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A METHOD OF TRAJECTCRY OPTIMIZATION BY FAST-TIME
REPETITIVE COMPUTATIONS

By Rodney C. Wingrove, James S. Raby,
and D. Francis Crane
Ames Research Center

SUMMARY

This report presents a perturbation method of computing optimum
trajectories wherein control impulse response functions are determined by
fast-time repetitive computations of the state equations. This method does
not require the solution of the auxiliary set of adjoint equations used with
other perturbation methods.

The mechanization of this computing method on a hybrid computer is dis-
cussed and an application to the steepest descent optimization of reentry
trajectories 1s presented. In this example, the vehicle is to arrive at a
desired range, the heat input to the wvehicle is to be minimized, and the con-
trol is to remain within specified constraints. Optimum trajectories for
this example could be obtained in about & minutes of cumputing time.

INTRODUCTION

It is important for space vehicle trajectories to be near optimum in the
sense that some guantity is either maximized or minimized. For example, in
reentry the trajectory to desired terminal conditions is near optimum when
the total aerodynamic heating is a minimum. This report will consider a
method for finding the time histories of nonlinear controls that correspond
to optimum trajectories. Several perturbation methods, such as the calculus
of variations, applications of the maximum principle, and direct steepest
descent, have been considered for solving this control optimization problem.
Reference 1 contains a good review of these various methods and reference 2
gives several analog and digital computing techniques for implementing them.

In principle, each of these techniques should give satisfactory results,
but it has been found that for many trajectory problems the computer mechani-
zations are cumbersome and require programs that are difficult for engineers
to formulate. The computing method to be reported herein was investigated in
an attempt to alleviate these difficulties and to provide a more direct way
of computing optimization solutions,

In previous optimization studies using perturbation techniques the
computations have involved the dynamic solution of two sets of equations:
(1) nonlinear state equations and (2) linear adjoint equations. The method
to be reported herein differs in that only the solution of the nonlinear state



equations is used. The response of given functions (e.g., terminal error or
gquantity to be optimized) to a control impulse is determined along the trajec-
tory by Tast-time repetitive computations rather than by a solution of the
adjoint equations. Since auxiliary adjoint equations are not needed, the
investigator should understand the optimization process more easily; also the
computer program should be simpler. However, this new alternate computing
method does regquire many solutions of the state equations. This task of com-
puting a large number of dynamic solutions is ideally suited to high-speed
repetitive hybrid computation as will be considered herein.

This report will present one application of this computing technique; that
of trajectory optimization using the steepest descent method (refs. 3 and L).
The mechanization of this method on a hybrid computer will be discussed and
results will be presented to illustrate the use of this procedure in the
optimization of reentry trajectories., For the interested reader appendix A
illustrates the relationship of the impulse response functions computed in this
report to the solutions obtained with the adjoint equations and to the maximum
principle of optimization. This appendix also provides a background for under-
standing the steepest descent optimization equations.

NOTATION

The following notation is used in the body of the text. Additional
symbols are described as they are introduced in the appendixes.

%- control value of lift-drag ratio

n number of storage points in control time history
t time

te final time

ts initial time

At time increment of control impulse

u contrel function

Au control impulse

¢ cost function at final time

o (t) change in cost function at final time due to control impulses at
time ¢t

g state value at final time



wd desired state value at final time

A (t) change in state value at final time due to control impulses at time t
METHOD

The method of steepest descent (refs. 3 and 4) is an iterative procedure
that has been used for optimizing trajectories. The process commences with
any nonoptimal trajectory from which a slightly improved one is derived. The
improved trajectory is then used as a new nominal trajectory, and the procedure
is repeated until the optimum or nearly optimum trajectory is found.

General Outline

The iteration is as follows: (1) Estimate a reasonable program that
nearly satisfies the terminal conditions for specified initial conditions;
(2) determine impulse response functions that describe the effects of small
changes in the control on the terminal state and on the cost (the quantity to
be minimized). These impulse response functions, combined with steepest
descent computations, indicate the best possible way of making small changes
to the control to decrease the cost and still arrive at the end point; (3) add
this change in control to the previous nominal control program. The result is
a new trajectory with a decreased cost; (M) repeat this process until there
exists only a very small change in cost for each new trajectory, indicating
that the control is very near a local optimum. A limit value of the control
may be reached before the cost is completely minimized. 1In this case, the
process is continued until the constraint (control limit) is reached, since
no further optimization 1s possible.

