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ABSTRACT

This report covers the state of the art of both primary and

secondary fabrication methods for the precipitation-hardenable stain-

less steels. Methods currently employed for primary fabrication of

these alloys include rolling, extrusion, forging, and drawing of tube,

rod, and wire.

Secondary metalforming operations are those processes that pro-

duce finished or semifinished parts from sheet, bar, or tubing using

additional metalforming operations. The following secondary forming

• processes are discussed: brake bending, deep drawing, spinning and

shear forming, drop hammer, trapped rubber, stretch, roll forming,

dimpling, joggling, and sizing. Equipment and tooling used for the

various operations are discussed and illustrated wherever possible.
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PREFACE

This report is one of a series of state-of-the-art reports being

prepared by Battelle Memorial Institute, Columbus, Ohio, under

Contract No. DA-01-021-AMC-lI65(Z), in the general field of

materials fabrication.

This report on practices used to deform the precipitation-harden-

able stainless steels into useful shapes is intended to provide informa-

tion that may be of use to designers and fabricators. The recommenda-

tions are considered to be reliable guides for selecting conditions,

tools, and equipment for specific operations. The causes for many of

the common problems encountered are identified and precautions for

avoiding them are mentioned.

The report summarizes information collected from equipment

manufacturers, technical publications, reports on Government

contracts, and by interviews with engineers employed by major air-

craft companies. A total of I06 references are included, most of

which cover the period since 1959.

There are three reports issued by Defense Metals Information

Center that provide a considerable amount of background information

on the precipitation-hardenable stainless steels. They are:

(i) Roach, D. B., and Hall, A. M., "The Engineering Properties

of Precipitation-Hardenable Stainless Steels, TML Report

No. 48 (July 20, 1956).

(2) Ludwigson, D. C., and Hall, A. M., "The Physical

Metallurgy of Precipitation-Hardenable Stainless Steels",

DMIC Report Ill (April 20, 1959).

(3) Ludwigson, D. C., "Semiaustenitic Precipitation-

Hardenable Stainless Steels", DMIC Report 164

(December 6, 1961).
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TECHNICAL MEMORANDUM X-53431

DEFORMATION PROCESSING OF PRECIPITATION-

HARDENABLE STAINLESS STEELS

SUMMARY

The techniques used for fabricating precipitation-hardenable

stainless steels are very similar to those used for the regular stain-

less steel grades. The PH alloys find wide use where high strength

and corrosion resistance at temperatures up to 1300 F are required.

Some of the alloys are widely used as springs for elevated-tempera-

ture applications where they approach the range of usefulness of more

expensive alloys.

Sheet, strip, plate, and rod comprise the most popular forms of

the precipitation-hardenable stainless steels in the aircraft and aero-

space industries. Most of the alloys are available in rolled form.

Both tubing and structural shapes have been produced by the hot-

extrusion process. Sometimes the extruded shapes such as tees and

angles are later cold drawn to improve tolerances and to achieve

thinner webs. The superior corrosion resistance of the precipitation-

hardenable stainless steels compared with the high-strength steels

have made them attractive for applications in the aerospace industry at

elevated temperatures where high-strength-to-density ratios are

required. These alloys are readily cold drawn into tube, rod, and

wire. Tubing from these alloys is extensively used for both hydraulic

and deicing systems in aircraft; rod and wire are used extensively for

fasteners and springs where corrosion resistance is important.

Precipitation-hardenable stainless steels can usually be formed by

secondary deformation methods at room temperature. Extensive

studies have shown that the formability of sheet metal can be predicted

from mechanical-property measurements obtained in simple tests.

However, some of these property measurements are not readily avail-

able and more or less special tests must be set up to obtain the

required data. Reports of experience from various other industrial

sources also have been compiled and summarized to offer assistance

and guidance in performing many of the secondary deformation pro-

cesses. More detailed information on any of the deformation processes

is available by consulting the extensive reference list.



INT RO DU C T ION

The precipitation-hardenable stainless steel alloys have been used

extensively in the manufacture of high-performance aircraft and

missile components. Most of the alloys retain their strength to i000 F

for short terms and up to 750 F for long-term applications. They have

been used for aircraft skins that have the capabilities for Mach 3 flight

and for the surrounding structures near jet engines. The corrosion

resistance of these alloys results in minimum maintenance of struc-

tures fabricated from them.

All of the precipitation-hardenable stainless steel alloys are iron-

base alloys that are heat treatable to high strengths by a low-tempera-

ture aging treatment. They may be grouped according to the final

heat-treated structure obtained, as martensitic, semiaustenitic, and

austenitic types. In the annealed condition or the solution-treated con-

dition_ most of these alloys can be cold worked at room temperature.

Working at elevated temperatures should be avoided because precipita-

tion reactions will cause a considerable increase in the yield strength

and reduce the ductility. The hot-working temperatures are generally

above the mill-anneal temperature for the alloy. The ductility of most

alloys is equivalent to that of ordinary stainless steels at room temper-

ature so that secondary working can usually be carried out with con-

ventional pro ce s sing technique s.

The purpose of this report is to summarize the present status of

primary and secondary deformation processes for precipitation-

hardenable stainless steels. Primary deformation processes are

designed to reduce an ingot or billet to a standard mill product such

as sheet or plate, bar_ forging, and extruded or drawn rod_ tube, or

shape. Secondary deformation processes produce semifinished or

finished parts by additional forming operations on such primary shapes

as sheet, bar_ or tubing.

This report is based on information presented in a large number

of technical publications and in reports on investigations sponsored by

Government agencies. The source material is referenced so the

reader can obtain more detailed knowledge by studying the pertinent

publications. Additional information was collected by personal inter-

views with organizations currently concerned with fabrication of

precipitation-hardenable stainless steels.



The compositions of typical precipitation-hardenable stainless
steels are given in Table I. The mechanical properties after various
heat treatments also are given. As can be seen from Table I, a wide
variety of mechanical properties can be attained with these alloys
depending on the type of thermal treatment and the extent of deforma-
tion. Sufficient alternative processing schedules are available, how-
ever, so that acceptable mechanical properties can be obtained with
almost any forming practice.

The different heat-treat designations are identified and thermal
processing sequences are described in Table II. The thermal treat-
ments may be combined with variations in deformation processing to
obtain a variety of mechanical properties. This is desirable when
working with deformation processes that give a uniform reduction,
such as rolling, but can cause difficulties when the thermal treatment
follows a process that causes nonuniform strain.

Martensitic Precipitation-Hardenable Stainless Steels. The

group of martensitic precipitation-hardenable stainless steels includes

17-4 PH, Stainless W, Almar 362, 15-5 PH, and PH 13-8 Mo. These

materials develop their properties by two metallurgical phenomena.

The first is the transformation of austenite to martensite upon cooling

from the austenizing temperature or below to room temperature. The

second is the precipitation-hardening effect resulting from precipita-

tion of elements at suitable lattice points in the material matrices. In

the 17-4 PH and 15-5 PH, alloys copper is responsible for this reac-

tion, while Stainless W depends on both aluminum and titanium.

ALMAR 362 has only titanium for this reaction. PH 13-8 Mo is

strengthened with the aluminum precipitate. Only a small quantity of

the precipitating element, from 0. 5 to 3.0 per cent, is required to

provide a significant increase in hardness.

Semiaustenitic Pre cipitation-Hardenable Stainle s s Steels.

The group of typical semiaustenitic precipitation-hardenable stainless

steels are 17-7 PH, PH 15-7 Mo, PH 14-8 Mo, AM-350, and AM-355.

The semiaustenitic stainless steels provide an unusual combination of

excellent formability of the austenitic structure, high strength in the

transformed martensitic condition, and good corrosion resistance.

Most of the special alloying elements used in stainless steels that are

austenitic at elevated temperatures lower the transformation range.

The exceptions to this rule are aluminum and cobalt, which raise the

transformation range. Although cobalt is generally not present in

signifi'cant quantities, aluminum is an important ingredient. In such

steels as 17-7 PH and PH 15-7 Mo aluminum plays an important role

3



I;

W

<

0
M
H

U

W

0

W

0

D,

<
U

U
W

I:1

H

0
U

ul
.1

o _

o,'_

i_._ _"

.."io

m_

?
?

g
u

.t

z

C

t

u

u

_g

o_-o_

o_OO_oo

oo
oo

oc_

,n r-

v
o
o

_s

uuuv uuu

_oo_ _o

c_

o

:

,,

_g

-o
o

_ o°

0

o
o

m

o

,_+r-

.<

o
u

.<

_°°_® _

I
o

oo
oo

oo

_s

0

.<

4



U
v

.1

T

0_

q

w

i

u

0_

_mooooo

oo
oo

om

oo
oo

oo

o

o

c_

r_.

o_

U_UU U

m o 1
oo

_2

oo

u

mo

oo

_ _

mm oo

_ oo
Md _

o

o

A

m _ o_

g, -._

_mmm_oommom_

oo

,..,,.I
,-,i ,4

o o

m

_oo

A

o

o_
c;-

o m

,=;,_



h

o_ oo_o

O_ gx_ml.)OUU_ m

° _
r_

6_

>

0 _

oo

2"

.I

o_

ooo

ooo

_3

o

v

o E

_o_ o =
_ o

H _ o



TABLE LI. HEAT TREATMENTS FOR PRECIPITATION-HARDENABLE STAINLESS STEEL

Heat- Treatment

Alloy Designation Designation Thermal Treatment

17-4 PH {Ref. 1) A 1900 F _25 F oil or water quench

H 900 Anneal, age 900 ± 10 F l hr_ air cool

H 1000 Anneal, age 1000 ± 10 F 1 hr or 4 hr, air cool

H 1100 Anneal, age 1100 ± 10 F, I or 4 hr_ air cool

H 1200 Anneal t age IZ00 ± 10 F, 4 hr, air cool

Mill annealed 1850 to 1950 F for 15 minutes_ air cool

Aged (A} Anneal, age 950 ± 10 F, 1/2 hr, air cool

Aged (B) Anneal, age 1000 ± 10 F, 1/2 hr_ air cool

Aged (C) Anneal_ age 1050 :k 10 F, 1/2 hr, air cool

Solution annealed (D) Anneal, solution anneal 1300 F, air cool

Aged (E) Anneal, solution anneal 1300 F, air cool, age 950 F for 1/Z hr

air cool

Aged (F) Solution anneal, air cool_ age 1000 F 1/_ hr_ air cool

Aged (G) Solution anneal_ air cool, age 1050 F, 1/2 hr, air cool

A Mill anneal 1950 • 25 F

T 1400 ± 25 F for 90 minutes, cool to 60 F in I hr_ hold 1/2 hr

TH-1050 1050 d: l0 F for 90 minutes_ air cool

A-1750 1750 ± 15 F for 10 minutes, air cool

R-100 A-1750 plus -100 ± 10 F for 8 hr

RH 950 A-1750 plus R-100, 950 ± 10 F for 60 minutes, air cool

C Cold rolled

CH 900 Cold rolled, 900 ± 10 F for 60 minutes_ air cool

A 1825 ± 25 F

SRH 950 1700 ± 15 F for 60 minutes, air cool, -100 ± l0 F for 8 hr,

950 ± 10 F for 60 minutes_ air cool

1700 ± 15 F for 60 minutes, air cool_ -100 F _: l0 F for 8 hr,

1050 ± l0 F for 60 minutes, air cool

H Mill anneal 1950 ± 25 F

L Anneal 1710 ± 25 F, cool rapidly

DA L-anneal, 1375 ± 25 F for 3 hr quench_ age 850 for 3 hr

SCT 1000 L-anneal, -100 F for 3 hr, age t000 F for 3 hr

SCT 850 L-anneal_ -100 F for 3 hr, age 850 E for 3 hr

CR 30 Cold reduced 30 per cent

CR 50 Cold reduced 50 per cent

CR 70 Cold reduced 70 per cent

CRT 30 Cold reduced 30 per cent, aged 750 to 850 F

CRT 50 Cold reduced 50 per cent_ aged 750 to 850 F

CRT 70 Cold reduced 70 per cent, aged 750 to 850 F

Annealed 1875 ± 25 F

L-annealed 1710 ± 25 F, rapid cool

DA L-anneal_ 1375 ± 2`5 F for 3 hr quench, age 850 F for 3 hr

SCT 850 L-anneal, -100 F for 3 hr, age 850 F for 3 hr

Mill anneal 1950 _: 2-5 F

SCT 1000 L-anneal, -100 F for 3 hr, age 1000 F for 3 hr

CR 2`0 Cold reduced 20 per cent

CR 30 Cold reduced 30 per cent

CR 40 Cold reduced 40 per cent

CRT 2`0 Cold reduced 2`0 per cent, aged 750 to 850 F

CRT 30 Cold reduced 30 per cent, aged 750 to 850 F

CRT 40 Cold reduced 40 per cent, aged 750 to 850 F

XH Cold reduced 50 per cent, aged 750 to 850 F

Stainless W (Ref. 2`)

17- 7 PH (Ref. 6)

and

PH 15-7 Mo (Ref. 7)

PH 14-8 Mo (Ref. 5)

AM-350 (Ref. 8)

AM-355 (Ref. 8)

SRH 1050

L-anneal, -100 F for 3 hr, age 1000 F for 3 hr

7



TABLE II. (Continued)

Heat-Treatment

Alloy Designation Designation Thermal Treatment

AM-357 (Ref. 8) Mill annealed 1800 F

L-annealed 1710 ± Z5 F, rapid cool

SCT 850 L-anneal_ -100 F for 3 hr, age 850 F for 3 hr

SCT |000 L-anneal_ -100 F for 3 hr, age 1000 F for } hr

SA Solution anneal Z000 ± 25 F

CRT Z4 Solution anneal, shear form at RT 24 per cent, age 850 F for

CRT 33

CRT 65

CRT 88

CRT 25

CRT 50

XH

SCCRT

A-286 (Ref, 2) SA

Aged

3hr

Solutlon-anneal, shear form at RT 33 per ¢ent, age 850 F for

3 hr

Solution anneal, shear form at RT 65 per cent, age 850 F for

3hr

Solution anneal, Ausform 75 to 90 per cent at Z50 to 300 F,

age at 850 F for 3 hr

Solution anneal, cold roll 25 per cent, age 850 F for 3 hr

Solution anneal, cold roll 50 per cent, age 850 F for _ hr

Solution anneal, cold roll 50 per cent_ age 850 F for 3 hr

Solution anneal, -100 for 3 hr, cold reduce 20 to 30 per cent,

age 850 F for 3 hr

1800 • 25 F_ rapid cool

Solution treated, age 1325 i 25 F for 16 hr, air cool



in the balance of composition as well as being a precipitation

hardener.

The semiaustenitic stainless steels can be cold worked to high-

strength levels or thermally treated to give high strength with good

ductility. Most of the processing sequences involve forming the

materials in the annealed condition followed by

(1) A high-temperature solution treatment to form austenite

(2) Deep freezing for transformation to martensite

(3) Reheating to temper the martensite while further

strengthening occurs from the precipitation reaction,

which proceeds simultaneously.

Sometimes the materials are formed in the solution-treated condition

so that only the deep freeze and temper treatments are required.

This is an advantage since the low temperatures of both treatments

reduce the possibility of thermal distortion of the material.

Although the AM-350 and AM-355 steels are believed to develop

their properties mainly from the transformation reaction to marten-

site, they are included under the precipitation-hardenable stainless

steels because of the similarity in their thermal treatment and

properties to the other PH steels. They are austenitic at room

temperature, but care must be exercised in storage to assure that the

temperature does not drop too low or partial transformation will occur

with a decrease in ductility. Attempts to use these materials in the

as-received_ mill-annealed condition have often resulted in difficulties

when the materials are exposed to low temperatures during transit.

Best results are obtained by annealing in the fabricator's shop and

storing at 70 F or above, prior to forming.

The thermal treatment of the precipitation-hardenable stainless

steels is often accompanied by dimensional changes that must be

allowed for in fabrication of close-tolerance small parts or very large

parts. The materials expand significantly when martensite forms and

contract slightly during tempering. Tempering after cold working

results in slight contraction. Some specific values of the dimensional

changes associated with thermal treatments of several alloys are given

in Table III. Although the net chang_es may appear small, they accumu-

late as the size of the part increases. For instance, 20-foot-long

brazed honeycomb panels made of PH 15-7 Mo will grow about 1. 1 inch



during heat treatment. In order to use net tooling for making parts

to net dimensions, the material is sometimes given an equalizing

treatments, which is simply an overaging to assure that all growth

has occurred before cutting the parts to dimension.

TABLE III. DIMENSIONAL CHANGES DURING HEAT TREATMENT

OF SOME SEMIAUSTENITIC STAINLESS STEELS

(REF. 2)

Steel Heat-Treatment

Designation Designation Dimensional Change, in./in.

AM-350 DA +0.0048 L + 0.0050 T

SCT +0.0047

CRT -0.0001

AM-355 DA +0. 0059 L + 0. 0054 T

SCT +0. 0058 L + 0. 0062 T

CRT -0.0001

XH -0.0001

17-7 PH TH 1050 +0. 0037 to + 0. 0047

RH 950 +0. 0043 to + 0. 0049

PH 15-7 Mo RH 950 +0.0045

Austenitic Precipitation-Hardenable Stainless Steels. The

austenitic precipitation-hardenable stainless steels are characterized

by being austenitic in both the solution-annealed and the aged condition;

A-286 is the most widly used wrought alloy of this group. These alloys

are used for applications that require either nonmagnetic characteris-

tics or high strength at elevated temperatures. Areas of an aircraft

that affect the navigation systems often use such materials. Although

the austenitic precipitation-hardenable steels have lower strengths at

room temperature than the other precipitation-hardenable alloys, they

are stronger in the temperature range of 1000 to 1200 F. They also

have good toughness at subzero temperatures and excellent corrosion

resistance.

A-286 develops its properties mainly by the precipitation-harden-

ing reaction. The precipitation elements used are titanium_ aluminum,

and vanadium. Since there is no martensitic reaction, the thermal

treatment is simpler. Another advantage is that the dimensional

changes that take place during thermal treatment are relatively small.

After annealing, the material must be cooled rapidly from the solution

temperature to avoid precipitation. This may require a water quench

10
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depending on the thickness of the material section. The precipitation-

hardening treatment is generally at a higher temperature than that for

other alloys, usually in the range of 1300 to 1400 F.

PRIMARY DEFORMATION PROCESSES

This section of the report describes fabrication procedures and

limitations for the rolling, forging, extrusion, and drawing of wrought

precipitation-hardenable stainless steels. Table IV lists the available

mill-product forms for some typical alloy compositions.

The mill practices vary considerably between the three classes of

austenitic, semiaustenitic, and martensitic alloys. Since most of the

details of primary deformation are considered proprietary by the steel

manufacturers and are generally of minor interest to most designers

and fabricators, only general descriptions of the processing practices

are presented in this section. Emphasis is placed on the present

capabilities of the producers in making various forms.

ROLLING

Rolled products, particularly sheet, rolled shapes, and rod are

available in most of the precipitation-hardenable stainless steels.

These alloys have found their largest market acceptance in the form of

sheet in aircraft and aerospace applications. Except for coils of thin

strip or of rods for subsequent wire fabrication, rolled products are

generally supplied in flat or straight sections.

Classification of Rolling Processes. The rolling operation

combines both compressive and tensile forces to reduce the cross sec-

tion of plastic metal or to change its shape, or both. This combina-

tion of rolling forces deforms the metal symmetrically about a neutral

plane, parallel to the surface, distorting the grain structure.

Cylindrical rolls produce flat products - grooved rolls produce

rounds, squares, and structural shapes.

The terms hot rolling and cold rolling as used in this report denote

processing above or below the recrystallization temperature, respec-

tively. Little or no strain hardening occurs in hot rolling; consider-

able strain hardening occurs in cold rolling. Rolling develops direc-

tional mechanical properties and heavily worked grain structures.

11



TABLE IV. AVAILABLE MILL FORMS AND CONDITIONS OF PRECIPITATION-HARDENABLE STAINLESS STEELS

Bars and Rolled Forging

Material Sheet Strip Plate Rods Shapes Extrusions Billets Tubing

A -- A (a)

CRT --

CRT EOT(c)

AM- 350 (Ref. 3) A

CRT(b)

AM-355 (Ref. 3) CRT

Ahnar 362 {Ref. 3) A A A

AM-357 {Ref. 3) ......

Stainless W {Ref. 4) -- A A

17-7 PH (Ref. 6) A A --

C C (e)

17-4 PH (Ref. 1} A A --

15-5 t'tI {Ref. 4) A ....

PH 15-7 Me (Ref. 7) A A --

C C

PH 14-8 Me {Ref. 5) A A --

PH 13-8 Me (Ref. 5) A A --

PH 14-4 Me (Ref. 5) ......

A-286 (Ref. Z) A(g) A A

C STA{ h}

Wire

A .... A A

CRT

EOT A EOT EOT -" C DT(d)

A A A A A A

Aged

.......... CDT

A A -- A ....

A A A A A A

A

Aged

A -- A -- A

.... A -- A

A A A A A

Special order only

Special order only

A A

A A

STA

__ -- --

-- A --

A A A

STA

CD(O

A

(a) Small sheet only, less than 1 inch.

(b) CRT - cold rolled and tempered.

(('} EOT - rqualized and overtemper(,d.

(d) CDT - cold drawn and tempered.

(e) C -- hard drawn.

(f) CD - cold drawn.

(g) A - may be annealed or solution trrated.

(h) STA - solution treated and aged,

12



Rolling is often used for strain hardening to control the mechanical
properties of precipitation-hardenable stainless steels.

Rolling Equipment. Detailed information on the design and

operation of steel-mill rolling equipment is available elsewhere

(Ref. 9); therefore, only a brief discussion of equipment and rolling

nomenclature is provided here as a background for the process

descriptions provided in the report.

Figure 1 shows the mill designs most commonly used in rolling.

The reversing two-high and three-high mills are commonly used for

breakdown and semifinishing operations in the fabrication of both flat

products and shapes. Single-stand two-high mills are reversible so

that the workpiece can be deformed while traveling in either direc-

tion. Heavy pieces and long lengths can be handled conveniently on

this type mill for fabrication of slabs, blooms, plates, billets,

round, and partially formed sections. The three-high mill does not

require any drive reversal as the direction of rolling depends upon

whether the piece is traveling above or below the center roll. This

type of mill is generally used for products other than plate or sheet.

Two High Three High Four High Cluster

FIGURE 1. TYPICAL ROLLING-MILL DESIGNS

For rolling of narrow material where thickness control is not too

critical, the two-high and three-high rolling mills described above are

adequate. For rolling of wide material, four-high mills are used to

achieve better roll rigidity and closer thickness control. Four-high

mills are used for producing both hot- and cold-rolled plate and sheet.

Several of these mills are used in tandem for continuous rolling of
sheet.

The cluster mill is used for rolling very thin sheet or strip where

very close thickness control must be maintained.

13



Fabrication of Rolled Products. The rolling procedures for

precipitation-hardenable stainless steels are similar to those used for

the 18-8 types of stainless steels. Several important similarities

exist, such as the need for frequent conditioning during processing to

obtain a good surface finish, close control of working temperatures,

and good control of thickness and shape during hot working to obtain

close-tolerance control during subsequent cold-rolling operations.

Ingot Breakdown. After solidification, the cast ingots

(weighing up to i0,000 pounds) are removed from the mold and are

heated in a sulfur-free atmosphere furnace. The presence of even

small quantities of sulfur will cause the material to be hot short and,

possibly, to crack during rolling at elevated temperatures. The in-

gots either may be forged before rolling, or they may go directly to

the blooming mill. The choice generally depends on the equipment

available and on the initial shape of the cast ingot. The hot-working

range is narrow for most of the precipitation-hardenable stainless

steels so that frequent reheating is necessary during the ingot-break-

down ope rations.

Ingots to be used for sheet or plate processing are either forged or

rolled, in a blooming mill, to rectangular slabs. If the final product

is to be bar st.ock, ingots are forged to squares. Round shapes in

diameters of 3-I/2 inches up to 6 inches are also forged.

After forging or rolling in the blooming mill, billets are surface

conditioned and the hot top end is removed. Generally, the billet is

ultrasonically inspected at this point. Severe flaws may require addi-

tional conditioning since it is difficult to heal defects in the stainless

steels during hot rolling.

Rolling of Flat Products. The billets are hot rolled on

three-high mills down to 3/8-inch-thick plate. The billets may be

cross rolled to minimize directional variations in properties, although

this is generally not required. Frequent heating of the billet during

the rolling may be required as well as surface conditioning. At this

point in the processing, the material is pickled and may be shot blasted

before further rolling. The use of shot blasting should be kept to a

minimum because it severely work hardens the surface.

In thicknesses ranging from 0. 045 to 3/8 inch rolling is generally

done on a two-high mill. The sheet may be finished hot or cold al-

though most material is given a light cold pass to improve the flatness,

straightness, and dimensional tolerances. Cold rolling enhances the

14
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mechanical properties when used in conjunction with a final tempering

treatment. Rolling to thinner sheet, down to 0. 001-inch-minimum

thickness, is usually done cold on a cluster mill.

Rolling of Bar Products. Typical fabrication schedules

for these alloys involve hot rolling of the forged bars down to 2-1/4-

inch squares on a 24-inch mill, followed by surface conditioning and

reheating for rolling on a 10-inch mill down to 5/16-inch-diameter

rod. Rolled shapes are handled in a similar manner. Rod intended

for wire production is coiled at this stage for further processing by

cold drawing into wire as small as 0. 001 inch in diameter.

Post-Fabrication Processing. Hot-rolled sheet and plate are

generally annealed after rolling and then descaled by acid picling or

vapor blasting. Following this, the material may be roller leveled

and sheared to the desired length; sheet products may be stretch

staightened and cut to size. Cold-rolled products may be given a

temper treatment for delivery in the cold-reduced and tempered con-

dition (CRT). The mechanical properties depend on the amount of

cold reduction and the tempering temperature.

Bar products over 2-1/4 inches in diameter are generally

straightened, annealed or tempered, and ground to finish size.

Smaller diameter bars are straightened, ground, heat treated,

descaled, and pickled prior to coiling.

Sizes and Tolerances of Rolled Products. The classification

as "sheet", "strip", "foil", or "plate" depends on the relationship

between width and thickness of the products. The distinction between

the four for precipitation-hardenable stainless steels can be generally

defined as follows:

Dimensions, inches
Product Width Thickne s s

Plat e Greater than 10 Greater than 0. 250

Sheet Greater than 24 Less than 0. 250

Strip Less than 24

Foil Less than 24

Less than 0. 250

Less than 0. 010

Plate. The availability of plate is limited and generally

requires a mill order. Because of the metallurgical characteristics of

these alloys, a reduction to sheet size is generally required to develop

15



optimum mechanical properties in these materials. AM-355 has been

produced in plate thickness up to l inch, while PH 15-7 Mo and 17-7

PH have been limited to 1/2 inch. Plate may be produced in widths

up to 36 inches and lengths up to 120 inches. Plates are generally

produced to commercial AISItolerances. One-half AISI commercial

tolerances can be obtained on some alloys upon special mill order.

Sheet, Strip, and Foil. In general, the precipitation-

hardenable stainless steels are available in sheet thicknesses down to

0.010 inch, widths of 24 to 60 inches, and lengths of up to 144 inches

in flat or 10, 000-1b coils.

Generally speaking, any of the sheet sizes can be slit into strips

of any desired width.

The precipitation-hardenable stainless steel sheet, strip, and foil

are generally produced to AISI commercial tolerances. However,

McCann and Sack (Ref. i0) found that the thickness of about 90 per cent

of the material within a coil fell within i/4 of the full range permitted

by AISItolerances. Their study was made on A-286 and AM-350 steel

produced with commercial equipments.

Flatness tolerances vary from i/8 to I/4 inch depending upon the

alloy and alloy condition.

For aerospace applications, foil materials have been produced in

thicknesses of 0. 001 to 0. 004 inch and widths of 24 inches from AM-

350 and PH 15-7 Mo steels. These materials have been used for the

manufacture of honeycomb core. A thickness tolerance of 5 per cent

is easily met, and a 2 per cent tolerance is producible.

Rolled Rod and Bar. Most precipitation-hardenable

stainless steel rod and bar material is shipped from the mill in the

solution-treated condition. Some may also be shipped in the annealed

or cold-worked condition depending on the requirements. Hot-rolled

squares, rounds, and hexagons are generally available in diameters

from 3/8 to 2-i/2 inches and in lengths up to 24 feet. Again, sizes

vary considerably with the particular alloy. Rod and bar are generally

limited to such alloys as 17-4 PH and AM-355, which do not require as

great a reduction for development of their mechanical properties.

The fabrication of rolled shapes such a angles_ tees, and air-foil

shapes has been extensive. Figure 2 shows some typical rolled

shapes that have been fabricated in lengths up to 30 feet from AM-350,

16



H 15-7 LJ, and A-286. Size limitations and tolerances for  precision- 
rolled shapes a s  reported by Universal  Cyclops (Ref. 11) a r e  shown 
in Figure 3. 

FIGURE 2. TYPICAL ROLLED SHAPES FABRICATED FOR 
JET-  AND GAS-TURBINE ENGINES 

Courtesy of D. E. Makepeace Division, 
Englehard Industries, Inc. , Attleboro, 
Massachusetts. 

Future  Rolling Capabilities and Needs. The present capa- 
bil i t ies and future reqairements  for rolling of a i rc raf t  mater ia l s ,  in- 
cluding the precipitation-hardenable steels,  have been specified by a 
panel of the Materials Advisory Board (Ref. 12). 
a need for  producing rolled sheet o r  plate f rom 0. 002 to 2-inch thick- 
nes ses  in widths f rom 180 to 240 inches, with tolerances of 5 per  cent 
o r  bet ter .  

The report  indicated 

EXTRUSION 

The hot extrusion process  has been used to produce tubing and 
s t ruc tura l  shapes in the precipitation-hardenable stainless s teels .  
Extruded shapes such a s  tees  and angles can be cold drawn to improve 
tolerances and to achieve thinner gages. 
inch-webs have been extruded in A-286 and P H  15-7 Mo alloys (Ref. 13). 

Tee sections with 0. 062- 
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The dimensions and tolerances of a Research extruded shape in PH

15-7 Mo is shown in Figure 4. The same shape was produced in A-

266 with approximately twice the tolerances indicated.

""---- 0.06;* * o.oos

1
1.50 '* O.Ole

I

!Ti._)i 0.016 : 0.062to.o06

FIGURE 4. RESEARCH SHAPE FOR A-286 AND

PH 15-7 Mo (REF. 13)

Extrusion is also used as a breakdown operation for materials

with large as-cast grain sizes (Ref. 14). Alloys that are prone to

crack during rolling or forging of the cast ingot are extruded at an

extrusion ratio of 5 or 10 to 1 to eliminate the cast structures and to

provide a round or rectangular section for forging or rolling. The

compressive stresses characteristic of extrusion minimize cracking

during hot working.

Techniques for extrusion of these alloys are very similar to stain-

less steel extrusion practices. The use of the Ugine-Sejournet glass-

lubrication process has made extrusion possible at ratios up to 97:1

for A-286 and 37:1 for PH 15-7 Mo (Ref. 13).

Classification of Extrusion Processes. In the extrusion pro-

cess, the billet is forced under compressive stress to flow through the

opening of a die to form a continuous product of a smaller and uniform

cross-sectional area. The process can be used to produce rounds,

shapes, tubes, hollow shapes, or cups.

The most common method of e_trusion is referred to as direct

extrusion. In this technique, the ram moves through the container to
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force the billet material through a stationary die. The ram, billet,

and extrusion all move in the same direction. In the indirect or

inverted method of extrusion, a hollow ram and die move against a

stationary billet causing the billet material to flow in an opposite

direction through the die and ram. These processes are shown

schematically in Figure 5, which includes diagrams illustrating

methods for tube extrusion.

The indirect process requires lower pressures for extrusion

since friction between the container and the billet is largely eliminated.

The actual use of the process is not widespread, however, because of

other limitations.

Extrusion Equipment and Tooling. The application of force

to the billet by a ram is acutated hydraulically or mechanically.

Hydraulic presses are driven directly by high-pressure oil pumps or

by hydropneumatic accumulators. Mechanical presses utilize the

energy of electrically driven fly wheels.

Horizontal Presses. Horizontal presses are ordinarily

used for hot-extrusion operations and are available with capacities up

to 14, 000 tons. The largest presses of this kind were built on the

U.S. Air Force heavy-press program. Presently, there are nine of

these heavy presses in the United States, ranging in capacity from

8,000 to 14, 000 tons. The largest press equipped for extrusion has a

capacity of 12, 000 tons.

The selection between pump-driven or accumulator-driven

presses is primarily governed by the press capacity and the material

being extruded. On the basis of press capacity only, the choice is one

of economy. Direct-driven pumping systems are usually more

economical for comparatively small presses (Ref 16), and accumula-

tors are used only where high ram speeds are necessary. For large

presses of high capacity, e.g., 4000 tons or more, economy generally

favors accumulators whether high speeds are required or not. Thus,

all of the heavy presses are driven by accumulator systems even

though the ram-speed capabilities range from about 50 inches per

minute to over 700 inches per minute.

For some materials, the available ram speed becomes a deciding

factor in press selection. High ram speeds are required in high-

temperature extrusion to minimize heat transfer from the billet to the

tools. This factor becomes increasingly critical at the billet tempera-

tures required for precipitation-hardenable stainless steels.
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Vertical Presses. Vertical presses are preferred for

producing small-diameter, thin-wall tubes. The design simplifies the

solution to problems of alignment of tooling and securing high produc-

tion rates. The maximum capacities of such presses usually range

from 650 to 2400 tons. The larger presses are also used for cold

extrusion and operations resembling hot forging.

High-Energy Rate Machines. Pneumatic-mechanical

machines, powered by compressed gases, have also been used for

extrusion (Ref. 17). The capacity of such equipment, controlled by

the kinetic energy of the moving piston and ram, ranges up to 1.5

million foot pounds. Striking velocities range up to 3600 inches per

second. The high speed permits deformation under essentially adiaba-

tic conditions and minimizes the time available for heat loss from the

billet to the tooling.

However, the use of high impacting speeds has an adverse effect

on tool life and results in unusually high exit speeds. Sometimes the

extrusion product is ruptured by the inertial force. A number of

approaches have been tried, with limited success, for slowing down

the extrusion product of high-energy-rate machines.

Extrusion Practices. The hot-extrusion process is employed

for the production of long sections. All extruders employ the Sejournet

glass process, using procedures similar to those developed for extrud-

ing steel. The use of glass as an extrusion lubricant was originally

developed by the Comptoir Industrial d'Etirage et Profilage de Metaus,

Paris, France, for extruding ferrous materials. As glasses were

found that could be employed over a wide range of temperatures, the

process was adopted for titanium, superalloys, precipitation-harden-

able stainless steels, refractory metals, and other metals.

The practices employed by the American licensees of the

Sejournet glass process for extruding precipitation-hardenable stain-

less steels are essentially identical. Billets are transferred from the

heating furnace to the charging table of the extrusion press. As a

billet rolls into position in front of the container, it passes over a

sheet of glass fiber or a layer of glass powder that fuses to the billet

surface. In addition, a fibrous glass pad is placed in front of the die,

providing a reservoir of glass at the die face during extrusion.

For tubes, either a fibrous glass sock is placed over the mandrel

or powdered glass is sprinkled on the inside surface of the hollow

billet.
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Besides providing effective lubrication, glass serves as an insula-

tor to protect the tools from contact with the hot billet during

extrusion: excessive overheating of tools does not occur, tool life is
increased, and die costs are reduced.

Billets can be heated in either gas- or oil-fired furnaces, by
induction or by salt-bath heating (Ref. 14). Due to the low thermal

conductivity of the precipitation-hardenable stainless steels, fairly

long induction heating times are required to insure uniform tempera-

tures in the extrusion billet. The effect of temperature on the extru-

sion pressure of A-286 is shown in Figure 6.
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FIGURE 6. BILLET PRESSURE VERSUS TEMPERATURE FOR

A-Z86 EXTRUDED ON A 1650-TON HARVEY PRESS

IN A 5-INCH LINER (REF. 13)

The keys to the successful extrusion of these alloys are accurate

temperature control and working within a narrow temperature range.

Thus, transfer times between the furnace and the extrusion press

must be minimized to prevent heat loss. Also, the speed of extrusion

must be controlled so that overheating does not result from the heat

of deformation, which is generated during extrusion.
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Nickel plating of oxidized PH 15-7 Mo at Allegheny Ludlum {Ref.

13) has shown promise for obtaining thin section extrusions. Canning

of A-286 in carbon steel removed some of the problems __ted with

chill of small billets.

Post-Extrusion Processing. Whenever possible, the

extruded product is quenched after extrusion to remove any adhering

glass. Quenching also prevents hardening by precipitation in some

metals. However, air cooling may be required if the extruded cross-

sectional area is large or if the alloy is sensitive to quench cracking.

Extrusion products usually require detwisting or straightening on

hydraulic torsional stretchers or roll straighteners.

