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INITIAL INVESTIGATION O F  A METHOD WHEREBY A CRYOGENIC PROPELL! LIQUID IS  

INSULATED FROM HEAT LEAK BY THE PROPELLCLNT AND ITS S4CRIFICLAL BOILOFF 

by W i l l i a m  A. Olsen 

Lewis  Research Center 

SUMMARY 

A small-scale experiment i s  reported which demonstrated t h a t  a few closely 
spaced thin-f i l m  p l a s t i c  "bags, " hydraulically connected and mounted close t o  
the propellant tank w a l l  with l i q u i d  hydrogen i n  a l l  volumes, could a c t  as 
su f f i c i en t  insulat ion t o  cause l i qu id  i n  the volume nearest  the tank w a l l  t o  
b o i l  off s a c r i f i c i a l l y  much of t h e  incoming heat leak. Thus, much of t h i s  heat 
leak is  prevented from reaching the  l i qu id  shielded by t h i s  insulator .  A s  a 
consequence, the temperature of the  l i qu id  i n  a pressurized tank increases a t  a 
much slower rate t'lmn it would i f  there  were no bags. In  t h i s  case, the hest  
leak t o  the shielded l i q u i d  i s  e s sen t i a l ly  independent of the  incoming heat 
leak t o  the tank and depends only on the  tank pressure. The lowest heating 
r a t e s  a re  possible f o r  low tank pressures. This method could r e s u l t  i n  a 
weight saving for booster rocket vehicles designed f o r  i t s  application because 
it can reduce the  p w a ~  cavi ta t ion  problem by decreasing the  l i qu id  heating 
r a t e .  Further weight saving appears t o  be possible i n  pressurizat ion system 
weight. The grea tes t  overa l l  weight saving occurs a t  low tank pressures.  

I 

INTRODUCTION 

I n  pump-fed rocket systems t h a t  use cryogenic l iqu ids  as propellants,  the 
l i qu id  must be supplied t o  the  i n l e t  of the  main pump with a ne t  posi t ive 
suction head greater  than some minimum c r i t i c a l  value i n  order t o  prevent dete- 
r i o ra t ion  i n  propellant flow by pump cavi ta t ion ( t h e  ne t  posi t ive suction head 
i s  the excess of tank pressure over l i qu id  vapor pressure) .  A large p a r t  of 
the required n e t  pos i t ive  suction head is obtained by subcooling the l iquid;  
t h a t  is ,  the  l i qu id  temperature i s  lower than the boi l ing temperature. Sub- 
cooling i s  obtained by pressurizing the  l i qu id  t o  a pressure greater  than the 
vapor presswe of the l iqu id .  In  rocket systems that use cryogenic propellants,  
subcooling is  achieved e i t h e r  by pressurizing the propellant tank or by using a 
boost pump ahead of the  main pump. 

Generally, pressurizat ion of tanks f o r  s t r u c t u r a l  reasons is  required for 
a considerable period of time before the  start  of propellant consumption. 
During t h i s  time the  heat  leak from the  environment r a i s e s  the  l i qu id  tempera- 
ture and thus decreases the  avai lable  ne t  posi t ive suction head, which may de- 
crease su f f i c i en t ly  t o  cause cavi ta t ion  during propellant consumption. This 



l i qu id  heating problem is accentuated because the  l i qu id  temperature is not 
ra i sed  uniformly. Most of t h e  heat  entering the tank is car r ied  by convection 
currents  i n to  a warm l i qu id  layer  below the  liquid-vapor in te r face  thereby pro- 
ducing temperature s t r a t i f i c a t i o n  (refs. 1 and 2 ) .  
l ayer  approaches t h a t  of saturat ion,  and therefore it possesses a low net  posi- 
t i v e  suction head. 
pe l lan t  outflow. In  booster vehicles, where the heat  l e& can be high, t h i s  
low ne t  posi t ive suction head layer  can become qui te  deep. 
la rge  amount of propellant could be unusable near the  end of propellant con- 
sumption by the  l o s s  of propellant flow due t o  detrimental  pmp cavi ta t ion 
( ref .  3 ) .  

The temperature of t h i s  

The layer  grows with time and is  not  destroyed during pro- 

Consequently, a 

Several approaches have been proposed or used t o  cope with the  problems of 
propellant temperature s t r a t i f i c a t i o n .  The tank w a l l  insulat ion can be in-  
creased t o  reduce the  heat  leak.  The tank operating pressure can be increased 
t o  give a higher degree of l i qu id  subcooling i n i t i a l l y .  The propellant tank 
s i ze  can be increased t o  car ry  more propellant and thereby compensate fo r  t ha t  
l o s t  as a r e s u l t  of temperature s t r a t i f i c a t i o n .  The use of a boost pump, which 
can handle a boi l ing l i q u i d  ahead of the main pump, side-steps the l i qu id  heat- 
ing problem. All these methods can add considerable weight t o  the rocket 
system. 

This report  presents and evaluates another method f o r  decreasing tke pro- 
An in t e rna l  ''tank" made of insulat ing mater ia l  (a  ther-  pe l lan t  heating r a t e .  

l i q u i d  ex i s t s  between the  ba r r i e r  and the tank wall. Heat t ransferred in to  the 
tank vaporizes the l i q u i d  i n  t h i s  volume next t o  the  wall. The vapor thus gen- 
erated is vented t o  maintain a prescribed tank pressure and ca r r i e s  with it 
much of the heat that enters  the  tank. The amount of heat  t h a t  reaches the 
bulk l i qu id  depends on the tank pressure and on the  thermal conductance of the 
ba r r i e r .  Although venting r e s u l t s  i n  l o s s  of propellant,  t h i s  method coald 
r e s u l t  i n  a lower weight penalty than the other methods mentioned previously 
because, fo r  the same t o t a l  heat leak, the mass of l i q u i d  vaporized and vented 
is  small compared with the mass of l i qu id  tha t  coiild be unusable because it was 
heated su f f i c i en t ly  t o  cause detrimental  pump cavi ta t ion.  

m a l  and convection b a r r i e r )  is placed inside the  tank s o  t h a t  a small  volume of ! 

