a set of photographs, the spacecraft is 

reoriented t o  the cruise mode. 

On completion of the 

The a t t i tude  control jets which produce torques about the y a w  and pitch 

axis  are  not coupled, and thus w i l l  produce smaU t ranslat ional  accelerations. 

During the photographic phase of the mission, the translational accelerations 

produced i n  maintaining f a i r l y  precise control on the cruise orientation and i n  

orienting the spacecraft f o r  sets of photographs may introduce small perturba- 

t ions  i n  the orbit, so that gravitational parameters determined during the 

photographic phase of the mission may be subject t o  small biases. The photo- 

graphic phase, including transmission of all photographic data back t o  earth, 

i s  expected t o  be completed within about 30 days. After t h i s  t i m e ,  the  accu- 

racy w i t h  which the longitudinal axis is oriented t a w s r d  the sun w i l l  be 

relaxed. 

w i l l  thus be decreased, and preliminary analyses indicate tha t  the effects of 

these perturbations on the determination of the gxavitatioaal parameters during 

the postphotographic phase w i l l  be rather small. Nevertheless, consideration 

is being given t o  u t i l i z ing  the at t i tude control system telemetry data as a 

means t o  account f o r  the control jet accelerations and thus t o  account f o r  these 

perturbations i n  the  parameter determinations. 

Perturbations introduced by the at t i tude control Jet accelerations 

The spacecraft w i l l  be tracked during the translunar trajectory and i n  

lunar orbi t  by the tracking stations of the NASA Deep Space Instrumentation 

Facil i ty,  located at Goldstone, California; Woomera, Australia; 30ha,nnesburg, 

South Africa; and Madrid, Spain. Range and range ra te  (two-way Doppler) data 

w i l l  be obtained through use of a transponder i n  the spacecrsft, operating at  

5 
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S-band frequency (approximately 2200 megacycles per second). 

the  lunar distance i s  not of sufficient accuracy fo r  tracking purposes and w i l l  

not be considered here. 

provision fo r  increased accuracy i n  computing schemes i n  the orb i t  determina- 

t i on  procedures w i l l  result  i n  be t t e r  data accuracies than those obtained i n  

recent Ranger f l ights ,  as reported i n  references 2 and 3. 

o n e - s i w  noise level  for  tracking data for  the Lunar Orbiter i s  0.002 meter 

per second i n  range ra te  and 10 meters i n  range. 

A n g u l a r  data a t  

Use of S-band frequency i n  the tracking system, and 

An estimte of the  

Tracking data w i l l  be received almost continuously during the photographic 

phase of a mission, t o  provide data fo r  orbi t  determination and f o r  control of 

the  spacecraft f o r  photography. For approximately 30 days after the  end of the 

photographic phase, the data cycle w i l l  be decreased somewhat, but w i l l  provide 

tracking data f o r  approximately one-half the  t o t a l  o rb i t s  per day. For the  

remainder of the operating lifetime, nominally 1 year, tracking data w i l l  be 

requested f o r  about two orbi ts  per day, 2 or  3 days per week. 

analyses indicate tha t  t h i s  tracking schedule should be suff ic ient  f o r  deter- 

mination of the gravitational f i e l d  parameters. 

Preliminary 

DEFERMTNATION OF GRAVITATIONAL FIEZD PARAMEl?ERS 

Technical Approach 

The main objective of the selenodesy experiment is  t o  determine the coef- 

f ic ien ts  i n  the  expansion of the lunar gravitational potent ia l  i n  terms of 

spherical harmonics: 

6 



where 

moon, R is the radius of the  moon, r is the radial distance, Pn,m are the 

associated Iegendre polynominals, fi is latitude, and A i s  longitude. This 

foxmulation is similar t o  that used by Kaula i n  reference 4, but includes the 

p is the product of the gravitational constant and the mass of the 

zero degree coefficient 

an assumed value incorporated i n  

account f o r  the differences between the origin of coordinates and the center of 

CO,o t o  account for  the  difference i n  lunar mass from 

p, and the first degree coefficients t o  

mass. The determination of the cocfficieiitts Cn, m and h , m  i s  t o  be accom- 

plishedthraugh analysis of the tracking data from a lunar s a t e l l i t e .  Other 

parameters t o  be determined in the analysis are noted below. 