When the alloys are extruded with a metal liner, it is removed by

pickling after the part is extruded.

Size Limits. A-286, 17-7 PH, AM-350, and AM-355

have been produced in a variety of shapes including tubing, angles, and

tee sections. A complex shape produced in PH 15-7 Mo is shown in

Figure 7. The maximum size of extrusion that presently can be made

in precipitation-hardening steels fits within a circumscribed circle of

6-I/2 inches. The minimum cross-sectional area is generally deter-

mined by the extrusion ratio possible with the alloys for a given shape.

For simple shapes and a small billet size of 3 inches, a minimum

area might be 0. 75 inch square while for a large billet size of 6-I/2

inches_ a section area of 5.7 inches square or greater would be

required. This condition can sometimes be corrected by extruding

more than one shape at a time so that the total area being extruded is

increased. High production is normally required before this is

practical because the complexity of the dies required generally is not

warranted.

The minimum section thickness for production is about 0. 150 inch

while the length of extrusion ranges from 35 to 60 feet long. Generally

the length of extrusion produced is limited by the straightening equip-

ment available rather than by the capabilities of the extrusion equip-

ment. Corner radii between 0.031 and 0. 125 inch are producible;

fillet radii from 0. 125 to 0. 250 inch are also considered practical by

commercial practice. The minimum radius is generally a function of

the shape complexity. Structural angles can be held to a tolerance of

• 2 degrees with a camber of I/8 inch in 5 feet. The twist in small

widths of 1.50 inches or less ordinarily does not exceed 0. 125 inch in

5 feet. For widths up to 4. 00 inches, the twist should not exceed
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0. 187 inch in 5 feet. The flatness can generally be maintained as

0. 010 inch per inch of width. Surface finishes of 63 rms microinches

have been obtained although production finishes of 200 to 250 rms are

more practical. Tube concentricity of ±10 per cent of the wall thick-

ness can be obtained in production.

1
0.062"

0.080" R

0.0 31" R Typi¢ol

½ \
1

O. 112"

FIGURE 7. CONFIGURATION OF EXTRUDED SHAPE PRODUCE

IN PH 15-7 Mo STEEL (REF. 13)

Mechanical Properties of Extrusions. It is difficult to assign

minimum properties to precipitation-hardenable stainless steel extru-

sion because of the limited production and many variations of extrusion

techniques. Some of the mechanical property data that has been com-

piled on typical precipitation-hardenable stainless steel extrusions is
shown in Table V.

In general, it has been found that the mechanical properties of

extruded alloys are similar to the properties of rolled shapes. In

some cases, the transverse properties of the extruded shapes were

better than those of rolled shapes.

Extrusion of Powder Compacts. Some recent work at Clevite

Corporation (Ref. 19) and IIT Research Institute (Ref. 20) have indi-

cated the feasibility of extruding PH 15-7 Mo starting with a powder

compact. Toaz at Clevite found that resistance heating of a
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hydrostatically compacted billet of PH 15-7 Mo to 2000 F gave the best

results. Glass was found to be superior to the PbO-SiO 2 compound as

a lubricant at temperatures of 2000 F and above. A reduction ratio of

16:1 was found to give the best yield for the PH 15-7 Mo alloy. The

tensile ultimate and yield strength of the extrusions was found to be

lower than for wrought material but the ductility was considerably

better.

FORGING

Introduction. Forged precipitation-hardenable alloys have

found wide acceptance in the aerospace industry for applications at

elevated temperatures requiring materials with a high-strength to

density ratio. The superior corrosion resistance of these materials

compared with the high-strength steels also makes them attractive

from the standpoint of maintenance. Some of the alloys are now

produced by vacuum-melting techniques to reduce the level of gaseous

elements such as nitrogen, which contributes to poor workability and

ductility. By suitable metalworking practices, relatively complex

shapes can be forged and close tolerances can be held.

Ingots, billets, and bars for forging are generally produced by

practices used for conventional austenitic stainless steels. Since the

requirements for forging billets are relatively small, the mill

suppliers stock a few standard sizes and either cog or hot roll them

to the sizes specified by the customer.

Most of the alloys have been produced by arc melting. A recent

trend is toward the production of ingots by consumable-electrode, arc-

melting practice. Most forging billets are supplied in the overaged

condition, which is developed by holding solution-treated material at

ll50 F for several hours. The overaging treatment reduces the

possibility of stress-corrosion cracking during storage and makes the

billets easier to machine. Overaged material must be solution treated

prior to precipitation hardening. If the billets are supplied in the

solution-treated condition, they may be precipitation hardened directly

after forging. A study by Berry, Watmough, and Glassenberg (Ref. El)
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has indicated the feasibility of forging a 17-4 PH castings to improve
their properties. A recent study by Marschall_ Gehrke, Sabroff_ and
Boulger (Ref. 22) has shown the advantages of using ausforging
techniques to secure higher strengths and good toughness in AM-355.

Forgeability. Because of the composition of these alloys_

some delta ferrite is usually present in cast ingots. The temperature

used in initial ingot breakdown may either increase or decrease the

amount of delta ferrite. The semiausterdtic alloys may contain as

much as 10 to 20 per cent delta ferrite while the martensitic alloys

under proper forging conditions should contain no delta ferrite. The

presence of delta ferrite is undesirable because of its mechanical

properties.

The range of permissible forging temperatures is generally

limited on the low side by a drop in forgeability due to carbide

precipitation. For most alloys_ this reaction starts at about 1750 F.

The formation of additional delta ferrite on heating sets the upper

temperature limit. An increase in delta ferrite results in a reduction

of ductility. Consequently_ the amount of retained delta ferrite deter-

mines the forgeability of the alloys. The final properties of the forg-

ings (particularly the transverse ductility) are also degraded by

larger amounts of delta ferrite.

The relative forgeability ratings of some of the precipitation-

hardenable stainless steels are shown in Table VI. The use of lower

forging temperatures and greater stiffness of these alloys requires

30 to 50 per cent higher forging loads than would be required for a

typical alloy steel such as AISI 4340. The precipitation-hardenable

stainless steels are much less sensitive to decarburization than the

high-carbon low-alloy steels. Since scaling is less severe_ it is

possible to use some precipitation-hardenable stainless steel forgings

with as-forged surfaces.

Forging Practice. The basic composition of the precipitation-

hardenable stainless steels are similar to the 18-8 grades so that the

general forging conditions are not too different. Differences in forg-

ing practices will be emphasized.
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TABLE VI. RELATIVE FORGING BEHAVIOR OF TYPICAL PRECIPITATION-HARDENABLE

STAINLESS STEELS (REFS. 23-25)

Allozs

Variables 17-7 PH AM°355 17-4 PH AM-350 PH 15-7 Mo A-286

Forging temperature Z150 F 2150 F 2150 F ZlS0 F 2100 F 2150 F

i Decarburization Low Low Low Low Low Low

Scale Low Low Low Low LOw Low

I Grain- size control Fair Fair Good Fair -- Fair

For geability Fair Good Good Good Fair Fair

iForging pressure (relative)(a) I. 4 I. 4 1.4 ......

Thermal cracking None LOw Medium Low None None

iDie wear Medium Medium Medium ......

(a) AISI 4340 considered as I.

Alloys such as PH 15-7 Mo and 17-7 PH contain two phases

(martensite and carbide), a characteristic that affects forgeability.

At temperatures above 1700 F, they behave like the 18-8 grades of

stainless and have good forgeability, but at lower temperatures the

forgeability is poorer because of carbide precipitation.

Forgeability characteristics of the martensitic grades of precipi-

tation-hardenable alloys are about the same as those of the 12 to 14

per cent chromium stainless steels such as Type 410. Alloys such as

17-4 PH can be forged with excellent reproducibility of shape and

mechanical properties provfded care is taken to avoid overheating at

the center of heavy sections from excessively heavy or rapid reduc-

tions. Thermal cracking may occur if overheating is not prevented.

The semiaustenitic pre cipitation-hardenable stainle s s steels ( 17- 7

PH, PH 15-7 Mo, and AlVf-350) are susceptible to cracking during forg-

ing, and consequently require more forging steps than the other alloys

to permit surface conditioning between steps. These alloys have a

tendency to retain the austenitic structure at room temperature after

forging at or above 2000 F. Grain refinement is obtained by heating

the forgings at about 1400 F to promote the austenite transformation to

martensite. Care should be exercised in the use of this treatment,

however, since it causes carbide precipitation, makes the austenite

less stable, and may result in complete transformation to martensite

on cooling to room temperature. This condition is favorable for sub-

sequent heat treatment and grain refinement.

Since the delta ferrite contents of these alloys may range from 0

to 15 per cent at room temperature, it is common practice to
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determine the content before forging. Stringers of ferrite on the sur-
faces of the billet may cause rupture during forging depending on the
amount of reduction. Delta ferrite in other locations of the billet has
little effect on forgeability but may reduce the transverse ductility of
the forgings.

A number of factors should be considered when selecting the
temperature for forging the precipitation-hardenable stainless steels.
The rate and amount of deformation, grain growth, transformation, to
delta ferrite and type of subsequent heat treatment should be con-
sidered. Temperatures higher than the initial forging temperature
can be developed in the billet by excessively fast or heavy reductions.
High temperatures result in larger amounts of delta ferrite. Conse-
quently, delta ferrite cracking may occur even though the initial
billet temperature was below the delta ferrite formation temperature.
The forging temperature should be lowered 100 F when fast reduc-
tions are used.

Alloys that retain austenite to room temperature do not respond
to grain-refining heat treatments. Care must therefore be taken to
avoid forging temperatures that will cause excessive grain growth.
This is especially true when only light reductions are taken. A limit
of approximately 2100 F for forgings with light reductions has been
used.

Forging temperatures recommended for some of the precipitation-

hardenable stainless steels are given in Table VII. The effect of per

cent reduction on the initial forging temperature is shown by the de-

crease in forging temperature with increasing per cent reduction.

Billets of precipitation-hardening steels are usually preheated at

1200 to 1400 F for a time sufficient to equalize the temperature before

they are charged into a furnace at the forging temperature in order to
avoid internal cracks. A section thickness of 8 to 10 inches could be

preheated to a maximum temperature of 1600 F while a billet thick-

ness of 4 inches or less might be charged directly into a furnace at

the forging temperature. The time required for the temperature of

a billet to equalize is dependent on the billet thickness. When heating

directly to the forging temperature, 1/2 hour should be allowed for

each inch of billet thickness. A billet of 3-inch thickness or greater

should have a soaking time at temperature of 1 hour minimum before

forging.
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TABLE VLI. FORGING TEMPERATURES RECOMMENDED FOR PRECIPITATION-HARDENABLE

STAINLESS STEELS (REF. 23)

Alloy

Maximum Recommended Temperatures for Forgings Receiving

Forging Given Nominal Amounts of Reduction t F

Temperature, Light Moderate Severe

F (Up to 15 Per Cent) (15 to 50 Per Cent) (Over 50 Per Cent) Variable( a )

Austenitic

A_Z86(Ref. 24) 2150 1800 2100 2150

Se:rn J_u stenit $ c

2100

AM-350 2150 2100 2150 2150 ZI00

AM-355 2200 2000 2150 2150 2000

17-7 PH 2200 2050 2150 2200 1950

PHI5-YMo 2250 Z000 2100 2150 2000

Martensitic

StainlessW 2250 2050 2200 2200 2050

17-4PH 2200 2100 2150 2150 2100

(a) Variable reduction -- This refers to forgings receiving widely differing reductions. End upsets, for example,

receive large reductions on the upset end while the shaft may remain essentially undeformed.

When a hot-forging billet is placed in a cold die, the surface of

the billet is chilled very rapidly to a lower temperature. Conse-

quently, the time required to complete the forging operation is going

to have a significant effect on the final forging temperature and the

forging pressure. The effect of forging time on the pressure required

and of the final temperature on the forging billet is shown in Figure 8

for A-Z86. An assumed cooling rate of X00 F per second was used

in establishing the temperature curve.

130

i2O , I 2300

-'_"_v_4v,I. / "''; ,CO0 _.

20 _ JM_ e_ _ IecK)

,_ tO _ 1300

0 ! 3

ForQinQ Time, seconds A-4nee

FIGURE 8. EFFECT OF DIE QUENCHING ON FORGING-PRESSURE

REQUIREMENTS FOR A-286 (REF. Z6)
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Control of the cooling rate after forging is essential to avoid

cracking. The martensitic types are more susceptible to cracking

upon cooling than the other types due to the transformation to

martensite. General practice is to return sections thicker than 3

inches, and smaller intricate forgings, to the heating furnace for

equalizing at the forging temperature prior to cooling. Large sections

should be cooled slower than the thinner sections. This is sometimes

accomplished by covering the forgings with a thin steel sheet to pre-

vent drafts from hitting the part.

The heating of the precipitation-hardenable steels in a reducing

atmosphere should be avoided to prevent pickup of nitrogen or carbon.

Heating in an atmosphere of cracked ammonia should also be avoided.

An oxidizing atmosphere should be used for all heating. Although this

will result in some scale, the scale can be removed by pickling in a

nitric-hydrofluoric acid mixture or by grit blasting. In pickling for

the removal of scale, care should be taken to avoid intergranular cor-

rosion by limiting the time in the pickling solution. A part with high

residual stresses is susceptible to intergranular corrosion. When a

part is forged to final shape, it is best to remove scale by vapor blast-

ing. Before a billet is heated for forging, all carbonaceous lubricants

should be removed from its surface. The presence of foreign
4

materials can cause carburization of the material or nitrogen pickup.

Carburization or nitrogen pickup produces a more stable austenite.

The lubrication practices for the precipitation-hardenable stain-

less steels are the same as those used for the austenitic stainless

steels. The lubricant should be controlled by placing only a smooth,

thin coating on the billet to reduce surface-metal flow when forging

parts with thin webs. Large surface deformations that might occur in

some areas if the lubricant is not uniform will exaggerate rupturing

from the presence of delta ferrite on the surface.

Cold For_in_. No specific information on the cold-forge-

ability of precipitation-hardenable stainless steels has been found.

Based on forging experience with 18-8 grades of stainless steel, re-

ductions in the neighborhood of 20 per cent would be possible with the

semiaustenitic and austenitic alloys. Coining to close-dimensional

tolerances is possible because the soft auste'nitic structure of these

materials has a relatively low strength before final heat treatment.

The semiaustenitic steels, however, are susceptible to transforma-

tion from cold work. When these alloys are forged to final dimen-

sions, a growth factor of about 0. 004 inch per inch must be allowed
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for in the design of the dies. This growth occurs during final heat
treatment.

The martensitic types should not be cold forged due to the re-

duced ductility of the martensitic structure.

Forging Tolerances. The forging tolerance obtained depends

to some exterlt on the type of forging operation. When surfaces of a

forging are to be left without any machining, a closed-die type of

forging generally is used. With this type of forging, the size, com-

plexity, forging properties, and economy factors affect the dimen-

sional tolerances. Sharp fillets, wide thin webs, and high ribs, or

bosses are difficult to forge. A machining allowance must also be

considered when establishing the design and tolerances required.

Typical fillet radii and machining allowances for A-Z86 and 17-7 PH

are given below (Ref. 25):

Alloy

Fillet Radii, inch
Preferred Minimum

Machining Allowance, inch
Conventional Close Tolerance

A-Z86 1/2 to 3/4 1/4 to 3/8 0. 015 to 0. 06

17-7 PH 1/4 to 1/2 3/16 0. 015 to 0. 06 0. 015

The fillet radii values are for 1-inch-high ribs; corner radii can be

about half as large. The machining allowance is for each surface.

Such other factors as die-closure tolerance, draft-angle tolerance,

and dimensional tolerance should also be considered. The draft angles

and tolerances recommended by the ASM Committee on Drop Forgings
(Ref. Z7) are listed in Table VHI. The dimensional tolerances increase

with the area and the weight of the forging. Dimensional, mismatch,

and die-wear tolerances for steel forgings, which apply to the precipi-

tation-hardenable stainless steels, are given in Table IX. As the

tolerances build up on a forging, so does the excess weight and the

amount of material that must be removed by machining. Closer toler-

ances increase forging costs. The total effect on the cost of a finished

component depends on the material and machining costs as well as the

tooling costs. This is shown schematically in Figure 9 for a particular

lot size. Proceeding from a '%locker" forging to a precision forging

results in lower material and machining costs but increases the tooling

costs. Total cost for close-tolerance forging is generally lower but

increases for precision forging, depending on the cost of material and

the relative difficulty of forging and machining operations. The costs
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also depend, to a considerable extent, on the total production quantity

involved.

TABLE VIII. DRAFT AND DRAFT TOLERANCES FOR STEEL FORGINGS (REF. Z7)

Commercial Standard Special Standard

Height or Depth Draft, Tolerance Draft Tolerance
of Draft, in. deg Plus(a), deE deg Plus (a), deg

Outside Draft

I/4 to I/Z .... 3 Z

3/4 to 1 5 3 -- "-

Over I/Z, up to I .... 5 Z

Over I, up to 3 7 3 5 3
Over 3 7 4 7 3

Inside Draft

1/4 to 1 7 3 5 3
Over 1 10 3 10 3

(a) The minus tolerance is zero.

FIGURE 9.

Blocker

Tolerances

Conventional

Tolerances

Close

Tolerances

Precision

Tolerances

Relative. Cost

/
• /

SCHEMATIC DIAGRAM OF THE EFFECT OF

TOLERANCES ON THE COST OF

PRODUCING A FORGING (REF. Z6)
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TABLE IX. RECOMMENDED COMMERCIAL TOLERANCES FOR STEEL FORGINGS (REF. 25)

Forging Size Tolerance, inch

Area, sq in. Weight, lb Plus Minus Mismatch (Plus) Die Wear (Plus)

5.0 1.0 0.031 0.016

7.0 7.0 0.062 0.031

10.0 1.5 0.031 0.031

12.0 12.0 0.062 0.031

20.0 2.0 0.062 0.031

20.0 30.0 0.D62 0.031

0.016-0

0.016-0

0. 016-0

0. 010-0

0. 016-0 031

0.020-0 040

031

031

031

031

0.031

0.062

0.031

O. O62

0.062

O. O62

38.0 4.5 0.062 0.031 0.016-0.031 0.062

38.0 80.0 0.062 0.031 0.025-0.050 0.062

50.0 8.0 0.062 0.031 0.020-0.040 0.062

50.0 60.0 0.062 0.031 0.020-0.040 0.062

50.0 100.0 0.062 0.031 0.025-0.050 0.062

95.0 11.0 0.062 0.031 0.020-0.040 0.062

132.0 17.0 0.062 0.031 0.025-0.050 0.062

166.0 73.0 0.094 0.031 0.030-0.060 0.094

175.0 150.0 0.094 0.031 0.030-0.060 0.094

201.0 40.0 0.062 0.031 0.025-0.050 0.062

240.0 51.5 0.094 0.031 0.030-0.060 0.094

250.0 250.0 0.094 0.031 0.030-0.060 0.094

265.0 60.0 0.094 0.031 0.030-0.060 0.094

275.0 65.0 0.125 0.031 0.047-0.094 0.125

300.0 75.0 0.125 0.062 0.047-0.094 0.125

300.0 350.0 0.094 0.031 0.030-0.060 0.094

375.0 450.0 0.125 0.031 0.047-0.094 0.125

415.0 306.0 0.125 0.062 0.047-0.094 0.125

525.0 750.0 0.125 0.062 0.047-0.094 0.125

900.0 1000.0 0.125 0.062 0.047-0.094 0.125

Properties of Stainless Forgings. The properties ofpre-

cipitation-hardenable stainless steel forgings depend on the final

temperature of forging and reduction as well as the final heat treat-

merit given the materials. Many properties are obtainable by varia-

tions in the processing sequence. Some of the typical mechanical

properties obtained in several alloys after different heat treatments
are given in Table X.

Examples of Stainless Forgings. Some typical examples of

precipitation-hardenable stainless steel forgings are shown in

Figures 10 and 11. Figure 10 shoves a 17-4 PH forging after machin-

ing and heat treatment. The forging was obtained in the annealed
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FIGURE 10. FORGED 17-4 PH ARRESTING GEAR HOCK FOR THE RA5 AIRCRAFT 

Courtesy of North American Aviation, Inc., Columbus, Ohio. 

FIGURE 11. FORGED A-286 ARRESTING GEAR ARM FOR THE T2B 

Courtesy of North American Aviation, Inc., 
Columbus, Ohio. 

Material - A-286 
Weight - 41.2 Ib. 
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condition and machined prior to heat treatment. The arresting gear

arm shown in Figure ii was forged from A-286. It also was ma-

chined in the annealed condition and hardened after finishing. Both of

these parts were made from precipitation-hardenable stainless steel

because they are subjected to high temperature near the engine ex-

haust on jet aircraft. The corrosion resistance of the material is

also of advantage since they are heated and cooled in a salt-water

envir onment.

DRAWING

Drawing is a cold-working process in which the cross section of

a long workpiece is reduced by pulling it through a die. Semi-

finished shapes are cold drawn into rod_ wire, and tube products for

a variety of applications. Drawing is capable of producing products

with better finishes, closer tolerances, and thinner sections than hot-

working processes. Cold-drawn products made from precipitation-

hardenable stainless steels have a variety of applications. For in-

stance, helical, high-temperature compression springs are produced

from the 17-7 PH, PH 15-7 Mo, AM-350, andAM-355 alloys. The

limiting service temperature of these springs is I00 to 150 F higher

than that of Type 302 stainless steel springs, bringing their useful

operating temperature to within about 50 F of the more costiy Inconel

X-750 nickel-base alloy. Springs from these precipitation-hardening

alloys are not subject to hydrogen embrittlement after pickling, as

are the low-alloy steels or hardened standard stainless steels.

The 17-7 PH and the PH 15-7 Mo grades as well as Stainless W

are extensively used as fasteners for jet engines and other aircraft,

and missile applications where high strength and corrosion resistance

are important. Some of the alloys such as A-286, AM-350, 17-7 PH,

and PH 15-7 Mo are used as tubing for both hydraulic and deicing

systems on aircraft.

Rod and Wire Drawing. Introduction. Large-diameter rod

is cold drawn in straight lengths on a standard drawbench. Individual

bull blocks are used for drawing I/2 to l-inch-diameter rod. A block

is a drum, ordinarily driven by an individual motor, that pulls the rod

or wire through the die and produces a coil.

Hot-rolled wire rod approximately 0. 25 inch in diameter is an-

nealed and pickled prior to the start of cold drawing. The techniques

for drawirfg the precipitation-hardening stainless steels are very

simila'r to those used for the regular grades of stainless steels except

that intermediate annealing generally must be more frequent. This is
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because the precipitation-hardenable grades usually have higher work-

hardening rates. Where the regular stainless grades can be reduced

about 75 per cent in area between anneals, many of the precipitation-

hardenable grades must be annealed after a 50 per cent reduction (Ref.

28). Reductions per pass average about 20 per cent and the drawing

of hot-rolled rod is normally done on multiple-pass machines.

In-process annealing may be done in either a gas-fired furnace

or in a salt bath, and a typical annealing temperature for grades such

as AM-350 or AM-355 is 1900 F. Best drawing properties are ob-

tained with these grades by a duplex anneal consisting of (Ref. 28)

(a) Heating at 1425 F for 2 hours and air cooling

(b) Heating at 1100 F for 2 hours and air cooling.

An exception among the precipitation-hardenable stainless

steels, with regard to their high work-hardening rates, is Almar 362.

This maraging grade has a low work-hardening rate, and wire has

been drawn as much as 98 per cent without annealing (Ref. 29). Thus,

it can be processed by techniques used for the regular stainless

grades.

Coatings. A number of coating materials have been

used as carriers to facilitate lubrication during drawing (Ref. 30).

These include lead, lime, borax, and oxalate. Lead, applied by

dipping the cleaned wire into molten lead using a flux, has performed

well for many years. However, lead fumes are toxic and the need for

good ventilation has brought about a gradual shift to other coatings.

Lime coatings usually in conjunction with borax and other materials

are also used. The exalate coatings appear to have some advantages

over lime and lead because they are simple to apply and remove and

give a better surface to the finished product, especially when used in

a plug draw. These coatings are gaining acceptance especially by

spring manufacturers, one of the principal users of lead coatings.

Equipment. Rods and wires generally are pointed by

swaging. Drawing of the stainless steels is usually done on multiple-

die machines with dry-soap lubricants. Figure 12 shows schematic

drawings of two types of machines used to draw stainless steel wire

with dry lubricants. In the first type of machine, shown in Figure 12a,

the wire is drawn and stored on accumulator blocks before passing to

the next die. A single motor is used to drive all the blocks that

mechanically engage and disengage the main drive shaft. Capstans and

blocks usually are air cooled.
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The second type of machine as shown in Figure iZb, is

characterized by individual, variable-speed, direct-current motors

whose speeds are regulated by a dancer arm that controls the speed at

which the capstan revolves. Both air and water cooling is utilized with

this type equipment. Wires drawn to about 0. 050-inch diameter are

drawn with dry-soap lubricants.

Top View

Air cooled

Front View

o. Single-Motor, Accumulotor Block Type

Motor Doncer orm__

@'D" D
Copston J_ Copston _ Finish block

_-_"%._Oie box _ O_e box

Top View

Woter Air ond woter cooled_ I J I

Motor Motor Motor

© © ©
Front View

b. Individuol, Direct-Current, Vorioble-Speed Motor Type

FIGURE 1Z. SCHEMATIC DRAWINGS OF TWO TYPES OF

WIRE-DRAWING MACHINES (REF. 30)

Dies having i2-degree approach angles well blended into a

bearing of 25 to 50 per cent, which in turn is blended into a relief
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angle of 90 degrees, are used for drawing stainless steel rod and wire

(Ref. 30). For wire sizes smaller than about 0. 050-inch diameter,

wet-wire-drawing techniques are used. Figure 13 shows a schematic

drawing of one type of machine used with this practice. The wire is

first passed through a ripper die where it is drawn with a dry-soap

lubricant. The wire then is passed into the wire-drawing tub and is

alternately passed from one capstan through the die to the other

capstan and then back to the first capstan. The capstans either may

be stepped, as shown, or tapered. This cycle is repeated to achieve

the desired number of reductions. The drawing tub is filled with a

liquid lubricant, which may contain vegetable soaps and emulsions as

lubricants. After passing through the finish die, the wire is

straightened on the 'Killer" or straightener and then spooled.

Ripper die Drive chaff Finish block Killer

_!Die holder

Finish die

o. Top View

Ripo4r die D_ holcler Fini_ (lle .Finish

-:- -- I--|| i _l i I

b. Side View

block

FIGURE 13. SCHEMATIC DRAWING OF WET-WIRE-DRAWING

MACHINE (KEF. 30)

Both dry and wet lubricants may contain molybdenum disulfide

or other additives. Copper coatings frequently are used on wire "or

rod that is to be used for the cold heading of fasteners (bolts, rivets,

etc. ).

Figure 14 is a photograph of a versatile wire-drawing machine

designed to draw wire having a maximum diameter of 0. 037 inch either

wet or dry. The machine has a self-contained lubricant tank and pump

for circulating the liquid lubricants. Machines of this type, containing

up to about 20 dies, are available.
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FIGURE 14. EIGHT-DIE FINE-WIRE MACHINE 

Courtesy of the Vaughan Machinery 
Company, Cuyahoga Falls, Ohio. 

Proper t ies  of Drawn Wire and Rod. Tables XI,  XII, and 
XI11 give propert ies  of 1 7 - 7  PH, Almar 362, and AM-350 s ta inless  
steel wi re  in various d iameters  af ter  cold drawing, and after var ious 
aging treatments.  
developed in these alloys. 
the strengths that can be obtained in some of the other grades  of 
precipitation-hardenable stainless s tee l  wire .  

These data indicate the high strengths that can be 
These values a r e  considered typical of 

Table X I V  gives short-t ime tensile data for  1/8-inch-diameter 
wire of the AM-350 alloy a t  temperatures  f rom room to 850 F. 
v gradtial decrcasc ili SLLength occurs  with increasing tes t  temperature .  
However, the ductility of the wire  does not increase  with decreasing 
strength and increasing tes t  temperature  a s  might be expected. 

A 

Table X V  gives typical tensile strengths f o r  AM-350 and AM-355 
bar  stock when tempered af ter  drawing a t  800 to 1100 F. 
higher strengths a r e  shown for AM-355 than for  AM-350. 
strengths in each grade a r e  produced by tempering a t  850 F. 

Slightly 
Higher 
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TABLE XI. SPECIFICATION REQUIREMENTS FOR 17-7 PH STAINLESS STEEL WIRE (REF. 31)

Wire Diameter, inch Condition C(a), 1000 psi range Condition CH 900(b), 1000 psi range

O. 030-0.041_c,t_ 260-290 3'20-350

O.042-0.051 (c) 255-285 310-340

O. 052-0. 061(c) 250-280 305-335

O.062-0. 071 242-272 297-327

O.072-0.08.6 240-270 292-322

O.087-0.090 230-260 282-312

O.091-0.100 227-257 279-309

O. 101-0. 106 223-253 274-304

O. 107-0.130 221-251 272-302

O. 131-0. 138 215-245 260-290

O. 139-0. 146 213-243 258-288

O. 147-0.162 211-241 256-286

O.163-0. 180 209-239 254-284

O.181-0. 207 207-237 252-282

O.208-0.225 203-233 248-278

O.226-0. 306 198-228 242-272

O. 307 - O. 440 192 -222 235-265

(a) Solution treated and cold drawn.

(b) Cold-drawn wire (Condition C) heated at 900, 10 F for 1 hour and air cooled to room

temperature.

(c) Produced in coils only.

TABLE XII. TENSILE PRDPERTIES OF ALMAR 362 COLD-DRAWN WIRE CONTAINING 0.88 PER CENT

TITANIUM IN THREE DIAMETERS AGED AFTER DRAWING (REF. 29)

Ultimate

W ire Cold Aging Yield Strength Tensile Reduction

Diameter, Reduction, Treatment (0.2°]0 Offset), Strength, in Area,

inch per cent F Hours 1000 psi 1000 psi per cent

0.111 88

0.083 I0

0.009

75

89

80

None -- 165 185 20

800 4 210 225 25

850 4 215 230 30

900 4 210 225 45

950 4 205 220 40

None -- 131 136 70

900 4 192 194 58

900 4 196 202 47

900 4 201 205 50

None -- 210 235

800 1 256 257

850 1 250 251

900 1 250 250

950 1 240 240
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TABLE XIII. TENSII.E PROPERTIES OF I/8=INCII-I)IAMETER AM-350, COLD-DRAWN STAINLESS STEEL WIRE

AFTER VARIOUS AGING TREATMENTS (REF. 32)

Values are averages of triplicate tests.

Aging After

Annealing at Ultimate

Cold 1900 F Yield Strength Tensile Per Cent Elongation Reduction Modulus of

Reduction, Tenlp, Time, Hardn,'ss, (0. 2e/o Offset), Strength, in l/2-Inch in Area t Elasticity,

per cent F rain RC(a) 1000 psi 1000 psi Gage Length per cent 106 psi

30 None 44.5 200 227 15 49 28.4

50 None 47.5 249 275 13 46 29.3

70 None 52.5 321 338 11 47 28. 3

30 750 10 45.0 216 232 15 56 29,6

50 750 10 48.0 258 272 14 52 29.4

70 750 10 53.0 324 340 12 51 29.2

30 750 180 44.0 217 231 17 55 30.9

50 750 180 48,5 264 279 14 55 29.4

70 750 180 54.0 334 344 12 51 Z8.9

30 800 10 43.5 217 231 18 55 31.0

50 800 I0 48,0 256 271 15 56 29.4

70 800 10 53.0 330 339 11 52 29.0"

30 850 10 45.0 213 226 18 55 28.3

50 850 10 48.5 259 272 12 55 30.0

70 850 10 53.0 321 335 11 54 29.5

30 900 10 44.0 215 230 18 54 30.2

50 900 10 47.5 253 268 14 55 29.4

70 900 10 53.5 329 339 11 55 28.9

30 900 180 41.5 205 218 17 59 29.1

50 900 180 46.5 248 260 14 56 29,3

70 900 180 51.5 310 330 13 55 29.1

(a) Converted from R45 N readings.
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TABLE XIV. . ELEVATED-TEMPERATURE TENSILE PROPERTIES OF I/8-1NCH-DIAMETER COLD-DRAWN

AM-350 STAINLESS STEEL WIRE (REF. 32)

Wires aged for I0 minutes at 750 F alter drawing.

Test Yield Strength Ultimate Per Cent Elongation Reduction E|&stic

Cold Reduction Temperaturep Hardness, (0. 2_ Offset), Strengthp in I/2-Inch in Areap Modulusj

per cent F Rc(a) 1000 psi 1000 psi Gage Length per cent 106 psi

30 RT 45.0 216 232 15 56 29.6

50 RT 48.0 258 272 14 52 29.4

70 RT 53.0 324 340 12 51 29.2

30 200 42.0 201 216 8 48 29.1

50 200 50.0 245 266 3 40 28.5

70 200 54.0 305 319 -- 37 27.8

30 400 47.0 182 209 16 45 30.7

50 400 50.0 221 249 -- 39 27.2

70 400 54.0 295 309 -- 30 27.3

30 600 45.0 177 214 ll 39 26.6

50 600 49.0 221 252 l0 38 25.9

70 600 54.0 270 302 -- 28 27.3

30 650 47.0 172 208 15 40 26.0

50 650 48.0 223 248 -- 39 22.7

70 650 53.0 263 293 4 32 25.9

30 700 49.0 164 205 16 45 25.0

50 700 50.0 197 238 10 34 25.3

70 700 54.0 263 286 6 21 20.9

30 800 46.0 163 203 14 44 28.6

50 800 48.0 191 232 -- 39 25.3

70 800 41.0 226 274 -- 19 26.6

30 850 41.0 157 187 12 19 22.8

50 850 49.0 192 221 I1 39 25.3

70 850 55.0 221 262 -- 10 23.4

(a) Converted from R45 N readings.
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than by tempering at 1000 or 1100 F. The merits of vacuum melting

or inert-atmosphere melting of the AM-355 grade compared with air

melting are shown by both higher transverse strengths and higher

ductility value s.

TABLE XV. EFFECT OF TEMPERING TEMPERATURE ON ROOM-TEMPERATURE PROPERTIES

OF AM-350 AND AM-355 BAR STOCK (REF. 33)

Ultimate

Yield Strength Tensile Reduction

Tempering (0.2% Offset), Strength, Per Cent Elongation in Area, Hardness,

Temperature, F 1000 psi 1000 psi in 2-Inch Gage Length per cent RC

AM -350

850 162 198 15.0 49.0 47

I000 150 164 22.0 53.0 40

ii00 108 151 20.0 50.0 35

AM-355 {Lon_itudina_

850 182 216 19.0 38.5

i000 171 186 19.0 57.0

AM-355 (Transverse)

850(a) 185 220 II. 5 20.5

i000(a) 169 184 14.8 39.5

850(b) 168 207 5.3 7.6

(a) From bar stock that was consumable electrode remelted ill argon or vacuum.

(b) From bar stock that was arc melted in air atmosphere.

Table XVI gives typical tensile properties of AM-355 stainless

steel bar stock at temperatures up to 1000 F. These are short-time

properties and are not typical of the properties that might be attained

during long-time exposures at the test temperatures. Although both

yield and ultimate tensile strength drops with increasing temperature

of test, no corresponding increase in ductility is evident. The change
in reduction in area values also are not linear with variations in

testing temperature.

Tube Drawing. Tube drawing consists of reducing the
diameter or wall thickness, or both, of a hollow cylinder by using a

drawbench and suitable dies and lubricants. The tube blank can be

produced by (a) hot extrusion, (b) hot rolling and piercing a billet, or

(c) welding of a roll-formed strip or sheet. Figures 15a and 15b
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TABLE XVI. EFFECT OF TESTING TEMPERATURE ON THE TENSILE PROPERTIES OF AM-355

BAR STOCK(a) (REF. 33)

Ultimate Per Cent

Testing Tempering Yield Strength Tensile Elongation Reduction

Temperature, Temperature, 0.02% Offset, 0.2% Offset, Strength, in 2 Inch- in Area,

F F 1000 psi 1000 psi 1000 psi Gage Length per cent

70 850 142 182 216 19.0 38.5

I000 147 171 186 19.0 57.0

400 850 123 163 207 15.5 45.0

I000 128 152 166 16.0 59.5

600 850 ii0 152 210 11.5 35.5

I000 123 143 159 14.0 49.0

800 850 98 139 198 Ii.0 35.5

i000 107 128 140 15.0 53.5

I000 850 65 97 144 16.0 57.0

I000 70 96 115 19.0 65.0

A fran_

q
I...2- _**-" ....

O. Orowbqmch Using Plug

A freme

Bar Tube,, Die._

b. Drawbench Ueing Bar

FIGURE 15. SCHEMATIC DRAWING OF TUBE

DRAWBENCH (REF. 30)
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show a tube drawbench that uses a plug mandrel and a solid-bar

mandrel, respectively. Sometimes the tube is sized by drawing

through a die without a plug or mandrel supporting the inside

diameter. Such tube drawing is called tube sinking.