Since conventional insulat ing materials f o r  the ba r r i e r  may not be prac t i -  
c a l  f rom s t r u c t u r a l  and weight standpoints, a preliminary ana ly t i ca l  and experi- 
mental invest igat ion of the use of the  propellant i t s e l f  as the insulat ing 
mater ia l  w a s  conducted a t  the  Lewis Research Center. The thermal ba r r i e r  in- 
vest igated consisted of three t h i n  p l a s t i c  "bags," one inside the  other, with 
propellant contained between them. The spacing between the  bags was chosen I 

t o  reduce convection currents within the bags. The weight of t h i s  scheme is 
e s sen t i a l ly  t h a t  of the  bags because the propellant i n  the outer volume and 
within the bags can be consumed as the l i qu id  there  mixes uniformly with the  
l i qu id  enclosed by the  bags d.ning outflow. 

The objective of the invest igat ion w a s  t o  es tab l i sh  the f e a s i b i l i t y  of 
using s a c r i f i c i a l  boi loff  and a thermal bar r ie r ,  composed of nearly satu- 
r a t ed  propellant,  i n  order t o  decrease ti?e r a t e  of heating of the l i qu id  pro- 
pe l lan t .  
use, although a technique f o r  t h i s  application is  suggested. 

No e f f o r t  w a s  made t o  develop a p rac t i ca l  thermal ba r r i e r  f o r  f l i g h t  
It is  a l s o  pointed 
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out t h a t  pressurizat ion gas requirements might be reduced by using such a 
ba r r i e r .  

PROPELLANT TEMPERATURE STRATIFICATION PROBLEM 

The processes t h a t  occur i n  a cryogenic tank t o  produce propellant l i qu id  
temperature s t r a t i f i c a t i o n  are i l l u s t r a t e d  schematically i n  f igure  1. After 
pressurizat ion of the f i l l e d  propellant tank, fo r  s t r u c t u r a l  purposes and/or t o  
subcool t he  cryogenic l iqu id ,  heat  f l ux  t o  the l i qu id  goes mainly t o  r a i s ing  
the l i qu id  temperature. hhch of the heat leak  through the  tank s ide w a l l s  is  
transported by convection currents  up the w a l l s  of the tank toward the  l iquid-  
vapor interface,  where it forms a growing layer  of r e l a t i v e l y  w a r m  l iquid,  
whereas the heat leak  through the  tank bottom and pa r t  of the s ide  w a l l  heat 
leak  tend t o  heat the  propellant more uniformly (ref.  2 ) ,  as indicated by the  
temperature p ro f i l e s  i n  f igure  1. I n t e r f a c i a l  heat and mass t ransfer  a l s o  add 
t o  the warm layer .  The liquid-vapor in te r face  temperature corresponds very 
closely t o  t h a t  of s a t m a t i o n  f o r  the  tank pressure. Since t h e  density of the  
warm layer  i s  less than t h a t  of the bulk l iquid,  the  temperature s t r a t i f i c a t i o n  
is  s tab le ,  and t h e  layer  is  not destroyed during propellant outflow ( r e f s .  1 
and 2 ) .  When the  warm, nearly saturated,  l i qu id  layer  a r r ives  a t  the pump in- 
l e t ,  de t r immta l  pump cavi ta t ion  may occur, resu l t ing  i n  reduced flow or flow 
stoppage. In  booster vehicles,  where the heat leak i s  high, the  w a r m  layer  can 
become qiiite thick,  so  t h a t  a large aaount of propellant might not be usable. 

The present methods used t o  reduce the  l i qu id  temperature s t r a t i f i c a t i o n  
are t o  increase the amount of insulat ion and/or increase the tank operating 
pressure. Increasing the amount of insulat ion reduces the heat  leak, while in -  
creasing the  tank pressure increases the  amount of heat that can be absorbed by 
the  l i q u i d  before sa tura t ion  conditions are reached (i.e.,  increased i n i t i a l  
ne t  pos i t ive  suction head). The effectiveness of these methods and t h e i r  l i m -  
i t a t i o n s  are best  shown by the use of a highly ideal ized i l l u s t r a t i v e  example. 
Consider an insulated cy l ind r i ca l  tank (length,  30 f t ;  diam 15 f t ;  90 percent 
f u l l  of l i q u i d  hydrogen) 2 minutes a f t e r  it has been rap id ly  pressurized from 
15 pounds per square inch absolute t o  a working pressure 
defined i n  appendix A ) .  Assume t h a t  a l l  the heat  l e a k  t o  t h e  l i qu id  during the  
2 minutes goes in to  a w a r m  layer  below the liquid-vapor interface,  which is  
assumed t o  be saturated.  Assume fur ther  that t h i s  w a r m  layer  of l i q u i d  i s  un- 
usable due t o  detrimental  pump cavi ta t ion.  The r a t i o  of the usable propellant 
mss t o  the f i l l e d  tank m s l s s  7 a t  the  end of t h i s  time period is calculated 
fo r  some ideal ized tank configurations i n  appendix B. The usable propellant 
mass f r ac t ion  7 
tank configuration and parameters indicated i n  t h i s  f igure  and i n  appendix B. 
Cases A compare the  e f f e c t  of tank pressure on f o r  a number of insulat ion 
thicknesses ( d  = 1/8, 1/4, 1, and 2 i n . ) .  
usable propellant mass f r ac t ion  7 rap id ly  increases as the  tank pressure in- 
creases up t o  a maxi" beyond which the mss f rac t ion  decreases because the 
tank walls a r e  thicker .  Increasing the insulat ion thickness s h i f t s  the  peak 
mass f r ac t ion  7 toward a lower pressure. The curves a l s o  indicate  t h a t  the  
mass f r ac t ion  reaches a maximum a t  an insulat ion thickness between 1 and 
2 inches. 

p ( a l l  symbols a re  

is p lo t ted  as a f inc t ion  of  tank pressure i n  f igure  2 f o r  the  

7 
These curves indicate  that the 
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It would seem desirable,  from a weight standpoint, t o  operate a t  a higher 
value of 7.  
of completely converting incoming heat leak i n t o  boi loff  vapor without heating 
the  bulk l iquid.  From a weight standpoint, it might be more e f f i c i e n t  t o  dis- 
pose of heat leak by s a c r i f i c i a l l y  boi l ing off some l i q u i d  rather  than allowing 
the l iqu id  t o  heat, with the r e s u l t  t h a t  l i qu id  would be l o s t  by detrimental 
pump cavitation. For example, consider a tank t h a t  i s  rapidly pressurized t o  a 
pressure p from an i n i t i a l  equilibrium condition a t  a pressure po of 
15 pounds per square inch absolute, while somehow the bulk l i qu id  remains a t  
i ts  i n i t i a l  temperature To. The usable propellant f r ac t ion  7 f o r  t h i s  i dea l  
s i tua t ion  is p lo t ted  i n  f igure 2 as  case B. 