Two general approaches t o  the determination of gravitational constants 

arise from a dis t inct ion i n  use of short-period or long-period and secular 

perturbations f o r  the  analysis. For a short-period analysis, the accelerations 

of the satellite are u t i l i zed  i n  a direct  manner i n  that they are  formulated i n  

terms of the observational data, and partial derivatives, of each observation 

w i t h  respect t o  each parameter t o  be determined, are  used i n  the d i f fe ren t ia l  

correction process. For a long-period or secular analysis, the observations 

may be used t o  determine a se t  of "mean" elements and the long-period and 

secular variations i n  the elements a re  analyzed t o  determine the parameters of 

interest .  

harmonics are best determined by analysis of long-period and secular effects, 

In determination of the gravitational f i e l d  of the earth, the  zonal 

while the  tesseralharmonics are determined by use of short-period effects, as 

pointed out, f o r  example, in reference 5. 

t i ve ly  slow rotation about i t s  axis, t essera l  harmonics as w e l l  as zonals should 

F o r t h e  moon, because of its reh- 

be determinable from analysis of long-period effects.  

option available i n  t h e  lunar gravitational f i e ld  determination i n  tha t  e i ther  

Therefore, there is em 

7 



short-period o r  long-period and secular analyses may be used. 

analyses comparing the two methods are presented i n  a later section. 

Some preliminary 

Present 

plans fo r  the data analysis include provision f o r  performing the  analyses by 

both methods. 

For the determination of the gravitational and other parameters of inter-  

est, the procedures of d i f fe ren t ia l  correction and weighted leas t  squares ( w i t h  

a pr ior i  s t a t i s t i c s )  w i l l  be used i n  the development of suitable computational 

programs. With t h i s  formulation f o r  the "direct" procedure, the quantity t o  be 

minimized i n  the leas t  squares sense i s  

where 

and where cp i s  an n-rowed vector of observed tracking data; cp(pl) i s  an 

n-rowed vector of calculated tracking data (based on i n i t i a l  values of the 

parameters, pl); A i s  an nxm matrix of partial derivatives of observables 

with respect t o  the m parameters ; Ap i s  the  vector of differences 

between the present estimates and the previous estimates of the parameters, 

; W i s  a diagonal matrix of weights on the observations; and fi is  (p - P l )  

the  covariance matrix on the a pr ior i  estimates of the parameters. 

forming the  minimization of Q, the m normal equations fo r  corrections t o  the 

On per- 

parameters become 



These eQuations yield a solution f o r  the parameters 

The solution is iterated by successive substitution of the values of p, 

obtained from the  above equation, f o r  

the right side of the  above equation until the solution has converged, each 

p1 in  the minimization process and i n  

t i m e  weighting the a priori es%imate according t o  its covariance matrix I. 
The vslues of p obtained i n  the f i n d  itemtion are then the best estimates 

of the set of parameters, and the covariance matrix on the  parameter set is the 

m x m  matrix 

c = (A%* + j$-’*)-l 

The set  of parameters p includes the six parsmeters defining the state 

of the spacecraft, the  lunar gravitational harmonics, tracking s ta t ion loca- 

tions, solar  radiation pressure coefficients, the velocity of light, control 

jet and gas leak forces, and instrument and measurement biases. Provision w i l l  

exist f o r  detennination of any subset of the t o t a l  set of parameters. 

Development of the  necessary computational programs f o r  the determination 

of the parameters is currently i n  progress. 

techniques (Cowell’s method) are being u t i l i zed  f o r  integration of the  eqya- 

In general, numerical integration 

t ions  of motion for orbi t  prediction, and f o r  calculation of the mial deriva- 

tives i n  the  normal equations. Prior t o  the campletion of the computer program 

developments f o r  determination of parameters, and pr ior  t o  the receipt of 

tracking data f r o m  a lunar orbiter, sensi t ivi ty  studies and parmeter accuracy 

estimations can be made using analytical  methods and auxiliary computer programs. 

Some preliminary results of such studies are discussed in later sections. 
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Brief Review of Present Knowledge 

Present knowledge of the lunar gravitational f i e l d  consists of determina- 

t ion  of the mass of the moon and the coefficients of the second-degree harmonics. 