The tube blank is pointed by hot forging, rotary swaging, or

squeezing to permit passing the reduced end through the tungsten

carbide drawing die and grasping it with the gripper. As for bar and

wire drawing, oxalate coatings also have largely replaced lead coat-

ings. Often liquid lubricants such as chlorinated oils or greases are

used both in conjunction with coatings and without prior coatings.

Tubes of most grades of precipitation-hardenable stainless

steels cannot be reduced as heavily as the regular stainless steel

grades between anneals. All drawing lubricants and coatings must be

removed after drawing; this may be accomplished in an alkali cleaner

followed by rinsing and then pickling in nitric acid. Tubes may be

solution treated after drawing or they may be merely hardened by

precipitation treatments. Sometimes the tubes are both solution

treated and aged after tube drawing.

Table XVII lists available sizes of precipitation-hardenable

stainless steel mechanical aircraft tubing supplied by one producer.

Most of these high-strength tubes are available in straight lengths up

to Z4 feet. Many sizes are also available in coils. The AM-350 and

Almar 36Z grades also can be obtained in tube form. Table XVIII

gives tensile data on cold-drawn seamless Almar 36Z tubing after

various percentages of cold reduction prior to aging. Larger reduc-

tions produce higher strengths with only little decrease in ductility.

SECONDARY DEFORMATION PROCESSES

The primary wrought products (sheet, plate, bar, tubing,

extrusions) can be converted to more useful shapes by secondary

deformation processes. All of the conventional techniques used for

that purpose have been applied successfully to precipitation-harden-

able stainless steels. Descriptions of many of the common sheet- and

tube-forming processes and the limits imposed by the characteristics

of the materials of interest are covered in this section of the report.

The severity of deformation required to produce a part

depends on the relative shapes and dimensions of the blank or
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preform and the completed object. The properties of the workpiece

material determine whether the desired change in shape can be

accomplished successfully. Failures in forming are caused by rup-

ture, buckling, or a combination of these. Rupture results from lack

of ductility under imposed tensile stresses; excessive compressive

loading causes elastic or plastic buckling. Methods for predicting

the formability of sheet materials from their mechanical properties in

simple tests, were developed during an extensive study for the U.S.

Air Force by Ling-Temco-Vought, Incorporated (Refs. 34, 35). That

investigation indicated that failures in conventional-forming opera-

tions result from the mechanisms shown in Table XIX (Ref. 36).

The table also shows the mechanical properties found to correlate with

limiting deformations in different types of forming operations. Higher

values of the parameters indicate better formability. The mechanical

properties needed to calculate the formability parameters for a

particular material can be determined from tensile and compressive

tests conducted at the desired forming temperature. Other organiza-

tions are also investigating the correlations between standard

mechanical properties and the performance of materials in specific

forming operations. As information of this kind is collected and

systematized, it will become easier to predict the response of

metals to deformation processing.

The forming limits set by necking or splitting correlate with

ductility measurements in tensile tests. Deformation limits set by

buckling failures correlate with the ratios of elastic modulus to the

yield strength of the metal. Since changes in deformation tempera-

ture affect all of those mechanical properties, formability varies

with temperature. Unfortunately, the information needed for predict-

ing the effects of higher temperatures on formability are not

ordinarily available for many materials of interest.

Precipitation-hardenable stainless steels are generally

formed at room temperature. The exception to this rule are such

alloys as AM-350 and AM-355, which may undergo a phase change

during forming at room temperature. Warm forming of these alloys

at 300 F avoids this difficulty. Experiments at Ling-Temco-Vought

indicated that the ductility parameters for PH 15-7 Mo, AM-350,

and A-286 alloys are better in the temperature range from room

temperature to 500 F than at higher temperatures unless very high

temperatures around 2000 F are considered. The effects of higher

temperatures on the buckling parameters were variable but generally

favorable near 1000 F. The optimum deformation temperatures for

the splitting and buckling parameters are given in Table XX {Ref. 36).
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TABLE XIX. TYPES OF FAII,IIRES IN SHEET-FOR_MING PROCESSES AND MATER!AL PARAMETERS

CONTROLLING DEFORMATION LIMITS(a) (REF. 36)

Cause of Failure Ductilit_
Parameter( u )Process Splitting Buckling Buckling Parameters (c)

Brake forming x E in 0.25 in. (d)

Dimpling x ¢ in 2. 0 ill. (e)

Beading

Drop hammer x c in 0.5 ill. (d)

Rubber press x c in 2.0 in. (du)

Sheet stretching x ¢ ill 2. 0 in.

Joggling x x c ill 0. 02 ill, Ec/Scy

Liner stretching x X g ill 2. 0 ill. (f) Et/Sty

Trapped rubber, stretching x x c in 2.0 in. (g) Et/Sty

Trapped rubber, shrinking x Ec/Scv and 1/Scy

Roll forming x Et/Stl (h) and Ec/Scy (i)

Spiraling x Ec/Scy and Et/S u

Deep drawing x Ec/Scy and Sty/Scy

(a) The parameters call be determined in tensile and compressive tests.

(b) E indicates natural or logarithmic strain; the dimensions indicate the distance over which it

should be measured.

(c) Ec = modulus in compression; Et = modulus in tension; Scy = compressive yield strength;

Sty = tensile yield strength; S u = ultimate tensile strength.
(d) Corrected for lateral contraction.

(e) For a standard 40-degree dimple.

(f) The correlation varies with sheet thickness.

(g) The correlation is independent of sheet thickness.

(h) For roll forming heel-in sections.

(i) For roll forming heel-out sections.
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TA BLE XX. OPTIMUM DEFORMATION TEMPERATURES FOR SPLITTING AND

BUCKLING PARAMETERS OF PH 15-7 Mo, AM-350, AND A-286

(REF. 36)

.Oj_timum Deformation Temperature

Parameter (a) Temperature Range PH 15-7 Mo AM 350 A-286

E in 0.25 RT to 1000 F RT RT RT

1000 to 2000 F 1600 F 2000 F 2000 F

c in 2.0 RT to 1000 F 500 F 500 F RT

1000 to 2000 F Poorer 2000 F 2000 F

1/Scy RT to 1000 F 1000 F 1000 F 1000 F
1000 to 2000 F 2000 F 2000 F Poorer

(Ec/Sc¥) (Stv/Scv) RT to 1000 F 500 F 500 F 1000 F

1000 to 2000 F Poorer Poorer Poorer

Ec/Scy RT to 1000 F 1000 F 800 F 1000 F
1000 to 2000 F Poorer Poorer Poorer

Et/Sty RT to 1000 F 1000 F 1000 F 500 F
1000 to 2000 F 2000 F 2000 F 2000 F

Et/S u RT to 1000 F 1000 F 1000 F RT

1000 to 2000 F 2000 F 2000 F 2000 F

(a) Parameters defined in footnotes to Table XIX.

B LANK PREPARATION

Introduction. Blanks for deformation processes are

produced by cutting, preforming, or welding to the desired size and

shape. The size of the blank depends on whether the parts are to be

formed to final dimensions or trimmed after forming. Since the

practices suitable for preparing blanks for different types of metal-

forming operations bear many similarities, they are summarized in

this section. Some precautions necessary with precipitation-

hardenable stainless steels in processing are emphasized.

In general, techniques used for the preparation of blanks from

austenitic 300 series stainless steels may be used on the precipita-

tion-hardenable alloys. Most of the materials are prepared for form-

ing in the annealed or solution-treated condition. Scaling and growth

during heat treatment require some additional planning during blank
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preparation, and a knowledge of the forming and thermal-processing

sequence is needed prior to the preparation.

Layout of Blanks. When more than one part is to be

obtained from a sheet of material, the positioning of the blanks on the

sheet has a marked influence on the scrap loss. The amount of

blanking scrap generally is determined by the dimensions of the sheet

and blank_ the shape of the formed part, and the ingenuity of the lay-

out man. The choice of sheet dimensions can be important. The

normal procedure is to first determine the method of blank prepara-

tion and the clearance required around the blank. A pattern is then

made that includes allowance for growth, tooling, and trimming.

Several arrangements of the pattern on a sheet are then tried, and the

one requiring the least material is selected. The selection of the

sheet size may depend on ease of handling, scrap loss, or blank-

preparation method. Where a large or complex-shape blank is

required, it may be feasible and economical to weld smaller blanks

together to obtain the shape desired. This procedure can be carried

one step further by producing a preformed blank to reduce the amount

of forming required.

Shearing. Shearing is generally the most economical

method of blank preparation and_ therefore, is widely used. Conven-

tional shearing equipment suitable for the 300 series stainless steels

can be used with most precipitation-hardenable stainless steels in

either the annealed or solution-treated condition. Shearing the

material in a harder condition requires more force but may produce

a smoother sheared edge.

When thicknesses above 0. iZ5 inch are sheared, some diffi-

culty may be expected from edge roughness. This can be minimized

by using thick shear blades to minimize deflection. Heavy hold-down

pressures will also help maintain a smooth cut. The cutters should

be sharp and free of nicks to assure a smooth edge. Blades made

from W2 steel are considered satisfactory.

The shearing load required for the various

determined from the following formula (Ref. 37):

p = K(L x T x S)p
2000

where

alloys can be

P = total shearing load, tons

L = total cut length, inch (perimeter)
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T = material thickness, inch

S = shear strength of material (between 60 and 70 per

cent of ultimate strength)

p = per cent penetration (expressed as a decimall

_about 39 per cent)

K = factor for friction, dull tools, incorrect clearance

(K = 1.5 approximately).

The ultimate strengths for the various alloys and conditions of heat

treatment were given in Table I.

Blanking. Blanking is normally performed on a punch

press to produce a blank with the desired shape in one operation.

The precipitation-hardenable stainless steels are generally blanked

in the annealed or solution-treated condition required for subsequent

forming operations. Blanking techniques are widely used for

materials of 0. 125-inch thickness or less; heavier materials can be

blanked but the tool life is considerably less. The press size

required for blanking can be determined from the equation given for

shearing.

Dies for blanking precipitation-hardenable stainless steels

should be rigid and guide pins should be used to insure proper

alignment. This requirement becomes more important for thicker

sheet. Insufficient stiffness in the tooling causes die failure and

ragged edges on the blanks. The cutting edge of the tools must be

sharp and free of irregularities. The die clearance may vary between

5 and 8 per cent of the material thickness. The smaller clearance

will give a smoother edge but may result in problems in stripping the

material from the punch.

The tolerance obtainable in sheared blanks depends on the

shape and size of the blank as shown in Figure 16. The tolerance

may be improved by operations such as shaving or by using a new

blanking process known as fine-line blanking (Ref. 38). Shaving is

an extra operation involving the removal of a small amount of

material from the edge of the blank to remove the taper generally

associated with blanking and shearing operations (Ref. 37). Since

it is an extra operation_ this step is generally only warranted where

very, precise tolerances of ±0. 010 inch or less are required. The

fine-blanking process is capable of holding tolerances of m0. 001 inch

and of producing parts with a square edge (Ref. 38). The process
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requires the use of atriple-action hydraulic press_ which preloads
the material to be blanked before the blank is sheared from the
parent material.

'I 0.024
0.022

0.020

0.018
•E OD I 6
IE
__ 0.014
o

0012

E O.OlO
0.008

OD06

0.004

0.002
o

o 2 4 6 8 Io 12

Size of Blonk, Hole, or Opening, inches

FIGURE 16. EFFECT OF SIZE AND SHAPE OF BLANK

ON TOLERANCES (REF. 39)

The practical production tolerances for punching holes in

materials including the precipitation-hardenable stainless steels are

given in Table XXI. The tolerance for hole punching varies with the

thickness of the material and the size of the hole.

TABLEXXI. PRACTICAL PRODUCTION TOLERANCES

FOR PUNCIlED tlOLES (REF. 39)

Hole Diameter, in. Practical Tolerance, in.

Light Materials (Up to 0.031 In.)

tip to 1. 000

1 to10

10 to 20

Plus or nlinus O. 002

Plus or nlinus O. 005

Plus or Illinus 0. 010

Medium Thickness Xlatcrial (up to o. 1 o9 In. )

Up to 1 0. 005

Up to 10 0.012

Up to 20 0.02i_

l!favy Materials (1/8 In. Phls)

Up to I

Up to i0

tlp to 20

O. 01 ,%

O. 02/)

(). 03 _%
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Sawing. The precipitation-hardenable stainless steels

may be sawed by low- or high-speed {friction sawing} bands, and by
hacksawing methods. Many of the difficulties associated with

machining the precipitation-hardenable stainless steels are en-

countered in sawing. They include galling, work-hardening, and high

cutting temperatures. These difficulties are minimized by selecting

a high-quality machining tool, correct saw blade, saw pitch, feed,
lubricant and coolant, and cutting speed for the material and the
mate r ial thi ckne s s.

A comparison of various sawing methods used on stainless

steels is given in Table XXII, which lists the advantages and dis-

advantages of each process. Although there have been little data

published about the sawing of the precipitation-hardenable stainless

steels, their properties are similar to the 300 series stainless

steels. Suggestions on bandsaw blades used in cutting the Type 300

stainless steels are given in Table XXIII. Operational data including

saw speed and cutting rate for several thicknesses are given in

Table XXIV. Cutting rates for friction sawing stainless steel are

shown in Table XXV. For the same thickness of material the cutting
rate for friction sawing is approximately ten times faster than band

sawing because the heat generated from the friction cutting contin-
uously anneals the material ahead of the blade.

Hacksaws are normally used in cutting bar stock. When

using automatic-feed hacksaws for cutting precipitation-hardenable

stainless steels, between 40 and 50 strokes per minute with a feed

rate of 0. 003 inch per stroke should give satisfactory results.

Higher cutting speeds will generally result in shorter blade life.

Slitting and Hand Shearing. Slitting and hand shearing is

used to prepare long, narrow, thin blanks or to cut circles. When

contour changes are not too sharp, hand shearing may also be used

for irregularly shaped blanks. The hand process is generally
limited to 0. 040-inch-thick material or less in the annealed
condition.

Conventional slitting equipment has been used for preparing

precise, straight cuts in PH 15-7 Mo material. Cuts up to 20 feet

long have been made successfully by this technique. For best re-

sults, the equipment should be of rigid construction and the tooling
should be maintained in a sharp condition.
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TABLE XXIV. OPERATIONAL DATA FOR BAND SAWING STAINLESS STEEL (a' b) (REF. 40)

Speed, fpm Cutting

Thickness, Pitch, 303,416 Other Rate,

in. teeth/in. Stainless Steels Stainless Steels in.2/min

1/32 24-32 140 i00 2.5-4

1/16 18-24 140 i00 1-2.5

1/4 14 125 75 0.75-1.0

1/2 I0 II0 70

1 6-10 i00 60 0.5-0.75

3 and over 3-8 75 50 0.1-0.50

(a) Saw set = 0. 042-0.065, depending on saw width.

(b) Saw width = 3/16 to 1 inch, depending on a straight or radius cut.

TABLE XXV. SAW VELOCITY AND CUTTING RATES USED FOR

FRICTION SAWING STAINLESS STEELS (REF. 40)

Linear

Work Cutting

Thickness, Saw Pitch, Saw Velocity, Rate,

in. teeth/in, fpm ipm

1/16 18 3,000-7,000 120

i/8-3/16 14 3,000-7,000 75

1/4-7/16 10 6,000-i0,000 55-60

1/2-11/16 I0 9,000-13,500 15-30

3/4-15/16 I0 12,000-15,000 8-10

1 i0 12,000-15,000 6
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Routing. Routing is a process that uses a milling cutter

that is moved by hand to cut a stack of sheets to the desired contour.

The router follows a template with the desired pattern. Although

routing has been used successfully for preparing blanks fro_

aluminum_ the force required to hand feed a router in cutting

precipitation-hardenable stainless steels makes the process limited

in application.

Nibbling. Nibbling is a slow process usually restricted

to the preparation of a small number of blanks. It can be used to

produce irregularly shaped blanks_ but the edges generally require

smoothing if the blank will not be trimmed after forming. Short

tool life and high maintenance costs are normally associated with

this type of blank preparation. It has the same thickness limitations

as shearing.

Thermal Cutting. For cutting precipitation-hardenable

stainless steels thicker than i/4 inch_ a thermal-cutting process may

be more efficient than sawing, depending on the alloy and its condi-

tion. Such processes as carbon arc, iron-powder flame-cutting_

gas metal-arc, or plasma arc are more satisfactory than an acetylene

torch. Some specific data on powder cutting of stainless steels are

given in Table XXVI. Sometimes a wire instead of powder is fed to

the heated area in the gas metal-arc process. Curves for the rate

of cutting at various energy input levels and material thicknesses

are shown in Figure 17. Although these processes can be used for

cutting the precipitation-hardenable stainless steels less than 1/4

inch in thickness, they normally are applied to the thicker materials.

As the material thickness increases the thermal-cutting methods

become faster and less costly per linear cut than sawing. The

breakeven point on cost is about 1 inch.

As might be expected, the thermal-cutting processes cause

some grain growth near the face of the cut, and the cut surface is

relatively ragged and rough. They also may deplete this area of

some of the necessary age-hardening elements. Most of the heat-

affected area should be removed by grinding after cutting. The

rough surface is generally smoothed at the same time. Since grind-

ing is generally a slow handwork operation, the thermal processes

are used mainly for preparation of bar stock or plate shapes that are

to be subsequently machined or welded.

Edge Conditioning. The precipitation-hardenable stain-

less steels should be deburred to minimize damage to the forming

tools and to assure safety in handling. Most of the alloys are not
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TABLE XXVI. POWDER-CUTTING DATA FOR STAINLESS STEEL (REF. 41)

Steel

Thickness,

in.

Diameter of

Cutting Oxygen Cutting Gas Consumption, Powder

Oxygen Pressure, Speed, ft 3/hr Flow,

Orifice, in. psi ipm Oxygen Acetylene oz/min

Steel

Thickness,

in.

1/2 0.040 50 14 125 15 4 1/2

1 0.060 50 12 225 23 4 1

2 0.060 50 10 300 23 4 2

3 0.080 50 9 550 32 5 3

4 0.100 50 8 675 38 6 4

5 0.120 60 7 800 45 7 5

6 0.140 60 6 900 63 8 6

8 0.140 70 4 1000 63 8 8

10 0.160 75 3.5 1100 75 8 10

12 0.160 75 3 1200 75 8 12

d

r-

b--

"E

2.000

1.750

1.500

1.250

1.000

0,750

0.500

0.:>50

0

%,

Stainless

\
steel

IIII
Curve Arc,

omps

I IIII I
Arc, Wire Feed,

volts ipm

I 800 22.5 300
2 I000 ;)3.0 400

3 12 O0 23.5 450

4 1400 24,0 550

5 1600 25.0 700
6 1800 26.0 900

0 I0 50 I00 150 200

Cutting Speed, ipm

FIGURE 17. OPERATING DATA FOR CUTTING STAINLESS STEEL

WITH THE GAS METAL-ARC PROCESS (REF. 41)
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notch sensitive in the annealed or solution-treated condition, but

they may be susceptible to stress-corrosion cracking at the stress

risers. When the blanks are to be trimmed after forming, scratches

on the edge of the blanks are acceptable since they have very little

effect on formability. Sharp edges, however, should be removed

from the blank to prevent damage to the forming tools. The edges

of blanked holes and cut-outs as well as pilot holes should be de-

burred on both sides for maximum tool life.

Deburring and polishing can be done by draw filing or belt

grinding on blanks up to 0. 040 inch thick. For thicker sheet

materials, a grinding wheel or machining operation such as milling

should be considered.

Surface Preparation. Surface imperfections such as

scratches may act as stress risers and may cause stress-corrosion

cracking of the precipitation-hardenable alloys in service. Also a

surface layer contaminated by iron can cause the part to lose its

corrosion resistance.

It is a good practice to remove oil, grease, and other soluble

materials from the surfaces of blanks before heating them. There

are a number of cleaning processes that have been developed for the

precipitation-hardenable stainless steels. During forming opera-

tions, these consist of vapor degreasing or caustic degreasing. The

same type of operations are generally used before any thermal

treatment to reduce the possibility of nonuniform scale formation.

The removal of scale from material that has been thermally

treated is complicated by the possibility of intergranular corrosion

if strong pickling acids or prolonged pickling times are used. Some

companies prefer to"use mechanical methods of scale removal.

Blast cleaning with ironfree, clean shot or grit may be employed.

Traces of scale that may be left on the surface after mechanical

cleaning should be removed by brief exposure to warm 15 per cent

nitric - 3 per cent hydrofluoric acid bath. A pickling procedure that

has been used successfully on AM-355 strip is (Ref. 42):

After Annealing

15% HNO 3

3% HF

130 F temperature

3 minute s

After Tempering

15% HNO 3

3°70 HF

130 F temperature

1 minute
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The A-Z86 alloy, after solution treatment, has been descaled by a
two-stage treatment: (1) immersion in an oxidizing salt bath at
900 F followed by a 5-minute neutralization in a 20 per cent sulfuric
acid bath. (2) 35 to 40 per cent nitric acid - 4 per cent hydrofluoric
acid bath for Z0 minutes (Ref. 43).

Heat treatment of materials that have been cleaned and pro-
cessed in an inert atmosphere will often reduce the time required to
descale the material and in some cases may eliminate this step
entirely. Also protective coating materials are available that will
reduce the scale formation and make the scale that does form eas-
ier to remove. The suppliers of heat-treat materials should be con-
sulted for specific recommendations in this area.

BRAKE BENDING

Introduction. Brake forming is a simple, versatile form-

ing operation widely used for forming flat sheets into sections such

as angles, channels, and hats. The process uses inexpensive,

simple tooling that can be quickly adapted to different part shapes.

Brake forming is used mostly for making parts to wide tolerances

and for preforming operations on close-tolerance parts. Heavy-

wall welded pipe and tubing also is made by brake-forming tech-

niques. Handworking or sizing operations are usually required to

produce parts with closer dimensional tolerances.

The springback allowance for the annealed or solution-

treated, precipitation-hardenable stainless steel alloys is normally

less than 10 degrees. When the aged alloys are bent, the spring-

back may be as high as about 30 degrees. If the bend radii are suf-

ficiently large, no unusual problems are encountered.

Principles of Bending. In bending, the metal on the in-

side of the bend is compressed, or shrunk, while that on the outside

of the bend is stretched. This is shown in Figure 18 for two typical

brake-forming setups. In air bending, the workpiece is supported

only at its outer edges so that the length of the ram stroke deter-

mines the bend angle, 0_, of the part. The radius of the punch con-

trols the inside radius of the workpiece. In die bending, the sheet

is forced into a female-die cavity of the required part angle, c6.

The limiting span width, S, in Figure 18 depends on the

sheet thickness, T, and the punch radius, R. According to Wood

(Ref. 44), the practical limits for brake bending lie between:
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S = 3R + 2T and S = Z. IR + ZT (i)

Ram

G. Air 8ending (Ref' 52)

flemPvn©h

b. Die Bending (Ref. 52)

FIGURE 18. TYPICAL BRAKE-FORMING SETUPS AND

PARAME T ERS

Those variables and the bend angle control success or failure in bend-

ing. Larger radii are needed for thicker sheet and the ratio of R/T

should also be increased for larger bend angles. The limiting bend

angle and bend radius depend on the ability of the metal to stretch. If

the operation is too severe, the metal cracks on the outer surface of

the' b end.

Presses Used for Brake Forming. A press brake is a single-
r*

action press with a very long and narrow bed. Its chief purpose is to

form long, straight bends in pieces such as channels and corrugated

sheets.

Brake presses are commercially available having capacities rang-

ing from about 8 to 2000 tons. Figure 19 shows a typical brake press

having a capacity of 60 tons. For the bending of relatively thin sheet

metal, the press capacity can be relatively small and hand operated.

Table XXVII lists the capacities and other pertinent information

on brake presses available from one manufacturer.
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FIGURE 19. 60-TON MECHANICAL PRESS BRAKE 

Courtesy of Niagara Machine and Tool 
Works, Buffalo, New York. 

Tooling. F igure  20  shows a group of typical p ress -brake  
bending and forming dies (Ref. 45). The dies pictured include 90- 
degree and acute-angle forming dies (a  and b), gooseneck dies (c) ,  
offset dies (d), hemming dies (e  and f ) ,  seaming dies (g),  radius d ies  
(h), beading dies (i), curling dies ( j ) ,  tube- and pipe-forming dies 
(k and l), four-way die blocks (m), channel-forming dies (n), U-bend 
dies (o), box-forming dies (p),  corrugating dies (q) ,  multiple-bend 
dies ( r ) ,  and rocker-type dies (s ) .  

Materials used as dies  and punches for brake-press  forming the 

As a basic principle, 
precipitation-hardening s ta inless  s teels  a r e  generally the same  a s  
those used for the 300 s e r i e s  s ta inless  s teels .  
the larger  the differential in hardness  between the tooling and the 
workpiece, the grea te r  the res i s tance  to galling (Refs.  46, 47) .  
Brake-press  tooling i s  made f rom a var ie ty  of ma te r i a l s  and the 
choice of tooling for  a specific application depends on the s ize  of the 
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part, the number of parts to be formed_ and the complexity of the re-
quired bends. When only a small number (250 to I000) parts are re-
quired, cold-rolled steel often is used as a die material. Zinc-alloy
(Kirksite) tooling also may be used to produce small quantities of
parts (usually less than 50). Meehanite cast iron is used for punches
and dies at temperatures up to 1400 F.

When the quantity of parts to be produced is large (I, 000 to
10,000), punches and dies made of hardened carbon steel or low-alloy
steels such as SAE 3140 and 4340, tool steels such as H-II_ and
aluminum bronze are used intensively. In this connection, laboratory
tests indicate that hardened 17-4 PH stainless steel has excellent re-
sistance to galling when used against solution-treated 17-4 PH stain-
less steel and should prove to be an excellent die material (Ref. 47).
Chromium plating on the punches and dies and aluminum-bronze dies
are often used to minimize galling. For the production of very large
quantities of parts (over about I0,000)_ the extra cost involved in

using cemented carbide punches and dies may be warranted as a re-

sult of their durability. However_ the cemented carbides should not

generally be used in conjunction with lubricants containing sulfur and

chlorine because the nickel- or cobalt-alloy binder may be embrittled_

thus, causing the tool to crumble.

Sometimes beryllium copper is used for forming dies_ especially

for relatively short-production runs. This material can be precisely

cast to shape and for many applications requires no further machining.

Thus_ economy in die costs can be achieved over other methods and

materials.

Punches of any of the alloys are made to the desired bend radii.

The female die may be a V die or a channel die. For brake forming

at room temperature_ a hard-rubber insert sometimes is placed in

the channel die to avoid scratching the formed parts. The surface of

the punch must be free of defects such as nicks where it contacts the

blank.

In recent years_ urethane pads also have been used as universal

female dies for some brake-forming applications. Figure 21 shows

some press-brake dies in which urethane has been used. These dies

are most useful where set-up time_ flexibility_ and prevention of

scratching and marring of parts are important factors. Only the

punch needs to be machined for each separate application since the

urethane behaves like a solid liquid under the confined conditions.
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FIGURE 20. TYPICAL PRESS-BRAKE-BENDING AND

FORMING DIES (REF. 45)

Derived or adapted from the Verson

Allsteel Press Company_ Chicago_

Illinois (a_ f_ g_ h_ i_ k_ i_ n_ o_ q_ r_ s);

The Cincinnati Shaper Company_

Cincinnati_ Ohio (b_ d_ m_ p); and Dreis and

Krump Manufacturing Company_ Chicago_

Illinois (e_j). Courtesy of American Society

of Tool and l_anufacturing Engineers.
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FIGURE Z i. PRESS-BRAKE DIES USING URETHANE AS THE

LOWER DIE (REF. 44)

Courtesy of the American Society of Tool and

Manufacturing Engineers.
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Figure 21 shows the following press-brake applications of ure-

thane dies: V- and U-forming applications (a, b, and c); radius-

forming applications (d); forming with gooseneck punches (e and f),

forming reverse bends (g), and contour forming with concave areas

(h). For these latter applications, the lighter the sheet thickness, the

sharper the definition.

Bendin$. Procedures. Blanks of the precipitation-hardenable

stainless steels for bending on a press brake are prepared by methods

described in the section on blank preparation. Normally these alloys

are bent in the annealed {solution treated) condition at room temper-

ature. Some of the alloys, notably AM-350 in the annealed condition,

can be more severely formed at 300 F than at room temperature be-

cause little or no martensite formation occurs.

The precipitation-hardenable stainless steels usually require lub-

rication to insure good die life and good surface finishes. For mild-

forming operations, polar lubricants such as castor oil, lard oil, and

sperm oil may be used. Severe deformations require the use of

surface-active compounds such as sulfurized or sulfochlorinated min-

eral oils and paraffins, and metallic soaps. These can be pigmented

or diluted with neutral thinning oils as required. If parts are to be

heat treated after bending, care must be taken to completely remove

oil and other contaminants prior to heat treating. Their presence

would result in carburization on the surface of the part and affect the

hardening response. Cleaning may be accomplished with a suitable

solvent or, more thoroughly,, with a vapor degreaser or alkaline

cleanser after forming.

Bending Limits. Failures in bending always occur by split-

ting in the outer fibers. Through the years, minimum bend radii have

usually been determined by trial and error using the experience gained

from similar materials as guidelines. More recently, a number of

engineering methods have been developed for predicting the minimum

radius to which a material may be bent without fracture (Refs. 44, 48).

These methods usually are based on the assumption that the material

is bent in plane strain and that the strain at which a workpiece splits

in bending is equal to that strain at fracture in a tensile specimen.

The natural or logarithmic strain in the outer fiber of a bent structure

is

E (Z)
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wh e I_e

T = thickness, inches

R = inner bend radius

In tensile tests

• inches.

100

E = in 100' A R ' (3)

where

A R = reduction in area expressed in per cent.

Datsko and Yang (Ref. 48) showed that the minimum bend radii for

various materials could be predicted fairly accurately by the following
r elationships:

Rmin 5 0

T = AR 1 (for A R < 20) (4)

Rmi n (100 - AR) 2

= 200 - AR2 (for A R > 20)
(s)

The differences between Equations (4) and (5) arose from taking into

account a displacement of the neutral axis during bending. Datsko

(Ref. 48) considered the displacement to be significant in materials

exhibiting large reduction-in-area values. The equations may be used

to estimate minimum safe bending radii from tensile-property data

found in handbooks. It is safer, of course, to determine the values on

materials of interest on flat specimens.

Wood and his associates (Ref. 44) determined the limiting tensile

strain by measuring the elongation in a gage length of 0.25 inch and

correcting it for width strain. This is equivalent to the strain based

on reduction-in-area values for biaxial stress, but is affected by

specimen geometry. To use their approach, tension tests are made

on specimens marked with a grid of 1/4-inch squares. Then the

data are used for the equations given in Table XXVLII to construct a

formability diagram like that shown in Figure 22. Their analysis

takes bend angle as well as critical bend radius into account.

Figure 22 is based on a material with a corrected limiting plane-strain

value of E = 0.4. The curve would move to the right for materials ex-

hibiting better ductility in plane-strain tensile tests.
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FIGURE 23. COMPOSITE BRAKE-BEND-LIMIT CURVES FOR FOUR PRECIPITATION-

HARDENABLE STAINLESS STEEL ALLOYS (REFS. 33, 34)
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TABLE XXVIII. EQUATIONS FOR CONSTRUCTING SPLITTING-LIMIT

DIAGRAMS FOR BRAKE FORMING (REF. 44)

Terms:

R=

T=

e --

4=

o=

Equations:

where

radius of punch or inside of bend

thickness of workpiece

base of naturallogarithms, or 2. 718

part angle

part angle where curve reaches a maximum; further bending does not increase

strain (see Figure 2Z)

angle of interest ranging from 0 to 180 degrees

corrected value of maximum strain based on O. Z5-inch gage length.

' 90 deg • (I0)
II.4 - 2.718 zE - I) -I

R/T = 1/(z. 718) zE - 1

where

c_<_

R/T = 0.5 [R/T from Equation (6)] [ 1 + Sin (O- 90 deg)]

11.4 - R/T from Equation (6)
(_ = .,

O. 0845

&=0 _b
180 deg

Figure 23 shows such curves for four precipitation-hardenable

stainless steels. These curves were drawn on the basis of tests

ranging from room temperature to Z000 F. The experimental data

also are shown in Table XXIX (Refs. 33, 34). All of the alloys appear

to bend equally well when tested longitudinally or transverse at room

temperature to the rolling direction of the sheet. The A-286 alloy

was the most easily bent at room temperature and the PH 15-7 Mo

alloy was difficult to bend. The AM-350 grade was more difficult

to bend at 1000 F than at room temperature, because precipitation

occurred when the alloy was heated to 1000 F. The three alloys,

PH 15-7 Mo, A-286, and AM-350, were all easier to bend at 1500 F

than at room temperature, apparently having overaged and softened
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when heated. Still less bending effort was required in bending the

A-286 and AM-350 alloys at 2000 F. However, the difficulties in ob-

taining tooling that will withstand these high temperatures is usually

not worth the effort since most of the precipitation-hardenable-

stainless steels can readily be bent at room temperature or slightly

elevated temperatures such as 300 F.

T_BLE XXIX. BRAKE-BENDING LIMITS FOR SELECTED PRECIPlTATION-HARDENABLE

STAINLESS STEELS (REFS. 33, 34)

Critical Critical

Grain Bending Bend Bend Bend Limits, R/T,

Direction, Temperature, Angle, c_, Limits, for Various An_les, a, Below Critical

Alloy L/T F degrees R/T 30 45 60 75 90 105 120

17-7 PH L/T RT IZZ 0.80 0. I0 0.2g 0.37 0.54 0.66 0.75 0.79

PH 15-7 Mo L/T RT IZl 0.86 0. II 0.23 0.4g 0.60 0. 7g 0.80 0.84

PH 15-7 Mo L 1500 126 0.65 0.05 0.08 0. 12 0.20 0.38 0.55 0.63

AM-350 L/T RT IZZ 0.80 0.10 0. ZZ 0.37 0.54 0.66 0.75 0.79

AM-350 L 1000 lZ3 1.03 0.1g 0.Z0 0.33 0.48 0.68 0.90 1.03

AM-350 L 1500 131 0.35 0.02 0.03 0.04 0.07 0.15 0. g8 0.35

AM-350 L Z000 135 0. Z6 0.01 0.0Z 0.04 0.12 0.17 0.22 0. P4

A-286 L/T RT 124 0.66 0.07 0. 15 0.29 0.43 0.54 0.6Z 0.65

A-Z86 L 1500 Ig8 0.60 0.04 0.06 0. I0 0. 20 0. 38 0.52 0.59

A-Z86 L 2000 128 0.3g 0.04 0,07 0. IZ 0.18 0.24 0.28 0.31

In addition to the data of Wood et al. , given in Table XXIX, other

data in the literature on minimum radii for bending the precipitation-

hardenable stainless steels are shown in Figure 30.

The PH 15-7 Mo stainless steel was reported to have better over-

all bending characteristics than either the 17-7 PH or the AM-355

alloys in one experimental investigation {iKef. 49). Edge roughness

does not noticeably affect bending results obtained with the 17-7 PH,

PH 15-7 Mo, AM-355, or A-286 stainless steels in laboratory

tests (Refs. 49, 50).

The data in Table XXX show that the A-286 alloy can be bent at

room temperature a little more easily than 17-7 PH, PH 15-7 Mo,

AM-350, and AM-355. This observation is especially true for the

solution-treated and aged condition. Most difficult of the five stain-

less steels considered with regard to bendability is the PH 15-7 Mo

alloy.

The values of bend radii most useful to design people are the de-

sign bend radii, not the minimum bend radii. Values for design radii

used by two aircraft manufacturers for four of these precipitation-

hardenable stainless steels are shown in Table XXXI. In the
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"FABLE XXXI. DESIGN STANDARD BEND RADII USED FOR BRAKE FORMING

17-7 l'I-[ (S'FA)(a) 17-7 PH AM-350 AM-355 PH 15-7 Mo 17-7 PH

Tolerance {ST)( a ) {ST){b) IST)(b) isr)(b) (ST) (b___)
Sb_'rt Bend Bend in Bend Bend Bend Bend Bend Bend Bend

'l'lm kn(.ss, l/adius_ Factor, Radius, Radius, Factor_ Factor, Factor_ Factor, Factor,

T, in. in. R/T(c) in. in. R/T( c ) R/T( c ) R/T( c ) R/TIC) R/TiC)

0.012 0. 13 11.0 s0.03 0.03 2.5

0.016 0. 13 8.0 s0.03 0.03 1.9

O. OgO O. 16 8.0 ±0.03 0.06 3.0

0. o2% 0. 16 6. 4 s0. 03 0. 06 2. 4

O. 0 _d O. 25 7. 8 ±0. 03 O. 06 1. 9

O. (I 36 O. 25 7. 0 sO. 03 O. 09 2. 5

O. O,tO O. 31 7. 8 4-0. 06 0. 09 2. 25

0.045 O. 14 7.6 sD. 06 0.09 2.0

o. o50 O. 38 7. 6 sO. 06 O. 13 2. 6

I). 056 O. 47 8. 4 sO. 06 O. 13 2. 3

o. 06 _, O. 50 8. 0 sO. 06 O. 13 2. 0

0.071 O. 56 8.0 ±0.09 O. 16 2.25

0. (180 0. 6 _, 8.0 ±0.09 0. 16 2.0

o. 090 o. 75 8. _ ±0. 09 0. 19 2. 1

I1. 100 ...... O. 22 2. 2

0. 112 ...... 0.22 1.96

(1. 125 ...... O. 25 2. 0

o. 1.t(/ ...... O. 28 2.0

(I. 160 ...... 0. 34 2. 1

/1. 180 ...... 0. 38 2. 1

O. 190 ...... 0. 38 2. 0

2{ d) g(d) 11d) 2{d)

(a) Matrrial and Condition; McDonnell Aircraft Corporation, St. Louis_ Missouri, Design Handbook section on
"Standard Bend Radii", Code No. 76301, 6M39.