This could conceivably be accomplished i f  there  were some means 

Apparently s a c r i f i c i a l  boiloff could r e s u l t  i n  a considerable propellant 
weight saving a t  low tank pressures provided t h a t  the bulk l iqu id  is  not heated. 
A proposed method t o  take advantage of s a c r i f i c i a l  boi loff  is  described subse- 
quently. 

Thermal Barrier 

Basic concept. - - Consider a tank whose l i qu id  i s  i n i t i a l l y  a t  To and po 
t h a t  i s  suddenly pressurized t o  a pressure p pr ior  t o  outflow. The l iqu id  in , 

a propellant tank can be largely shielded from heat leak by placing insula- 
t i on  inside the tank, a small distance from the tank wal l  ( f i g .  3) s o  that 
the l iqu id  enclosed by the insulation does not mix with the l iqu id  outside. 
The insulation ac t s  as a suf f ic ien t  thermal res is tance t o  cause the l iqu id  in  
the outer volume t o  b o i l  off much of the heat input t o  the tank s o  t h a t  the 
temperature T z ( t )  of the l i qu id  shielded by t h i s  insulation r i s e s  more slowly 
than i f  there were no such insulation. The temperature differences across the 
insulation 
d ic ta tes  the heat leak t o  the shielded l iqu id .  Incoming heat leak quickly 
r a i se s  the temperature of the small outer l i qu id  volume t o  saturat ion 

Thereafter, heat leak t o  the l iqu id  shielded by the insulat ion w i l l  be inde- 
pendent of the incoming heat leak and dependent only on 
pends only on the tank pressure p and the temperature of the bulk l iqu id  
( i . e . ,  4 = T 

difference 
l iqu id  could conceivably be much smaller than the incoming heat leak. 
effectiveness of t h i s  method t o  reduce l iqu id  heating is  indicated i n  the 
following paragraph. 

a, where the thermal storage of the insulat ion is negligible,  

s ( P ) '  
T 

mb, which i n  turn de- 

- T ( t ) ) .  For low tank pressures, the maximum temperature 
S (P>  

&,max = T s ( ~ )  - To can be small s o  that heat leak t o  the shielded 
The 

Instead of adding an 1/8 inch of insulat ion t o  the oqJtside of the tank of 6 ,  

case A t o  form a 1/4-inch-thick insulation, the 1/8 inch of insulation is  placed 
inside the tank, as  i n  figure 3, t o  form a thermal ba r r i e r .  This s i tua t ion  is  ? 

inner insulating l i n e r  gives very nearly the idea l  performance of case B, and 

1 
i analyzed i n  appendix B and i s  plot ted a s  case C i n  f igure 2.  Apparently t h i s  C' 

1: 
1: 

i 
J 
! 
' j  used inside the ixnk. For reasons of p rac t i ca l i t y  and weight, a r i g i d  insula- , 

tor of so l id  or evacuated insulation may not be a good choice. 

4 

consequently. an appreciable weight saving appears possible.  

This concept i s  l imited by the weight and p r a c t i c a l i t y  of the insulat ion 

Some type of 



r 

insu la tor  d i f f e r ing  from these should be considered. 

Liquid thermal b a r r i e r .  - When a f l u i d  is confined i n  a narrow space, it - 
t e n d s t o  become stagnant, and i ts  thermal conductance approaches t h a t  predicted 
by the thermal conductivity of the f l u i d  i t s e l f ,  since convection heat t ransfer  
is  decreased a s  the spacing narrows ( r e f .  4 ) .  Both l i qu id  and gaseous hydrogen 
have a low thermal conductivity (Kz  = 0.07, K 
A proposed arrangement t o  take advantage of tgi; property is  shown i n  f igure  4. 
The insulator  shown (thermal b a r r i e r )  is  composed of three closely spaced thin-  
f i lm p l a s t i c  bags, which a r e  mounted near the wal l  of t h e  tank. The bags a re  
hydraulically connected a t  t h e i r  top and bottom t o  equalize the  l i qu id  l e v e l  
and t o  minimize the loads on them caused by pressure differences,  which would 
occur during tank pressurizat ion,  f i l l i n g ,  sloshing, outflow, and f l i g h t .  The 
hydraulic connections a r e  designed t o  minimize the mixing of outer volume l i q -  
uid with the  ba r r i e r  and the  shielded l iqu id .  

- 0.01 ( B t u ) ( f t ) / ( s q  f t ) ( O R ) ( h r ) .  

In the sections t h a t  follow, the overa l l  thermal conductance of l i qu id  
hydrogen, confined between layers  of thin-fi lm p la s t i c ,  w i l l  be evaluated ana- 
l y t i c a l l y  and experimentally. 
and cavi ta t ion,  made possible by the thermal bar r ie r ,  w i l l  be estimated. 

The reduction i n  the problem of l i qu id  heating 

Thermal conductance: The heat leak through the thermal ba r r i e r  can be 
predicted by 

where the overa l l  thermal conductance of the ba r r i e r  i s  defined by equa- 
t i on  (1). For one-dimensional heat flow, where the e f f e c t  of thermal skorage 
i n  the ba r r i e r  layers  is  assumed t o  be negligible,  the thermal conductance Ub 
i s  given by 

ub 

The term K e f f , i  
t ion ,  and rad ia t ion  across the ba r r i e r .  The surface coef f ic ien ts  of heat t rans-  
f e r  8 
assumed t o  be la rge  (e.g. ,  8 > 100 Btu/(sq f t ) ( ? R ) ( h r ) )  compared with the effec-  
t i v e  conductivity terms Keff,i/Gi SO t h a t  ub is approximately 

takes i n t o  account the heat t ransfer  by conduction, convec- 

a t  the outermost bag w a l l s  of the ba r r i e r  can, i n  t h i s  case, be safe ly  
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Assume fur ther  t h a t  K e f f , i  is e s sen t i a l ly  constant and t h a t  t he  thickness of 
each layer  6 i  is  the  same, s o  t h a t  6i is  about t he  same f o r  each layer .  
Therefore ub becomes approximately 