The lunar mass, i n  the form of the earth-moon m a s s  ratio,  has been determined 

by measurements of the lunar inequality; a recent determination has been made 

using observations from the Mariner I1 Venus mission (ref. 6). 

has a l s o  been determined very recently by analysis of the effect  of the lunar 

gravitational f i e ld  on the Ranger V I  and Ranger V I 1  t ra jector ies  (refs. 2 and 3 ) .  

The Mariner and Ranger determinations are compared i n  reference 3. A compari- 

son of the differences between these two different methods fo r  determining the 

mass of the moon may be taken as an indication of the present uncertainty, which 

amounts t o  about 2 o r  3 parts i n  5 x lo4 (the value of Gboon obtained from 

Mariner I1 i s  4902.778 k 0.3 km2/sec3 and from Ranger VI1 is  

4902.580 k 0.17 km2/sec3). This i s  considered t o  be a f a i r l y  precise determina- 

t i on  of the lunar mass, but it should be improved by a t  leas t  an order of mag- 

nitude by analysis of data from the Lunar Orbiter. 

The lunar mass 

The coefficients of the second-degree harmonics are determined from the 

values of the lunar moments of iner t ia  based on measurements of the physical 

l ibrations of the moon. Tentative values adopted for  use i n  t ra jectory calcula- 

t ions as given i n  reference 7 are equivalent t o  

C2,2 = 2.072 x 10-5. 

1 x 10-5 or  2 x 10-5 i n  

these values should also be improved considerably by analysis of the Lunar 

Orb i t e r  tracking data. 

C2,0 = -2.071 X and 

Estimates of the uncertainties i n  these values are  about 

C and perhaps about 1 x 10-5 i n  C2,2, so tha t  
290 
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Tracking Data Sensit ivity t o  Typical Parameters 

As  an i l l u s t r a t ion  of the f eas ib i l i t y  of determination of lunar gravitac 

t i ona l  coefficients with tracking data of the accuracy expected fo r  the Lunar 

Orbiter missions, some calculations have been made of the sens i t iv i t ies  i n  

range rate due t o  the influence of gravitational coefficients. 

are presented i n  figure 4. 

between range rate data calculated f o r  orbits with and without inclusion of 

gravitational coefficients of %&e i agn i tudes  noted on the figure. 

C3,o 

t o  ver i fy  a long l ifetime with the parameters of the nominal orbit, as dis- 

cussed i n  reference 8; the values of the  other coefficients represent improve- 

ments and extensions of present knowledge. An estimate of the noise leve l  of 

t he  range rate data of 0.002 meter per second is  shown on the  plot as a basis 

f o r  comparison. 

These results 

The plots represent the short-period differences 

The value of 

used on the plot  represents a desired accuracy i n  this  parameter i n  order 

The resul ts  shown i n  the figure indicate that range ra te  measurements 

within the expected accuracy of the data w i l l  allow improved determination of 

gravitational parameters. 

of course, introduce greater perturbations than those shown, and w i l l  be u t i -  

l i z e d  i n  the postfl ight analysis. 

Cumulative effects  produced i n  successive orbi ts  w i l l ,  

RESULTS OF SOME PRELIMINARY ANALYSES 

Normal matrices f o r  certain gravitational parameters were formed and 

inverted (i.e., (ATW)-l) t o  study the accuracy of determining the gravita- 

t i ona l  parameters and t o  analyze the condition of the normal matrix for  inver- 

sion. 

moon revolves about the earth i n  a circular orbi t  and a single observation 

In th i s  preliminary analysis a simple model w a s  assumed i n  w h i c h  the  
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s ta t ion  at the center of the earth makes uncorrelated, unbiased, range and 

range ra te  measurements of a lunar s a t e l l i t e .  

of the tracking data w a s  0.002 meter per second and 10 meters f o r  range rate 

and range, respectively. 

abi l i ty  i n  1966. 

out the study are typical  of those f o r  the photographic mission. Occulation of 

the  s a t e l l i t e  by the  moon w a s  included i n  order t o  study the aliasing effect  of 

the lack of observations when the satell i te is  behind the moon. 

occulation eliminated about one-fifth of the data points considered. 