(b) Malcrial and Condition; "Sheet metal and Extrusion Standard Detail", Lazaroff, S. T. _ North American

A_iation, Ira., Columbus, Ohio, Specification No. HA012-002 (April 8, 1964) (RSIC 0491).

(c} To oblain bend radius, Multiply P,/T value in table by thickness.

(d) Inditah,d brim fittlor used for all thicknesses of sheet.

annealed condition, a design-bend-radius value of about 2T appears

satisfactory. In the age-hardened condition, the 17-7 PH alioy has a

design bend radius that ranges for the instance cited in Table XXXI,

from bend factors of about 6. 5 to 11. 0.

Springback. The annealed (solution treated)

precipitation-hardenable stainless steels show much less springback

than the same alloys in the solution-treated and aged condition as

shown in Figure 30. Lowest springback among the aged alloys is

shown for the A-286 alioy; highest for the PH 15-7 Mo alloy.

In production operations, an allowance for springback can be

made by overbending and then permitting the bend to return to the de-

sired angle. Handworking operations may be empioyed to produce

exact shapes. Hot-forming methods are not used much with these

alloys because they are hardened by precipitation during heating.

However_ a method of clamping the alloys during transformation is

being used and this will be discussed in more detail in the hot-sizing

section of this report.
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Figure 24 illustrates the brake forming of a bead in AM-355 CRT

flat stock. Using a laminated punch as shown, beads in sheet thick-

nesses up to 0.014 inch were successfully formed. Figure 25 shows

a brake-formed bead in an AM-355 CRT hat section. The hat section

was brake formed using a die layout template. The following two-

stage operation was used to form the beads:

(I) Two open-angle bends were preformed into the part.

The bends are located on the centerlines of the beads.

(z) Beads were finish formed by placing a length of drill

rod into the preformed angle and bottoming in the female

die using a flat punch.

Post-Forming Treatments. The usual requirements for post-

forming operations might include deburring; thorough cleaning by

vapor degreasing, and alkaline-cleaning methods; visual or penetrant

inspection for cracks; shearing length or width when required; and

pickling_ washing_ protective wrapping_ and identifying. Often the

parts also are annealed after the final bending operation.

Sometimes parts are aged after they have been formed in the

solution-treated condition to obtain the desired strength properties.

Such aging is done usually above 850 F and generally is followed by

suitable pickling, washing, and wrapping of parts. Since most of the

precipitation-hardenable stainless steels work harden to a greater ex-

tent than the austenitic stainless steels, intermediate anneals may be

required especially if the final part shape requires extensive bending.

These anneals are accomplished by heating in air at the solution-

treating temperature to restore full ductility to the part. Such anneals

must usually be followed by a pickling treatment to remove the scale

that formed during the anneal.

If the dimensions and accuracy of the finished piece make the

final anneal impractical, the following alternative procedure may

be used:

(I) Form to as near completion as possible, preferably a

minimum of 90 per cent of the finished shape

(2) Anneal at the solution-treating temperature

(3) Pickle

(4) Perform final sizing operations.
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FIGURE 24. BRAKE FORMING A BEAD IN AM-350 CRT FLAT STOCK 

Courtesy of The Boeing Airplane Company, Seattle, 
Washington. 

FIGURE 25. DRAKE-FORhlED BEAD IN 
A N  AN-355 CRr I IAT 
SEC'rlo 

Courtesy of Thc Boeing 
Airplane Company, 
Seattle, Washington. 
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DEEP DRAWING

Introduction. Deep drawing is a process used to produce

cylindrical or prismatic cups_ with or without a flange on the open

end, from sheet metal. Cups or tubes can be sunk or redrawn to

increase their length and to reduce their lateral dimensions. The

drawing stresses result principally from the action of the punch on

the central section of the blank. If the ratios of the blank diameter to

sheet thickness and punch diameter are sufficiently small, the metal

will draw in around the punch without buckling. Under such conditions,

and by using other expedients, sheet metals can be deep drawn in

single-action presses. Double-action presses, however, are used

more commonly. They apply pressure on a blank holder to prevent

buckling the flange.

The deep-drawing process is well suited to producing large

numbers of identical, deeply recessed parts. Precise tooling and

carefully controlled forming conditions must be used to insure suc-

cessful operations. The expense of setting up suitable equipment and

procedures usually limits economical operations to rather large lots,

over 500 pieces.

Precipitation-hardenable stainless steels normally are deep

drawn at room temperature. Cups, domes, cones, and boxes are

produced by deep drawing.

Presses for Deep Drawing. Both mechanical and hydraulic

presses are used for deep drawing. The punch speed and the force

available on a mechanical press ordinarily varies during the stroke.

Furthermore, it is more difficult to provide a controlled blank-holder

pressure on mechanical presses than on hydraulic presses. For

these reasons, the use of mechanical presses is normally restricted

to shallow parts where the depth of draw is 5 inches or less.

Hydraulic presses operate at lower punch speeds than mechanical

presses. This is sometimes an advantage in deep drawing depending

on the particular alloy. Hydraulic presses for drawing operations

are generally equipped with a die cushion that is operated hydrauli-

cally. The hold-down pressure on the blank holder is normally preset

to remain constant during the drawing operation, although auxiliary

pumps are sometimes used to vary the pressure during the stroke.
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The blank holder must  be constructed and adjusted to  allow the 
metal  to thicken a s  the edge of the blank moves radially toward the 
punch. The p r e s s u r e  needed to prevent wrinkling in the flange i s  of 
the o rde r  of 1-1 /4  pe r  cent of the ultimate strength of the workpiece 
material .  This p re s su re ,  ranging f rom 500 to 2500 psi  for  
precipitation-hardenable stainless s teels  in the annealed condition, is 
exerted on the a r e a  of the blank holder in contact with the blank. 
normally r a i s e s  the drawing load by about 20 per  cent. 
p re s su re  can be applied to  the blank holder by air or hydraulic 
cushions o r  springs.  
action p res ses .  

It 
The hold-down 

Devices for this purpose can be added to single- 

P r e s s e s  a r e  available in various s izes  for deep drawing par t s  as 
small  a s  cooking utensils and a s  l a rge  a s  automobile roofs. 
character is t ics  of a few commercial  p re s ses  used for  typical opera-  
tions a r e  indicated in Table XXXII. 
hydraulic p r e s s  equipped with a 600-ton die cushion used in forming 
sinks f rom stainless  steel .  

The 

F igure  26  shows an 800-ton 

FIGURE 26. 800-'I'ON PRESS EQUIPPED WITH A 600-TON DIE CUSHION USED FOR 
DRAWING STAINLESS STEEL SINKS 

Courtesy of The Hydraulic Press Manufacturing Company, Mt. Gilead, 
Ohio. 
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TABLE XXXII. CHARACTERISTICS OF TYPICAL DEEP-DRAWING PRESSES

Manufacturer Platen Size, in. Tonnage

E. W. Bliss Company Mechanical single-action 24 x 24 100

air die cushion 120 x 72 1200

The Hydraulic Press

Manufacturing Company

Mechanical double-action 24 x 24 100

toggle press 120 x 72 1200

Hydraulic triple- or single-

action with die cushion

36 x 36 150

36 x 36 300

60 x 48 400

60 x 60 800

60 x 60 I000

72 x 72 2000

Notes:

(1) Most draw presses are single action with a die cushion. Some may require the use of an ejector

for part removal.

(2) Increased platen area is generally coincident with increased press tonnage.

(3) Mechanical presses are more adaptable to high-speed and automated operation. They are also

more difficult to control and tool up.

(4) Additional sizes and tomaages of presses are available, and the manufacturers should be consulted

for specific requirements.

The maximum load in drawing a blank is normally reached when

the flange has decreased in diameter by about 15 per cent or when

the punch travei is about one-third complete. The maximum drawing

load can be estimated from the following formula (Ref. 54):

P = d T STr (C - 1 + D/d) (11)

where

P = punch load, pounds

D = blank diameter, inch

d = punch diameter, inch

T = blank thickness, inch

S = maximum stress in metal, psi

C = an empirical constant to take bending and biank hoIding loads

into account; approximate 0. 35 for precipitation-hardenable

stainless steels.
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FIGURE 27. TYPES OF DEEP-DRAWING OPERATIONS (REF. 55)

84



Tooling for  Deep Drawing. The design of the tooling used in 
deep drawing depends on the type of p r e s s  to be used. 
typical tooling arrangements  for  drawing or redrawing a r e  shown in 
F igure  27. In the s implest  t e rms  the tooling consists of three par ts :  
the die, punch, and hold-down ring. The punch may be attached to the 
ram or ,  in inverted drawing operations, to  the base platen. The die 
will be attached to the p r e s s  member  opposite to the punch. The hold- 
down ring would be attached to  the die cushion in an  inverted operation 
by means of pusher rods o r  might be connected direct ly  to a die 
cushion that can pull down instead of push. 
an air-operated die cushion might be used o r  the hold-down ring might 
be attached to the ram and spring loaded as  shown in Figure 28. When 
the depth of draw to the blank-diameter ratio i s  small, i t  is sometimes 
possible to f o r m  without the use of a hold-down ring. 

Some of the 

In single-action p res ses ,  

FIGURE 28. 800-TON PRESS EQUIPPED WITH SPRING- 
LOADED DIE CUSHION USED FOR DRAWING 
52-INCH-DIAMETER ALUMINUM DOMES 

Courtesy of E.  W. Bl iss  Company, Canton, 
Ohio 
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Although not widely used in production operations, there are two

alternative methods for preventing wrinkling without supplying con-

trolled pressures to the hold-down ring. A rigid blank holder with a

flat surface is the simplest type of hold-down ring. It requires care-

ful adjustment of the gap between the die and the hold-down surface

to allow for thickening as the blank is drawn and to prevent wrinkling.

The drawing load is increased when the gap is either too small or too

large. According to Sachs (Ref. 56), the gap should be Z5 to 50 per

cent smaller than the thickness developed as the edge of the flange

moves from its origin to final position. This amount of thickening is

given by the equation

T/T1 = D/D 1 (IZ)

where

T = blank thickness

T I = thickness of the flange during drawing

D = blank diameter

D 1 = diameter at the edge of flange or the mean diameter of

cups drawn without a flange.

The difficulty of adjusting rigid blank holders can be avoided by taper-

ing the hold-down surface. The taper, which is not very critical, can

be based on Equation (ig). Experiments indicate that conical blank

holders result in lower drawing loads than other types (Ref. 56).

A number of tooling materials have been used for deep drawing

p recipitation-hardenable stainless steels at room temperature. Alloy

tool steels are normally used for the dies in deep drawing the PH

steels. Some of the steels that have been used include 3C-ICr-iMo-

iZV composition heat treated to 64-66 RC, and high-carbon higl/-

chromium die steel heat treated to 60-62 R C (Ref. 57). Cast-iron

dies have been used for small-production runs while cemented carbide

dies may be used for large-production quantities.

Clearances between the punch and die must be controlled to pre-

vent galling, rupture, or buckling in the cup wall. The selection of

the clearance between the punch and draw ring depends to some extent

on the dimensional requirements of the part. If the clearance is

larger than the amount of thickening predicted by the preceding
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equation_ the cupped part will not be in contact with both the punch

and the die. This permits a minimum drawing load but results in a

part with a variable wall thickness. If the clearance is smaller than

necessary to accommodate the thickening in the upper part of the cup_

some ironing or wall thinning will occur. Severe ironing increases

drawing loads. Clearances for deep drawing precipitation-hardenable

stainless steels should be about the material thickness of the blank

plus 40 to45 per cent of this thickness (Ref. 58). These alloys gen-

erally possess higher physical properties than drawing-quality steel

and have greater resistance to wall thinning.

The radii on the draw ring and nose of the punch are important in

severe drawing operations because they affect the stress required for

bending. If the punch radius is too small, the metal will thin, neck_

and rupture near the bottom of the cup. Radii slightly larger than the

minimum allowed for bending will permit shallow draws. Larger

radii permit parts to be formed with larger flanges or to deeper

depths. In general, the radius on the draw ring should be four to

eight times the thickness of the metal {Ref. 58). Excessively large

radii, in excess of about l0 T, may cause the parts to pucker. For

severe operations, the punch radius should exceed four times the

sheet thickness. When multiple-stage drawing is to be performed_

large draw-ring radii should be used on the initial die stages. The

radius can be reduced on the final stages until the desired radius is

obtained.

Techniques for Deep Drawing. The techniques used in deep

drawing depend on the type of equipment available and the shape of the

part to be produced. Shallow parts of cylindrical shape are the

easiest to produce; as the complexity of shape and depth of draw in-

crease so does the difficulty in setting up and producing the parts in-

crease. In most drawing operations, compressive stresses in the

circumferential direction tend to buckle or wrinkle the rim of the

blank. Shallow wrinkles should be prevented from forming by adjust-

ing the force on the hold-down ring. Attempts to iron out wrinkles

should be avoided due to the rapid work hardening of the metal. For

the large-production runs on a single-action press_ the clamping force

may be applied by means of springs. Where production runs are

smaller_ or a number of different size parts are to be made on the

same equipment_ it is better to have a readily adjustable hold-down

force. This is a desirable feature when variations in thicknesses and

properties of sheet material might be expected. The operator can re-

adjust the machine settings to accommodate the variations and reduce

the amount of scrap. The double-action press is more versatile with
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respect to adjustment of operating conditions, but may be more ex-

pensive to tool up.

Some parts may be deep drawn in one stroke of the press, others

require a number of operations in different dies. There is a limit,

even with intermediate anneals, on how far a part can be reduced in

one set of dies. The general practice is to take a smaller reduction

in redrawing operations than that used for the previous operation. A

35 to 40 per cent diameter reduction on cupping should be reduced to

15 to 25 per cent on redraw.

The depth to which the precipitation-hardenable stainless steels

can be drawn for making rectangular shapes in one press stroke is

a function of the corner radius and part dimensions. The corner

radius should exceed I0 per cent of the minimum part dimension

(Ref. 58). The depth of draw for precipitation-hardenable stainless

steels should be limited to two to five times the corner radius. Such

factors as the shape of the part, whether it has straight or tapered

sides, and the thickness of material affect the limiting depth of draw.

As the sheet thickness decreases below 0. 050 inch, the permissible

depth also decreases.

The draw-ring radius should be more generous for drawing

rectangular shapes than for cylindrical shapes. A factor of five to

seven times the thickness of the material should be used.

Rectangular shapes can be redrawn to sharpen the corners or to

stretch out wrinkles along the sides. When the depth of draw is

greater than that possible in one operation, it is sometimes possible

to draw about two-thirds of the depth in the first pass, anneal the

part, and complete the part in the same die. This practice is also

used to avoid wrinkling.

Due to the rapid work-hardening rate of the precipitation-

hardenable stainless steels a low drawing speed should be used.

Speeds from 10 to 20 feet per minute should be satisfactory for PH

15-7 Mo and 17-7 PH. The speed may be lower or higher for the

other precipitation-hardenable stainless steels depending on their

rate of work hardening and sensitivity to strain rate. The austenitic

types such as A-Z86 can probably be formed at a higher speed while

the martensitic types like 17-4 PH and Almar 362. should be drawn

at a lower speed.
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Lubrication of the blanks in deep drawing is necessary to obtain

maximum drawability. Lubricants minimize the energy required to

overcome friction between the blank and the tooling and reduce the

possibility of galling or seizing.

A heavy bodied or mineral oil of the chlorinated or sulfurized

type should be used for heavy press work (Ref. 58}. For light pres-

sure forming, light oils and soap solutions may be used. The lubri-

cants are applied to the blanks by dipping, spraying, or swabbing.

The various manufacturers of lubricants should be contacted for

specific recommendations for a given alloy and type of drawing. All

lubricants should be thoroughly removed before any thermal treat-

ment of precipitation-hardenable stainless steels to prevent surface

contamination.

In some cases, applying the lubricant to only certain portions of

the blank or tooling may assist in obtaining maximum formability.

For instance, a lubricant between the blank and the die and the blank

holder, and between the part and the die is desirable. Friction in

those locations raises the drawing load and may lead to galling or

nonuniform movement of material over the tooling. On the other hand,

friction at the radius and bottom of the punch is desirable. Higher

friction on the punch side of the blank reduces the tensile stresses

that cause stretching, and sometimes rupture, at those locations.

Therefore, benefits are sometimes obtained from rough or unlubri-

cated punches. (Ref. 59)

Principles of Deep Drawing. Failures in drawing operations

result from complex phenomena. Unlike the situation in some other

forming operations, failure conditions are controlled by the general

change in shape rather than by the strain requirements in certain

locations. The forces developed at the punch originate from

(I) The stress required to bend the sheet around the nose of

the punch

(Z) The stress necessary for circumferentially compressing

and radially stretching the metal in the flange

(3) The stress required to bend the metal around the draw

ring and unbend it as it flows from the flange into the wall

of the part
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(4) The stress used in overcoming friction at the die radius

and under the blank holder

(5) The stress developed by ironing the wall.

For these reasons, it is difficult to predict success or failure in a

particular deep-drawing operation from ordinary tensile data for the

workpiece materials.

A considerable background of information is available about the

influence of characteristics determined in true-stress true-strain

tensile tests on the performance of steel in deep-drawing operations.

Although the principles would be expected to hold for precipitation-

hardenable stainless steels, pertinent data are scanty. Studies on

steel indicate that better performance in drawing operations cor-

relates with higher values of work-hardening coefficients and uniform

elongation and more severe "normal" anisotropy. The relative im-

portance of these characteristics varies with the geometry of the

drawing operation.

Uniform elongation is particularly important in drawing operations

characterized by significant amounts of stretch forming. For ex-

ample_ it is more important in controlling forming limits for cups

with hemispherical rather than flat bottoms. Even when stretching is

not of major importance the workpiece must be ductile enough to with-

stand bending. Higher work-hardening coefficients indicate resistance

to thinning and permit deeper draws without tearing.

The concept that pronounced normal anisotropy is desirable for

deep drawing is a little more complicated. For maximum drawability

in ductile metals it is desirable for the material to be resistant to

thinning from radial stretching but weak in upsetting from circum-

ferential compression. This results in a high strength in the wall of

the cup compared with the stresses needed to upset material in the

flange. This condition is better satisfied by materials exhibiting

higher ratios of width-to-thickness strains in tensile tests. This

type of anisotropy termed "normal" in contrast to directional varia-

tions in properties in the plane of the sheet is expressed by the

following relationship:

_n Wo/W
R = (13)

£n To/T
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where

R = anisotropy ratio

Wo = original width of specimen

W = width after straining

TO= original thickness

T = final thickness.

The anisotropic parameter of a sheet material can be determined by
measuring strain ratios of specimens oriented at zero, 45, and 90
degrees from the rolling direction. The component of normal aniso-
tropy can be defined as

R = I/4 (Rzero + 2 R45 + R90) (14)

The degree of normal anisotropy in terms of relative flow strengths in
the thickness, Z, and planar, X, directions of sheet is given by the
expression

z V +R
= _" (15)

A completely isotropic material would have R values of I, for tests in

all directions, and a uniform strength in the thickness and plane of the

sheet.

The severity of a deep-drawing operation can be described by

defining the geometry of the cup and blank. The important geometric

variables are indicated in Figure 29. The deep-drawing properties of

materials are often compared on the basis of the maximum reductions

they will withstand under standardized conditions. The ratings may be

expressed on the basis of the

D-d

Maximum Drawability Percentage = I00 x 7

o r the

Limiting Drawing Ratio = D/d ,

where D and d are the diameters of the die and punch, respectively.
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The ratio of the blank radius to the height of the cup is also used
to indicate the severity of a drawing operation. The height, H, of
flat-bottomed cups with sharp radii, and if no stretching or ironing
occurs_ can be calculated from the relationship

H/d = 1/4 [(D/d) Z - 1] (16)

When there is a flange on the cup, the relationship changes since the

restraining force caused by the flange shrinkage must be considered.

The use of a flange, although wasteful of material_ may eliminate wall

splitting in a part. The ratio of the diameter or radius to the thick-

ness of the blank may also affect success in deep drawing. In any

case_ the friction resulting from the hold-down pressure becomes an

appreciable part of the load in drawing comparatively thin blanks.

- //01 '

I0 0.8 1.6 2.4 3.2 4.0

%

FIGURE Z9. THEORETICAL RELATIONS BETWEEN

DIMENSIONS OF A SHARP-RADIUSED

CYLINDRICAL PART AND BLANK

DIAMETER (REF. 56)

Deep-Drawing Limits. Success in deep-drawing operations

is influenced by mechanical properties and hence by prior processing

history. Hamilton and Meredith found that tank ends could be suc-

cessfully deep drawn from 0. 090-inch-thick 17-4 PH sheet when the

material was in the overaged condition (H 1200)_ but could not be

made when it was in the solution-annealed condition (Ref. 60).
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Wood and associates (Ref. 33) have shown that drawability of the

material can be predicted from the following forming index:

E Yc

y---_ x _t = Deep-Drawing Formability Index,
{17)

where

E = Young's elastic modulus, psi

Yc = compressive yield strength, psi

Yt = tensile yield strength, psi.

An increase in index indicates an increase in formability in deep

drawing. Using this index for a particular material and material con-

dition, a relationship between the flange-width-to-part-radius ratio

and flange-width to material-thickness ratio can be determined and

forming limits envelope, as shown in Figure 30, can be constructed.

Both of the alloys shown appear to have better drawability at 500 F

than at room temperature; the formability decreases at higher tem-

peratures because of precipitation reactions. Most of these materials,

however, are drawn at room temperature since only the most difficult

draws would warrant the use and expense of elevated-temperature

tooling.

The drawability of the Almar 362 alloy with different types of

punches is shown in Figure 31. The drawability of this alloy is

slightly poorer than that of the 400 series stainless steels.

An example of a deep-drawn tank end is shown in Figure 3Z.

This part was made by explosive-forming techniques until the produc-

tion requirements justified the use of deep drawing. The part is

shown after assembly with a collar.

Before deep drawing any of the precipitation-hardenable stain-

less steels, they should be in the most ductile condition. Since ma-

terial purchased in the annealed (solution treated) condition may

harden during transportation and storage, the material should be an-

nealed prior to forming as a precaution. Sometimes the precipitation-

hardenable stainless steels are overaged prior to drawing to put them

in a softer condition.

93



_' 1.0
n_

0.8

.g
.2
•o 0.6
0

¢-.

o 0.4

e-

"o
._

¢-

o 0.2

J

0
¢.,

0.1

I !

Part shape and dimensions

_oo_o• , _o@_Q%

Good parts

I0 20 40

\

Lecjend I

' ------ PH 15-7 M• (500 F)

AM-550 (500 F)

_'.-- PH 15-7 M• (RT)

.... AM-550 (RT)

' I

_._% Foiled ports

60 80 I00 200

Overhan(j-Flancje Width/Material Thickness, W/T

4O0

FIGURE 30. DEEP-DRAWING-LIMIT CURVES FOR SELECTED

PRECIPITATION-HARDENAB LE STAINLESS

STEELS (REF. 33)

94



I w. 0

" " .=_ -:_ .S
_ .u 0 6

o

0

0
u

-r- o_
o --_

,4 d

E_ E
0

.t u ._o c
,_ _-_ u°

-_,S. _,_
_ .

so_" _ E o,,=
.-"_

0

A

0

exl

<

<

<

<

0

I

0

95



FIGURE 32. DEEP-DRAWN AM-350 TANK END 

Starting mater ia l  was 0. 040 inch 
thick and the completed pa r t  was 4- 
inches deep. 
annealed condition at room tem- 
pera ture  and heat t reated in a sizing 
fixture. Courtesy of North American 
Aviation, Inc. ,  Columbus, Ohio. 

P a r t  was formed in the 

C a r e  should be taken to a s s u r e  that the tooling is clean and f r e e  
of defects. 
abrasion of the tooling. 
removed, and the edges of the blanks should be deburred and f r e e  of 
any cracks.  

The surface of the blanks should a l so  be clean to  prevent 
Surface scra tches  should be prevented o r  

Post-Forming Treatments .  Since these mater ia l s  work 
harden very  rapidly and some types t ransform to mar tens i te  during 
forming, the par t s  should be given a thermal  t rea tment  soon a f t e r  
forming, preferably within 24  hours .  
mater ia l  f r o m  the forming operation may  be sufficiently high to cause 
delayed cracking or  s t r e s s -co r ros ion  cracking i f  the par t s  a r e  

The residual  s t r e s s  in the 
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exposed to a corrosive atmosphere. Generally, these materials are

given a thermal treatment before use to avoid a gradual change of part

dimensions or mechanical properties with time.

Lubricants from the drawing operation must be removed com-

pletely from the part before it is given any thermal treatment. The

lubricants can be removed in a trichloroethylene degreaser; insoluble

materials may require an acid etch.

SPINNING AND SHEAR FORMING

Introduction. Spinning and shear forming are processes for

shaping seamless, hollow sheet-metal parts by the combined forces

of rotation and pressure. Only minor changes in material thickness

occur during spinning; shear forming causes thinning.

Shear forming differs from spinning principally because it pro-

duces reductions in thickness. A number of trade names have been

used to describe the shear-forming process since its development.

Some of the nonproprietary names used in the past are roll forming_

rotary extrusion, shear spinning_ flow turning, and power spinning.

Throughout this report, the term shear forming will be used because

it appears to be emerging as the most accepted name for the process.

Principles of Spinning '. Spinning may be classified as manual

or power spinning depending on the manner of applying the force to the

blank. Manual spinning_ illustrated in Figure 33, is limited to thin

(less than 1/16 inch thick) low-strength (yield strength under 30_ 000

psi) workpieces. Power spinning uses mechanical or hydraulic de-

vices to apply greater tool forces to the blank and can consequently

be used to form thicker and stronger materials_ such as the

precipitation-hardenable stainless steels.

Spinning differs from most metalworking processes in that the

material is deformed at a point rather than over a broad area and a

large portion of the blank is unsupported during processing. These

characteristics are advantageous in such operations as internal

spinning where simple tooling can be used to make complex shapes.

The application of internal spinning is shown in Figure 34.

During spinning the metal blank is subjected to bending forces

along the axis of spinning and compression forces tangential to the

part. Difficulties are encountered with elastic buckling when the ratio

of the depth of the spun part to the thickness of the metal becomes too
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FIGURE 33. MANUAL SPINNING (REF. 55)

Chuck
/ Spinning roll

Toil bar

Form roll

Offset tail

Chuck spindle

 o mro,,
FIGURE 34. INTERNAL SPINNING TECHNIQUES (REF. 61)

98



great. The limits are related to the ratio of compressive modules
of the material to the compressive yield (Ref. 33). Elastic buckling
occurs in the unspun flange of the part as shown in Figure 35.

FIGURE 35. ELASTIC BUCKLING IN A SPUN PART (REF. 33)

The ratio of depth to diameter of parts that can be produced by

spinning is limited by plastic buckling. Buckling limits are related

to the ratio of tensile modulus to the tensile ultimate strength of the

workpiece material (Ref. 33). Since plastic buckles are very difficult

to remov% they should be prevented by limiting the amount of de-

formation in one operation to that permitted by the characteristics of

the material. The precipitation-hardenable stainless steels may be

spun at room temperature or elevated temperatures up to 500 F. At-

tempts to spin at higher temperatures may lead to reduced ductility in

the temperature range of 600 to 1500 F_ depending on the alloy.

Exceeding the formability limits can cause shear splitting or cir-

cumferential splitting, as shown in Figure 36. Shear splitting is the

result of exceeding the ultimate tensile strength of the material in the

tangential direction while circumferential splitting is caused by ex-

ceeding the tensile ultimate strength of the material in the axial

direction.

FIGURE 36. SHEAR SPLITTING AND CIRCUMFERENTIAL

SPLITTING (REF. 33)

99



Spinning to the final shape desired may require a number of steps
and intermediate anneals between them. The amount of reduction
taken in each successive step should be reduced for a successful op-
eration. For example_ a part that receives 50 per cent reduction on
the first step might be reduced 40 per cent on the next step and 30 per
cent on a final step. The amount of reduction that can be obtained in
each step is a function of the work-hardening characteristics of the
material. Since the precipitation-hardenable stainless steels work
harden very rapidly only a single tooling pass should be made between
anneals.

Principles of Shear Forming. Shear-forming processes can

be broken down into cone and tube shear forming; other shapes can be

considered as modified cones.

A typical example of cone shear forming is shown in Figure 37.

The blank_ a circular disk, is clamped to the rotating mandrel by the

tailstock. Two rollers located at opposite sides of the mandrel apply

a force along the axis of the mandrel and force the blank to take the

shape of the mandrel. This figure shows a progression of the forming

sequence starting with Step (1). The rolls are not driven, but rotate

due to contact with the rotating blank.

Step I Step 2 Step 3 Step 4 Step 5

FIGURE 37. STEPS IN SHEAR FORMING A CONE (REF. 62)

Cone Shear Forming. The percentage reduction of material

thickness during cone shear forming is a function of the part shape.

Figure 38 shows the geometric measurements that are important for

shear forming a cone. The final thickness is related to the initial

thickness of the blank by the sine of the half angle of the cone.

T = Tb(sin a/Z) . (18)
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where

T = the final thickness_ inches

T b = the initial blank thickness, inches

a = the included angle of the cone, degrees.

The percentage reduction is therefore related to the sine of the cone

half angle as

R = 100(1 - sin a/2) ,

where
i

R = the per cent reduction.

{19}

m

- -qTb -
,..-Blank

'% -_ °

Spun coneJ'_

FIGURE 38. GEOMETRIC RELATIONS IN CONE SHEAR

FORMING (REF. 63)

The same rule applies to shapes other than a cone with the final

thickness at any given point along the part being determined by the

angle the part makes with the axis at that point. For instance, form-
ing a hemisphere resu/ts in a variation of thickness with the bottom

of the hemisphere having the same thickness as the blank and the

edge being the thinnest section, as shown in Figure 39.

Figure 40 shows a helium tank, 27-i/2 inches in diameter, that

was produced by welding together two hydrospun hemispherical tank

heads of 17-7 PH stainless steel. This application is typical of parts

that have been produced by hydrospinning and welding.
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FIGURE 39. THICKNESS OF A MATERIAL IN A SHEAR- 
FORMED HEMISPHERE (REF. 64) 

FIGURE 40. HELIUM TANK, 27-1/2 INCHES IN DIAMETER, 
PRODUCED B Y  WELDING TOGETHER TWO 
HYDROSPUN HEMISPHERICAL TANK HEADS 
OF 17-7 P H  STAINLESS STEEL 

Courtesy of The Boeing Airplane Company, Seatt le,  
Washington. 
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Tube Shear Forming. Shear forming of tubes can be of two

basic types: forward and backward_ as shown in Figure 41. In for-

ward tube shear forming the material flows in the same direction as

the tool motion_ usually toward the headstock. In backward shear

forming the material flow is opposite to the roller travel_ usually

toward the tailstock (Ref. 641 .

V

a. Forward b. Backward

FIGURE 41. SCHEMATIC OF TUBE SHEAR FORMING (REF. 65)

Backward tube shear forming simplifies blank holding and permits

higher production rates because the tool travels only 50 per cent of

the total part length. The process can produce parts that are beyond

the normal-length capacity of a specific machine. There are dif-

ficulties in backward shear forming with respect to holding axial

tolerances. Since the first section of deformed material must travel

the greatest distance it is most likely to be out of plane.

Forward tube shear forming has found wide acceptance where

longitudinal accuracy of sculptured sections is required. Since each

increment of material that is formed is not required to move_ errors

in concentricity are swept away from the finished part and are left in

the trim stock.

In shear forming of tubing the basic sine law for shear forming

cannot be applied. The maximum permissible reduction for ductile

materials depends on the state of stress in the deforming area and

the material properties. The maximum reduction can be predicted

from the tensile reduction in area both for cone and tube shear form-

ing (Ref. 66). The experimental data shown in Figure 42 indicate that

a maximum spinning reduction of about 80 per cent can be taken on

materials with a tensile reduction-in-area value of 50 per cent. Be-

yond this level of tensile ductility there is no further increase in

formability. Among materials with a reduction-in-area value less

than 50 per cent_ ductility determines formability.
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Some of the process parameters affecting the allowed limits of

reduction are the feed rate, corner radius of the tool, the depth setting

of the tool, and the angle of the tool. In general, increasing the feed

or corner radius will decrease the maximum permissible reduction.

Within the range from 15 to 45 degrees, variations in the roller angle

appear to have very little effect on the maximum reduction. Beyond

those limits the effects are not known.

Equipment. Most engine-lathe manufacturers will make

equipment for spinning. The manually operated machines have been

replaced by the mechanically or hydraulicaily operated equipment.

The latest equipment incorporates numerical control for automatic

programming of the spinning operation.

Shear-forming machines are an extension of the capabilities of the

spinning lathe. The machines are heavier and have considerably

more power than the spinning lathes. Spinning can, however, be con-

ducted on a shear-forming machine that can be used in the production

of cones.
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One of the large shear-forming machines is shown in Figure 43.

Some of the specifications are given in Table XXXIII for machines

manufactured by Lodge & Shipley, Cincinnati Milling Machine

Company_ and Hufford Manufacturing Company. Additional sizes of

machines may be available so that the manufacturers should be in-

formed of specific requirements. A typical shop layout for shear

forming is given in Figure 44. Integration of the shear-forming

process with other manufacturing would probably dictate other layouts.

Tooling[. Spinning. Mechanical or hydraulic spinning rollers

of hardened tool steel {R C 60-62) sometimes with a hard chromium

plate are used for spinning precipitation-hardenable stainless steels.

The surface of the rollers should be highly polished. The diameter of

the rollers in spinning is selected on the basis of the diameter of the

part to be formed; the roller diameter should be approximately 1/2 the

smallest diameter of the part.

Mandrels or chucks for spinning can be made of tempered

Masonite for production runs of Z5 parts or less. These are generally

used for intermediate operations where tolerances are liberal. For

larger production quantities, the mandrels may be made of ductile

cast iron or tool steel. A hard_ smooth surface on the mandrel per-

mits the removal of tool marks from previous forming stages and

gives a closer tolerance on the finished part.

Shear Forming. Shear forming requires stronger tooling

than spinning because greater forces are characteristic of the process.

Rollers are used for applying the forming force to the blank. The

diameter of the rolls is generally kept to a minimum consistent with

the force it is required to transmit. A smaller roller has less con-

tact area with the blank and consequently less friction and power loss.

The shape of the roller depends on the amount of reduction to be taken

with each pass. A typical roller configuration is shown in Figure 45

and the more important surfaces are indicated. The contact angle

determines the length of contact surface for any given reduction. The

greater the contact length, the greater the frictionalforces between

the roller and the metal. The approach surface and contact angle are

required to prevent the material from burring ahead of the roller.

Since the roller step controls the amount of reduction, a different

roller is required for each reduction. The burnishing angle and land

tend to smooth out the ring marks left on the part due to the axial

travel of the tool. Rollers for shear forming are generally made of

high-speed tool steelheat treated to R C 60. The surface is polished

and can be hard chromium plated for a good surface finish on the part.
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FIGURE 43. 70 x 79-INCH VERTICAL SHEAR-FORMING MACHINE

This machine can produce conical or curvilinear parts up to 70 inches

in diameter and 75 inches long, tubular parts up to 144 inches long.

Courtesy of Cincinnati Milling Machine Company, Cincinnati, Ohio.
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Rear roller
.face

Forward
roller face

Relief angle

Burnishing angle

Contact surface
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Contact angle
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angle Roller step
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Direction of roller travel

FIGURE 45. ROLLER CONFIGURATION FOR SHEAR

FORMING (REF. 69)
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The mandrels for shear forming are made of heat-treated steel

because of the high forces involved. A softer material would be

locally deformed by the roller pressure. Large mandrels are gen-

erally made as shells with supporting internal structure while smaller

mandrels are solid.