Reference 4 suggests t he  following 

For horizontal  layers  : 

(5g) 
horiz 

K e f f  
'b 

correlat ions f o r  Ker f :  

= 0 . 0 6 8 ( 2  0.72 Gr6YI3 

where 

G r g  > &lo5 

For v e r t i c a l  layers  : 

( 3 )  

(ff) v e r t  
= 0.065(% Grg) 1/3 (k) -1/9 0.72 

where 

( 5 )  
L 40 > 5 > 5 l . lx107 > Grg > 2x105 f o r  

The Grashof number Grg is based on the  layer  thickness 6. These correla-  
t i o n s  were obtained f o r  closed volume a i r  layers  a t  steady s t a t e .  
s ionless  parameter 
given by 

The dimen- 
PrGrg (multiple of the Prandt l  and Grashof numbers) i s  

(PrGrg) = ( X  S 3 )  ( 6 )  

where 

PgocpP 
X =  

vK ( 7 )  

Subst i tut ing equation ( 6 )  i n to  equations ( 4 )  and ( 5 )  and subs t i tu t ing  those . 
r e s u l t s  i n to  equation (3)  r e s u l t  i n  i 

? 

f o r  horizontal  layers  and 
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for  v e r t i c a l  layers .  The empirical  equations (8)  and ( 9 )  indicate  t h a t  the  
e f fec t  of tank s i ze  L and the  layer  thickness 6 on the  value of ub is  
negl igible  for  horizontal  layers  and small fo r  v e r t i c a l  layers  when 
"he equations a l s o  point out that it is desirable  t o  use as many layers  as 
p r a c t i c a l  ( N  

L >> 6. 

l a rge )  t o  decrease the  heat  leak. 

Solutions are generated f o r  ub from equations (8)  and ( 9 )  f o r  the case 
of single-layer thermal ba r r i e r s  (horizontal  and v e r t i c a l )  that contain l i qu id  
hydrogen a t  steady state, where AT = Ts ( p )  - T(t) is taken a t  ATmx = TS(p) - To. 

TS(P) 

This r e s u l t s  i n  values f o r  Ub that would be somewhat l a rge r  than those f o r  
the a c t u a l  case, where T ( t )  increases from To as the  shielded l i qu id  is  
heated ( see  eqs. ( 8 )  and ( 9 ) ) .  These maximum values f o r  ub a r e  p lo t ted  i n  

- To i s  only a f igure  5 as a function of tank pressure since 
function of pressure. 

Reference 4 indicates  t h a t  oblique layers  may be scaled from the equations 
describing horizontal  and v e r t i c a l  layers  (eqs. (8 )  and ( 9 ) )  by a l i nea r  in te r -  
polation. Therefore, the e f fec t ive  thermal conductance of layers  a t  an angle 
e from the horizontal  (ub)e can be wr i t ten  as 

BTmX = 

Subst i tut ing equations (8 )  and ( 9 )  i n to  equation (10) r e s u l t s  i n  

Consider now an example t h a t  w i l l  be compared with experimental data i n  
the  RESULTS AND DISCUSSION sect ion.  
6 = 1-inch-thick layers ,  L = 1.5-foot-long liquid-hydrogen layers  a t  8 = 60' t o  
the  horizontal)  w i l l  be subjected t o  a temperature difference AT b -  - T  s ( ~ )  'T( t ) -  
The thermal conductance of t h i s  ba r r i e r  ub can be determined as a function of 

The r e s u l t  of t h i s  computation is  p lo t ted  
i n  f igure  6 f o r  tank pressures of 8 and 40 pounds per square inch gage where 

A thermal ba r r i e r  (composed of two, N = 2,  

and pressure from equation (11). 

= To a t  t = 0. Note that the  e f fec t ive  thermal conductance f o r  t h i s  

arrangement Ub runs i n  the neighborhood of 6 < Ub < 23 Btu per square foot  
per OR per hour. 

Tbk( t ) 

O f  the  assumptions used i n  the  der ivat ion of the equation f o r  Ub (eqs.  (8)  
3 

and ( 9 ) ) ,  two assumptions stand out as su f f i c i en t ly  questionable t o  warrant ex- 
perimental ver i f ica t ion .  

(1) The data used i n  the  cor re la t ion  were obtained fo r  volumes of a i r  a t  
The case considered is  f o r  nearly 2X105 < Gr6  < l.lX107 

saturated l i q u i d  hydrogen and fo r  G r 6  outside t h i s  range. 
and 5 < L/Si < 40. 
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( 2 )  Convection within the l i q u i d  layers  must be minimized. Consequently, 
no boi l ing can be allowed there  since t h i s  would cause considerable mixing, and 
the  effectiveness of the  thermal ba r r i e r  would decrease grea t ly .  I n  addition, 
t he  required pressure-equalizing openings could a l s o  cause mixing. 

Effectiveness of ba r r i e r :  An accurate de ta i led  evaluation of the  t o t a l  
weight saving made possible by the ba r r i e r  over t he  methods current ly  employed 
t o  reduce po ten t i a l  propellant losses  through pump cavi ta t ion  would require  a 
de ta i led  design study of the  propellant systems. 
scope of t h i s  report .  An estimate of the  effectiveness of t he  ba r r i e r  can be 
made, however, by comparing the amount of l i qu id  t h a t  cannot be pumped, because 
of l i qu id  heating, f o r  a tank equipped with a thermal ba r r i e r  t o  that f o r  the 
same tank under the  same conditions but without a thermal ba r r i e r ,  as shown i n  
f igure  7 .  Consider the  following case where a tank i s  suddenly pressurized, 
and heat leak through the  tank walls or bar r i e r  heats the  l i qu id  a t  the  wall 
above the  i n i t i a l  temperature To. This l e s s  dense l i qu id  flows by convection 
currents t o  the  liquid-vapor in te r face  producing the  typ ica l  temperature pro- 
f i l es  i n  f igure  7,  i f  no mechanical mixing of l i qu id  occurs. For purposes of 
estimation, assume t h a t  a l l  the  heat t o  the  l i q u i d  enclosed by the  ba r r i e r  
( f i g .  7 ( b ) )  or within the  tank ( f i g .  7 (a ) )  goes t o  form a layer  of saturated 

as shown by the  assumed temperature prof i les ,  l i qu id  a t  a temperature 

and t h a t  the  mass of l i qu id  i n  t h i s  layer  would be unusable because of d e t r i -  
mental pump cavi ta t ion.  