The properties of steepest descent optimization have been documented in
many previous studies (e.g., refs. 5-7). Although this method has been
regarded as the most practical in many applications, there is no guarantee
that it yields the absolute optimum. That is, for some initial choices of the
nominal trajectory, the final optimized trajectory may represent only a local
optimum path. Also, in some applications, where the cost function may be
relatively insensitive to control variations, a large number of iterations may
be necessary to approach the optimum solution.

Computation of Impulse Response Functions

To illustrate the computation of the impulse response functions let the
quantity to be minimized be noted as @, the cost evaluated at the final time.
Let the state variable at the final time be noted as V and let the desired
end-point value for this be denoted Wd'

Figure 1 illustrates the manner in which the influence of small control

changes on ¢ and ¥ are calculated in this repcort. The equations of motion
are first solved with a control change, a positive control impulse at time t,
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superimposed upon the nominal control. During the next solution of the motion
equations, a negative control impulse of the same magnitude 1s inserted at time
t. The change in cost, Ap, and the change in terminal state, A, are derived
from these two solutions. In a similar manner the impulse response functions
can be progressively determined at successive times along the trajectory, and
the technigque by which they are determined is the most important feature of
this computing method. The computation of the full history of A¢(t) and‘AW(t)
for the same control impulse at different times along the trajectory is termed
one "iteration" since it corresponds to the previcus optimization studies where
one iteration with the adjoint equations was used to compute essentially these
same functions along the trajectory. Appendix A shows the relationship of this
experimental determination to the standard determination using adjoint equa-
tions. These experimental impulse response functions are shown to be directly
related to the well-known "Green's functions."

Steepest Descent Optimization Equations

The impulse response functions are used in the steepest descent technique
to modify the control toward the optimum in the following manner (see appen-
dix A).

New Previous
nominal |= | nominal + Ko rp(t) + Ky AN () (1)
control control

The gains Kp and Ky are constants for each iteration. The gain K@ welights
the impulse response function for the cost; its sign is negative in order to
decrease the cost. The magnitude of is determined experimentally for each
problem. Too large a gain may cause instability in the convergence procedure,
while too small a gain may extend the time of convergence.

The gain K must be calculated for each iteration so that the term
KW AV(t) will account for terminal displacement due to the optimizing term,
Am(t), and any terminal displacement error from the previous iteration will
be corrected. The formulation for calculating Ky 1is as follows:

Small changes, dy, in the terminal state, V¥, due to small changes, su(t),
in control can be approximated by:

te
1
B = s AT f su(t)ay(t)at (2)
tO

where /M 1s the height of each control impulse and At is the time interval
of each control impulse. Substituting XK op(t) + Ky AN (t) from (1) for Bdu,

we have:

1 o 2
8 = AT f [Kp co(t)ay(t) + Ky av=(t)]at (3)

to



Solving for KW and letting -3¢ = Vyg - V¥ (previous terminal error) we obtain:

t

£
[T so(e)ow(t)as
= - + 2 I
KW K¢ tr N 2 AMu At tr 2
[ av=(t)at [ av™(e)at
N to ~ _J \ to v
Steepest descent Terminal error
optimization term correction term

This gives the general form of the steepest descent equations. The actual cal-
culations are next considered in more detail.

HYBRTD CCMPUTER MECHANIZATION

The mechanization of the optimization procedure on a high-speed repetitive
analog computer is presented in figure 2. Figure 2(a) is the flow diagram and
figure 2(b) illustrates the logic used in automatically regulating the problem.
The mechanization consists of an analog computer program for solving the tra-
Jectory equations; logic required to coordinate the procedure; and a serial
memory storage unit for storing the nominal control program.