Heating Methods. For elevated-temperature spinning or

shear forming, the mandrels are generally heated. This can be ac-

complished by electric-resistance cartridges or by flames. The

electric-resistance method may be more expensive to operate, but

provides less opportunity for oxidation of materials and tooling. The

rotating contacts that transmit current to the mandrel sometimes limit

the amount of power that can be used.

Flame heating of the mandrel can be accomplished with natural

gas or bottled gas. For this practice, mandrels are generally hollow

so the flame can be played on the inside surface of the mandrel.

Localized overheating must be avoided to prevent distortion of the

mandrel.

The blanks are generally heated with a torch that applies heat

locally to the area where the tooling force is applied. This technique

is shown in Figure 46. Very close control must be maintained to pre-

vent overheating of the parts. The size of the proper torch depends

on the thickness of material and the speed and feed rate of the opera-

tion. An oxidizing flame is normally used. Propane-oxygen torches

have been used in spinning PH 15-7 Mo and AM-355. Blanks for small

parts can be heated in a furnace and then transferred to a lathe for

spinning. The limitations of this type of operation are determined

by the time required for the spinning operation. Shear-forming opera-

tions generally take longer and the blanks cool too rapidly for this

technique. Torch heating is the accepted practice for shear-forming

operations. The selection of the proper temperature for shear form-

ing is also influenced by the temperature rise associated with deforma-

tion at the tool point. Temperature increases of 150 F have been

noted when shear forming AM-355 at room temperature (Ref. 70).

Blanks can also be heated by radiation from resistance units lo-

cated around the part; this technique works well on tubing or preforms.

For obvious reasons_ this practice is difficult to control when proces-

sing flat blanks.
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The rollers in shear forming are generally cooled to prevent

distortion or creep under high loads. This is usually accomplished

by spraying a water-miscible lubricant, such as ethylene glycol, on

the roller surface (P_ef. 71); internal-circulating cooling systems are

not very practical.

Lubricants. Very little has been published on lubricants

specifically for spinning or shear-forming operations. Due to the

localized-forming forces, the requirements for a lubricant are some-

what more stringent than for other forming operations. In general,

the lubricant used should be a high-pressure colloidal zinc and molyb-

denum disulfide paste to prevent galling at roller pressures up to

400_ 000 psi on the precipitation-hardenable stainless steels (Ref. 71).

For room-temperature spinning, yellow laundry soap, beeswax_

tallow, or mixtures of the latter two may be used. _Heavy-bodied oils

are desirable for extremely severe work (Ref. 70) of spinning and

shear forming.

Blank Preparation. Blanks for Spinning. Spinning requires

the use of a circular blank with sufficient material to complete the part

plus generally some allowance for trimming after forming. The

radius for the blank can be determined by examining a section through

the completed part and measuring the total length of material required

to make the shape starting from the center of the part to one edge. To

this the allowance for trim stock is added. The allowance for trim-

ming should be a minimum of 1 inch. The maximum is dictated by the

scrap allowed and the swing of the machine.

Blanks for Cone Shearing Forming. Cone shear forming

requires a blank with a diameter the same as that of the finished part.

Some additional allowance for trim stock is desirable to reduce the

possibility of cracking in the edge of the part that is likely to occur

when shear forming is carried to the end of the blank. The trim al-

lowance should be at least equal to the original blank thickness. A

greater allowance is controlled by the amount of trim scrap accepted.

Blanks for Tube Shear Forming. Forward tube shear

forming requires a blank with an inside diameter equal to the diam-

eter of the finished part. The length of the tube blank is determined

by the length of the finished part desired and the reduction to be ac-

complished. For a part shear formed to a 50 per cent reduction the

length of the blank would be I/Z of the finished part length. Some al-

lowance for trim should be made in forward shear forming. An al-

lowance of l inch for each 10 inches of finished length is normal

practice.
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Backward tube shear forming requires the same considerations
in blank development as forward shear forming. The same reasoning
is used in selection of the blank length. The blank inside diameter is
the same as the finished tube diameter.

Blank Development. It is sometimes desirable to shear form

a configuration other than a cone to a uniform thickness. The proper

thickness of the preform can be determined by calculation or by trial

and error techniques. To calculate the appropriate blank thickness_ it

is necessary to know the desired finished material thickness_ the

shape of the part, and the percentage reduction desired. For example,

consider the production of the hemispherical part shown in Figure 47
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Preform blonk

Mochined ixefore1

I _ Flonged preform ., ,
i: ' ' 67 diom ,I
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FIGURE 47. TYPICAL DEVELOPMENT OF A BLANK FOR

C ONSTANT SHEAR- FORMED THIC KNESS

(REF. 64)

in which a maximum reduction of 50 per cent is expected to produce a

constant wall thickness of 0. 150 inch. Using the sine law to determine

the vertical height of an element in the shell at increments of about

1/2 degree gives a continuous plot of the blank thickness. Since only

a 50 per cent reduction is permitted, however_ the angle at which this

occurs must be determined. In this case 0. 150/0. 300 = 0.500, which

is the sine of 30 degrees. Consequently_ the edge of the blank cannot

exceed 0. 300 inch in thickness. Preforming the edge from the 30-

degree intersection to the lip of the hemisphere is therefore neces-

sary_ as shown in Figure 47. The time involved in calculating the
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shape of a preform may not be warranted since some deviation from
the sine law often occurs. Trial and error methods can be used by
the operator to obtain the same results often more accurately. With
this approach the operator shear forms a trial blank of a constant
maximum thickness of 0. 300 inch. After forming_ the part thickness
is measured at various locations and the data are used for correcting

the thickness of the next trial blank. This process may have to be

repeated several times but the final refinement should give a very

accurate part thickness. This technique may be necessary even when

the thickness of the blanks is precalculated.

Spin-Forming Limits. The information available on spinning

of precipitation-hardenable stainless steels is meager, but Wood and

associates (Ref. 33) published some studies on the subject. The

buckling limits are set by the ratios of the moduli to strengths of the

workpiece. AM-350 has an optimum forming-temperature range

between 500 and 1000 F, while PH 15-7 Mo and A-Z86 should be spun

at 1000 F for best spinnability.

Figure 48 gives some formability limits for manual spinning

several alloys at room and elevated temperatures. They are expected

to hold for relatively small forces and limited amounts of thinning.

The data show that spinnability is favored by smaller ratios of blank

diameter to sheet thickness. For example, the limit for a 10-inch-

diameter, 1/16-inch-thick blank of PH 15-7 Mo appears to be a flat

cup 6.8 inches in diameter, I. 6 inches high. Spinning a 0. 100-inch-

thick blank of the same dimensions and material at iZ00 F would give

a part 4 inches in diameter and 3 inches high.

Spinning at elevated temperatures increases the amount of de-

formation that can be taken before buckling occurs. A higher deforma-

tion temperature postpones both plastic and elastic buckling tohigher

strains. Consequently, elevated forming temperatures permit

spinning of cups with larger cup height/cup diameter ratios, and per-

mits the use of thinner blanks. The optimum spinning temperature

depends on the properties of the material at various temperatures.

Spinning of precipitation-hardenable stainless steels to deep cups

at room temperature requires a number of stages and intermediate

anneals. The forming operation is generally limited to a single pass.

The material has then work hardened to a point where the ductility

is too low and pressure requirements are too high. The material
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must then be annealed. Spinning at elevated temperatures permits
more deformation and a larger number of passes depending on the
material and forming temperature. An example was the spinning of
a 65-inch-diameter_ 25-inch-deep hemisphere made from PH 15-7 Mo
andAM-350 (Ref. 72). The 83-inch-diameter starting blank was
0. 290 inches thick and was heated to 1600 F for forming. The thick-

ness was reduced 30 per cent during spinning and a configuration

tolerance of 4-0. 020 inch was held.

The speed at which precipitation-hardenable stainless steels can

be spun depends on the size of the blank; lower speeds are used on

larger blanks. Speeds I/3 to I/Z the rate used to form carbon steel

should give satisfactory results. Spinning lathes with speeds from

250 to I000 rpm have been satisfactory for small parts. Parts of

about 6 feet in diameter require much lower speeds from 30 to 60 rpm.

Examples of Spun Parts. A program conducted at Gruman

(Ref. 73) showed the potential of spinning large-diameter parts from

precipitation-hardenable stainless steels. PH 15-7 Mo blanks 72

inches in diameter and 0. I00 inch thick were spun to a 68-inch-

diameter dome at room temperature in two stages. The first forming

operation was conducted over a Masonite mandrel with a l-inch-thick

steel backup. A 13-inch-diameter roller with a 0. 600-inch-radius

tool was fed along the blank at a feed rate from 2-i/2 to 3 inches per

minute. The spinning lathe was operated at 35 to 40 rpm. A tailstock

pressure of 850 psi was applied during the operation. This produced

a flat-bottomed cup approximately 5 inches deep. In the second stage

a cast iron mandrel was used with the same tooling. The machine

rotated the blank between 50 and 65 rpm. A tailstock force of 800 psi

and an axial-roller force of 550 psi was applied. A feed rate of 2-1/2

inches per minute was used for this operation. The first pass moved

the material against the mandrel to a i2-inch diameter. Four addi-

tional passes were required to work the material out to a 36-inch

diameter. The part was then annealed and the passes continued until

the 68-inch dome was formed.

AM-350 was formed to the same configuration starting with a

0.030-inch blank. In the first stage the material was rotated at 40 to

50 rpm and a tool force of 275 psi was applied. A feed rate of 3-1/2

to 5 inches per minute was used. The rpm in the second-stage form-

ing was increased to 50 to 65 rpm and the tool pressure to 550 psi.

A l-I/2-inch radius was used on the forming roller. With a feed rate

of 3 to 6 inches per minute the blank was moved against the mandrel
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to produce a 10-inch-diameter cup on the first pass. The second

pass increased the contact diameter to 23 inches. Five more passes

brought the contact diameter to 43 inches. The part was then annealed

and the passes continued until the part was completed.

Shear-Forming Limits. Shear forming is generally used to

reduce machining time on parts with shapes that cannot be made by

conventional forming methods. An example of this was in the shear

forming of an A-286 jet-engine shaft that saved approximately $700

in costs over the previous method of machining a forging (Ref. 74).

The parts shown in Figures 49 through 53 are representative of parts

that can be made of precipitation-hardenable stainless steels by shear

forming. The part may be a simple cone with straight sides as shown

in Figure 49 or one with a complex curvature and a variable wall

thickness as shown in Figure 50. Depending on the shape and the

material, parts are made from flat blanks or from preforms. An

example of a shear-forming procedure using a preformed part is

shown in Figure 51. In this case the preform was made on a hydraulic

press. Spinning or a previous shear-forming operation could also

have been used.

The wide variety of operations that can be used to make a part is

illustrated in Figures 52 and 53. In these samples; a disk and a

T
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cylindrical tube were used to form a circular blank and a cylindrical-

formed part. They were then trimmed and welded together to make a

preform for the final shear-forming operation. The shear-formed

part resulting from these operations is shown in Figure 50.

Only limited work has been carried out on shear forming

precipitation-hardenable stainless steels, so very little specific in-

formation has been reported on the process. Some of the available

data are given in Table XXXIV for 17-4 PH, 17-7 PH, PH 15-7 Mo,

AM-355, and A-Z86. In general the materials appear to be well

suited to shear forming.

Properties After Shear Forming. Like other cold-working

processes, increasing the amount of deformation in shear forming

usually increases the strength and reduces the ductility of the work-

piece in a regular manner. An exception to this was noted by Jacobs

(Ref. 76) who found that a reduction of 50 per cent impaired the

strength of both 17-7 PH and PH 15-7 Mo steels. The strange be-

havior of these materials after that particular reduction was also

noted when the shear-formed parts were heat treated to the TH 1050

condition. Jacobs found that a heat treatment that completely re-

austenitized all of the martensite formed during cold work developed

normal properties. AM-355 showed an increase in mechanical prop-

erties with increasing cold work both when shear formed and after

heat treatment. Table XXXV gives data obtained on the properties of

AM-355, 17-7 PH and PH 15-7 Mo after various amounts of cold work

and after an aging treatment or the full heat treatment. These data

indicate that reductions as low as Z0 per cent more than doubled the

yield strengths, and increased the ultimate strengths by I/4. Re-

ductions of 60 per cent or more on PH 15-7 Mo lowered the elongation

values to less than I per cent. This undesirable effect of cold work

can be removed or alleviated by heat treatment. After solution treat-

ment and aging, the deformed AM-355 had good ductility and higher

strengths than samples that had not been shear formed. 17-7 PH and

PH 15-7 Mo had poorer properties than undeformed heat-treated

materials. Aging after shear forming developed reasonably good

properties in all the materials tested.

DROP-HAMMER FORMING

Introduction. Drop-hammer forming is a progressive de-

formation process fo'r producing shapes from sheet metal in matched

dies with repetitive blows. The process offers advantages for a
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TABLE XXXV. RESULTS OF TENSILE TESTS ON SHEAR-FORMED MATERIALS (REF. 76)

Material

Per Cent

Ultimate Yield Elongation

Per Cent Strength, Strength, in 2-Inch

Condition Reduction 1000 psi 1000 psi Gage Length Hardness (a)

17-7 PH

PH 15-7 Mo

PH 15-7 Mo

As received shear 0 125 60 33 RB 91

formed 20 155 132 17 35

Ditto 30 168 155 13 38

40 182 178 5 40

50 170 158 14 38

Shearformed and 20 152 116 16 33

aged at 1050 F 30 168 130 14 37

for 1-1/2hr 40 190 175 11 40

50 167 125 15 37

Shearformed and 0 170 140 12 38

given TH 1050 20 170 140 12 40

heat treatment 30 168 130 11 37

40 150 100 11 33

50 158 114 i0 35

As received 0 140 55 28 RB91

shear formed 20 184 130 12 38

30 184 155 10 41

45 210 200 4 44

50 200 140 12 41

6O 23O 22O 1 46

7O 245 24O 1 47

Shear formed and 20 190 145 14 38

aged at 1050 F 30 196 170 13 43

for 1-1/2hr 40 228 215 4 47

50 195 160 15 41

6O 244 238 1 48

70 265 253 1 50

Shear formed and 0 208 198 6 _4

given TH 1050 20 195 167 8 43

heat treatment 30 194 168 10 43

40 190 168 10 43

50 191 161 11 43

60 168 110 9 37

70 170 118 12 35

Asreceived shear 0 137 50 40 RB94

formed 20 210 125 22 42

30 225 140 20 46

40 238 155 18 47

50 245 145 17 47

60 260 223 13 52
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TABLEXXXV. (Continued)

Material Condition

Per Cent

Ultimate Yield Elongation

Per Cent Strength, Strength, in 2-Inch

Reduction 1000 psi 1000 psi Gage Length Hardness (a]

Shear formed and

_ged at 850 F

for 3 hr

Shear formed and

-100 + 850 F

heat treatment

20 205 165

3O 218 180

40 235 185

50 242 182

60 270 257

0 200 140

20 235 185

30 232 193

40 230 198

50 232 202

60 247 210

29

21

20

17

6

2O

14

14

9

11

8

42

47

48

48

53

46

48

48

49

48

50

(a) All hardness is Rockwell C except where otherwise indicated.
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variety of parts that are difficult or uneconomical to produce by

rubber- and contour-forming techniques. Typical applications include

beaded panels and curved sections with irregular contours. Drop

hammers are often used for details such as half sections of tees or

elbows that can be joined together later. The process is best suited

to shallow-recessed parts because it is difficult to control wrinkling

without a blank holder. Nevertheless_ many deeply recessed parts,

especially those with sloping walls, are made on drop hammers.

In drop-hammer forming the energy delivered per stroke depends

on the mass of the ram and tooling attached to it, and the velocity at

which it strikes the workpiece. The striking velocity is controlled by

the operator. Since the energy delivered is related to the square of

the velocity_ precise control must be exercised by the operator.

Relatively large changes in the mass of the moving tool or punch can

also have a considerable effect on the hammer operation. The opera-

tor must be skilled in judging the effects of changes in punch mass and

velocity to insure successful and reproducible results.

Presses. The gravity drop hammer is equipped with a weight

or ram that is lifted by means of some device such as a rope or a

board_ and then permitted to drop unrestricted. The pneumatic ham-

mer, shown in Figure 54_ and the steam hammer are equipped with

a pressure cylinder that lifts the ram and also adds energy to that of

the falling ram (Ref. 55). The drop hammer is fundamentally a

single-action press. It can be used_ however, to perform the work

of a press equipped with double-action dies through the use of rubber

blankets, beads in the die surfaces, draw rings_ and other auxiliary

measures.

The platen sizes of commercially available drop hammers vary

from 21 by 18 inches to 120 by 96 inches. The smaller machine has

a ram weight of 600 pounds and a maximum die weight of 600 pounds_

which gives a possible energy level in free fall of 2900 ft-lb. The

larger drop hammer has a ram weight of 33_ 000 pounds and a

maximum die weight of 47,000 pounds_ which gives a possible energy

level in free fall of 90_000 ft-lb (Kef. 77).

Toolin$. The basic tool materials for drop-hammer forming

are Kirksite and lead. Lead is preferred for the punches (see

Figure 54) since it will deform during service and conform to the

female die. The wide use of Kirksite as a die material stems from

the ease of casting it close to the final desired configuration. Most
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companies doing a large amount of drop-hammer work prepare the

tooling in their own foundry. Beryllium-copper dies have been used

for drop-hammer forming, but generally the additional cost is not

warranted. Ductile iron and steel dies are used where longer tool

life is desired, and for some elevated-temperature forming

operations.

Pneumatic cylinder

Punch-  ' dl '

Die "_

B ed--_

_//,,4////7/////_

r_ _ _

, 6.
_t

i:l

J ,,

i

,-.:.

®

_-_._ Air cylinder to

catches

"_b_ Operating handle

FIGURE 54. PNEUMATIC HAMMER (REF. 55)

Several typical drop-hammer dies are shown in Figure 55 with

the finished parts made on them. Sometimes two punches are used;

a working or roughing punch, and a coining or finishing punch. When

the working punch becomes excessively worn, it is replaced by the

coining punch, and a new coining punch is prepared. Another method

of achieving the same results with one punch is to use rubber pads.

Rubber suitable for this purpose should have a Shore Durometer

hardness of 80 to 90. Figure 56 indicates the positioning of pads for

a particular part. The maximum thickness of rubber is placed where

the greatest amount of pressure is to be applied in the initial forming.

As the forming progresses, the thickness of rubber is reduced by

removing some of the pads after each impact.
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FIGURE 56. POSITIONING OF RUBBER BLANKETS (REF. 55)

The blank is placed between the die and the first

pad.

Smoothly contoured parts can be made in Kirksite dies. Steel

inserts should be used in sharply radiused corners of the dies. For

complicated parts_ cast steel or high-silicon cast-iron dies give

better die life.

Mating surfaces of the die set must uniformly make contact.

Areas of no contact can cause canning and warping, which are dif-

ficult to remove in subsequent forming. Hence_ male and female

dies should be carefully blued in with thickness allowance for the

sheet thickness to be formed.

After a set of tooling has been constructed_ the tools are proved

out by forming either aluminum or austenitic 300 series stainless

steel parts. Stainless steel is the best trial material because ithas

springback characteristics similar to the precipitation-hardenable

stainless steels.

Buckling is difficult to control in drop-hammer forming because

hold-down rings are not normally used. To minimize buckling_ most

of the deformation should result from stretching rather than shrink-

ing. When shrinking is necessary, as in producing deeply recessed

parts, a draw bead (Figure 55) will help to prevent buckling. The

draw bead becomes effective only near the end of the stroke. Parts

made in dies with draw beads require more material because the

beaded sections have to be removed by trimming.

When parts cannot be readily formed with one blow in one die set,

better results can sometimes be obtained by introducing two-stage
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tools, each of which permits one-blow forming, rather than using
multiple blows in one set of tools. In such cases, good results can be
obtained by making the part slightly oversize in the first-stage tools
and by coining the final shape in a second set of tools.

Techniques of Drop-Hammer Forming. The procedures for

forming precipitation-hardenable stainless steels at room tempera-

ture in drop hammers resemble those used for the austenitic 300

series stainless steels. The process offers the advantages of flexi-

bility, low die costs, and short delay times between design and

production. A number of individual forming operations can be com-

bined on the drop hammer such as: drawing, beading, joggling, and

bending. Two parts that incorporate these shapes are shown in

Figure 57. There are some limits to the process that should be ob-

served for satisfactory production. The minimum dri_ft angle should

be at least 3 degrees. This minimum draft angle should be used only

for the wall adjacent to the part outline where sufficient material is

available for the draw. The bend radii should be as large as possible.

Undercuts should be avoided, and transitions should be made as

gradual as possible. Internal contours or recesses may be formed by

stretching alone. Hemispherical indentations can be designed into the

tooling in trim areas adjacent to stretched recesses to absorb excess

material and to prevent wrinkling. Considerable hand work and ex-

pense may be saved by allowing some wrinkling in noncritical areas.

Regions where wrinkles are not objectionable should be marked on the

drawings.
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FIGURE 57. TYPICAL DROP-HAMMER-FORMED PARTS

Courtesy of The Boeing Airplane Company.

Seattle, Washington.
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Drop hammers are often used for forming semitubular parts of
complex design. Two halves formed in this manner are then welded
to form a complete tubing assembly. In forming a semitubular part
with a number of branches, the major limiting design factor is the
radius within the hold-down surface, at the apex of a fork, between
two branches meeting at an acute angle. The radius at this point
should not be smaller than I/2 of the depth of the draw. A complex
semitubular part and die for drop-hammer forming is shown in

Figure 58. The starting blank size and the trim areas of the part

after forming are indicated. This particular part required several

stages for forming and was made from Type 301 stainless steel.

" ._t___

L Fe_ll4 _ I_Bm TVLmLq

FIGURE 58.

b. m,_h

DROP-HAMMER FORMING OF SEMITUBULAR

PART MADE FROM 301 STAINLESS STEEL

(REF. 55)

Lubricants used in drop-hammer forming of precipitation-

hardenable stainless steels should be of the high-pressure type. Ex-

treme pressure oils and pigmented drawing compounds are preferred.

For elevated-temperature forming, the Turco Precoat II applied to

the die has been used successfully in preventing galling when drop-

hammer forming 17-7 PH at 580 to 700 F (Ref. 781. The lubricants

are generally swabbed onto the blank surface prior to forming. The

lubricants should be removed from the part surface after the parts

are formed. Complete removal is necessary before any subsequent

thermal treatment.
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Blank Preparation. The blanks for drop-hammer forming

are generally rectangular in shape and are prepared by shearing. The

blank should be large enough to yield a part with a 2- to 3-inch-wide

flange in order to facilitate drawing of the metal during forming.

Where multistage forming is used the part may be trimmed so that

only a i/2-inch-wide flange is left for the final forming stage.

Sheared edges are generally satisfactory for drop-hammer form-

ing since the wide flange permits some cracking in the area without

harming the part. The blank should, however, be deburred to reduce

possible damage to the tooling.

Formin_ Limits. The severity of permissible deformations

in drop-hammer forming is limited by both the geometrical considera-

tions and the properties of the work piece material. According to

Wood (Ref. 33) the forming limits can be predicted by considering

parts of interest as variations of beaded panels. For parts charac-

terized in this way, the critical geometrical factors are the bead

radius, R, the spacing between beads, L, and the thickness of the

workpiece material, T. These parameters are illustrated in

Figure 59.

The upper and lower forming limits depend entirely on geometry

and are the safne for all materials. The ratio of the bead radius, R,

to bead spacing, L, must lie between 0. 35 and 0. 06 inch. The lower

formability limit is controlled by the necessity for producing uniform

stretching and avoiding excessive springback. If the R/L ratio is too

small there will be a greater tendency for localized stretching at the

nose of the punch. Furthermore, the material may deform elastically,

not plastically, and springback will be complete when the load is

removed.

Within the limits set for all materials by the R/L ratio, success

or failure in forming beaded panels depends on the ratio of the be_d

radius to the sheet thickness, R/T, and on the ductility of the work-

piece material. The part will split if the necessary amount of stretch-

ing exceeds the ductility available in the material. The splitting limit

can be predicted from the elongation value, in a 0. 5-inch gage length,

in tensile tests at the temperature of interest. The general relation-

ship (Ref. 33) is:

R 5o (co. 5)2 (2o)
L (R/T)
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where

R = bead radius

L = center to center spacing of beads

c0. 5 = engineering strain for a 0.5-iach gage length

T = thickness of the blank.

The equation indicates that the permissible R/L ratio decreases as
the R/T value increases.

Formability limits constructed in this way for PH 15-7 Mo,
AM-350, andA-286 at room temperature and elevated temperature

are shown in Figure 59. Although the limits apply to beaded panels

they can be used with caution as guides to forming other types of parts

with drop hammers.
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FIGURE 59. DROP-HAMMER-FORMING- LIMIT CUI_VES FOR

SELECTED PREC IPITA TION-HARDENAB LE

STAINLESS STEELS (REF. 34)
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The minimum thickness for hammer-formed parts of
precipitation-hardenable stainless steels is about 0. 025 inch. A
reduction in uniform elongation with material thicknesses below this
results in reducedformability. Heavier stock should be used for more
complex shapes.

It is difficult to predict proper springback allowances for complex
parts. Forming the material in the solution-treated or annealed con-
dition at room temperature minimizes springback so that dies made to
net dimensions will generally produce parts to forming tolerances of
±I/16 inch. Elevated-temperature forming will also minimize spring-
back. Boarts found that for complex parts, 17-7 PH should be formed
in the annealed condition on a starter die (Ref. 78). He heat treated
the parts at 1400 F for 90 minutes and rehit them on the finish dies
at a temperature between 550 and 700 F. Completing the forming
process and cooling the part to 60 F must be accomplished within 1
hour from the time the parts are removed from the 1400 F furnace.
The parts should then be given the final heat treatment.

Drop-hammer forming of PH 15-7 Mo and AM-350 should be con-

ducted at a moderate temperature of Z00 F to prevent transformation

of the material during forming (Ref. 79). The parts are then hot

sized to remove springback and given the final heat treatment.

For best results the parts should be degreased, passivated, and

pretreated at each stage of forming prior to any thermal treatment.

Lack of proper handling and cleanliness can result in contaminated

material and the generation of scrap.

These processing principles are illustrated in the 17-7 PH stain-

less steel parts shown in Figure 60. These components, ranging from

0.050 to 0. 063 inch thick_ were drop-hammer formed and then cryo-

formed according to the following cycle:

(1) Hammer formed in the mill annealed condition

(2) Cleaned

(3) Condition annealed at 1450 F for 90 minutes

(4) Cryoformed to size.
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FIGURE 60. HAMMER-FORMED, 0.050- AND 0.063-INCH- 
THICK 17-7 PH STAINLESS STEEL PARTS 

Parts were  cryoformed following cleaning and 
condition annealing a t  1450 F for  1-1/2 hours. 
Courtesy of The Boeing Airplane Company, 
Seattle , Washington. 

TRAPPED-RUBBER FORMING 

Introduction. In trapped-rubber forming, a rubber pad is 
used as p a r t  of the tooling, usually as the female  die f o r  a punch or 
group of punches. 
tainer as indicated in F igure  61a. Relative motion of the upper and 
lower platens causes  the rubber to f i l l  the space between the retainer  
and the p a r t  and forces  the workpiece to a s sume  the shape of the 
punch. 
only the punch, which is the s impler  half of conventional tooling. The 
process  is best  suited to making small  quantities of par t s  with shallow 
recesses .  The original o r  Guerin approach to trapped- rubber form- 
ing and a modification by Wheelon a r e  shown in F igures  61a and 61b. 
In the la t te r  p rocess  inflating a rubber bag with a pressur ized  fluid 
causes  the rubber pad to deform the blank and fo rm the part .  Either 
process  can be used to form severa l  parts simultaneously depending 
on their  s i ze  and the a r e a  of the p re s s  available for  mounting punches. 

The rubber pad is confined o r  trapped in a r e -  

Among other advantages, trapped-rubber forming requires  
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Before Operation At Completion of Operation

b. Wheelon Process

FIGURE 61. METHODS USED FOR TRAPPED-RUBBER

FORMING (REFS. 55, 81)
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The maximum pressure ordinarily developed in trapped-rubber
forming is about 10,000 psi. Impact presses are able to produce still
higher pressures. Some work has been conducted at pressures as
high as 18,750 psi (Ref. 80). Parts formed by this process generally
require some additional work to correct for springback. The opera-
tion is usually conducted at room temperature.

The trapped-rubber process has been used extensively in the air-
craft industry for forming parts with straight and curved flanges. The
parts may be formed in one operation or in stages requiring several
form blocks depending on the shape of the part. Some typical trapped-
rubber-formed stainless steel aircraft parts are shown in Figure 6Z.
The material thickness and condition are indicated on the drawings.

Presses. Trapped-rubber presses may be of the single- or

double-action type. Generally, the smaller presses are single action

while the larger presses are of the double-action type. Most of the

standard single-action hydraulic presses can be equipped with a

trapped-rubber head for forming operations. A small trapped-rubber

press might have a loading capacity of 500 tons and a working area

of 500 square inches. One of the larger presses, shown in Figure 63,

has a load capacity of 7000 tons and a working area of Z200 square

........... '........:--- " by•_,cLl_ -u_ l_n_L-,_u_ on equzpment _"'_ ,,,_,,,_,-_11,_ _,_ thp m_i-

mum pressure that can be generated in the rubber and the strength of

the container surrounding the rubber pad.

New developments in trapped-rubber forming are centered

around methods of increasing the pressure that can be applied to the

rubber. Heavier containers are being built, and new synthetic-rubber

TABLE XXXVI. SIZES OF TYPICAL TRAPPED-RUBBER PRESSES

Manufa cturer
Work Area, Press Stroke, Forming Pressure.

in. 2 inches 1000 psi Strokes/Hr

Cincinnati Milling
Machine Co.

The Hydraulic Press

Malmfacturing Company

50 5 5 1200

113 7 10 1200

177 7-9 Up to 15 1200

314 10 Up to 15 1200
490 12 10 1200

531 12 Up to 15 90
804 12 10 90

Up to 2200 1S Up to 7 20
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FIGURE 62. TYPICAL TRAPPED-RUBBER-FORMED

STAINLESS STEEL PARTS (REF. 55)
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FIGURE 63. 7000-TON TRAPPED-RUBBER PRESS 

Courtesy of North American Aviation, Inc., Columbus, Ohio. 
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compositions_ which will withstand the higher pressures, are being

developed. A representative list of available press equipment and

sizes are given in Table XXXVI.

Tooling. The tooling for trapped-rubber forming can be

made from a variety of materials depending on the tool life desired

and the operating conditions. For room-temperature forming, cold-

rolled steel is often used because it is inexpensive and fairly easy to

machine. When a longer tool life is required, hardened carbon steel

or alloy tool steel is used. Where the part shape is more complex,

and the punch is more difficult to machine, cast iron and ductile iron

have been used. Kirksite has been used, but may give a very short

life in working precipitation-hardenable stainless steels.

Since there is very little rubbing action on the die during forming,

very little wear occurs in normal operation. Most of the wear can be

attributed to the methods used for removing formed parts from the

tools. The pressure exerted by the flexible pad is fairly uniform over

the part and die. Any imperfections in the die may be reproduced on

the part if the pressure is sufficiently high. This is more trouble-

some with softer workpiece materials like aluminum than it is with

precipitation-hardenable stainless steels. A good surface finish

should be maintained on the die to permit easy movement of the blank

as the metal is drawn in, and to prevent scratching or marring of the

surface during forming.

Sometimes a pressure plate is used over the punch to assist in

keeping the surface of the part flat. The surface plate should have a

good finish and be aligned on the punch by means of tooling pins. Pins

also serve to keep the blank in proper position on the punch during

forming.

Normally, the tooling is made to net dimensions and the spring-

back in the part removed by benching or hot-sizing operations.

Benching is generally very limited since the materials tend to harden

considerably during forming. Sometimes, springback can be

minimized on flanges by undercutting the angles by the amount of

springback expected. This technique is not very successful when the

flange angle is 90 degrees or more. Another technique that can be

used to extend forming limits is to place strips of lead over the flange

area. Additional pads of rubber may also be placed over those areas

where more pressure is required.

Increasing the rubber pressure usually has little effect on form-

ing limits, but Wiegand and Lee found some benefits in the plastic-

buck!ing region for medium- and heavy-sheet materials {Ref. 801.

No evidence of increased formability was found from higher pressure

138



when stretch flanges were formed. On the other hand_ there was
some benefit from increased pressure when forming shrink flanges
on medium- and heavy-sheet materials. A check between parts
formed by high-pressure and high-velocity trapped-rubber forming
indicated no significant difference in forrnability between the two
processes.

A higher rubber pressure is expected to decrease springback,
but the effect is more noticeable for thin_ soft materials than it is for
the precipitation-hardenable stainless steels.

Techniques for Trapped-Rubber Forming. The multidirec-

tional pressure in trapped-rubber forming_ as compared with uniaxial

loading in conventional drawing_ results in more uniform stresses in

the blank. This permits greater draws and drawing of less uniform

shapes with sharply changing contours than with conventional dies.

In trapped-rubber forming, the die radius is variable and depends on

the pressure applied. As the forming pressure is increased, the

radius of the part decreases until the radius on the tool is reached.

The forming pressure can be adjusted during the forming operation

with the trapped-rubber process. In practice_ the pressure is main-

tained at a low level until the material has been stretched to the

deepest part of the die, and then the pi-essure is increased until the

desired radii have been developed on the part.

With trapped-rubber forming_ there is no transmission of stress

through the wall of the partially formed part. The material is sup-

ported across the die by uniform pressures while the material is un-

supported at the forming radius. Since small increments of the blank

are stretched into the void and against the punch at one tim% there

is no thinning of the partially formed section of the part. By proper

adjustment of the forming pressure and the speed, the stretching and

thinning of the metal during forming can be made to compensate for

the increase in flange thickness resulting in a part with fairly uniform

wall thickness. Near the completion of the forming stroke, the pres-

sure must be increased to prevent wrinkling of the flange. The re-

duced gripping area, increased thickening, and work hardening require

an increase in pressure to complete the forming.

The use of an external flange restrains trapped-rubber parts and

assists in obtaining closer dimensional tolerances. The extra mate-

rial can be removed after forming. When blanks are trimmed to final

size before forming_ lead strips are often used as a substitute for the

flange to assist in forming since the lead acts like a mating die.
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Hot forming of precipitation-hardenable stainless steels by the
trapped-rubber process can be accomplished provided the rubber is
shielded from the high temperatures. Boarts has described a produc-
tion technique for trapped-rubber forming of 17-7 PH at I000 F
(Ref. 8Z). He used a I/4-inch-thick 6061 aluminum overlay that was
cut to a configuration I inch wider than the blank. The overlay and
blank were heated together and then transferred to the rubber press
for forming. A heat-resistant rubber pad was placed between the
part and the trapped-rubber head to prevent deterioration of the
trapped-rubber head.

Lubricants are seldom used in trapped-rubber forming since
there is very little siding-type friction involved in the process. If a
lubricant is used, it should be a type that can be easily removed be-
fore a subsequent elevated-temperature treatment.

Blank Preparation. Blank-preparation procedures for

trapped-rubber forming are the same as those for other forming

processes. Usually, however, tooling holes must be provided to

maintain part location on the punch during forming. They must be

located accurately within i/3Z inch or difficulty will be experienced

in loading the blanks and, possibly, from elongation of the holes dur-

ing forming. The tooling holes should be deburred the same as with

the rest of the blank.

Forming Limits. The trapped-rubber process is commonly

used for producing contoured flanged sections and stiffened panels

from precipitation-hardenable stainless steels. Finished parts can be

made if the requirements for the bead radius, flange height, bead

spacing, or the free-forming radius are not too severe. If the design

requirements exceed the capabilities of the material, the process may

be used to fabricate preforms that are subsequently formed to final

size after solution annealing.

Ductility and stiffness are the principal properties influencing the

performance of a material in trapped-rubber forming. Wood and

associates (Ref. 44) have shown the quantitative relationships between

mechanical properties determined in tensile and compressive tests

and formability limits. The conventional values for tensile elongation

correlate with the maximum permissible amount of stretching without

splitting. In stretch flanging, splitting limits are given by the maxi-

mum ratio of the flange height to the contour radius. Generally speak-

ing, the contour radius on the forming block, for annealed

precipitation-.hardenable stainless steel parts, should be 5 inches or
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larger for sheet thicknesses up to 0. 080 inch. Buckling, which

depends on the ratio of the elastic modulus to the yieid strength of

the materiaI, affects the maximum height to which flanges can be

formed. The tendency for buclding increases with the ratio of the

flange height to the thickness of the workpiece materiai. In shrink

flanging, using higher forming pressure minimizes buckIing or

wrinkling. That expedient is not helpfui in stretch flanging. The

minimum permissible bend radii in rubber-pad forming of various

precipitation-hardenabIe stainless steeIs are the same as those given

in the section on brake forming. Higher forming pressures are

needed to produce smaller bend radii.