Such a study is beyond the 

Ts (PI , 

The thickness of t h i s  saturated layer  grows with t i m e .  The r e l a t ion  between 
the  heat input t o  the  tank and the mass growth r a t e  of the  saturated layer  f o r  
a tank without a ba r r i e r  i s  given by 

with 
with 
mass 

Equation ( 1 2 )  i s  based on the assumption t h a t  the  tank pressure is  constant 
t i m e  ( ref .  5 )  and the  thickness of t he  saturated layer  i s  s m a l l  compared 
the l i q u i d  depth. 
i n  t he  layer  as a function of time i s  given by 

If the  thickness of t he  layer  is  i n i t i a l l y  zero, the 

(13) 

6 

When the  thermal ba r r i e r  is mounted i n  the tank ( f i g .  7 ( b ) ) ,  the  heat  
t ransferred t o  the shielded l iquid,  based on equation (l), is given by 

& I  

In  t h i s  case, the  mass converted t o  the  w a r m  layer  i s  s imi la r ly  derived t o  be 
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In addition t o  the l i q u i d  l o s t  by pump cavitation, some l iqu id  i s  l o s t  by sac- 
r i f i c i a l  boi loff  i n  the  outer volume. The l i qu id  boi led off  when a thermal 
b a r r i e r  is  used is  given by 

where (Q/A)A 
with no ba r r i e r .  
i t s  volume is small, and it w i l l  mix uniformly with the cool  shielded l i qu id  
during outflow. Thus, only a s m a l l  amount of it, zb thick,  w i l l  be l o s t  by 
cavi ta t ion.  The r a t i o  of the mass l o s t  with a thermal ba r r i e r  t o  t h a t  l o s t  i n  
a tank not equipped with a b a r r i e r  I' can be determined from the following 
r e l a t ion :  

is the  same t o t a l  heat  leak input t o  the  tank as for t he  case 
Although the l i qu id  i n  the  outer volume is warm ( sa tura ted) ,  

Mass l o s t  w i t h  a ba r r i e r  a s  a r e s u l t  of cavi ta t ion and s a c r i f i c i a l  boi loff  
Mass l o s t  without a-barrier as a r e s u l t  of pump cavi ta t ion 

- ~ - - -  = r  ____ . ._ . - - - - - _1 --_- . -. 

Combining equations (13), (15), and (16)  and subs t i tu t ing  in to  equation ( 1 7  ) 
r e s u l t  i n  

Equation (181, plo t ted  i n  f igure  8, indicates t ha t  an appreciable weight saving 
may be possible for tanks designed fo r  low tank pressures and high heat  f l ux  
Q/A. For example, consider a la rge  cy l indr ica l  hydrogen propellant tank where 
the  bar r ie r ,  composed of two narrow layers ,  L/6 = 100, i s  mounted close t o  the  
tank w a l l  so t h a t  
value f o r  ub, a t  a tank pressure of 10 pounds per square inch gage and a tem- 
perature To Ub 2: 10 Btu per square foo t  per OR 
per hour. For a range of heat flux, fo r  booster vehicles,  from the environ- 
ment of 
r would be 0.08 < r < 0 .7 .  

Ab = A. According t o  f igure  5 a reasonable representat ive 

of 36.70 R, would be about 

50 < Q/A < 1000 Btu per square foot  per hour, the  resu l t ing  range Of 

3 The effectiveness of the l i q u i d  thermal ba r r i e r  is fur ther  demonstrated by 
case D i n  the  i l l u s t r a t i v e  example of appendix B. For case D, the  thermal 
ba r r i e r  made of the foam type mater ia l  of case C is  replaced by a l i qu id  ther-  
m a l  bar r i e r  ( f i g .  4)  with a conductance ub = 10 Btu per square foot  per ?R per 
hour. The usable propel lant  f r ac t ion  7 f o r  case D is p lo t ted  i n  f igure  2 .  A 
comparison of the usable propellant f rac t ions  f o r  these cases with other cases 
indicates  t h a t  the  l i qu id  thermal ba r r i e r  is very nearly as ef fec t ive  i n  pro- 
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ducing a weight saving over t he  standard tank design of case A as the foam type 
ba r r i e r  used f o r  case C and t h a t  both types of thermal b a r r i e r  give usable 
propellant f rac t ions  very close t o  the ideal ,  as given by case B. This r e l a -  
t i v e  advantage of the  ba r r i e r  (case D )  is maintained even if  many of the  param- 
eters ( insu la t ion  density allowable tank stress and time) a r e  varied over 
a p rac t i ca l  range. Furthermore, t he  l i q u i d  b a r r i e r  is  probably more p r a c t i c a l  
than the  r i g i d  ba r r i e r  of case C .  These savings, which are grea tes t  a t  tank 
pressures below 20 pounds per square inch, would come from savings i n  l i qu id  
l o s t  by cavi ta t ion  and/or tank weight r e su l t i ng  from high tank pressure or in- 
creased weight of insulat ion t o  prevent t h i s  cavi ta t ion,  e tc .  

L/D 

APPARATUS AND PROCEDURE 

Some questionable assumptions t h a t  warrant experimental ve r i f i ca t ion  were 
pointed out i n  the analysis :  

(1) The analysis  extrapolated experimental data f o r  ub t o  such a degree 
t h a t  it &y not even be adequate for  estimates of thermal performance i n  t h i s  
case. 

( 2 )  No appreciable mixing i n  the  thermal-barrier layers  was allowed, which 
means t h a t  there  could be no boi l ing i n  the  ba r r i e r  layers  and t h a t  the open- 
ings, used t o  equalize the l i qu id  l e v e l  i n  each layer ,  cause no appreciable 
mixing there.  

These assumptions were evaluated by performing t e s t s  on a simple model of 
a thermal ba r r i e r  t h a t  could be eas i ly  fabr icated and tested,  and s t i l l  permit 
the  preceding assumptions and the  ba r r i e r  concept t o  be ver i f ied .  
ba r r i e r  model, t e s t  f a c i l i t y ,  instrumentation, and tes t  procedure a re  outlined 
i n  the  following section. 