The serial memory unit is continuously driven by counter pulses (Logic
no. 1). The output of the serial memory is the nominal control time history
with n opoints that is used along with the appropriate control impulse, to
solve the trajectory equations. These equations are started at the specified
initial conditions with Logic no. 2 and stopped when the trajectory reaches
the specified end point with Logic no. 3. The final values of the cost guan-
tity, o, and state quantity, V¥, are stored at the end of each run as indicated
by Logiec nos. 4 and 5. The positive or negative control impulse is added to
the nominal control input with Logic nos. 6 and 7, respectively. Logic no. 8
inserts the modifying control (K@ oNp + KW Nf) into the serial memory. This
procedure runs in essentially a continuous manner; that is, one point out of
the n points in the nominal control history is updated after each two repet-
itive computations, and after 2n repetitive computations (one iteration),
every point in storage has been modified and the process is repeated. For each
iteration the gains K@ and Ky are held as constants. As previously men-
tioned, the wvalue of K determines the relative speed and stability of the
convergence onto the optimum. The corresponding value of X to be used with
each new iteration is calculated by equation (L) as a function of the terminal
error from each previous iteration (wd - V) and as a function of the following
two integrated quantities from each previous iteration:

tr
[ so(t)ap(t)at (5)
tC



and

1 aye(e)at (6)
to

The values for equations (5) and (6) were computed as integrals over the
time period from t =ty to t = tp. The time t, was represented by a logic
signal at the first repetitive computation in an iteration cycle and the time
ty was represented by a logic signal at the last computation in an iteration
cycle. It should be noted that during those parts of the trajectory when the
control was at a constraint limit, no further optimization was possible, and the
integration of equations (5) and (6) was therefore not carried out during those
times.

This type of computer mechanization will be 1llustrated in more detail for
the following example problem.

APPLICATION TC REENTRY TRAJECTORY OPTIMIZATION

Statement of the Problem
The problem to be illustrated in this section 1s that of determining the
time history of the wvariation of lift-drag ratio (control L/D) that must be
flown for a vehicle returning into the earth's atmosphere so that:
The total heating load to the vehicle is minimized.

The vehicle arrives at a desired destination.

The control remains within specified constraints.

Mechanization

The equations of motion, presented in appendix B, were for a point mass in
planar motion over a spherical nonrotating earth. The vehicle characteristics
and Tlight conditions were those for a manned capsule returning from earth

orbit.

Initial conditions were:

Altitude 76.3 km (250,000 ft)
Velocity 7.63 km/s (25,000 fps)
Flight-path angle -1.8°

Range to destination 1609 km (1000 mi)

Final stopping conditions were:

Altitude 30.48 ¥m (100,000 ft)




Control limits were:

L
0 < o) < 0.5

The main hardware elements used in the hybrid computer mechanization were:

- Hardware elements . Program task
Analog computer Solution of trajectory equations
Parallel digital logic units Logic control of program
Track and store amplifiers Storage of end-point values
Digital delay line memories?t Storage of control time history

(with D/A and A/D converters)

The 6h-word digital serial memory unit (13 bits per word) was accessed
with the fastest allowable counter rate (0.002 sec). A complete 6lh-word cycle
was then available every 0.128 second. To allow a complete solution of the
trajectory equations within 0.128 second, the analog computer was time scaled
at 3750 to 1.

Results

A series of computer runs for this problem is illustrated in figure 3.
Figure 3(a) presents the details of each repetitive trajectory computation and
figure 3(b) presents the details >f the overall convergence onto the optimum
nominal control. Figure 3(a) shows Just a portion of iteration no. O as pre-
sented in figure 3(b).

In the upper trace of figure 3(a) the control impulses are superimposed
upon the initial nominal control. Each control impulse had a magnitude of
L/D = +*0.25 and a time increment of one clock pulse (0.002 sec). This control
impulse was chosen because it gave variation in the final range and heat load
on the order of *5 percent. The range and integrated heat load along each of
the repetitive trajectories are presented along with the final wvalues as they
are stored with track and store amplifiers. The difference between these
stored guantities for each two palirs of subsequent runs is AY representing
the range impulse response functions and 2p representing the heat load
impulse response functions.

In figure 3(b) the first 10 iterations (each iteration consists of 128
repetitive computations) of the converging optimization procedure are illus-
trated along with the final iteration.

During the convergence procedure the range is seen to vary slightly about
the desired value of 1609 km (1000 miles). The heat load is shown to be
reduced about 10 percent during the first ten iterations and diminished to
about 12 percent from the original with the final (optimum) control variation.

1A series of track and store amplifiers could also have been used for
this storage.