' 

The assumed standard deviation 

Both of these numbers are estimates of the DSN cap- 

The orb i ta l  elements of the lunar s a t e l l i t e  considered through- 

In  general, 

Analysis of Direct Method 

For the direct  method referred t o  ear l ier ,  the  observations are related 

direct ly  t o  the  gravitational parameters through the integrals of the equations 

of motion of the spacecraft. 

of the observables w i t h  respect t o  the gravitational parameters, which are 

needed t o  form the  normal matrix, the equations of motion of the lunar satel- 

l i t e  must be integrated by some means. 

order general perturbation method, similar t o  tha t  discussed i n  reference 9, 

was ut i l ized t o  obtain the desired integral  of the motion. 

t i a l  derivatives were then obtained by direct  differentiation. 

Hence, i n  order t o  form the  partial derivatives 

For t h i s  preliminary study a first- 

The required par- 

Figure 5 shows the standard deviations of all of the zero, first, and 

second degree coefficients and the third,  fourth, and f i f t h  zonal coefficients 

as a function of the number of consecutive orb i t s  of tracking. 

data, equally spaced i n  t i m e ,  a re  considered, w i t h  a frequency of 26 observa- 

tions per orbi t  before occulation by the moon. 

it i s  seen that a considerable improvement i n  the  present knowledge of the  

Only range r a t e  

After jus t  10 orb i t s  of tracking 
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moon’s mass (Co,o), oblateness ( C Z , ~ ) ,  and e u l p t i c i t y  Cg 2 can be reaUzed. 
( 3 )  

In addition, the uncertainties i n  the higher degree odd zonal coefficients, 

which primarily determine the l ifetime of the sa t e l l i t e ,  a re  small enough that 

long-period variation i n  pericentron altitude can be predicted t o  better than 

10 km. 

coefficients) at the  end of the  tenth complete orbi t .  

Figure 6 gives the correlation matrix (i.e., t h e  ma t r ix  of correlation 

After this tracking 

period dl of the very high correlations have been eliminated and even the  

expected c o r r e h t i s n  &tween the pairs (c2,03 

reduced t o  not unreasonably high values. 

c4,0) and (c3,0’ c5,0) have been 

Somewhat unexpected correlations 

appear between some of the second degree coefficients. These correlations are 

par t ly  due t o  the particular choice of the  nodal position of the lunar satellite 

orbi t .  A t  other nodal positions the correlations between these two pairs of 

coefficients are s e e r ,  and higher correlations appear between other pairs of 

t he  second degree parameters. Even though there are no extremely high correla- 

tions, the normal matrlx is not w e l l  conditioned f o r  inversion and double pre- 

cision (16 decimal d ig i t s )  arithmetic should be ut i l ized.  

It should be noted that only range rate data were used t o  form the  normal 

matrices discussed above. This w a s  done because there may be some l imitation 

on the  amount of range data available, particularly during the photographic 

phase of the mission. Because of t h i s  possible restriction, it is of in te res t  

t o  campare the  re la t ive  advantages of rsnge and range rate data. The results 

of such a comparison are shown in figure 7. The first three columns of the  

table give the  coefficients and the corresponding standard deviations using 

range ra t e  data only and range data only. In general, the  range ra te  data give 

from one t o  three times more accurate results than the  range data. In addition, 

combining both types of data does not appreciably improve the  condition of the 



normal matrix f o r  inversion as can be seen by comparing the correlation matrices 

using range rate  only (f ig .  6) w i t h  t ha t  shown i n  figure 7 where both data types 

are used. It is  seen tha t  those parameters which were highly correlated when 

only range rate  data were used are s t i l l  highly correlated when both types are 

used. 