The thermal- 

Apparatus 

Three conical  bags were fabricated of Mylar ( 2  m i l )  and attached t o  hoops 
s o  t h a t  the  spacing between the conical bags was  1 inch ( f i g .  9 ) .  
(5/16-in. diam) were made i n  each of the  bags near the apex of the  cone t h a t  
served t o  equalize the  l i qu id  l e v e l  within each volume. 
t o  the l i d  of an avai lable  cryostat  by long rods. 
bon r e s i s t o r  thermometers w a s  placed within the bulk l i q u i d  volume on the  
center l ine of the  cones, and two individual carbon r e s i s t o r  thermometers were 
placed i n  the outer volume and i n  each of the  two thermal ba r r i e r  volumes. A 
1-kilowatt e l e c t r i c  heater w a s  provided i n  the outer volume t o  heat t h a t  l i qu id  
t o  boi l ing quickly. Windows i n  the l i d  of the  cryostat  allowed continuous view- 
ing of the l i qu id  condition i n  each volume during the  t e s t .  
was v isua l ly  monitored by noting the  interface locat ion on a ru l e r  attached t o  
the innermost cone. , 

Four holes 

The hoops were attached 
A temperature rake of 33 car- 

b 

The l iqu id  l eve l  
* 

Pr oc edur e 

The tank w a s  f i l l e d  so  t h a t  the l iqu id ,  when heated, would not grow out of 
the  confines of the cones (e.g., hx = 15 in., f i g .  9 ( a ) ) .  The tank, i n i t i a l l y  
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vented t o  the atmosphere, w a s  quickly pressurized and held a t  a constant pres- 
sure (8 or 40 ps ig ) .  
power (i.e.,  zero time). When boi l ing i n  the outer layer  w a s  obtained, the  
heater power was  reduced t o  a minimum t o  keep the l i q u i d  l e v e l  near a depth 
of about =13 inches while s t i l l  maintaining a well-mixed boi l ing outer l i qu id  
volume. This procedure is permissible because the  heat  leak t o  the shielded 
bulk l i qu id  does not depend on the heat  input t o  the outer volume once the outer 
volume is  saturated.  

The e l e c t r i c  heater  w a s  concurrently turned on t o  f u l l  

h 

A t  about 5-minute intervals ,  from and including zero time, temperature data 
and tank pressure were d i g i t a l l y  recorded. 
these times. 

The l i q u i d  l e v e l  w a s  observed a t  
Evidence of bo i l ing  i n  a l l  layers  w.as v i sua l ly  monitored. 

For t h i s  test ,  the  volume of t h e  thermal ba r r i e r  and t h e  outer volumes w a s  
necessar i ly  an appreciable p a r t  of t he  t o t a l  l i qu id  volume, consequently the 
thermal t rans ien t  behavior of these layers  must be considered when the r e su l t -  
ing experimental data are evaluated. 

Instrumentation Accuracy 

The temperature rake and three pa i r s  of carbon r e s i s t o r  thermometers w e r e  
covered by saturated boi l ing hydrogen ( p  = 14.7 p s i a )  a t  the  s t a r t  of the ex- 
periment t o  check t h e i r  t h e r m a l  accuracy a t  one known condition. 
t h i s ,  ca l ibra t ion  accuracy, and an estimate of the thermal conduction e r rors  
involved, thermal e r rors  of no more than k0.1' R probably resul ted.  
pressure w a s  sensed within kO.1 percent of full scale .  
the  l i qu id  l e v e l  w a s  within k0.25 inch. 

Based on 

The tank 
Visual determination of 

RESULTS AND DISCUSSION 

Experimental Results 

Visual observation indicated t h a t  a t  no t i m e  during the experiment was  
there  any boi l ing i n  any of the thermal ba r r i e r  layers  or the  shielded volume. 
This r e s u l t  indicates  t h a t  the  l i qu id  within the  thermal ba r r i e r  could be s u f f i -  
c i en t ly  stagnant t o  r e t a r d  heating of t h e  shielded l i qu id  s igni f icant ly .  
outer volume w a s  quickly brought t o  a b o i l  i n  2.25 and 6.75 minutes f o r  tank 
pressures of 8 and 40 pounds per square inch gage, respectively.  If there  were 
no bar r ie r ,  a l l  the l i qu id  i n  the tank would have been boi l ing in  about 2.6 
and 7.8 minutes, respectively,  whereas the ba r r i e r  shielded the l i qu id  withln 
i t s  confines s o  that sa tura t ion  w a s  not  approached for more than 45 minutes. 

The 

' 

The temperature p ro f i l e s  taken along the ax i s  of the cone i n  the shielded 
t l i qu id  volume and a t  various times after the start  of pressurizat ion are p lo t ted  

i n  f igure  10. As  expected, the  l i q u i d  is temperature s t r a t i f i e d  i n  the  shielded 
volume. The l i qu id  depth increased a t  f i rs t  as a r e s u l t  of l i qu id  heating then 
dropped because of outer volume boi lof f .  

The overa l l  thermal conductance Ub of t he  two-layer thermal ba r r i e r  used 
i n  t h i s  experiment can be determined approximately from experimental data. In 
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prac t i ca l  s i tua t ions ,  the volume of l iqu id  i n  the thermal-barrier layers  is  
s m a l l  s o  that i t s  thermal-storage capabi l i ty  can usually be ignored. For such 
a system, the  thermal conductance can be determined by equation (1) 

where 4 is the temperature across the bar r ie r .  A complication a r i s e s  i n  
t h i s  determination because the l iqu id  enclosed by the bar r ie r  i s  not a t  a spa- 
t i a l l y  uniform temperature, but ra ther  it is temperature s t r a t i f i e d  ( f i g s .  lO(a) 
and ( b ) ) .  However, these figures indicate tha t  most of the l iqu id  (bulk l i qu id )  
enclosed by the ba r r i e r  does heat up uniformly. Since the l iqu id  tha t  is  heated 
a t  the bar r ie r  wal l  comes from t h i s  bulk l iquid,  it appears reasonable t o  take 
4 as 

Thus equation (1) becomes 

where Ab is the average wetted area of the two layers  of the thermal bar r ie r  
and Qb i s  the heat t ransferred through the bar r ie r  with no thermal storage i n  
the bar r ie r  layers .  