For tight bends, the minimum practical flange length increases

with sheet thickness. For forming pressure of 5000 psi or more, the

ratio of stretch flange length to sheet thickness shouId fail in the

range from Z5 to 30. A ratio of 20 wouId appiy for shrink flanges.

Flange angles can usually be formed to tolerances of about 5 degrees.

Some parts made by the trapped-rubber process include beads,

shrink fIanges, and stretch fIanges. If so_ faiiures may occur in

various regions depending on the severity of the shape change re-

quiredat those !ocations. Therefore, it is conventient to consider_

separately_ the different criteria Iimiting formability.

Figures 64 and 65 show the calculated limits for stretch and

shrink flanges that can be produced from AM-350, A-286, and

PH 15-7 Mo by the trapped-rubber process at room and elevated

temperatures. They are based on a theoreticaI analysis of the

mechanics of the operation and knowledge of the tensiIe properties

{Ref. 34). Experiments at room temperature by the same investi-

gators indicate the formabiIity iimits are reaIistic. Tests by other

investigators have indicated that the caicuIated limits are too high for

shrink fIange forming as indicated in Figure 66. The stretch- and

minimum flange-forming limits_ however, were found to be about the
same as the calcuIated ones.

The calculated stretch-forming limits for A-286_ PH 15-7 Mo,

and AM-350 in descending order of formability are very close together

so that for all practicaI purposes they can be considered identicaI.

The siight increase in formabiIity obtained at temperatures of 500 F

and above would not appear to warrant the use of elevated temperatures

in forming these materials by the trapped-rubber process. A form-

ing temperature of 300 F for AM-350 may prevent transformation
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during the forming operation. Since the springback of the

precipitation-hardenable stainless steels formed at room temperature

is relatively large, the materials are generally given a hot-sizing

treatment to obtain the final configuration. A small additional amount

of deformation can be accomplished during sizing. By this expedient,

the same configuration tolerance is obtained by room-temperature

forming and hot sizing as with elevated-temperature forming.
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FIGURE 66. COMPARISON OF CALCULATED AND ACTUAL

FORMABILITY LIMITS FOR SELECTED

PRECIPITATION-HARDENAB LE STAINLESS

STEELS IN RUBBER-COMPRESSION-FLANGE

FORMING (REF. 70)

From the standpoint of buckling in compression flange forming,

the A-286 a11oy has the best formability. For equal flange heights

and sheet thicknesses, it can be formed to a smaller contour radius.

Beading is another common operation in rubber forming. The

bead radius is important because the stiffening effect decreases as

the radius increases. The minimum radius that can be formed in a

precipitation-hardenable stainless steel sheet is the same as that for

the brake bending. How closely the minimum bend radius of either a

bead or the die bend radius of the forming block can be approached

depends on the forming pressure. The minimum radii that can be

formed in 0.0Z0, 0. 063, and 0. IZ5-inch-thick material for 17-7 PH

and A-286 at various pressures are shown in Figure 67. The graph

indicates that increasing the pressure in the range up to 25,000 psi

permits forming to smaller radii. Increasing'the pressure in the
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higher range has much less effect on the minimum radius that can be

produced by rubber-forming processes. The practical limit for both

materials appears to be a bead radius of about 6 T.

As in drop-hammer forming, failures in beading operations re-

suit from either splitting or buckling. Success or failure depends on

the ratio of the bead radius to the thickness of the materials, R/T, or

on the spacing of beads, R/L.

Figure 68 gives the calculated forming limits for beaded panels

made by the trapped-rubber process. The experiments used to verify

these limits were made with a relatively low forming pressure,

3000 psi. Increasing the forming pressure increases the limiting R/T

ratios. The A-Z86 alloy has slightly better formability than the other

materials. This means that beads can be formed with closer spacing,

or to smaller radii in sheets of a particular thickness. The use of

elevated temperatures in the forming of these alloys does not appear

practical because of the slight increase in forming limits indicated.

STRETCH FORMING

Introduction. In stretch forming, the workpiece, usually of

uniform cross section, is subjected to a suitable tension and then

wrapped around a die of the desired shape. Deformation occurs

mainly by bending at the fulcrum point of the die surface. Compres-

sion buckling is avoided by applying enough tensile load to produce

approximately I per cent elongation in the material. The tensile load

shifts the neutral axis of the workpiece toward the forming die.

The terms linear stretch forming and stretch-wrap forming de-

note operations on preforms such as extrusions or brake-formed

parts. Figure 69 illustrates two types of linear stretch forming.

The classification is based on the position of the flange in the plane of

forming. Depending on its location the flange is stressed in either

tension or compression. Although the sketch shows an angle, the

same classification is used when forming channels and hat sections.

A typical linear stretch-forming operation for making bent "T" sec-

tions is shown in Figure 70.

Stretch forming is also used for producing double contours in

sheet. Ordinarily, the sheet is stretched and bent around a male die

with convex curvature. In a second double-contouring technique,

calledAndroforming, the sheet is pressed between matched dies after

the tensile loadhas been applied. This type of stretch forming is

illustrated by Figure 71.
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LINEAR STRETCH-FORMED ANGLES

Courtesy of North American Aviation, Inc.,

Inglewood, California.
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FIGURE 70. STRETCH-FORMIW MACHINE FOR EXTRUDED OR FORMED SECTIONS 

In-board or heel-out tee  sections are being formed. 

Courtesy of Cyril Bath Company. Cleveland, Ohio. 
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Stretch-Forming Equipment. Presses with a capacity range

of 5 to 5000 tons are used for stretch forming sheet and sections. The

small capacity machines are generally used for linear stretch forming

of light sections while the larger capacity machines are used either

for sheet and plate or heavy sections. The specifications of some

commercially available equipment for stretch forming are given in

Table XNXVII. Equipment that could be used to stretch form annealed

precipitation-hardenable stainless steel plate 14 x 20 feet and I/Z inch

thick with a capacity of 6000 tons has been proposed (Ref. 81).

The press in Figure 72 employs the stretch-draw principle to

form parts with irregular contours. A 250-ton machine of this kind

is capable of making parts that would require a 900-ton double-action,

deep-drawing press.

Tooling. The tooling for stretch forming normally consists

of a male die made to the contour and dimensions desired in the final

part. A number of materials have been used for tooling, depending

on the number of parts to be made. For the room-temperature, linear

stretch forming of sections, a composite steel die with inserts that

will accommodate different thicknesses of material is often used.

Tooling of this kind is shown in Figure 73. Die inserts and shims are

used for adjustment to various thicknesses and angle-leg lengths_ as

shown in Figure 74. Adjustable tooling reduces the number of

different-size tooling sets that are stocked.

For room-temperature operations on sheet, the tooling can be

made from zinc-base alloys (Kirksite) or from concrete faced with

steel. The high yield strengths of the precipitation-hardenable stain-

less steels coupled with their rapid work hardening normally would

cause rapid wear of plastic-faced tooling. Consequently, plastic

tooling is not recommended for this application. The life of zinc-

base-alloy tooling can be extended by first stretch forming a thin

sheet of commercial stainless steel over the tool and using it as a

protective cover. This also prevents pickup of zinc by the formed

parts, which might cause contamination and a reduction in properties

after heat treatment.

Since the properties of the precipitation-hardenable stainless

steels change with the severity of deformation, it is advantageous to

obtain a fairly consistent amount of stretch throughout the part.

This is accomplished by permitting the material to move uniformly

over the tooling during stretching. Lubrication and tool smoothness
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TABLE XXXVII. CAPABILITIES OF TYPICAL STRETCH-FORMING MACHINES

Rate of Material

Forming, Size,

Tonnage (a) deg/min inches Type

Cyril Bath (Ref. 82)

200-2000 -- 84-144 width

150 36 max --

100 36 max --

75 36 max --

50 36 max --

25 60 max --

i0 90 max --

250 pressing -- Bed 138 x 128

85 stretching

Sheridan-Gray (Ref. 83)

Sheet stretch

Sheet or section stretch

Section stretch

Section stretch

Sheet or section stretch

Seczion stretch

Section stretch

Stretch-draw sheet

5 -- 16-96 Sectioa

i0 -- 16 -144 Section

21 -- 18-144 Section

54 -- 28-216 Section

104 -- 40-288 Section

306 -- 48-288 Section

59 220 max 20-336 Sheet suetch

120-5000

stretch -- 4g-240 width Sheet stretch draw(b)

300-1000 -- 96-360 length Sheet stretch draw(b)

(a) All tonnage for stretch unless otherwise noted.

(b) Presses similar to Androforming.
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have been found to have a significant effect on the uniformity of
stretching. Wallace reported on the use of ice as a tool covering and
lubricant (Ref. 84). I-le found that greases applied to the tooling
tended to squeeze out from the areas of higher normal pressure,
causing a local breakdown of lubrication. The use of a rubber overlay
was also considered, but the problems associated with relative motion
between the part, the rubber paS, and the tool were believed too dif-
ficult to overcomel This approach would only be advantageous if the
coefficient of friction between the part and the rubber were less than
that between the part and the tool. The use of porous tooling that
would permit fluids to be injected between the part and the tool was
evaluated and rejected in favor of ice.

Since the solid-to-liquid phase change of ice can be induced by an
increase of pressure or absorption of the heat generated during metal
forming, ice was selected as a possible candidate for a stretch-
forming lubricant. When the ice has a coating of water over its sur-
face at points of maximum pressure the friction that occurs is due
only to the viscosity of the water. In the tests conducted by Wallace,
a layer of ice was built up on the surface of the tool by spraying or
brushing water on the refrigerated tool. It was found that a rough
surface on the tool was desirable for a mechanical bond between the
_r_......__ _.._ _1_v_. The ice produced a smooth surface on the tool.
Since the pressure between the part and die is generally quite low,
the maximum depression of the melting point of ice was calculated to
be 0. 5 F. It was found that for stretch forming at room temperature
with an ice film of i to Z mm in thickness on the tool it was necessary
to maintain an ice-film temperature below 25 F. External heat is
then applied to the part during forming. Heating the surface of the
blank with an infrared lamp at an intensity of about 15 watts/in. Z for
30 seconds was found to give the best forming results. It was found
that the ice film should not be less than l-i/Z mm to prevent film
breakdown. If the f_im is too thick there is a tendency to develop an
uneven surface that may be reproduced on the part. An optimum film
thickness of Z mm was found.

Some difficulty might be expected in using ice dies for the stretch

forming of precipitation-hardenable stainless steels, which tend to

transform tomartensite during forming at room temperature. Mate-

rials such as AM-350 andAM-355 would be expected to have poorer

formabiiity during stretching on ice dies.

A study conducted by Cornell and associates on nonmetallic dies

for stretch forming indicated that they are suitable at room or
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elevated temperatures (Ref. 85). The low-temperature-curing

castable ceramic tooling was used in stretch forming PH 15-7 Mo.

Two matcrials that were found suitable for stretch-form tooling were

33 HD made by the Norton Co., and Special Hi-Alumina Castable

made by General Refractory Co. In preparing tooling from these

materials_ it is best to construct the molds from dense plaster and

then seal them. Peanut oil was found to be a suitable parting agent.

The tooling design should permit monolithic construction with a

minimum thickness of 3 inches and as large a radius as the part

configuration permits. During the pouring of the ceramic, vibration

is desirable. The ceramic should be dried slowly by covering the

mold with wet burlap while drying at an oven temperature of Z50 F,

The base of the mold must be rigid and flat. A plastic back of 70 to

80 Durometer hardness will aid in seating the mold.

The grips for stretch forming should be made of hardened tool

steel with sharp clean serrations. This is particularly important

when a number of grips are used as in forming sheet. If the grips

are not in good mechanical working condition_ the workpiece may slip

in sonue locations and tear at the grips that apply a greater holding

force. Relieving the first four teeth near the jaw edges by polishing

or grinding helps to prevent premature tearing of the sheet. Some

types of grips permit the sheet to be wrapped around a rod for in-

creased holding efficiency.

Techniques of Stretch Forming. In stretch forming_ skilled

operators and careful attention to details are essential for success.

Trouble may result from exceeding the uniform elongation of the

material. Since most precipitation-hardenable stainless steels have

good uniform elongation and a wide spread between yield and ultimate

strength, they stretch form with a minimum of difficulty.

The preformed sections or sheet material_ in either the

solution-treated or annealed condition_ are first loaded into the clamp-

ing jaws of the stretch press. A load is then applied to the material

to produce at least i per cent extension at the grips. The grips are

then either rotated around the die as in section forming or pulled

against the die as in sheet forming_ and the load is increased slightly

to assure that the part conforms with the die. The rate of movement

against the die may be as high as 10 degrees per minute. After the

material is in complete contact with the die over the entire area to be

formed, the stretching load is again increased to minimize springback.

Since springback can be expected from room-temperature stretch

forming of precipitation-hardenable stainless steels_ the machine is
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adjusted for overforming to compensate for this. In forming sections,

a springback from 5 to 10 per cent of the bend angle can be expected

for annealed material. Work-hardened material might have a spring-

back as high as 30 per cent.

To obtain maximum formability in stretch forming, the material

should be stretched in the rolling direction. For preformed angles,

channels, or hat sections, this requires that the prior operation be

performed across the rolling direction of the material. The direction

of initial shape forming is important when cold-worked material is

being stretch formed at room temperature.

When severe deformation is required, multistage forming with

intermediate anneals may be used. Stretch forming of precipitation-

hardenable stainless steels is normally carried out at room tempera-

ture. The curves for the stretch-formability index of AM-350, A-286_

and PH 15-7 Mo in Figure 75 indicate an optimum formability for

PH 15-7 Mo andAM-350 at 500 F_ while A-286 is best formed at

room temperature.

0.50

0
0.40

K"
a)

o.so

_ 0.20
0

£ o,o

RT I00 200 300 400

11
i I
A-286

lllll
1 I
AM-550_,_

__o'_-><

PH 15-7Mo

500 600 700 800 900 iO00 I100 1200 1300 1400 1500

Temperature, F

FIGURE 75. OPTIMUM FORMING TEMPERATURE CURVES,

LINEAR STRETCH AND SHEET STRETCH

(REF. 34)

Lubricants have very little effect on stretch-forming limits be-

cause of the relatively small movement of the material over the die.

When used they are generally applied only to localized areas. They

should be of the type that can be easily removed. Light-bodied

machine oils, soap solutions, and greases should be effective.
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Blank Preparation. For room-temperature stretch forming_

the blanks should have clean_ smooth surfaces. Blanks with as-

sheared edges are used, provided burrs are removed to prevent tool-

ing damage. Sections to be linear stretch formed should be cleaned

after brake forming and annealed for maximum formability. Any sur-

face contamination from the brake-forming operation or thermal

treatment should be removed by acid etching as described under the

section on blank preparation. Where the maximum available sheet

size is required to make a part, tabs may be welded on to the sheet

for gripping. A reduction in strength due to the welding may limit the

amount of stretching possible by this method.

Stretch-Forming Limits. Success or failure in stretch form-

ing to a particular shape depends on the mechanical properties of the

material and on the geometry of the part. Failures occur from buck-

ling or from splitting_ as illustrated in Figure 76. The geometrical

factors controlling the difficulty in forming of a section are the thick-

ness, the height of the workpiece in the plane of bending, and the

radius of the stretch-forming die. The important characteristics of

the workpiece material are its capacity for stretching without rupture

and its ratio of elastic modulus to yield strength. These mechanical

properties influence splitting and buckling, respectively. Wood (rief.

34) demonstrated that the amount of stretching a material w-ill with-

stand before splitting correlates with elongation, in a 2-inch gage

length, in tensile tests. The maximum per cent stretch in a particu-

lar operation is generally determined by the flange dimensions in the

plane of forming of the section divided by the inside radius of the bend

times 100. For example, the elongation would amount to I0 per cent

for a section with a l-inch flange formed around a 10-inch radius.

Wood and associates (Refs. 34, 35, 44) predicted splitting and

buckling limits in PH 15-7 Mo, AM-350, and A-286 alloys in stretch

forming. The predictions were based on analysis of the mechanics

of the operations and a knowledge of mechanical properties exhibited

in tensile tests. The formability limits were checked by forming good

parts within the limits and failed parts beyond the limits.

Figure 77 shows the forming limits for heel-in or outboard

stretch forming of PH 15-7 Mo, AM-350, and A-Z86. The A-Z86 alloy

can be stretched more, without splitting, than PH 15-7 Mo or AM-350

at room temperature. This is indicated by the relative H/R ratios,

which reflect ductility and ability to stretch. The same relative

formability is shown when buckling rather than splitting is more

likely to control failure.
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Figure 78 gives the formability limit curves for heel-out, or in-

board, stretch forming of angle and channel sections. This change in

part orientation causes a shift in the limiting H/R and H/T ratios be-

cause it affects the severity of deformation. The relative order of

formability between the materials is not changed because it depends

on their mechanical properties.

The formability limits of hat sections, in the heel-in position,

are shown in Figure 79. The buckling limits are a little higher than

for angles and channels because the flange on the hat gives some sup-

port during forming.

Elongation is the material property affecting success in stretch

forming sheet; thickness has little or no effect. In double-contour

forming of sheet, the radii of curvature and their chord lengths are

the geometrical factors controlling the limits of deformation. The

products of the two limiting ratios of the radii to their chords is a

constant for a particular material and forming temperature at maxi-

mum possible deformation. That is, using the terminology illustrated

in Figure 80:

\ '_ / \ ± J
= Constant.

The tensile load should be applied in the direction necessary to stretch

the sheet over the smaller radius because this requires more elonga-

tion. The blank should be oriented so the pull is applied in the direc-

tion in which the sheet is more ductile. Usually, this is parallel to

the major direction of extension in rolling.

Figure 80 also shows the stretch-forming limits for PH 15-7 Mo,

AM-350, and A-286. The limits, expressed in ratios of die radii to

chord lengths, are based on elongation values in room-temperature

and elevated-temperature tensile tests. Although the differences,are

small_ the A-286 alloy is expected to show better forming properties.

In androforming sheets between matched dies, shaping-system

elements (Figure 81) permit the forming of smaller contour radii.

Unlike simple stretch forming, however, thickness as well as ductility

is important because failure can result from either buckling or

splitting. Therefore, the parameters used to define forming limits

in Figure 81 include an allowance for sheet thickness. The limiting

ratios for several precipitation-hardenable stainless steels are given

in Figures 81 through 84 for two different size-forming elements.
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Changing from a 50-inch to a Z0-inch forming element lowers the

limiting parametric ratios. The room-temperature limit curves in

Figures 82 and 83 indicate that AM-350 or A-Z86 in the age-hardened

condition are less likely to buckle or split in androforming than the

PH 15-# Mo alloy in the age-hardened condition.

Properties of Stretch-Formed Parts. Stretch forming de-

velops uniform and consistent properties in parts formed and heat

treated from 17-7 PH steel. A method of stretching and transforming

the material simultaneously was developed by North American

Aviation, Inc. (Ref. 86), and resulted in the manufacture of parts

with a reduction of warpage and rework requirements. Stretching the

steel with a stress of i13,500 ± 570 psi at a temperature of 30 ± 8 F,

followed by aging, resulted in a tensile minimum of 185,000 psi,

tensile yield (0.2% offset), minimum of 155, 000 psi, and an elongation

of 5 per cent in a Z-inch gage length. The stretch aged material was

found to have superior ductility at the same strength level over the

1400 F treated material.

To better control the stretching process and to insure more uni-

form properties, an eddy-current gage was developed to indicate the

as-aged condition of the sheet (Ref. 87). With this gage the operator

can produce ._heet with uniform properties of 180, 000 to 2?-0, 000 psi

ultimate tensile strength with 5 per cent elongation. The material

then can be blanked or formed and, subsequently, aged at 850 F for

1 hour.

Lanz and associates (Ref. 88) examined the effect of androform-

ing on the properties of 17-7 PH. The material was stretch formed

in the annealed condition; three thicknesses of 0. 010, 0. 080, and

0.125 inch were evaluated. The tensile yield increased considerably;

the ultimate tensile increased slightly; the elongation decreased

slightly; and compressive yield strength increased. An increase in

compressive yield with increasing thickness was noted. After tl_e

material was stretch formed and placed in the TH 1050 condition a

drop of 3 per cent in elongation was noted. This was attributed to the

forming operation. Some of the elongation loss could be restored by

stress relieving the material.

TUBE FORMING

Introduction. One of the principal uses of tubing made from

the precipitation-hardenable stainless steels is hot-air ducting in jet-
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type a i rc raf t  anti-icing systems.  Figure 85 shows a complex bend 
made in 2-inch-diameter AM- 350 stainless s tee l  tubing. Forming 
operations a r e  a l so  necessary  for  producing reduced sections, bulges, 
bends, etc. The problems in tube forming generally become m o r e  
difficult a s  the diameter  of the tube is increased and the wall thick- 
ness  i s  decreased. Some of the cur ren t  methods for  forming tubing 
f r o m  the precipitation-hardenable stainless s teels  a r e  described in 
this s ec tion. 

FIGURE 85. BEND IN 2-INCH-DIAMETER TUBING OF AM-350 
STAINLESS STEEL USED TO CARRY HOT AIR 
FROM ENGINE TO WING SURFACES TO PREVENT 
ICING ON LOCKHEED ELECTRA AIRPLANE 

Courtesy of Allegheny Ludlum Steel Corporation, 
Pit tsburgh, Pennsylvania. 

Tube Bending, The four major  methods in general  use for 
bending tubes a re :  (1 )  ram or  p r e s s  bending, ( 2 )  rol l  bending, 
( 3 )  compression bending, and (4) draw bending. 
schematically in Figure 86. 
by placing the tube between two supports and pressing the r a m  and 
tube between the supports, thus forcing the tube to bend around the 
ram. 

These a r e  depicted 
Ram or  p r e s s  bending is accomplished 

Roll bending is accomplished by passing the tube through a 
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suitable series of grooved, power-driven rolls. In compression

bending, both the tube and the die are stationary and a wiper die is

utilized to wrap the tube around the stationary bend die. The first

three methods are used for heavy-wall tubing or tubes filled with a

matrix material but are likely to cause thin-wall tubing to wrinkle,

fracture, or even collapse. They are generally limited to forming

generous bend radii usually more than five times the tubing diameter.

The fourth method, draw bending, is used to bend thin-walled tubing

and to obtain bend radii as small as I. 5 D. The tube is confined dur-

ing bending, and is supported internally by a flexible mandrel.

Each method of bending has special limitations that often control

the success or failure of the operation. Generally speaking the

processes can be used for the operations shown in Table XXXVIII.

Figure 87 shows the various stainless steel tube sizes that can be bent

by the different tube-bending processes.

TABLE XXXVIII. LIMITS OF VARIOUS TUBE-BENDING

PROCESSES (REF. 57)

Bending Types of Bends Maximmn Angle of

Process Usually Accomplished Bend, degrees

Ram or press

Roll

Single bends

Tube straightening

Circular

Spirals

Helical coils

<120

36O

Compression Single bends <180

Rotary draw Single 180

Multiple

Compound

An interesting and new experimental technique for bending tubing

was developed at Battelle Memorial Institute. The process consists

of filling the tube with a low-melting-point alloy and applying an axial

Ioad to the tube forcing it around a bend of the desired contour in a

closed die. AM-350 tubing in the CRT condition was bent 90 degrees

with a bend radius of 1 D measured to the centerline of the tube. The

tube had 1/2-inch diameter with a 0. 010-inch-thick wall. After form-

ing, the wall thickness at the outer fibers was found to have decreased
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PROCESSES BASED ON STANDARD TUBING SIZES

OF STAINLESS STEEL (REF. 57)
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Courtesy of Battelle Memorial Institute, Columbus, Ohio. 
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only 5 per cent while the inner wall had increased in thickness by

approximately 50 per cent. Figure 88 shows one of the AM-550 tubes

that was formed by this method along with half of the forming die.

Equipment. The precipitation-hardenable stainless steel

tubes are bent in commercially available equipment. The diameter

of the tube dictates the equipment size, and one equipment manu-

facturer;_ supplies aircraft tube-bending equipment in the following
sizes:

Bender Model No. Maximum Tube Diameter t in.

3A 2-1/2

4 3to4

8A 4-1/2 to 6

Other producers of aircraft tube-bending equipment produce

machines with similar capacities. Equipment for bending thin-wall

tubing must be in good condition; spindles should have no more than

0. 0005-inch total runout (Ref. 89). A full complement of machine

controls is essential.

Tooling. SAE 4340 steel heat treated to Rockwell C

45-48 is adequate for the pressure die because it does not slide

against the tube. The wiping die and mandrel that are subjected to

sliding friction should be made from aluminum bronze (AMPCO 21}.

For bending thin-wall tubing, the bend die, wiper die, pressure die,

mandrel, and clamp die must all be made to close tolerances(Ref. 89).

Figure 89 shows five basic types of mandrels that are used in

bending tubing (Ref.

Tangentl)

o. Plug

90). Mandrels are made of tool steel,

I

b. Formed c. Ball

d. Laminated

|---

I]I!IIj!II 
e. Cable

FIGURE 89. FIVE BASIC TYPES OF MANDRELS USED

FOR TUBE BENDING (REF. 90)

*Pines Engineering Company, Inc., Aurora, Illinois.
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case-hardened steel, chromium-plated tool steels, and bronze.
AMPCO bronze mandrels are preferred for bending stainless steel
tubes because they are resistant to galling and scoring with or without

lubrication.

Tube Preparation for Bending. Tubes straight within

0. 030 inch per foot give good results and are normally purchased to

that specification. Straightening tubes prior to bending can reduce

the elongation limits of the material by as much as Z0 per cent.

Annealing after straightening or welding may cause problems if the

tube warps during the annealing operation.

The diameters of the tubes to be bent must be held within +0. 0025

to 0. 007 inch and the ovality should be within 6 per cent of the nominal

tube diameter. These rather close tolerances are necessary to in-

sure proper confinement of the tubes by the bending tools. Generally

the tubes are cut to length with a trim allowance after forming.

Lubricants. Many conventional lubricants do not provide

the continuous film needed to separate the tools from the workpieces

under high bending loads. Ineffective lubrication causes galling.

Drawing grease and oil has been found to be suitable for bending

stainless steel tubes. Prior to bending, large amounts of lubricant

are applied to the mandrel and the inside diameter of the tube. This

sometimes is applied by spraying the heated lubricant (250 F),

especially on the inside of the tube. Lubrication of the wiper die is

essential but the coating must be thin and uniform to avoid wrinkling

(Ref. 89).

Tube-Bending Precautions. If the mandrel body and

balls and the wiper die are allowed to wear down more than 0. 005 to

0.008 inch, the tools will not confine the tubes adequately. Under

such conditions pressure-die forces and the amount of elongation re-

quired to form the parts increase. This results in high failure rates.

Bending Limits. The bending limits depend mainly on

the relationship of the bend radius to the tube diameter. The angle

of the bend is not important for 90-degree or larger bends. The

uniform elongation of the material is affected by the wall thickness

of the tubing so that a decrease in formability in bending can be ex-

pected for tubing with a wall thickness of less than 0. 035 inch.

.The position of the neutral axisduring bending influences the

tensile strain in the outer tube fibers and the compressive strain in
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the inner tube fibers. Figure 90 shows the calculated tensile strain in

the outer tube fibers when the neutral axis is located a distance of 1/2

and 1/3 diameter from the inner fibers of the tube. As shown in this

graph the strain in the outer fibers decreases as the neutral axis

moves away from the inside tube fibers for any given ratio of bend

radius to tube diameter. Consequently, equipment that shifts the

neutral axis away from the inner tube fibers during bending permits

smaller bend radii to diameter ratios in a given material. The posi-

tion of the neutral axis during rotary draw bending is usually between

1/3 D and 1/2 D. The exact position depends on the tooling and fit of

the tubing on the tooling.

FIGURE 90.
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DEGREE BEND WHEN THE NEUTRAL AXIS IS AT

I/3 D OR AT i/2 D MEASURED FROM THE

INNER TUBE WALL

Figure 90 may be used to determine the minimum ratio of bend

radius to tube diameter for a given tube material and condition pro-

vided the tensile-elongation value of the material at the same thick-

ness as the tube is known. For example, the A-286 alloy in the an-

nealed condition has a tensile elongation of approximately 48 per cent.

Tubing of this material could therefore be bent to a minimum ratio

between 1 and 1-1/2 D depending on the position of the neutral axis

in the bending procedure.
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As the wall thickness of the tubing is decreased, the limiting fac-
tor in tube bending changes from elongation to compression stability.
Buckling of the thin wall material on the inner tube fibers becomes
n_ore of a problel-n as the wall thickness is decreased and this condi-
tion is accentuated by a shift of the neutral axis away from the inner
tube fibers. The minimum bend radii ratio should be increased by at
least one number when the material thickness is 0. 035 inch or less.

Post-Forming Operations. The tubing is generally
trimmed to final length after forming where precise assembly work
is required. The tubes are then cleaned to remove any lubricant or
foreign material. For tubing that can be heat treated, the bending
operation is generally carried out with the material in the solution-
treated condition. The tubes are then aged after forming to obtain
the final desired mechanical properties.

Tube Bulging. Introduction. In bulging, an internal pressure

is applied to form a tube to the desired shape. The internal pressure

can be delivered by expanding a segmented punch, or through a fluid,

rubber, or other elastomer. The process, characterized by the use

of simple and low-cost tooling, is adaptable to fast operations and is

capable of forming an acceptable part in one step. For most

precipitation-hardenable stainless steels, the process is limited to

forming in the annealed or solution-treated conditions.

The two types of bulge forming can be classified as die forming

and free forming. As the names imply, the die-formed component

is made in a die that controls the final shape while the free-formed

part takes the shape that will contain the internal pressure. Either

type of operation can be carried out by a variety of processes.

Equipment Setup and Tooling. Conventional processes

for bulge forming apply internal pressure to the tubing at a slow rate

by the motion of mechanical and hydraulic presses. A liquid or

semiplastic filler material is normally used inside the tube as in-

dicated in Figure 91, so that a hydrostatic pressure is approached.

The behavior of the filler material will control how closely hydro-

static conditions prevail during forming operations. When the ram

shown in Figure 91 has been retracted, the rubber returns to its

original diameter so that it may be withdrawn from the tube. This

technique is commonly used because it does not present the sealing

difficulties associated with the use of a liquid filler. The use of low-

melting-point solids such as Wood's Metal as a filler material has
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shown promise for producing large deformations. In this process the
ram can apply axial force to the tube as well as pressure to the filler.
If additional tubing material is fed into the die as the forming
progresses, greater amounts of deformation are possible with this
technique.

I |

Rom

Punch

Rubber

!i_kplece (tube]

FIGURE 91. RUBBER-BULGING SETUP (REF. 34)

The use of expanding mandrels for bulging tubes is generally

restricted to high-production applications because of the cost of the

mandrels. Friction between the metal mandrel and the tubing limits

the force that can be applied and the maximum deformation that can

be obtained with this technique.

Some of the high-velocity techniques that have been applied to

tube bulging with the greatest success employ low explosives and

electric discharges as energy sources. The electric-discharge

techniques are based on the liberation of energy stored in capacitors

as sparks, exploding bridge wires, or magnetic coils. All of these

processes except magnetic forming require some medium, genera]ly

water, to transmit the pressure to the tubing. The closed-die

systems used to insure maximum efficiency complicate sealing. The

volume between the tube and the die should be evacuated to prevent

high temperatures and burning due to entrapped air. Shock-wave re-

flectors have been used with low-explosive and electrical-discharge

systems to obtain unusual free-formed shapes. Most of the informa-

tion on the subject, however, is considered proprietary and has not

been released for general publication.
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Magnetic forming is the only metalworking process that does not
require direct contact between the forming medium and the workpiece.
Consequently, the frictional limitations on forn_ing encountered in
most processes are absent.

If the pressure for deforming a tube is considered to be hydro-

static in nature, then the pressure required to initiate deformation

can be deterr_ined from

p = 2TS/d (22)

where

p = pressure, psi

T = tube-wall thickness, inches

S = average flow stress of the tube material, psi

d = tube diameter, inches.

This equation is simple to use for estimating pressure requirements

at the start of deformation, but some modifications are required to

present the total picture. .As the tube is stretched, the flow stress

will increase due to work hardening of the material. At the same

time, the diameter increases and the thickness decreases. For

estimates of the final or maximum pressure, the conditions prevail-

ing after forming should be considered in the equation.

Material Preparation. Both seamless and welded tubing

of the precipitation-hardenable stainless steels are generally available

in diameters from O. 012 to 4. 5 inches and wall thicknesses from

0.004 to O. 148 inch. Larger size tubing has generally been made

from roll- or brake-formed and welded sections. Some difficulty has

been experienced in obtaining sufficient ductility in the heat-affected

weld zone for bulge-forming operations. Some of the troubles may

have been caused by improper manufacturing practices. It is normally

desirable to planish weld beads before bulging and to stress relieve

welded preforms.

Where considerable reduction in ductility is experienced in the

weld heat-affected zone, a heavier section may be left in this area to

equalize the strength of the tube. This technique, shown in Figure 9Z,
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will result in a part with uniform strength but may cause considerable
difficulty in forming due to the reduced ductility in the heat-affected
zone.

Heot - o f fected
zone

T_ld bead

+ ._/--60 ,o 75 per cent

_ _Chemicolly milled

FIGURE 92. METHOD OF EQUALIZING STRENGTH BETWEEN

WELD AND WALL AREAS FOR DIE-FORMED

TUBES (REF. 35)

Bulge-Forming Limits. Two limitations must be con-

sidered in bulge-forming operations: ductility of the workpiece ma-

terial and design of the tooling. The final part shape determines the

maximum percentage increase in diameter. This can be calculated:

Per Cent Increase =
df- do

do x I00, (Z3)

where

d o = original diameter

df = final diameter.

If no material is drawn in along the tube axis during forming, this

may also be considered as the percentage stretch. The elongation

values normally obtained in tensile tests cannot be used to determine

this limitation since only uniform elongation is of practical im-

portance. If necking occurs, as in the tensile test, the bulged com-

ponent would be scrapped due to excessive metal thinning.
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Tooling influences the amount of expansion because of the con-
straints it places on metal movement. If extra material is drawn in
from the ends of the tubing or if the length of the tubing is shortened
during forming, additional tube expansion is possible. The per cent
increase in diameter can sometimes be increased by applying an
axial load to the tube to assure feeding additional material to the
bulged section.

Another limitation besides per cent stretch is the bending strain

that occurs if the tube is made to bulge over too tight a bend radius.

This condition results in splitting as shown in Figure 93. The

minimum bend radii in tube forming should not be less than that used

in other forming operations such as brake forming.

Bend

splittln_

FIGURE 93. EXAMPLE OF FAILURE IN TUBE

BULGING (REF. 35)

If the bulged portion of a tube is considered as a bead, the

strain for any given die design can be determined. The important

strains, on the basis of where failure will occur during bulge form-

ing, are represented in Figure 94. The severity of deformation is

determined by the amount of stretching and the amount of bending.

Consequently, the radius at the entrance to the bulged areas as well

as the diameter of the bulged section are both important considera-

tions in establishing design limits in bulge forming. Figure 95 may

be used to determine E A when the RI/W ratio is known. The com-

bined strain cA + CBr I determines failure limits so that the limiting

bending conditions must be considered for the particular alloy of

interest. This limit based on Rl/T'or bend radius over material

thickness is the same as for brake forming.
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heigh!

bead

O. b.

FIGURE 94. STRAIN CONDITIONS IN BULGE FORMING

(REF. 35)

Figure 96 shows the limiting permissible amounts of stretching

and bending strain for PH 15-7 Mo, AM-350, and A-286 in the an-

nealed condition. The curves are based on tube-bulging experiments

with 0.0Z0 and 0. 063-inch-thick material. Fracture would be ex-

pected to occur if attempts were made to bulge these materials to

larger strains than those indicated by the trend lines. For example,

the curves indicate that a part with a stretching strain of 0. Z in./in.

should not be bent to a strain of more than 0. 225 in. /in. for A-Z86,

0.260 in. /in. for AM-350, or 0. Z65 in. /in. for PH 15-7 Mo. The

end-forming limits result from geometrical restraints.

When materials are to be deformed dynamically by one of the

high-velocity techniques, the uniform strain for the materials under

this type of beading condition must be determined. Wood and as-

sociates (Ref. 35) have found that a maximum dynamic uniform

strain 6 u correlates with the maximum axial or stretching strain

eA in tube bulging. Thus, AM-350 alloy has a maximum 6 u of 0. 39

in./in, and 6A of 0. 345 in./in., A-286 has an 6 u of 0. 35 in./in, and

an eA of 0. 3Z in. /in. , and PH 15-7 Mo has an 6 u of 0.40 in. /in. and

an eA of 0. 35 in./in. The eA values can then be used in Figure 96

with the bending strain.
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Care must be used in applying this technique to determine design

limits for a particular material. The analysis is based on no axial

movement of material from the ends of the tube into the die. When

such movement occurs, the axial strain will be less than that indi-

cated. The analysis does not hold for eccentric-forming operations

that have a different strain pattern than that considered here.