There has been some discussion, based primarily on photographic considera- 

tions, of performing the photographic mission at lower inclinations than the 

nominal value of 15', and also a t  much higher inclinations. 

in te res t  t o  study the effect  of various inclinations on the accuracy of deter- 

mining the parameters. 

d i rec t  method. 

of tracking w i t h  Doppler data only. The standard deviations i n  the mass of the 

moon ( C O , ~ )  and i n  the tessera l  harmonics show no uniform variation w i t h  incl i -  

nation; however, the accuracy of determining all' of the zonal coefficients 

improves w i t h  inclination over the range of inclination considered. The con- 

di t ion of the matrix improves w i t h  inclination, primarily due t o  large reduc- 

t ions  i n  correlation between the even zonal coefficients. The correlation 

It i s  therefore of 

Figure 8 shows the results of such a study f o r  the  

The resul ts  presented a re  at the end of 10 consecutive orb i t s  

matrices fo r  the zonal coefficients are presented t o  i l l u s t r a t e  t h i s  improvement. 

Analysis of Long-Period and Secular Method I 
A second method which can be used t o  determine the  gravitational coefficients 

employs a reduction of the observations over nonoverlapping t i m e  arcs t o  deter- 

mine a se t  of "mean" elements and the covariance matrix of the mean elements. 

These "mean" elements become the observations i n  the formation of the normal 

equations. 

matrix f o r  each set of mean elements, while the individual se t s  of mean elements 

a re  assumed t o  be uncorrelated w i t h  any other s e t .  

14  

The observations are  weighted by the inverse of the covariance 

The computed values of the 
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mean elements and the required partial derivatives come fromthe solution of 

t he  equations of motion retaining only the  long-period and secular variations. 

Thus all the ingredielrts t o  form the normal equations are available. 

For t h i s  preliminary analysis the covariance matrix f o r  the "mean" elements 

w a s  obtained using the simple m o d e l  discussed earlier and assuming undisturbed 

Keplerian motion f o r  the lunar sa t e l l i t e .  

of motion were derived from the first-order perturbation theory used i n  the 

are@" ; ~ & f i d  by time-averaging the disturbing function over one o rb i t a l  period. 

For all of the  results presented here it was assumed that  data were taken over 

two consecutive o rb i t a l  periods t o  determine the ''mean" elements. 

The long-period and secular equations 

Figure 9 shows the  accuracy with which the mass of the  moon, the second 

degree coefficients, and the  third, fourth, and f i f t h  degree zonal coefficients 

can be deterrmined using range ra te  measurement only. The tracking accuracy and 

satellite o rb i t a l  elements are the same as those used i n  the direct  method. 

The rapid improvement i n  the accuracy of determining some of the prmeters at  

certain times of the month is  due t o  the strong dependence of the accuracy of 

determining the s t a t e  variables of the s a t e l l i t e  on the nodal position of the 

satellite orb i t  re la t ive t o  the  earth-moon line.  

Figure 10 gives the  corresponding correlation matrix at the end of 30 days. 

The only remaining high correlation is  between the  two higher degree odd zonal 

coefficients C3,o and C5,0* This correlation appears because these t w o  har- 

monics cause long-period variation i n  all t he  elements except the semimajor ax is .  

For a l u n a r  s a t e l l i t e  the  eccentricity can be determined with considerably 

be t te r  accuracy than the angular elements and hence it i s  only the relat ively 

inaccurate angular data which allow any separation a t  all between these two 

zonal coefficients. This correlation matrix a f t e r  30 days is  well conditioned for 

15 



inversion w i t h  single precision arithmetic (8 decimal digi ts) ;  however, during 

the first f e w  days of the reduction the adequacy of single precision i s  

questionable. 

A s  i n  the direct  method, range and range rate data w e r e  compared and f ig-  

ure 11 shows the resul ts  of t h i s  comparison. 

resu l t s  i n  an improvement of a factor of two over using range data only. As i n  

the direct  method there are no important reductions i n  the correlations between 

coefficients o r  improvement i n  the condition of the covariance mtrix by using 

both types of data. 

Util izing range rate data only 

CONCLUDING REMARKS 

The analyses described above w i l l  be extended i n  the next few months t o  

include consideration of higher degree gravitational coefficients and instrument 

and measurement biases. 

assessment of gravitational parameter accuracies which w i l l  be obtained from 

the  actual tracking data from the Lunar Orbiter. 

These present and future studies should provide a good 

The authors wish t o  express their appreciation f o r  contributions t o  t h i s  

paper by members of the Langley Research Center, par t icular ly  Messrs. H. C. 

Compton and W. R. Wells of the  Space Mechanics Division. 
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