An energy balance on the shielded l iqu id  volume re su l t s  i n  equation (21), 
which i s  based on the assumptions of negligible k ine t ic  energy, po ten t ia l  
energy, thermal radiation, mass t ransfer ,  and work 

where % i s  the heat t ransferred t o  the shielded l iqu id .  Substi tution of 
equation ( 2 1 )  in to  equation (20 )  can be accomplished if 
occur i n  most p rac t i ca l  s i tua t ions  where the thermal-barrier l i qu id  and outer- 
volume l iqu id  would have r e l a t ive ly  negligible volume. The subst i tut ion re -  
s u l t s  i n  

= Qb, which would 

r M  1 
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Unfortunately the thermal ba r r i e r  studied i n  t h i s  experiment did not 
possess a r e l a t i v e l y  negl igible  volume s o  t h a t  i ts  thermal. storage should be 
taken i n t o  account. The bes t  way t o  handle t h i s  s i t ua t ion  is t o  write an 
approximate heat  balance on the  inner ba r r i e r  layer  (layer 2, see f i g .  9 ) .  

Subst i tut ing fo r  Qi from equation ( 2 1 )  gives 
r 1 

Liquid temperazures i n  - the  thermal-barrier layers  were obtained f o r  one loca- 
t i o n  s o  that T 1  and T2 a re  approximated by T i  and T2, respectively.  The 
temperature difference TI - T2, and thermal decay i n  layer  2,  d/dt(pZcpZT)2, 

a r e  p lo t ted  i n  f igure 11. Processing the temperature, pressure, and l iquid-  
l e v e l  data, according t o  equation (24) ,  r e s u l t  i n  the values of 
f igure  6.  Comparison.of the experimental values of Ub with those derived 
from equation (E),  f o r  t h i s  case, indicates  t ha t  the experimental values a re  
within 50 percent of t h e  ana ly t i ca l  values f o r  
determine ub ana ly t i ca l ly  (eq.  (12) ) w a s  g rea t ly  extrapolated from data for 
enclosed volumes of a i r .  For purposes of estimation, t h i s  cor re la t ion  appears 
t o  be adequate f o r  l i q u i d  hydrogen. 

ub p lo t ted  i n  

%. The cor re la t ion  used t o  

The Mylar cones and t h e i r  support hoops exhibited no s t r u c t u r a l  problems 
during the two tes t  runs i n  l i q u i d  hydrogen. During f i l l i n g ,  the  cones tended 
t o  collapse inwardly because there  w a s  a higher l i qu id  l e v e l  i n  the outer 
volume, which w a s  caused by the  pressure-equalizing openings connecting the  
volumes i n  se r i e s .  The cones straightened out when f i l l i n g  w a s  terminated. 
This small d i f f i c u l t y  could have been prevented by f i l l i n g  the  cones from the 
inside ra ther  than relying e n t i r e l y  on flow through the openings. 

P r a c t i c a l  Applications 

The experiment, previously described i n  the sect ion APPARATUS AND PROCE- 
DTJRE, used an impractical  liquid-thermal-barrier design. A more p r a c t i c a l  
liquid-thermal ba r r i e r  f o r  a booster vehicle tank i s  proposed and b r i e f l y  d is -  

The thermal b a r r i e r  cons is t s  of three t h i n  (approx. 1/2 m i l )  Mylar bags sepa- 
r a t ed  by dimples, which a r e  heat  formed i n  the Mylar sheets.  

s t r i ngs  a r e  under tension because of t he  s l i g h t l y  higher pressure i n  the outer 
volume, which i s  caused by the  r e s t r i c t i o n  of the s a c r i f i c i a l  boi loff  gas from 
the  outer l i qu id  volume. The bags have openings, top and bottom, t o  minimize 
steady loads caused by steady pressure differences.  They are f l ex ib l e  and 
f lex ib ly  supported so that transient loads due t o  pressurization, vehicle accel-  

T cussed i n  t h i s  sect ion.  The proposed arrangement i s  outlined i n  figure 12 .  

c is  connected close t o  t h e  w a l l  of the tank by s t r ings  under tension. The 
The outermost bag 
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erat ion,  sloshing, f i l l i n g ,  e tc . ,  cause them t o  move t o  the tank w a l l  t o  pre- 
vent damage t o  the bags ( f i g .  12). 

From a s t ructural-fabricat ion standpoint, the proposed design should be 
within the s t a t e  of the a r t  fo r  the following reasons: 

(1) No s igni f icant  f lexing of the ba r r i e r  bags required. 

( 2 )  Some leakage i s  permissible. 

(3)  Bag spacing is not very c r i t i c a l  for good thermal performance. 

( 4 )  Mylar i s  strong, with an ult imate s t rength of 20X103 pounds per square 
inch. 

The weight penalty of three 1/2-mil-thick Mylar bags required as  a thermal 
bar r ie r  i n  the cy l indr ica l  tank of case D is 25 pounds. Clearly, the weight 
penalty i s  small. 
( f i g .  1 2 )  should not change t h i s  conclusion. 

The added weight of the support s t r i n g  and fasteners  

The weight of pressurization systems, required t o  maintain a given tank 
pressure during outflow, can be large.  This weight penalty is increased by 
heat t ransfer  from the warm gas t o  the cold tank walls, exposed during outflow, 
which cools the gas s o  tha t  more gas must be supplied t o  maintain a given pres- 
sure ( f i g .  13, r e f s .  6 and 7 ) .  
could, i n  principle,  be reduced by a thermal bar r ie r  because 

The weight of a tank pressurization system 

(1) With the bar r ie r ,  it is  possible t o  operate a t  a lower pressure, with- 
out cavitation, thereby requiring l e s s  pressurizing gas. 

( 2 )  In high-heat-leak tanks the s a c r i f i c i a l  boi loff  gas could be used t o  
decrease the amount of pressurant gas required. 

(3) Warm gas, used a s  the pressurant, may not be able t o  flow t o  or t rans-  
f e r  heat t o  the cold w a l l s  as  they a re  uncovered by the re t rea t ing  l iqu id  during 
outflow, because the bags a c t  as  a thermal and hydrodynamic bar r ie r  ( f i g .  1 2 ) .  
Consequently, the warm gas would not be cooled and become more dense. 
fore l e s s  pressurant may be required than f o r  a tank not containing a bar r ie r .  

There- 

( 4) In t e r f ac i a l  mass t ransfer  (condensation), which increa,ses pressurant 
requirements, decreases with decreasing pressure. Since the ba r r i e r  would 
allow operation a t  lower pressure it appears t ha t  pressurant requirements would 
be l e s s .  