The modifying control shown in the figure is the sum &Np + Ky M. For
this series of runs a constant value of K_ = -2.5x107"[units of (L/D)/(J/m3)]
was found to allow a fairly rapid convergence while maintaining program stabil-
ity. The value of Ky was calculated by equation (4) to be that value for
each iteration such as to allow convergence in the steepest descent manner.

In the lower trace of figure 3(b) the nominal control is recorded as it is
read out of serial memory every 128 +1 counter pulses (with Logic no. 8). This
gives a convenient time history to show the manner in which the control has
been modified during each iteration. The control is seen to be limited within
0 <« L/D < 0.5. This was achieved simply by limiting the output of the serial
memory to within these values.

As can be seen, the optimum control variation for this case is a bang-
bang control. With the steepest descent method, it is usually found that near-
optimum control can be achieved in the first few iterations, but that to
"square up the corners'" and achieve full optimum control a number of further
iterations (on the order of 20 to 50) are required.

Convergence and Stability Considerations

One of the important aspects of any optimization scheme is the ability to
converge, within a reasonable time, onto the optimum solution. For the partic-
ular method in this report it has been pointed out that this convergence pri-
marily depends upon choosing the proper value of the gain . In the example
problem, it was found that using any value of l l less than 2.5x10-7
[units of (L/D)/(J/mz)]resulted in smooth convergence; however, the convergence
time (which was proportional to 1/K,) became long. For initial values of
greater than twice the aforementioned value the convergence became unstable,
that is, the modifying © control became so large as to change drastically
the state variable from their nominal final values.

It was found that, as the optimum control was approached (after about 10
iterations), the value of Kp could be increased and convergence stability
maintained, because in these examples the control spproached bang-bang and only
small changes were possible near the saturation limits. The value of in
these cases could be increased to about 10 times the aforementioned value, but
increasing it much farther (without analog voltage scaling changes) would allow
extraneous computer noise to be magnified to a point where it caused notable
random fluctuations in the computations.

‘For a reasonable value of gain, such as that used for the example problem,
the time to converge to a near optimum solution (11 iterations) was about 3
minutes, and to a full optimum solution (30 iterations), about 8 minutes.
Further changes in these convergence times, of course, depend upon several fac-
tors. For instance, the convergence time in this computing setup was in pro-
portion to n2, where n is the number of points describing the control time
history (64 points for the case cited). Also the allowable solution rates of
the computer elements directly affect the convergence time. The continuing
development and use of high-speed computing elements will certainly result in
convergence times smaller than the time cited.
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The results obtained by this computing method appear satisfactory for
engineering purposes; however, the usual disadvantages of analog computation
are inherent with this method. These disadvantages are primarily concerned
with the extraneous noise in the computations and the absolute accuracy (only
to within about 1 percent) of analog computer.

CONCLUDING REMARKS

This report has presented a perturbation method of computing optimum
trajectories. The technique uses fast-time repetitive computations in deter-
mining control impulse response functions and requires only the dynamic solu-
tion of the state equations; whereas other perturbation computing techniques
have required the solution of additional adjoint equations.

A hybrid computer was used in applying the method to the steepest descent
optimization of reentry trajectories. Mechanizing the computer for this type
of problem was relatively simple, and near optimum trajectories could be
obtained in about 3 minutes of computing time and full optimum trajectories in
about 8 minutes.

The advantage of the technique outlined here over alternative techniques
is that the investigator need not be familiar with or use an auxiliary set of
linear adjoint equations for the optimization. This technique does, however,
require a large number of dynamic solutions of the state equations, but this
computing task appears practical with the high-speed repetitive computation
procedure presented in this report.

_Ames Research Center
National Aeronsutics and Space Administration
Moffett Field, Calif., Jan. 2L, 1966



APPENDIX A

RELATTONSHIP OF EXPERIMENTAL IMPULSE RESPONSE FUNCTIONS

TO ADJOINT SOLUTIONS AND THE MAXTMUM PRINCIPLE

Adjoint Solution of Impulse Response Functions

Let the state equations be noted as
x = £lx(t), u(t)] (A1)

where x(t) is a vector of state variables, u(t) is the control variable and f
is a vector of known functions of x(t) and u(t).

The auxiliary adjoint equations can be noted as

= 3N\
A = - &)x (a2)

where A 1is a vector of influence functions and (Bf/Bx)T is the transpose
of the matrix describing linear motions about the nominal path of x(t) and

u(t).