Additional information on tube forming is required and should be

obtained through development programs with the specific alloys to be

used as tubing. In the absence of additional specific information, the

only approach is to predict bulge-forming limits for tubing from data

for uniform elongation and permissible bend radii obtained on sheet.

ROLL FORMING AND ROLL BENDING

Introduction. This section discusses two types of secondary
i ,

rolling operations used to change the shape of sheet or strip metal.

They are:

(1) Forming by rolls whose contours determine the shape of

the product. This process usually employs a sequence

of power-driven rolls to produce long lengths of shaped

products from sheet or strip.

(z) Bending between t_vo or three cylindrical rolls that can

be adjusted to curve sheet, bar, or shaped sections.

With this technique, the length of sheet is controlled

by the width of the rolls.

The first process, roll forming, usually refers to a continuous

process performed prdgressively by a series of contoured rolls in

a special machine. With equipment of this kind {Figure 97), which

can operate at speeds to 300 rpm, tolerances as small as ±0. 005

inch can be obtained in cold forming. Roll forming is often used to

bend strip into cylinders that are butt welded to produce thin-walled

tubing with a relatively small diameter. The process is best suited

to shapes made in large quantities.

Similar products can be made by drawbench forming. This

technique involves pulling the strip through a series of heads or

stands containing undriven, or idling, rolls similar to a Turks head.

Such methods have been used to produce limited quantities of square

pipe and other shapes from the precipitation-hardenable stainless
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steels. Both methods, roll forming and drawbench forming, are used

to form the precipitation-hardenable stainless steels into structural

hat sections, angles, tee sections, and channels. Normally these

operations are performed at room temperature. Parts formed on

drawbenches sometimes show excessive twisting and bowing and

generally require subsequent contour stretching.

The second process, roll bending, is often used to bend sheet

into cylindrical, single-contour shapes that can later be welded to

form tube or pipe of rather large diameters. Aircraft producers

and fabricators have roll-bending facilities that are capable of con-

touring flat sheets into cylinders up to about 30 feet long. Facilities

capable of bending structural shapes by means of rolls are available

and frequently used to produce large-radius bends in channels and

other sections. Such sections may be used to support skins in air-

craft manufacturing.

Roll Forming. A schematic drawing of a six-stand roll-

forming machine is shown in Figure 97. The strip enters from the

left, passes through the series of six rolls, and emerges from the

machine at the right side as a rolled shape. Sometimes auxiliary

equipment for cutting the roll-formed shape to length or for welding

and straightenin_g roll-formed tubing is added to co____p!ete the produc-

tion line. Figure 98 is a sketch that shows the various stages of

bending that were used to produce a completed stainless steel shape

by roll forming (Ref. 91). In all, Z0 roll-forming stages were

required.

FIGURE 98. A COMPLEX SHAPE MADE FROM STAINLESS

STEEL BY ROLL FORMING ON A Z0-STATION

MACHINE (REF. 91)

Intermediate forming shapes are shown.
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Roll forming has many advantages over other methods. For ex-
ample_ parts made by roll forming have lower internal stresses than
similar parts produced by impact or brake forming. Sometimes
parts can be bent to a radius i T less than the minimum bend radius
in brake forming. Since roll forming is a high-speed_ fast-
production process_ man-hour savings may be substantial compared
with brake-forming and other competitive forming methods.

Equipment. Equipment for roll forming is available
from a number of manufacturers in a range of sizes and capacities.
Table XXXIX gives comparative data on roll-forming machines
produced by one manufacturer. The physical meaning of the dimen-
sions used in this table is illustrated by Figure 99. The machines

o

C

O

w
U

j

F

q---- _ -----_

A

FIG I10

FIGURE 99. SKETCH SHOWING DIMENSIONS IN ROLL-FORMING

STAND MENTIONED IN TABLE XXXIX

Courtesy of Tishkin Products Company_ Detroit_

Michigan.

described are considered typical of the roll-forming equipment

available in the industry. The size and weight of the equipment in-

creases as the maximum sheet thickness increases. The number of

roll stands required for a particular application depends on the com-

plexity of the bending required. A machine may consist of from 2 to

20 roll stands. By running machines in tandem_ as many as 50
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TABLE XXXIX. COMPARATIVE CHART OF CAPACITIES OF VARIOUS ROLL-PORM1NG MACHINES PRODUCED BY ONE

IvIANUFACTUREI_ a)

Reference

to

Figure 99
Model Designation

RLW MLW HMW MW HW XHW

Spindle Diameter, in. I

Horizontal Center Distance, in. 5

Standard Poll Space, in. 3-1/2

Upper Spindle Adjustable From, 2-15/16 to

in. 3-9/16

Poll-Pitch Diameter From, in. 3 to 3-1_2

Smckline From Flo_, in. 36

Maximum Section Height From 9/16

Pitch Line, in.

Standard Spacer, OD. in. I. 720

Top of Base to Lower Spindle, 3

in.

Aplxoximate Maximum Height 1-I/8

of Section That Can Be Rolled,
in.

Maximum Recommended Stock 0. 025

Thickness, approx, in.

Range of RoLl Stands (Pairs of 6-20

Spindles)

Range of Overall Lengths, in. 53-123

Range of Recommended Motor 2-7-1F'2

Horsepower

Range of Weights, lb 1,900-

5,275

1-1/'2 1-1f2 or 2 or 2-1/4 or 3. 3-1t2, or 4

1-3/4 2-1/4 2-1/2
8 9 12 14 18

6 6 or. 8 10 or 12 10 or 12 18

3-15/16 to 4-7/16 to 5-7/16 to 6-3/8 to 7-7/8 m 11-1/8

5-1D6 5.-9/16 7-1/16 8-1t2

4 to 5 4-1_2 to 5-IE2 to 6-I/2 to 8 to II

5-1t2 7 s-sis

36 36 36 36 36

314 1 1-3/8 1-5/8 2-3/4

2. 720 2.720 3.470 4. 220 4. 720

4 4-I_2 5 6 8

1-I/'2 2 2-314 3-1/4 5-1/2

O. 045 0. 078 O. 109 O. 148 O. 187

6-20 6-20 6-20 6-20 6-20

72-184 80-206 95-263 110-314 136-396

3-15 5-15 7-1/2-20 10-40 15-50

2,600- 4,100- 5°000- 7,500- 11,000-

8,050 1 l, 800 18,050 23,500 40, 000

(a) Data taken from booklet, "Modem Metal-Forming Machinery by Tishkin", Tishkin Products Company, Detroit 37, Michigan.
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stations have been used (Ref. 91). Relatively simple bending con-

tours can be accomplished by using six or less rolls. Equipment

manufacturers should be consulted on equipment requirements for

specific applications.

Tooling. The rolls used in roll-forming equipment may

be made from a variety of materials. Case-hardened steel rolls are

normally used (Ref. 92); oil-hardened tool steels also may be used.

For high-production applications where long-wearing characteristics

are desirable_ rolls of steels containing about I to 2. 25 per cent

carbon and 12 to 13 per cent chromium are used. Chromium-plated

rolls may be used where high-finish materials are to be formed.

Sometimes duplex rolls with only the working surfaces made of

hardened tool steel are used. They are especially suitable for wide

rolls with shallow contours. In other applications where severe form-

ing is involved_ rolls are sometimes faced with a I/8-inch-thick

overlay of bronze to reduce "pickup" (Ref. 92).

Lubricants. Lubricants are nearly always used for roll

forming the precipitation-hardenable stainless steels. Since the

forming is generally carried out at room temperature, viscous fluids

such as SAE 60 oil or its equivalent function both as lubricants and

coolants. These lubricants should be free of chlorine. However, the

exact composition of the roll-forming lubricants are proprietary.

The lubricant may be applied by passing the strip between wipers

before it enters the first set of rolls, or the lubricant may be piped

to the rolls and allowed to flow on the strip.

Material Preparation. The general precautions given

in the section on blank preparation should be observed. The

precipitation-hardenable stainless steels generally are not as sensi-

tive to the presence of grinding marks and scratches parallel to the

length of the strip as are the titanium-, nickel-, and cobalt-base

alloys.

Variations in the thickness of the metal strip results in dimen-

sional inaccuracy of roll-formed parts. Improvements in thickness-

shape control by the metal rolling mills have minimized this

problem.

Roll-Forming Procedures. Shapes such as channels,

hat sections, and tubing are being produced routinely from the

precipitation-hardenable stainless st.eels. Procedures used for the

regular grades of stainless steel are used, with modifications, for
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roll forming the precipitation-hardenable grades. Small-

diameter, welded aircraft tubing is commercially available in a

variety of sizes up to 1-1/8-inch diameter in Grades AM-350, PH 15-
7 Mo, and 17-7 PH. Such materials are roll formed in the annealed

condition and welded as an additional step in the continuous production

line by equipment such as is shown in Figure 100. The 1Z-stand roll

former at the right produces tube of the desired size from strip that

is then automatically welded, trimmed, sized, straightened, and cut

off. The number of rolls used for roll forming depends on the

strength and work-hardening rate of the particular alloy involved.

The critical step that limits the production of tubing in many cases is

the welding operation since the roll-forming equipment can produce

tubing for welding speeds up to about 200 feet per minute. Generally

automatic welders have not yet achieved such speeds.

The limiting bend radius of the material is an important param-

eter in determining the number of rolls that must be used in forming

a particular shape. Such data coupled with experience gained in

working with similar materials enable the successful production of

shapes by roll forming of strip stock.

Post-Forming Treatments. After forming, sections
-_4a _],_-¢_t] 4-r_ t]_^.-] 1^_4-1.._ ^--...1 J.1-_ .C..... _".... 1 1_ ..-

J.uur.... o.._,_ ,_,,s_,_ ,_,,_, LL-_ -u-_uLug leant is removed.

This may be done by rinsing or wiping with solvents, vapor blasting

individual pieces, or by using a suitable cleaning-bath or pickling

cycle. Hydrogen pickup during pickling normally is not a severe

problem with the stainless steels. Inspection for cracks is done by

the fluorescent die-penetrant method and/or visually under a low-

power microscope.

Roll Bending. Roll bending is an economical process for

producing single-contoured skins from sheet materials. In addition

to bending flat sheet into cylindrical contours, the linear-roll-bending
technique also is commonly used to curve heel-in and heel-out

channel sections. The channels may initially have been produced by

roll forming, on a press brake, or even by extrusion. In addition

to roll bending, the final contour of a channel or other section also

might be produced by stretch-forming techniques. Curved angle

sections may be produced by bending channel sections to the desired

contour and then splitting the channels to form the angle sections.

Figure 101 is a sketch of a typical setup for the linear roll

bending of channels (Ref. 44). The upper roll in the pyramid-type

roll configuration can be adjusted vertically as shown in the figure
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Direction of upper
wheel adjustment

R _adius 5 in. minimum

A

a. Heel-in Setup

Heel-in I t_
I_ R_

Heel -out

b. Part Types c. Section A-A

FIGURE 101. PART TYPES AND SETUP FOR ROLL

BENDING (REF. 44)
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and the radius of the bend is controlled by the adjustment of this roll.

The geometry for heel-in and heel-out channels also is shown in the

sketch.

Roll bending is a process that depends greatly on technique.

Premature failures will occur if the contour radius, R, is decreased

in increments that are too severe. On the other hand, too many

passes through the rolls may cause excessive work hardening in the

channel. An operator usually must form several trial parts of a new

material in order to establish suitable conditions.

Equipment. Linear-roll-bending equipment generally is

quite simple. One common type of equipment utilizes a pyramidal

design both in vertical and horizontal machines. Three rolls are

used, two lower rolls of the same diameter placed on ][ixed centers

at the same elevation_ and a third or upper roll placed above and

between the lower rolls. The upper roll may be adjusted vertically

to produce different curvatures_ and all three rolls are driven.

Figure 102 shows a vertical roll bender of the type used by Wood,

et al. (Ref. 44) in their study of linear roll bending of channels.

Such equipment also can be used for making helical coils from angles

and channels, flat sections edgewise, and pipes by changing the rolls

to the appropriate design.

Another type of equipment for bending shapes is the pinch-type

roll bender, so called because its two main rolls actually pinch the

stock between them with sufficient pressure to pull the material

through against the resistance of the bending stress. This equipment

contains four rolls_ as shown in Figure 91. The upper and lower

main rolls are driven by a train of gears_ and the lower roll, directly

beneath the upper one_ js adjustable vertically. The large rolls sup-

port the flanges of the shape during bending and tend to minimize

buckling by supporting the sides of the flanges. The small idler rolls

can be adjusted up and down, as shown in Figure 103 for changing the

bend radius.

Table XL gives information on a number of roll-bending machines

produced by one manufacturer. The pinch-type machines have

smaller capacities than the pyramid-type rolls and are largely used

for relatively light aircraft parts.

In addition to rolls for contouring channels and other shapes,

equipment also is available for bending sheet sections into shapes.
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FIGURE 102. THREE-ROLL PYRAMID -TYPE ROLL-BENDING MACHINE 

Courtesy of Buffalo Forge Company, Buffalo, New York. 

1 9 3  



FIGURE 103. CONFIGURATION OF ROLLS IN AIRCRAFT PINCH-TYPE ROLL- 
BENDING MACHINE 

Courtesy of Buffalo Forge Company, Buffalo, New York. 
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Figure 104 is a view of the roll-bending equipment at the Columbus

Division of North American Aviation. Three bending rolls of varying

size are shown, the largest of which is about 15 feet long and the

smallest about 4 feet long. The equipment is used to bend such

aircraft parts as wing-leading edges, doors, aircraft skins, etc.

Table XLI gives data on the sizes and other characteristics of sheet-

bending rolls produced by one manufacturer. One characteristic of

this type of equipment is that the diameter of the rolls is rather

small, frequently I-I/2 to 2 inches. The rolls are backed up, as

can be seen in Figure 104, by a series of smaller rollers to prevent

bending deflections during rolling.

Another type of roll-bending equipment is made specifically for

producing cylindrical and other closed sections from sheet. Such

equipment is called a slip-roll former or bender, and these machines

feature pinch-type rolls. They are very versatile and adaptable to

many operations. The equipment uses larger diameter rolls than the

sheet-forming rolls just described, and is characterized by the

ability of the upper roll to swing open at one end {outboard bearingl

to permit easy removal of the completed cylinder or other closed

shape without distortion. Table XLII gives data on the sizes and

other pertinent characteristics of these slip-roll-bending machines.

In general, power ratings of bend rolls used for precipitation-

hardenable stainless steels should be 50 to 60 per cent greater than

those required for carbon steel (Ref. 57).

Tooling. Rolls for linear contour bending of shapes

have been made from a variety of materials. Sometimes the rolls

are made from hard rubber or beryllium copper for use at room

temperature with relatively soft materials or for short runs with

harder materials. Rolls on roll-bending machines are commonly

made from tool steels. These may range from Grade 0-2 for room-

temperature application to Grades H- II and H- 13 for elevated-

temperature use. Rolls for the sheet-roll-bending machines, such

as are shown in Figure 104, may also be made of low-alloy steels

such as Grade 4130 with flame or case-hardened surfaces. The sur-

faces usually have a hardness of about 50 R C.

Lubricants. Lubricants are almost always required for

roll forming the precipitation-hardenable stainless steels. For roll

forming at room temperature, fluids such as SAE 60 oil, castor oil,

lard oil, sperm oil, and mixtures of mineral oil and water function

both as lubricants and coolants. When the forming forces are high,
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TABLE XLI. COMPILATION OF DATA ON SHEET-FORMING ROLLS PRODUCED

BY ONE MANUFACTURER (a)

Model

No.

Maximum Material

Useable Minimum Thickness (Tensile Dimensions v ft
Length of Bend Radius Strength < 60 000 psi), Approximate Overall

Roils, ft in. in. Weight, Ib Length Height

Model E

658-E 6 5/8 0.063 4,300 II-5/12 7-I/3

610-E 8 I 0.063 4,400 II-5/12

858-E 8 5/8 0.063 5,035 13-5/12 7-1/3

1058-E 10 5/8 0.063 5,765 15-1/3 7-1/3

1258-E 12 5/8 0.063 6,500 17-1/3 7-1/3

1558-E 15 5/8 0.063 7,300 20-1/3 7-1/3

1510-E 15 1 0.063 7,550 20-1/3 7-1/3

1810-E 18 l 0.063 8,500 23-1/3 7-1/3

Model EX

1010=EX I0 I 0.094 6,900 16-I/12 8-I/3

1210-EX 12 I 0.094 7,740 18-I/12 8=I/3

1510=EX 15 1 0.094 9,000 21-5/6 8-5/6

Z015-EX 20 1-1/2 0.094 21,000 26-1/2 9-2/3

2410-EX 24 I 0.094 32,700 33-1/2 9-3/4

Model EXX

6!0-EXX 6 ! 0 !25 q_lS0 12-I/12 8-1/3

810-EXX 8 I 0.125 6,800 14-I/12 8-1/3

1010-EXX 10 1 0.125 8,450 16-5/6 8-1/3

IZI0-EXX 12 l 0.125 10,100 18-5/6 8-1/3

1515-EXX 15 l-l/Z 0.125 23,400 22-1/4 9-1/2

2015-EXX 20 1-1/2 0. 125 26,000 27-1/4 9-3/4

Model EXXX

1015-EXXX I0 I-1/2 0. 190 15,775 18-3/4 9

1215-EXXX 12 I-I/2 0. 190 19,635 20-3/4 9-I/3

1515-EXXX 15 I-I/2 0. 190 25,400 23-5/6 9-3/4

1615-EXXX 16 1-1/2 0. 190 26,450 25-1/6 9-3/4

2015-EXXX 20 1-1/2 0. 190 30,600 28-5/6 9-3/4

Model H4X

606-H4X 6 6 0.250 22,000 16 9

806-H4X 8 6 0.250 25,000 lg 9

1006-H4X 10 6 0.250 28,000 21 10

1206-H4X 12 6 0.250 31,000 23 l0

1506-H4X 15 6 0.250 35,400 26-I/12 10-3/4

1606-H4X 16 6 0.250 37,300 27-1/12 10-3/4

1806-H4X 18 6 0.250 40,000 29-I/2 10-3/4

2006-H4X 20 6 0.250 42,500 31-1/2 10-3/4

Z406-H4X 24 6 0.250 47,500 35-1/2 I0-3/4

(a) Data taken from Booklet 1-58 from Farnham Divition. The Wlesner-Rapp Co., Inc., guffalo. New Yolk.
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lubricants with higher viscosities give best results. The exact com-

positions of lubricants used are proprietary. Solid lubricants are

often used for roll forming at elevated temperatures. The lubricants

may be applied by spraying, dipping, brushing, or wiping.

Limits for Channels. Transverse buckling and wrink-

ling, respectively, are the common modes of failure in bending heel-

out and heel-in channels. Basic equations for predicting the bending

behavior of channels of various alloys in linear roll bending were

developed by Wood and his associates (Ref. 44). The principal

parameters, shown in Figure 105 are the bend radius, R, the channel

height, H, the web width, W, and the material thickness, T. The

following three equations were developed for heel-in channel to con-

struct a formability curve of the type shown in Figure 105.

The equation for the inflection line is

H =0"0146_H_ I/2T (24)

line

The equation for the elastic buckling line below the inflection

Etli02 Isty2 2
The equation for the buckling line above the inflection line is:

(26)

Similar equations were developed for the linear roll bending of

heel-out channels.

The equation for the inflection line is

i/2

HR =0"0209_H_ (27)

The equation for elastic buckling below the inflection line is

 ci0 0isc
2OO
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The equation for buckling above the inflection line is

LH 1. Ol (29)

T Scy

The formability curve for heel-out channels is shown in Figure 106.

In addition to the values defined above, the following values also

are required to solve these equations:

E t and E c = moduli of elasticity in tension and compression,

respectively. These values are very nearly

equal for practical purposes

Sty = tensile yield strength

Scy = compressive yield strength.

The tensile yield strength is a characteristic of sheet that is com-

monly measured to define the strength of the sheet. Typical room-

temperature values of tensile yield strength and elastic modulus

found in the literature are listed in Table XLIII. These values may

be used to calculate the E/Sty and E/Scy ratios required to solve

Equations (25), (26), (28), and (29). It is here assumed that the

compressive yield strengths, Scy , required for Equations (28) and

(29), will not differ significantly from the tensile yield strengths

given so that the values may be used for both cases.

The compressive yield strength is a property that commonly is

not determined for sheet materials. However, ASTM standards have

been agreed upon for performing this test both at room and elevated

temperatures. Although the elastic modulus in compression is gen-

erally slightly higher than that in tension, it usually is considered

to be equal for all practical purposes.

In addition to the limitation on the production of suitable roll-

bent parts by both buckling and splitting of the channel, another

limiting parameter is the mechanical limit of the bending machine.

This limit depends on the thickness of the material, the maximum

section height that the tooling will accommodate, and the minimum

part radius that the machine and tooling will produce. If any of these

variables are changed, the position of the machine limit line also

will be changed. Needless to say, the use of other roll-bending
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TABLE XLIII. TYPICAL ROOM-TEMPERATURE VALUES OF MODULUS OF ELASTICITY AND

TENSILE YIELD STRENGTH FOR SELECTED PRECIPITATION-HARDENABLE

STAINLESS STEELS

Alloy

Tensile Yield

Elastic Modulus. Strength,

Condition E x 106 psi Sty ' 1000 psi E/Sty Reference

Martensitic Types

17-4 PH (a) Annealed 28.5 110 259 93

17-4 PH(a) Annealed 28.5 110(b) 259 93

Stainless W Solution treated 30.7 95 323 47

ALMAR 362 Annealed 28.5 105-115 251-248 29

A ustenitic Types

Solution annealed 29.1 36 808 93

Semiaustenitic Types

A -286

17-7 PH Solution annealed 29.0 40 725 93

• PH 15-7 Mo Solution annealed 28.0 55 509 93

AM-350 Solution treated 29.4 60 490 32

AM-355(a) Solution treated 29.3 56-60(c) 523-489 32

(a) Normally not available as sheet or strip.

(b) Compressive yield strength.

(c) Properties for plate.
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equipment will change the position of the machine limit line and also

of the buckling limit line of the alloy. Therefore, it should be

emphasized that roll-bending limits derived by Wood, et al. , are

probably valid only when used with a pyramid-type, three-roll-

bending machine. The added support provided by pinch-type rolls

probably would move the buckling limit line to the right.

Figures 105 and 106 give limits for the linear roll bending of

heel-in and heel-out channels, respectively, for four precipitation-

hardenable stainless steel alloys, as treated by Wood, et al.

(Ref. 44). All four of the alloys show similar behavior. Of the al-

loys, the A-286 alloy is the easiest to form by linear roll binding,

whereas the AM-350 alloy is the most difficult to form.

TABLE XLIV. LINEAR ROLL-BUCKLING LIMITS (REF. 34}

Critical Ratio, Bucklin_ Limits t H/T r for H/R Ratios of

Alloy RD/T 0. 001 0. 005 0. 010 0. 020 0. 030 0. 040 0. 050 0. 060

Heel-ln Channels

17-7 PH 60 H/T 125 57 40 Z9 23 20 18 --

RD/T 124,815 11,343 3,960 1,421 744 480 342 --

AM-350 60 H/T i07 48 34 24 20 17 15 --

RD/T 106,893 9,552 3,366 1, 176 647 408 Z84 --

PH 15-7 Mo 60 H/T IZl 54 39 27 22 19 17 --

RD/T 120,879 10,746 3,861 1,323 712 456 323 --

A-286 60 H/T 133 60 43 30 25 22 19 18

RD/T 132,867 11,940 4,257 1,470 809 .528 361 282

Heel-Out Channels

17-7 PH 86 H/T 110 50 36 25 20 18 16 15

RD/T 110, 110 10,050 3,636 1,275 687 468 336 2_75

AM-350 86 H/T 105 48 34 28 20 17 15 14

RD/T 105, 105 9,648 3,434 1,428 687 442 315 247

PH 15-7 Mo 86 H/T 120 54 39 27 22 19 17 16

RD/T 120, 120 10, 580 3,939 1,377 756 494 357 t283

A-286 86 H/T 130 59 42 30 24 21 19 17

RD/T 130, 130 11,859 4,242 1,530 824 546 399 300

The data in Figures 105 and 106 can also be presented in tabular

form (Ref. 34). Table XLIV gives roll-forming limits for heel-in

and heel-out channels. These data can be used as follows:

(1) Calculate RD/T ratio from given dimensions
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(2) Compare the RD/T ratio with the critical RD/T ratio

given in the table

(a) If the calculated RD/T ratio is less than the critical

ratio, the part cannot be formed due to machine

limitations. This is based on the capacity of a

Kane-Roach three-roll machine used to determine

.the values in the table.

(b) If the calculated RD/T ratio is greater than the

critical RD/T ratio in the table, interpolate the

tabular RD/T ratios and corresponding H/T values

for buckling to determine the required H/T ratio.

Multiply H/T by the material thickness, T, to

determine the maximum flange height, Hma x.

Example 1. Determine the maximum flange height

for roll forming a channel of 0. 100-inch-thick AM-350 stainless steel

to a 5-inch heel-in contour radius (use Table XLIV).

RD = 5 in., T = 0. 100 in., RD/T = 5/0. 100 = 50, which is less than

the critical RD/T ratio of 60.

Therefore, it is not possible to form the part because of machine

limitations.

Example Z. Determine the maximum flange height

for roll forming a channel 0. 025-inch-thick, PH 15-7 Mo stainless

steel toa 10-inch heel-out contour radius (use Table XLIV).

R D = I0 in., T = 0. 025 in._ RD/T = 400, which is greater than the

critical RD/T ratio of 86. For RD/T = 494, H/T = 19 and for RD/T =

357, H/T = 17. Interpolating for RD/T = 400, H/T = 17. 63. Hma x =

H/T = 17. 63 x 0. 025 = 0.441 in.

Graphs similar to Figures 105 and I06 and tables similar to

Table XLIV can be constructed from experimental values of E/Sty

and E/Scy for alloys of interest.

Roll Bending of Sheet. Sheet of the precipitation-

hardenable stainless steels have been contoured by rolling, but no

systematic study such as that conducted by Wood, et al., for the

roll bending of channels has been reported. For successful roll bend-

ing of sheet_ the sheet must be relatively flat.
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The roll-bending equipment for contouring sheet is rated on the

bending of mild steel or an aluminum alloy. The yield strength of

mild steel is about 50, 000 psi and that of aluminum alloys about

73,000 psi. The precipitation-hardenable stainless steels in the an-

nealed or solution-treated condition range in yield strength from

about 36, 000 to 110, 000 psi. When aged after solution treating, yield

strengths ranging from about 120, 000 to Z20,000 psi are obtained.

The capacity of a given sheet-roll-bending machine can usually

be estimated on the basis of the square of the thickness of sheet being

formed. Thus, if a given piece of equipment is capable of bending

I/4-inch-thick aluminum plate (73,000 psi yield), it probably would

only have the capacity to bend about 0. 203-inch-thick annealed 17-4

PH alloy (ll0, 000 psi). This rule of thumb is useful in preventing

overloading of bending rolls. The above assumes that the cylinder

lengths of the two materials are equal. Conversely, if the two mate-

rials in the above example were of the same thickness, then the

stronger 17-4 PH alloy sheet would have to be reduced in length

pr oportionately.

DIMPLING

Introduction. Dimpling is a process for producing a small

conical flange around a hole in sheet-metal parts that are to be as-

sembled with flush or flat-headed rivets. The process is often used

for preparing fastener holes in airframe components because the

flush surface reduces air friction. Dimpling is most commonly ap-

plied to sheets that are too thin for countersinking. Since drilled

holes have smoother edges than punched holes, they are more suit-

able for dimpling. Sheets are always dimpled in the condition in

which they are to be used because subsequent heat treatment may

cause distortion and misalignment of holes.

Principles. Figure 107 is a sketch of the dimpled area in a

sheet. As would be expected in a press-die forming operation of this

kind, the permissible deformation depends on the ductility of the

sheet. The amount of stretching required to form a dimple, e,

varies with the head diameter, D, of the fastener, the rivet diameter,

2R, and the bend angle, _, according to the relationship (Ref. 56)
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FIGURE 107. PARAMETERS FOR DIMPLING (REF. 44)

Cr cks

a. Rodiol Crocking b. Circumferent[ol Crocking

FIGURE I08. MAJOR FAILURES IN DIMPLING (REF. 34)
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If the ductility of the material is insufficient to withstand forming to

the intended shape, cracks will occur radially in the edge of the

stretch flange or circumferentially at the bend radius, as is shown in

Figure 108. The latter type of failure is more prevalent in thinner

sheets. Radial cracks are more common in thick stock.

The general equation developed by Wood and his associates

(Ref. 44) for predicting dimpling limits from the parameters indi-

cated in Figure 107 is

H 0. 444(¢Z. 0) 0" 253
-- = .... (31)
R I - cos 0_

The value _2.0 in the equation is the elongation in a Z-inch gage length

for the material and temperature of interest (e. g., CZ. 0 = 0.5 for

50 per cent elongation).

The standard dimple angle, 0_, in Figure 107 is 40 degrees al-

though other angles may be used for special purposes. Dimpling re-

quires a considerable amount of ductility and many of the

precipitation-hardenable stainless steels are sufficiently ductile to

be dimpled at room temperatures. Conscquent!y, elevated tempera-

tures may be required to dimple only some of the stronger and less

ductile materials. The ram-coining-dimpling process is most com-

mon although dimples have been produced at room temperature by

swaging. The essential features of the ram-coin-dimpling operation

are indicated in Figure 109. In this process a pressure in excess of

l

= Die

Coining ram

:-'1 -

* Workpiece

Punch

Pressure pod

FIGURE 109. CROSS SECTION OF RAM-COIN

DIMPLING (REF. 34)
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that required for forming is applied to coin the dimpled area and re-
duce the amount of springback.

Equi.p.ment ,. The choice of the size of ram-coining-dimpling

equipment depends on the pressures needed to deform the sheet. A

guide in choosing size ranges for dimpling machines needed to pro-

duce dimples for various rivet and screw sizes is tabulated below

(Ref. 94):

3/32- to I/8-inch rivets

5/3Z-inch rivet

3/16-inch rivet and screw

i/4-inch rivet and screw

5/16-inch screw

Up to I0,000 ib

i0,000 - Z0,000 ib

15,000 - 25,000 ib

18,000 - 40,000 ib

25,000 ib and up.

The capacities of four commercially available dimplers are

given in Table XLV. A photograph of the Chicago Pneumatic CP

450EA Dimpling Machine Frame equipped with a hot, triple-action,

ram-coin-die unit is shown in Figure II0. A competitive machine

in which the dies are heated by induction coils is shown in Figure 111.

TABLE XLV. CAPACITIES AVAILABLE IN COMMERICALLY

AVAILABLE DIMPLING MACHINES (REF. 94)

Model No.

Dimpling Pressure

Capacity, ib Manufacturer

CP450EA 20,000

ATZ56S 30,000

CP640EA 40,000

ATZ60A I00,000

Chicago Pneumatic Tool Co.

Aircraft Tools Company

Chicago Pneumatic Tool Co.

Aircraft Tools Company

Tooling. A typical sequence of operations for dimpling is

shown in Figure 112. The five positions shown for a triple-action

ram-coin-dimpling machine are the approach, preform, coining_

end of stroke, and retraction.

Some precipitation-hardenable stainless steels must be dimpled

at elevated temperatures. The practical optimum temperature limit

is 1200 F, which is about the highest temperature at which tool steels

may be used as die materials. If dimpling must be done at higher

temperatures, the use of high-strength, high-temperature alloys or

ceramic tooling materials is required to prevent deformation of the

die materials during dimpling.
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FIGURE 110. CP450EA HOT, TRIPLE-ACTION M I - C O I N  DIMPLER 

Fully automatic electric and pneumatic controls. 

Courtesy of Zephyr Manufacturing Company, 
Inglewood , California. 
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FIGURE 111. INDUCTION-COIN-DIMPLING MACHINE 

Courtesy of Aircraft Tools, Inc., 
E l  Segundo, California. 



Posit ion

I

Pos it ion
2

Position

3

Pos ition
4

Position
5

E

a. Approach

Sheet is positioned, with punch pilot in pilot

hole and die assembly is coming down to

contact position; loading force on coining
ram is at preselactod value

b= Preform

Die assembly has lust contacted work, and

timed hooting stage is beginning; controlled

preforming pressure is increasing to partial-
ly form dimple and to further accelerate
heat transfer

C. Coining
Timed =Preform" stage has ended, end final

coining stage begun; downward movement

of die assembly is c.rootlng firm gripping
action between die and pad faces in area

around dimple, preventing outward flow of

material as dimple Is coined; coining ram
controls hole stretch and balances internal

strains, eliminating radial and internal
shear crocks

d. End of Stroke

Dimple is now fully formed; the confining

action of pad face, die face, and coining
ram has forced material into exact con-

formation with tool geometry

e. Retraction

As die assembly retracts to starting position,

load on pressure pad raises pressuqe pod

to starting position and strips dimple

from punch cone

f. Result
Minimum sheet stretch e minimum hale stratch e

maximum definition, improved nestlng

FIGURE I12. SEQUENCE OF OPERATIONS IN TRIPLE-

ACTION RAM- COIN DIMPLING

Courtesy of Convair, General Dynamics

Corporation, San Diego, California.
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Elevated-temperature dimpling is usually done with heated dies.

The sheet to be dimpled may be heated by contact with the heated dies,

as shown in Figure If3. Conduction-heated, ram-coin tooling may be

used for temperatures up to 1000 F. Resistance-heated dimpling

equipment is used for higher temperatures. The tooling that is heated

by resistance in one application is shown in Figure if4. The tooling

consists of a solid die and a two-piece punch assembly. The die is

made of high-temperature resistant steel. This punch cone is a com-

posite of Kentanium and steel base. Sometimes punches also are

made of tungsten carbide. The pad is a special high-alumina com-

position. Strap heaters were used to heat the punch pad and die, to

reduce heat-sink effects, and to eliminate thermal shock on the pad.

The direction of current flow from the punch to the die used to heat

the sheet metal to the dimpling temperature is shown in Figure 114.

The dies also may be heated by induction, and such systems have

been produced by one or more suppliers of dimpling dies (see

Figure lll).

Material Preparation for Dimpling. Sheet Quality. Factors

that permit maximum formability in dimpling are consistent yield

strengths from sheet to sheet, minimum thickness and flatness varia-

tions between sheets, and high-quality surface finishes.

Drilling Sheet. The quality of the drilled pilot hole has

an important influence on the success of dimpling. The holes must

be smooth, round and cylindrical, and free of burrs. Hand drilling

is not recommended. Burrs or wire edges remaining around the

holes may be detached during dimpling and lodge on the punch or die.

TABLE XLVI. RECOMMENDED PILOT-HOLE SIZES FOR

RESISTANCE DIMPLING (REF. 96)

Fastener Diameter (a), Drill Size,

in. No. (inch)

3/3Z 54 (0.055)

i/8 so (o. 070)
5/3Z or No. 8 40 (0.098)

3/16 or No. i0 30 (0. 128)

I/4 I0 (0. 193)

5/16 I/4 inch (0. Z50)

(a) Fastener diameter, not head configuration, determines the hole size.
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FIGURE 113. RESISTANCE-HEATED DIMPLING TOOLING 

- Car bide punch 

Courtesy of Zephyr Manufacturing Company, 
Inglewood, California. 

/ Steel die 

Ceramic 
clamp 

FIGURE 114. CURRENT FLOW FROhl PUNCH TO DIE USED TO HEAT SHEET AIATERIAL 
TO THE DILIPLING TEhIPERATURE BY RESISTAXCE (REF. 95) 

Ceramic clamp heated between 500 and 600 F by a strap resistance 
heater so that the ceramic does not ac t  as a chill ring. 
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Pilot-hole sizes should conform to specifications applicable to

aluminum alloys. The pilot holes should be drilled with suitable stub

drills to produce ho]es with straight sides. Such holes are satisfac-

tory for dimpling. Table XLVI lists pilot-hole sizes recommended

for fasteners with several diameters.

Deburring Drilled Holes. Care must be taken in de-

burring holes for dimpling. Only the material turned up by the drill

at the edges of the hole should be removed. Hand deburring with a

countersink cutter has proven satisfactory (Ref. 94). Power-driven

countersinks that chatter are not satisfactory since chatter marks are

potential sources of radial cracks.

A power-driven microstop tool with a special facing cutter':= has

been used successfully in production (Ref. 94). The tool is mounted

in the chuck of a 1000-rpm pneumatic-drill motor, and a microstop

is adjusted to cut the burr flush with the sheet surface. Such a

machine leaves a smooth hole edge.

Lubricants. Dimpling is done dry at both room and elevated

temperatures.

Calculated Dimpling Limits. The general theoretical pre-

dictability equation (Ref. 44) for dimpling based on the parameters

indicated in Figure 107 is

H (0. 444) (aZ. 0)0. Z53

R i - cos o_

The value of eZ. 0 in the equation is the elongation in a Z-inch gage

length for the material at the temperature of interest. Table XLVII

gives typical elongation values for a number of precipitation-

hardenable stainless steels in several conditions of heat treatment.

Greatest ductility in the aged condition is found in the A-Z86 alloy,

which is easier to dimple than some of the other alloys.

Figure i15 shows the relationship between ductility and tem-

perature for the mill- or full-annealed AM-350, A-Z86, and PH 15-

7Mo alloys(Ref. 35). At room temperature, the A-Z86alloy is

slightly more ductile than the other two alloys. BothAM-350 and the

PH 15-7 Mo alloys exhibit slightly better ductility up to 500F than room

*Tool Number ZP339, The Zephyr Manufacturing Company, Inglewood, California.
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TABI,E XLVII, TYPICAL ROOM-TEMPERATURE VALUES OF ELONGATION IN A 2-INCH GAGE LENGTH

FOR SELECTED CONDITIONS OF PRECIPITATION-HARDENABLE STAINLESS STEELS

Per Cent Elongation in

Alloy Condition 2-Inch Gage Length Reference

Martensitic Types

t7-4 t'H(a)

5tainles s W

Almar 362

17-7 I_H

PH 15-7 Mo

A.M-350

&M_355(a,b) "

A-286

A (solution annealed) I0.0 93

H 900 14.0 93

H 925 14.0 93

H 1025 15.0 93

H 1075 16.0 93

H llS0 19.0 93

Solution annealed (1850 to 1950 F)

Solution annealed and aged (950 F)

Solution annealed and aged (I000 F)

Solution annealed and aged (1050 F)

Solution annealed (1850 to 1950 F) and solution annealed

at 1300 F

Solution annealed (1850 to 1950 F), solution annealed

(1300 F), and aged (950 F)

Solution annealed (1850 to 1950 F), solution annealed

(1300 F) and aged (1000 F}

Solution annealed (1850 to 1950 F), solution annealed

(1300 F) and aged (1050 F)

Solution annealed

Solution annealed and aged (I000 F)

Solution annealed and aged (900 F}

Solution annealed and aged (I050 F}

Semlaustenltic Types

A

T

TH 1050
C

GH 900

A 1750

R 100

I_950

A

T

TH 1050

CH 9OO

A 1750

R I00

RH950

H (solution treated - 1900 to 1975)

SCT (850 F)

SGT (1000 F)

L plus DA (1375 and 850 F}

H plus DA (1375 and 850 F)

H (solution treated 1950 F)

SCT {850 F)

SCT (1000 F)

Austenitic Types

A (solution annealed at mill)

STA (solution annealed and aged at 1325 F)

3.0-5.0 47
3.0-5.0 47

3.0-5.0 47

4.0-7.0 47

5.0-7.0 47

5.0-7.0 47

5.0-7.0 47

5.0-7.0 47

10.0-20.0 29

15.0-17.0 29

13.0 29

18.0 29

35.0 93

9.0 93

9.0 93

5.0 93"

Z. 0 93

19.0 93

9.0 93

6.0 93

30.0 93

7. O 93

7.0 93

5.0 93

2.0 93

12.0 93

7.0 93

6.0 93

40.0 32

13.5 32

15.0 32
13.5 32

12.5 32

26.0 32

14.0 3Z

17.0 32

48.0 93

24.0 93

(a) Normally not supplied as sheet or strip,

(b) Value given is for plate.
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temperature and then decrease in ductility to 1000 F. The PH 15-7

Mo alloy continues to decrease in ductility, but the AM-350 alloy

increases in ductility above 1000 F having an elongation of 50 per cent

at 2000 F. The ductility of the A-286 alloy decreases with increasing

temperature up to 1500 F, then improves as the temperature is

raised in the range from 1500 to Z000 F. The elongation value at

Z000 F was 40 per cent.

0.40

m " 86

.._ 0.3o '-- --

._c o 0.2o _O PH 15-7Mo _

O O

o 0.10

0

RT 300 500 I000 1500 2000

Tern peroture, F

2500

FIGURE 115. RELATIONSHIP BETWEEN ELONGATION AND

TEMPERATURE AS DETERMINED IN TENSILE

TESTS ON FULLY ANNEALED ALLOYS

(REF. 35)

The slight increase in ductility from room temperature to 500 F,

indicated in Figure I15 for both AM-350 and PH 15-7 Mo stainless

steels (12 per cent), does not justify dimpling at 500 F unless the

alloys cannot be successfully dimpled at room temperature. Dimpling

at high temperatures in the range of Z000 F is beset by problems

in tooling.

Figure 116 and Table XLVIII show the relationships between the

H/R ratio and the bend angle as determined by Wood, et al. (Refs.

34, 35) for four precipitation-hardenable stainless steels. As ex-

pected, the alloys are easier to dimple as solution treated than when

aged. These data predict that good parts will be formed for values
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Q

I

0

]
AM-350 (500 F)(anneoled)

(RT)(oged 1325 F)

AM-350 (2000 F)(annealed)

PH 15-7Mo (500 F)(onneoled)

-350 (RT)(eged 850F)

PH15-7Mo(RT)(TH 1050)

17-7PH(RT) TH 1050

Split ports

Good ports

30

i

40

Bend Angle, o, degrees

50

FIGURE 116. THEORETICAL RELATIONSHIP BETWEEN H/R

RATIO AND BEND ANGLE FOR THE DIMPLING

OF SELECTED PRECIPITATION-HARDENABLE

STAINLESS STE:ELS (REFS. 34, 35)
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of H/R under the curves while splitting will occur if the experi-
mental H/R values fall above the curves. Similar charts can be
prepared for other alloys using Equation (31) and appropriate elonga-
tion values such as those given in Table XLVII.

TABLEXLVIII. ROOM-TEMPERATURE DIMPLING LIMITS FOR SELECTED PRECIPITATION-

HARDENABLE STAINLESS STEELS TO PREVENT RADIAL SPLITTING AT

EDGE OF HOLE (REFS. 34, 35)

Dimpling Limits, H/R, for Various

Temperature, Bend Ansles, a

Alloy Condition F 30 Deg 35 Deg 40 Deg 45 Deg 50 De I

17-7 PH TH 1050 RT 1.78 1.32 1.02 0.80

AM-350 Aged at 850 F RT 1. 88 1.40 1.08 0.85
AM-350 Annealed 500 2.46 1.87 1.43 1.10

AM-350 Annealed 2000 2.78 2.09 1.58 1.23

PH 15-7 Mo TH 1050 RT i. 78 I. 32 i. 02 0.80

PH 15-7 Mo Annealed 500 2.43 1.84 1.40 i. 07

A-286 Aged at 1325 F RT 2.26 1.67 1.30 1.03

0.65

0.68

0.93

i. 03

0.65

0.90

0.82

Conditions of heat treatment and dimpling temperatures affect

the limits given in Table XLVIII. The usefulness of Table XLVIII

can be illustrated in the following example (Ref. 34):

Problem: Determine the maximum length of dimple flange,

Hmax, that can be produced at room temperature

for the AM-350 stainless steel alloy in the

solution-treated condition using a hole radius of

I/8 inch and a bend angle of 42 degrees.

= 42 degrees; R = 0. 125 inch.

By interpolation, H/R = 0.988 when _ = 42 degrees

Hma x = (H/R)(R) = 0.988 x 0. 125 = 0. 124 inch.

Dim_lin_ Experience. Work at McDonnell Aircraft Corpora-

tion (Ref. 49) appears to agree with the findings of Wood_ et al.

(Refs. 34, 35_ 44) regarding the room-temperature dimpling of some

of the precipitation-hardenable stainless steels. Both the AM-350

alloy (SCT 850 condition) and the PH 15-7 Mo alloy (TH I050 condi-

tion) were successfully dimpled for 5/32 Hi Shear rivets in 0. 063-

inch-thick sheet. The dimpled test strips had the same strength as
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adjacent strips in which pilot holes were drilled but no dimples made.

Difficulties were encountered in attempting to dimple these materials

at higher temperatures, as the data of Wood predicted. However, at-

tempts to produce dimples in these same two materials for I/4-inch

fasteners at room temperature were not successful. Practically

speaking, the use of fasteners with diameters greater than about 3/16

inch for relatively thin sheet is seldom warranted. When thicker

sheet is used, countersinking is customarily utilized to produce the

recesses for the fasteners.

The AM-350, PH 15-7 Mo, and 17-7 PH alloys were successfully

dimpled, in the heat-treated condition, at 1300 to 1400 F at Northrop

Aircraft (Ref. 97). The sheet was heated by conduction from the

lower die that was heated by induction. This elevated-temperature

dimpling, however, resulted in a 30 to 35 per cent reduction in hard-

ness in the area of the dimple. The lower hardness, no doubt, was

the result of overaging the sheet prior to dimpling by heating it to the

dimpling temperature. In another program, the 17-7 PH alloy sheet

could be successfully dimpled at room temperature only after over-

aging the TH 1200 condition (Ref. 98).

Attempts at Boeing (Ref. 99) to test dimple 0. 014- and 0. 020-

inch-thick sheet of AM-355 CRT by conventional methods at die

temperatures of -20 F, room temperature, and 800 F were not suc-

Cessful. Dimples were made for No. 10 screws and for 5/32- and

3/16-inch-diameter rivets. All of the dimples formed had circum-

ferential cracks and most of the screw dimples had radial cracks.

Another Boeing study investigated the feasibility of dimpling

PH 15-7 Mo (RH 950) sheet, 0. 010, 0. 020, 0. 032, and 0. 040 inch

thick by the Lemert Spin-Impact Method (Ref. 100). This dimpling

method does not depend as much on material ductility but rather

forms the dimple by the peening action of a rotating die. Results

were erratic and inconsistent. The hole to be dimpled was punched

on the Lemert machine and the hole area was annealed rapidly with

an oxyacetylene torch operated manually. Dimpling on the Lemert

machine is a two-step operation. In the first step, a 0. 040-inch-

thick aluminum strip is inserted under the sample sheet. In the

second step, the backing strip is removed, and the dimple is

completed. The dimples thinned too much in the side walls and

several alternative procedures did not completely solve the problem.

However, radial cracking appeared to be a problem mainly in the

0. 040-inch-thick sheet, but circumferential cracking occurred also
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in thinner sheet. Hardness data indicated that a substantial loss of

strength also occurred. This process must be developed further to

be useful as a production tool.

Post-Dimpling Treatments. Normally the precipitation-

hardenable stainless steel sheet is dimpled in the condition in which

it is to be used. Therefore, no post-dimpling heat treatment is re-

quired. Also, if properly performed, the sheet will not warp or de-

form during dimpling, and straightening or flattening of the sheet

normally is not required.

Flash occurs at the edges of the dimple for all types of dimpling.

Figure ll7 shows an enlarged section of a dimple and illustrates the

As dimpled

Redrilled to final hole s_ze

Redrilled and deburred

FIGURE 117. ENLARGED SECTION OF DIMPLE SHOWING

POST-DIMPLING OPERATIONS (REF. 96)

Courtesy of Zephyr Manufacturing Company,

Inc., Inglewood, California.
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redrilling and deburring that usually is necessary after dimpling

(Ref. 96). The deburring is done with a special facing cutter equipped

with a microstop tool. The width of the flat surface on the back side

of the dimple should be about 1/2 the material thickness. However,

when deburring sheet 0. 060 inch thick and thicker, the flat width
should not exceed 0. 030 inch.

Stress-Corrosion' Cracking in Dimples. There is a possi-

bility of stress-corrosion cracking when the precipitation-hardenable

semiaustenitic stainless steels are used for airframe applications in

the heat-treated condition. Kowalski and Kritzer (Ref. 101) report

thatAM-350 (SCT 850), AM-355 (SCT 850), and PH 15-7 Mo (RH 950)

are all very susceptible to stress-corrosion cracking in 20 per cent

salt spray at stress levels of 40, 60, 80, and 100 per cent of tensile

yield. The 17-7 PH alloy, heat treated to the TH 1075 condition,

however, was not susceptible in the same test. Dimpling at 1300 F

considerably decreased the stress-corrosion susceptibility of PH

15-7 Mo (RH 950) at all stress levels. However, the stress-

corrosion susceptibility of AM-355 (SCT 850) was only slightly de-

creased at the lower stress level (40 per cent tensile yield stress)

by dimpling at 1300 F.

It is known that shot peening, under certain conditions, will re-

duce a material's susceptibility to stress corrosion by inducing a

compressive stress in the outer fiber of the material. No measurable

benefit in corrosion was detected when both AM-350 (SCT 850) and

PH 15-7 Mo (RH 950) were peened with glass beads.

J OGG LING

Introduction. A joggle is an offset in a flat plane produced

by two bends at the same angle. Joggling permits flush connections

to be made between sheets, plates, or structural sections. The

bend angle for joggles is usually less than 45 degrees, as indicated

in Figure 118. Because the bends are close together, the same

flange will contain shrunk and stretched regions in close proximity

to each other. The two types of deformation tend to compensate for
each other.

Equipment. Joggles may be formed either in straight or

curved sheet-metal sections by a variety of techniques. Whenever

possible, the joggle is formed as part of another forming operation

but at times a separate operation is used to produce a joggle.
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0 T

FIGURE 118. JOGGLE IN AN ANGLE (REF. 44)

c_ = joggle bend angle

D = joggle depth

L = joggle length or runout

T = thickness of workpiece

R1 = radius on joggling block

R 2 = radius of bend on leading edge of joggle block.

<
movement

o. Wipe Joggling b. Section Joggling

FIGURE 119. BASIC METHODS OF FORMING JOGGLES (REF. 44)
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Presses with special joggle dies are often employed for forming

joggles in angles and channels. Hydraulic presses are preferred for

joggling at elevated temperatures because they simplify control of

pressure and dwell time. The joggles usually are formed either by

a wiping action or a section movement, as shown in Figure I19.

Tooling. The precipitation-hardenable stainless steels are

often joggled at room temperature. Nickel-chromium-molybdenum

tool steels _vill give satisfactory service as joggle dies when heat

treated to R C 50-55. For higher temperatures, tooling constructed

from high-strength, heat-resistant alloys or ceramic materials must

be us ed.

A schematic drawing of a universal joggle die, similar to that

used by Wood, et al. (Ref. 44) in their studies is shown in Figure Ig0.

This type of tooling requires an additional hydraulic cylinder to apply

horizontal forces to clamp the side of the angle specimen to the die.

Suitable shims are added to the die to produce the shape desired in

the part. For production runs, mated, rather than universal, adjust-

able joggle dies are usually used.

'----Adlus,ot_eblocks- fou, ISoces

FIGURE IZ0. UNIVERSAL JOGGLE DIE (REF. 44)

Courtesy of North American Aviation,

Inc. , Inglhwood, California.
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FIGURE 121. FORMING LIMITS FOR JOGGLING OF

PRE CIPITATION-HARDENABLE STAINLESS

STEELS IN THE SOLUTION-TREATED OR

ANNEALED CONDITION (REF. 44)

ZZ6



Material Preparation. Precautions covered in the section on

blank preparation apply to the preparation of sheet for joggling.

Lubricants. Lubricants are generally used in the production

joggling of precipitation-hardenable stainless steel sheet metal. The

high-pressure drawing lubricants containing inert filler and having

high film strength would be satisfactory. To prevent carburization,

all lubricants must be completely removed before any thermal treat-

ment is used on the parts.

J.o_.glin_ Limits. Wood and his associates (Ref. 44) included

experiments on 17-7 PH, PH 15-7 Mo, AM-350, and theA-286 alloy

in their study of the relationships between the properties of the work-

piece and the formability limits in joggling. Formability limit charts,

based on data for these alloys in the solution-treated condition, were

constructed from a knowledge of the properties of the material and

joggling geometry (Ref. 44). These are shown in Figure 121. The

A-286 alloy is shown to have the best formability in joggling of the

alloys shown. The joggle depth can be nearly three times the runout

length for this alloy. The joggle-depth to material-thickness ratio is

approximately the same for the A-286, PH 15-7 Mo, and 17-7 PH

alloys. The common types of buckling and splitting failures en-

countered in joggling are illustrated in Figure 122.

_plitting _li

>..

ng

FIGURE 122. MAJOR JOGGLING FAILURES (REF. 34)

An empirical approach that may be used to choose joggle

dimensions is described in a North American Aviation Specification

(Ref. 102). The length or runout, L, of the joggle, shown in

Figure 118, can be determined from the following formulas and the

factors A, B, and C given in Table XLIX.
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(i) If the joggle depth is greater than A, the length of the

joggle runout equals B times the joggle depth or

L = BD (when D > A).

(2) If the joggle depth is less than A, the length of the joggle

runout is equal to the square root of the joggle depth

times the quantity C minus the joggle depth or

L = _/D(C - D) (when D < A).

(3) For joggles in flat sheets, the projected distance be-

tween tangents may be determined from the equation for

reverse curve as follows:

L = _/D(4R 2 + 2 T - D) (see Figure I17).

TABLE XLIX. JOGGLE-FORMING-LIMIT FACTORS FOR SELECTED ANNEALED PRECIPITATION-

HARDENABLE STAINLESS STEELS (REF. 102)

Minimum Bend-Radii Minimum Jo881e-Runout Factors (b)Alloy Factor, R/T (a) A/T B C/T

AM-350 2 2.0 2 10

AM-355 2 2.0 2 10

PH 15-'/ Mo i 1.2 2 6

17-7 PH 2 2.0 2 10

(a) To obtain bend radii, multiply R/T value by material thickness, T.

(b) To obtain A and C, multiply A/T and C/T values by material thickness, T.

Values suggested for minimum runout and minimum bend radii

are given in Table XLIX for several precipitation-hardenable stain-

less steels. Table L gives joggle-design specifications used at

McDonnell Aircraft Corporation for both flat and flanged sheet joggled

at room temperature in the solution-treated condition.

Post-Joggling Treatments. Springback in joggles formed at

room temperature or slightly elevated temperatures may be 5 to

10 per cent. The parts are generally overbent to compensate for the

springback.

Joggled and formed parts generally are solution heat treated

and aged after joggling. Clamping the parts in fixtures helps reduce

distortion during the heat treatment. Any lubricant residue must be

thoroughly and completely removed after joggling if the parts are to

receive a thermal treatment.

228



0

U
M

_3

oQ I

Bo I

oo I

_.-_o Q I

U_r_

_°l
0_

_oo "_1

_ •

,_do I

oo oo oo oo oo oo o

oo oo oo oo oo oo oo

oo oo oo oo oo oo oo

oo oo oo oo oo oo oo

_d N_ _N dd _d _d N_

_d c_ _ dd NN c_c_ Nc_

oo oo oo oo oo oo oo

.... 0 .........

oo oo oo oo oo oo oo

oo oo oo oo oo oo oo

_ _ _ _ N N N N N N N N N

oo oo oo oo oo oo oo

_o... o.o.o.o..-. -._ _._.
_o o,o oo oo o o _o oo

_o. o.o.o.o.o.o.o.o. _.-. _.
_o oo. oo oo oo oo oo

oo oo oo oo oo oo o

oo oo oo oo oo oo oo

...... _._. ......

...... _._._. .....
oo oo oo oo oo oo oo

"_ d d c; c; c; c; _ c_ de; _ d de;

m,_ _ o O'N

o oo oo oo o_ - _ N_

_o o,o o o, o,o, o o o,o o o

_. "_ .

_._ _:

u

_1-, o

;_o
u ,ll

:,;

_ _ .

_ _:o ¢ _

r-1 ,,I_,,
o..

: ,_o .

-o - -0

o_.o_

o_

_A

_" -. 229



SIZING

Introduction. Sizing is a final forming operation used to

bring preformed parts within the desired tolerances. When form

tooling has been properly designed to account for the predictable

springback in the precipitation-hardenable stainless steels, very

little sizing should be required. Generally tolerances of ±0. 030 inch

can be obtained in forming these alloys. When fitup problems require

closer tolerances, a sizing operation is usually required.

Sizing of the precipitation-hardenable stainless steels might be

accomplished by benching_ by hot sizing in desired fixtures, by die

quenching_ or by subzero sizing. Benching is the more commonly

used method. Alloys that age near the hot-sizing temperature can

cause considerable difficulty and sometimes requir_ more than one

operation to obtain the desired results. Such alloys sometimes are

sized as part of the aging cycle.

Benching. Benching is a hand-forming operation used to

bring parts produced by plastic deformation to the desired tolerance.

It consists of placing a free-formed part over a male die of the de-

sired dimensions and beating the part with lead strips. The term

benching is used because the work is generally carried out with the

die laying on a workbench.

Since most of the materials are work hardened by the previous

forming operations, they require a considerable amount of benching

time; sometimes they crack during benching. Best results are ob-

tained by annealing or solution treating the materials after forming

and before benching. Parts made from many materials can then be

heat treated after benching to obtain the desired properties. Bench-

ing after heat treatment should be avoided because residual stresses

may be developed in the part that may be detrimental to its structural

function (or "integrity").

Hot Sizing. Hot sizing utilizes the creep-forming principle

to produce parts accurately formed to specified dimensions by the

controlled application of pressure, temperature, and time. Two

methods of hot sizing commonly employed in production are hot-

press sizing and hot sizing in fixtures placed in conventional furnaces.

In the first method, horizontal and vertical pressures_ usually ap-

plied by presses, force irregularly shaped parts to assume the de-

sired shape against a heated die. The pressure generally is applied
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in a vertical direction, the horizontal force resulting from reaction

with rigid tooling. The minimum pressure required to form the part

from the sheet thickness and alloy should be used. Forces that ap-

proach the yield strength of the material at the forming temperature

are applied.

In the second process, parts are wedged in fixtures to obtain the

necessary pressures, and. then the assembly is heated in a conven-

tional furnace. This method is simpler and cheaper because expen-

sive hot-sizing presses are not required.

Temperatures from 900 to 1000 F are required to hot size the

precipitation-hardenable stainless steels. The time required for

sizing varies with the alloy, thickness of material, and temperature

of tooling. Most production operations are regulated to take place

between 10 and 30 minutes. After forming or sizing, parts are re-

moved from the die and air cooled. The parts are expected to retain

the room-temperature shape of the sizing die.

Hot sizing may be used for parts cold formed to rough dimensions

by brake-press, drop-hammer, rubber, hydropress-forming, or

deep-drawing processes. The temperature used for hot sizing is

either at the solution-annealing or below the aging temperature for

the alloy.

Equipment. A hot-sizing device consists of two heated

platens, one mounted directly over the other. The upper platen is

hinged so that it can be opened to expose the lower platen. The upper

platen is operated by hydraulically actuated jack rams. The platens

are heated either by gas firing or electrical-resistance heating.

Figure 1Z3 shows an electrically heated hot- sizing press that

has a bed 24 feet long by 4 feet wide. This press is of the clam-shell

design and consists of six units on a single frame. It can be operated

either as a single press to make parts 24 feet long, or as six in-

dividual presses. Each unit of the press has its own clam-shell top

closure and four hydraulic clamps. Horizontal pressure is applied

through hydraulic cylinders located in the rear of the press {not

shown in Figure 123). The figure shows three of the individual units

in the open position and three closed. The dies are heated by elec-

trically heated platens as is shown schematically in the lower right

corner of Figure 1Z3. Vertical pressures up to 1Z0 tons are avail-

able with each unit, and horizontal cylinders apply side loads up to
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75 tons. The presses for each unit are controlled individually. For

smaller applications, single-, double-, or triple-unit presses may be

installed as the expected operation dictates. This type of unit gen-

erally is used for hot sizing at temperatures below the aging temper-

ature for the alloy.

No special equipment is necessary for hot sizing with wedge-type

fixtures. Tooling can be made that will lock a part into position when

wedges are driven between retaining rings and dies. Then the entire

assembly is placed in a furnace. Figure 124 shows the principle of

design of a number of hot-sizing fixtures. One of these fixtures con-

tains electrically heated platens and can be used in a conventional

arbor press as shown in Figure 119 (lower right corner).

Except for the wedge-type hot-sizing tool for use on an arbor

press (see Figure 124), the pressure attainable in wedge sizing is

limited and generally can be applied in only one direction. Wedge-

type tooling is often used for sizing parts during solution-annealing

treatments.

Tooling. In the selection of tooling materials for hot

sizing, the effect of cycling the tools from room temperature up to
._

1500 F must be consldered. Most tool steels will lose their strength

at this level, and the application may justify the consideration of

superalloys. Tooling materials that soften or distort in service are

of little value in sizing operations.

Hot-rolled steel can be used for short-production lots, up to

about 20 pieces, provided the sizing temperature does not exceed

I000 F. Scaling is a severe problem with these tools.

High-silicon cast iron (Meehanite) dies can be used for lot sizes

up to I00 pieces at temperatures to Ii00 F. Scaling restricts the i

use of this material at higher temperatures. Wire brushing after

35 to 50 parts and light sand blasting of the die surface after i00 parts

removes scale.

Greater quantities of parts can be obtained from tooling made of

quality-controlled nodular cast iron (high- silicon, nickel s molyb-

denum nodular cast iron). This material has been used at tempera-

tures up to 1700 F.

Some other die materials that have shown promise for hot sizing

are summarized in Table LI with their probable limitations.

Z33



m

.9

O

O

O

#

N°_

O

r_

C

O
0_

U

O

O

U
°_

O

.el

_D

O

O

H

d

o

o,-I

N >

O _
Z u

°,-i

N _

!

0 ,_
4_

O

Z

N 0

4_

_ O

234



TABLE LI. SUNIMARY OF TOOLING MATERIALS FOR HOT SIZING(a)

Material

Num ber Temperature

of Parts Limit, F Remarks

Hot-rolled steel <20 1000

Meehanite(b) <100 1200

Nodular cast iron(c) >100 1700

Stabilized H13 200 1000

Type 310 stainless steel 200 1500

Type RA330 stainless steel >200 1450

Inconel >200 1450

Hastelloy. >200 1450

Ceramic (d) >1500

Modified H13(e) >100 1300

Not recommended for productiol

tooling because of scale

problems

Wire brush at intervals of 35

to 50 parts; light sand blast

after 100 parts; good resistano

to oxidation

Ceramic dies are covered with

stainless steel sheets, 0. 050

inch thick

Prehardened to RC 32-36

(a) Courtesy of Chance Vought Aircraft, h]c., Dallas, Texas; Convair, General Dynamics

Corporation, San Diego, California; and North American Aviation, Inc., Los Angeles,

California.

(b) Meehanite is quality-controlled high-silicon cast iron.

(c) High-silicon, nickel, molybdenum nodular iron.

(d) Produced by Glasrock Products, Torrance, California.

(e) A chromium, molybdenum, vanadium tool steel produced by Columbia Tool Steel

Company, Chicago Heights, Illinois.
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The use of ceramic materials for dies is a rather new develop-

ment. Castable ceramics allow the holes for heater wires to be cast

in the die. The ceramic faces of the die are covered with stainless

steel sheets about 0.050 inch thick. Face temperatures higher than

1500 F can be used with these tools.

Material Preparation. It is sometimes necessary to

apply a protective coating or lubricant to the surface of the part to

aid in forming and to reduce oxidation, especially if the hot-sizing

temperature is higher than I000 F. Both the scale preventive com-

pounds and lubricants must be of the nonsulfurized type to prevent

c ontamination.

Sizing Conditions. Because the hot-sizing process is

used mainly to correct springback and warpage in preformed parts,

no definite forming limits can be given. The removal of springback

andwarpage in precipitation-hardenable stainless steel parts depends

on time, temperature, and pressure. In general, the higher the

temperature, the shorter the necessary dwell time. The sizing tem-

perature and the time at that temperature are more important than

the pressure in hot sizing parts. Generally, little more than the

weight of the dies is necessary to form the part to the final dimen-

sions. The pressure should always be kept as low as possible to

prevent deformation to the dies at the sizing temperature.

The temperature used for hot sizing the precipitation-hardenable

stainless steels must be controlled within specific limits for the

alloys. Hot sizing during aging has been quite successful on 17-7 PH

(TH 10?5) {Ref. 78). However, because of the lower aging tempera-

ture and higher mechanical properties, the PH 15-7 Mo {RE 950)

alloy has not been sized as successfully during aging. Hot sizing at

North American Aviation has been successfully accomplished in a

furnace fixture or hot-sizing press at 1275 F in 1/2 hr with 17-7 PH,

PH 15-7 Mo, and AM-350 (Ref. 78).

Table LII indicates ranges of temperature where precipitation-

hardenable stainless steels in various conditions of heat treatment

have lower ductilities than they possess at room temperature. These

ranges were determined on the basis of elongation and reduction-in-

area values. If the alloys are sized in these temperature ranges they

are likely to crack.
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TABLE LII. TEMPERATURE RANGES WHERE THE DUCTILITY OF

PRECIHTATION-HARDENABLE STAINLESS STEELS IS

LOWER THAN THAT AT ROOM TEMPERATURE

(REFS. 32, 47, 93)

Alloy Condition Temperature Range, F

17-4 PH H 900 Up to 1000

17-7 PH TH 1050 100-900

RH950 100-650

CH 900 100-800

PH 15-7 Mo TH 1050 100-750

RH950 100-600

CH 900 I00-950

AM-350 SCT (850 F) 400-1000

AM-355 SCT (850 F) 400-1000

SCT (1000 F) 400-1000

A-286 STA 1050-1425(a)

Stainless W STA (1000 F) 100-800 (b)

(a) Elongation does not change appreciably between room temperature

and 1050 F; reduction in area does not attain its room-temperature

value until it is at about 1500 F.

(b) Little change in ductility from room temperature to 800 F.
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Die Quenchin_ ,. Die quenching is a heat-treating procedure

that is often used as a final sizing operation and for minimizing war-

page in precipitation-hardenable stainless steel parts. It has been

successfully used to control wai_page in some aircraft parts made of

17-7 PH stainless steel (Refs. i03, 104). Warping of close-tolerance

parts occurs usually on cooling from the conditioning temperature,

1400 F, after forming. It is caused by the transformation of austenite

to martensite, which starts on cooling at about 200 F and is concluded

at about 60 F. To prevent the warpage, the part is placed in a

finish-size die when the metal is at about 600 F and removed when

the die is below 125 F, but above 50 F. It is important not to cool

the part below 50 F after conditioning and before precipitation

hardening. The die is at a temperature of 50 to I00 F when it re-

ceives the part. After die quenching, the part is aged at tempera-

tures ranging from about i050 to 1200 F, depending on the properties

desired. A high die pressure is not required and, in fact, is not

desirable, since it tends to bind the part as it first shrinks and then

expands in the die. Only enough pressure is needed to keep the part

from warping away from the die contour.

The parts must be thoroughly cleaned by vapor degreasing and by

abrasive cleaning prior to heating. They should be coated to min-

imize oxidation and then heated in air or an inert-gas atmosphere

and not in a carbon-rich atmosphere. After die quenching, the parts

are lightly grit blasted, recoated to minimize oxidation, and then

aged.

Subzero Sizing. Another technique for improving the dimen-

sional accuracy of formed parts of some of the precipitation-

hardenable stainless steels is subzero sizing (cryoforming). By this

method, the dimensional change that occurs when austenite trans-

forms to martensite is utilized. The growth during transformation

in the case of 17-7 PH and PH 15-7 Mo amounts to 0. 004 to 0. 005 inch

per inch of metal (Ref. 105). Thus, on a 4-foot-long part, an in-

crease in length of nearly 1/4 inch would occur.

A typical cycle in which subzero sizing is used as a production

technique to produce close-tolerance parts of PH 15-7 Mo might

consist of the following operations (Refs. 78, 106):

(i) Rough form the part to slightly less than the desired

dimensions using a press brake_ drop hammer, hydro-

press, or stretch wrap
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(2) Hot size if required at 1225 to 1350 F to produce the
desired configuration

(3) Condition by heating at 1750 F and cooling to about

125 F

(4) Place parts in dies or wedge-type fixtures that have been

heated to 125 F

(5) Refrigerate the assembled parts and dies to -50 to -II0 F

to complete the transformation to martensite. This usually

requires 40 to 60 minutes. Slow cooling to -II0 F is

desirable to avoid distortion of the tools

(6) Sometimes the parts are removed after being held in

the fixture for about 10 minutes; they are then aged in

batches at subzero temperature

(7) Age at 950 F to produce RH 950 condition.

The aging at 950 F after the subzero treatment does not distort

the parts because no phase change is involved. Shrinkage during

aging is only about 0. 0005 inch per inch.

Figure 125 is a sketch of a flanged part in a die for subzero

processing. The allowance for expansion at the edges of the flange

are indicated. As for die quenching, only a minimum amount of

pressure sufficient to keep the part against the die is required.

No expensive machined and hardened dies are required for sub-

zero sizing. Any material that will withstand temperatures to -110 F

is satisfactory, provi_ted it has a low coefficient of expansion.

Kirksite and plastic (Cerrobend) dies have been used successfully

for subzero sizing. It is desirable to coat these dies, preferably with

stainless steel to avoid surface contamination of the formed stainless

steel parts. In addition to preventing contamination, the use of stain-

less steel die faces eliminates much of the die-storage problem be-

cause only the die faces need to be stored.

Figure 126 shows a Bomarc frame of 17-7 PH stainless steel that

was sized by cryoforming. A silicone rubber punch and a steel fe-

male die were used. A preformed part was placed in a holding oven

at 500 F and then cryoformed in a hydropress under 1500 psi. Ac-

ceptable tolerances were produced by this technique.
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Expani

Expansion
Stainless steel part

• Before phase change

[] After phase change

FIGURE 125. SKETCH OF FLANGED STAINLESS STEEL

PART IN DIE FOR SUBZERO FORMING

Note expansion of stainless steel into

flanges during phase changes.

Courtesy of Armco Steel Corporation,

Middletown, Ohio.

The subzero-sizing process appears to be suitable for the

economical production of close-tolerance, high-strength,

precipitation-hardenable stainless steel details and assemblies.

Since neither hot-sizing presses nor the development of elevated-

temperature tools is needed, subzero sizing often can be accomplished

on currently available facilities.
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t 

FIGURE 126. BOMARC FRAME O F  17-7PH STAINLESS STEEL 
CRYOFORMED USING A SILICONE-RUBBER 
PUNCH AND A STEEL FEMALE DIE 

Preformed part was heated to 500 F and cryoformed 
in a hydropress under 500 psi. 
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C ONC LUSIONS AND REC OMMENDATIONS

One of the major problems in deformation processing of

precipitation-hardenable stainless steels is variation of properties

between heats of the materials. The springback from forming might

vary between 5 and 40 per cent while the yield strength of annealed

or solution-treated material may vary by 30,000 psi. Research to

determine the effect of chemistry and processing variables on the

properties of these stainless steels should be undertaken. Informa-

tion obtained from such studies might be used to obtain closer speci-

fications for control of chemistry and processing methods.

Considering the commercial materials_ various types of research

are expected to advance the art of deformation processing. Develop-

ments in any of the areas mentioned below are expected to increase

productivity and decrease the costs of components fabricated from the

precipitation-hardenable stainless steels.

Since the aerospace industry primarily uses these steels_ the

desired formability characteristics for this industry have been con-

sidered. Rolling equipment for making wider sheet with reduced

tolerance variation and consistent properties throughout the sheet is

required. Wide_rolling-mill capacities and techniques such as pack

rolling to obtain thin sheets should be investigated. New methods for

surface treatment to limit the amount of conditioning required during

rolling or forging would reduce the cost of production.

Basic studies in the theoretical behavior of metals during rolling_

forging_ extrusion_ or wire drawing would be of benefit in increasing

the f,ormability of precipitation-hardenable stainless steels. Simi-

larly_ studies in friction and lubrication should advance the forming

technology of these materials.

The precipitation-hardenable stainless steels in secondary metal-

working show only slight increases in formability with increasing

forming temperature. Consequently studies in forming at elevated

temperatures would be expected to have a very low yield for advance-

ment of forming technology. Some benefit is obtained in forming

sheet, plate, and tubing at high velocities. Research in both high-

velocity forming and trapped-rubber impact forming would be expected

to give significant benefits.
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As with other materials, the collection of information on the
mechanical properties that control the performance of sheet and plate
in forming operations is necessary. Some of the tests suggested by
Wood, et al. (Refs. 34, 35, 44) that are necessary to determine
formability are not commonly performed. Tests that will give sig-
nificant data on the most important parameters in metalforming

should be undertaken. The routine tension and compression tests,

although useful, do not give sufficient information to make reliable

predictions of formability limits. Collection of data on the

precipitation-hardenable stainless steels should be relatively easy

since generally only room-temperature values are required.

Development of sizing techniques in conjunction with thermal and

mechanical processing of these materials should be undertaken.

More reliable parts with closer tolerances and more consistency and

possibly higher mechanical properties could be expected from these

studies. The thermal history of the precipitation-hardenable stain-

less steels also should be studied to ascertain its effect on formability.

Development work should also be directed toward improving

equipment and tooling for forming precipitation-hardenable stainless

steels by conventional processes. Major improvements in forming

some part shapes, such as sheet and tubing, may result from applying

a counterpressure to minimize tensile stresses developed at the

surface during forming. Tube bulging, drawing, and flanging opera-

tions are possible examples.
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