It is well known that any small change in the control gquantity su(t)
along the nominal path will determine a change 8¢ in any quantity ¢ at the
final time as follows:

te
T of
&p = N — su(t)dt (A3)
ou
to
where represents a solution of the adjoint equations with the boundary

conditions at the final time of

LN 9P\
Np | = (5= (Ak)
K v t=te ox) t=ts

The quantity KT(Bf/éu) within the integral is known as Green's function.

10



4

Experimental Determination of Tmpulse Response Functions

The method used in the test of this report for finding a change ¢ is to
perturb the control experimentally in the following manner:

= o
T /Conirol impulse

Au
+ Nominal control

/
|

to t te

With two sequential dynamic solutions of the state equations using first a
positive control impulse and then a negative control impulse, the following is
avallable:

2089 = P(rimpulse) ~ P(-impulse) (A5)

From equation (A3) we can write the change 28p = Xp, for a small control,
du = Au, acting over a small time interval At, as follows:

2&p=&p=<7\£ 2—i>2AuAt (46)

This then represents the correspondence between the impulse response
functions calculated in the text and those solved by the adjoint solution.
Green's function evaluated at any time, t, along the trajectory can be noted
as

T Of _ _2p(%)

Ay (a7)

and

i IO (88)
du 2 Au At

Relationship to the Maximum Principle

The maximum principle (ref. 8) states that a necessary condition for a
minimum (maximum) of the cost function is that the Hamiltonian be maximized
(minimized) with respect to the control at all times. The Hamiltonian can be
written as

H= AT (A9)

11



where the transversality condition must be satisfied at the final time,

T ® oy
Af),_, = S > (A10)
t=tp ot ot -

and 71 1s a Lagrange multiplier constant chosen so that the terminal con-
straint is satisfied. The boundary conditions on the adjoint equations at the
final time are:

00, = (R4 g—jﬁ (a11)
t=tp

Now to determine if H 1s minimized with respect to the control we can
take the partial derivative of H with respect to u:

of
%% = AT Se (A12)

Or, noting the correspondence between equations (Ah) and (All), we can write

dH T of T df
oA R el S AV (A13)

T
where T(Bf/au) is Green's function for the cost and A\y(9f/du) is Green's
function for the terminal constraint.

Recalling the correspondence between the adjoint solution for Green's
function and that determined experimentally, we have the following:

am _ _2o(t) Ay (t)
St T 2 at T "2 At

(ALk)

This, then, represents the relationship between the experimentally
determined impulse response functions and the Hamiltonian. It is interesting
that the maximum principle can be applied through this relationship without any
need for solving the adjoint equations.

Steepest Descent Equations

t
The greatest change, dp, in ¢ for a given value of f £ suf(t)dt is
Tt
obtained (ref. 3) when

u(t) = Ky ap(t) + Ky av(t) (A15)

12



where Ko and KW are constants. This is the steepest descent (or ascent)
direction to the minimum (or maximum) .

When there are no state or control constraints, the steepest descent
procedure converges toward the necessary conditions for an optimum solution as
previously noted

sp(t) + n ap(t) = 0 (A16)

where in the steepest descent equations, Kw/KQ = 1, on the optimum solution
with the terminal constraint satisfied.

13



APPENDTX B
REENTRY TRAJECTORY EQUATIONS

The following equations were programmed on the analog computer for the
example considered in this report. These simplified equations were derived for
flight within the atmosphere and the primary assumptions include: a spherical
nonrotating earth, small flight-path angles, and a constant gravity term. The
derivation of these simplified equations and thelr applicability have been
considered in a number of reports. OSee for instance reference 9.

The equations are

_ v (CpA\N1 o (L _h
h=rgt <:m. 2 D~V
CDA12
V=- —ﬁf> > pV
te
¥ = \/p V dt
tO

o Pt
= 3.75X10 J/\ Jove at

P =
o

where

% control value of 1lift-drag ratio

h altitude, m

\ horizontal velocity, m/s

¥ final range, m

P total heat input, J/m°

0 atmosphere density, 1.225 e-h/7160 kg/m°>

r radius from earth center, 6.43x10% m

g local gravitational acceleration, 9.8 m/s2

Coh
(}——) drag loading, 0.004 m®/kg
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