CONCLUDING RFMARKS 

An effect ive stagnant f l u i d  thermal ba r r i e r  t ha t  uses l iqu id  hydrogen 
appears t o  be possible. Existing correlations for  closed volumes of a i r  can 
apparently be used t o  estimate the thermal conductance of a thermal bar r ie r  
composed of layers  of l iqu id  hydrogen, when the temperature difference is  not 
large.  The heat-leak r a t e  t o  the l iqu id  shielded by a thermal bar r ie r  is inde- 
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pendent of heat-leak r a t e  to the tank and can be appreciably smaller than the 
heat-leak r a t e  to the tank for low tank pressures. 
be possible i n  liquid-hydrogen booster vehicle tanks, designed to use the thermal 
bar r ie r ,  where the tank pressure can be low. 

A weight saving appears to 

I 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, September 28, 1965. 
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Ill I 

APPENDIX A 

SYMBOLS 

A wetted area,  sq  f t  

A i  surface a rea  of interface,  sq  f t  

spec i f ic  heat a t  constant pressure, Btu/(lb mass)( ?R) cP 

D tank diameter, f t  

d thickness of insulat ion on w a l l ,  f t  

G r  Grashof number based on 6 

g 

34 

accelerat ion due t o  gravity,  32.2 f t /sec2 

surface coef f ic ien t  of heat t ransfer ,  Btu/( sq  f t ) (  %)( h r )  

h 

h, spec i f ic  enthalpy, Btu/lb mass 

depth of shielded volume l iqu id  above t i p  of inner cone, f t  

heat of vaporization, Btu/lb mass 

t h e r m 1  conductivity, Btu/( f t ) (  %)(hr) 

% 
K 

ICeff, e f fec t ive  thermal conductivity of ith thermal-barrier layer ,  
Btu/( f t  1 ( OR 1 (hr 1 

L length of thermal ba r r i e r  or tank, ft 

2 depth of w a r m  layer  i n  tank, which cannot be pumped because of cavi ta-  
t ion,  when no thermal ba r r i e r  i s  i n  tank, f t  

depth 2 wheil a thermal ba r r i e r  i s  i n  tank, f t  'b 

M number of thermometers i n  l i qu id  

m mass, l b  mass 

m 

N number of f l u i d  layers  i n  thermal ba r r i e r  

Pr Prandtl  number 

mass t ransfer  r a t e ,  l b  mass/hr 

P absolute tank pressure, ps ia  

P'  gage tank pressure, psig 
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6 

P 

x 

5 
i=l 

heat-transfer rate, Btu/hr 

heat leak, Btu/(sq ft)(hr) 

working stress, psi 

temperature, OR 

temperature difference across layer of barrier, OR 

temperature difference across barrier, OR 

time, hr 

overall thermal conductance of thermal barrier, Btu/( sq ft)( ?R)( hr) 

volume, cu ft 

weight per unit surface area, lb/sq ft 

volume fraction of liquid in tank 

compressibility factor, (l/p) (?3p/aT)p, 1/OR 

ratio of mass not pumped when a thermal barrier is used to that not 
pumped when a thermal barrier is not used 

thickness of thermal-barrier layer, ft 

ratio of usable propellant mass to filled tank mass 

angular inclination of barrier layers with respect to horizontal, deg 

kinematic viscosity, sq ft/sec 

density, lb mass/cu ft 

summation from i = 1 to i = M 

Subscripts: 

b bag 

bk bulk liquid where temperature is spatially uniform 
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f g  

g 

horiz  

i 

ins  

l o  

2 

m 

max 

0 

( p > , ( t >  

S 

S' 

s l  

t 

V 

v e r t  

W 

co 

1,2 

heat  of vaporization 

gas 

horizontal  l ayer  of f l u i d  

summing subscr ipt  

insulat ion 

10s t 

l i q u i d  

metal w a l l  

maximum or worst case 

i n i t i a l  condition 

functions of pressure and time, respect ively 

sa tura t ion  

sa tura t ion  - outer volume 

shielded l i qu id  

tank 

boilof f vapor 

v e r t i c a l  l ayer  of f l u i d  

wetted 

outside environment of tank 

outer and inner barrier layers ,  respect ively 

Superscript:  

(-1 s p a t i a l l y  averaged value 
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APPENDIX B 

CALCULATIONS FOR COMPARISON OF CAVITATION PREVENTION METHODS 

A highly s implif ied analysis  of the effectiveness of various cavi ta t ion  
prevention methods is  presented. This estimate is  made f o r  a given tank with 
the  insulat ion thickness and tank pressure varied. 
considered (see f ig .  2 f o r  schematic drawings): 

Four general  cases w i l l  be 

Cases A: Simply insulated tank for varying insulat ion thickness 

Case B: Idea l  tank where heat i s  completely converted t o  boi loff  vapor 
without a f fec t ing  the bulk l i qu id  

Case C :  Insulated tank with a thermal ba r r i e r  composed of foam ( f i g .  3)  

Case D: Insulated tank with a thermal ba r r i e r  composed of l i qu id - f i l l ed  
bags ( f i g .  4)  

The following simplifying assumptions were made f o r  a l l  cases:  

(1) The heat leak  i s  uniform over the wetted area.  I n t e r f a c i a l  heat and 
m a s s  t ransfer ,  which increase with increased pressure, a re  neglected. 

(2) The heated l i qu id  flows t o  form a r e l a t i v e l y  shallow saturated layer  
of l i qu id  below the in te r face .  This layer  is considered unusable because of 
pump cavi ta t ion.  

(3 )  The tank is taken t o  be a flat-ended cy l ind r i ca l  metal tank whose w a l l  
thickness i s  uniform and whose thickness i s  determined by the hoop s t r e s s  

The insulat ion is  a l s o  of uniform thickness. 

Cases A 

The heat  input t o  the  tank is  

where 

1 
d +- ‘be - 1 

gm Kins 
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theref ore 

(T, - To> rtD2 
Q 4 - ( 1 + 4 a 9  
P w  = K-I-K- 1 d 

ins 

This heat, by assumption ( 2 ) ,  r a i se s  the t o t a l  enthalpy of the saturated l iqu id  
layer  through increased thickness, 2 :  

m Combining equations (B4)  and (B5) and integrat ing ( 2  = 0 
the mass of l iqu id  l o s t  by cavi ta t ion:  

a t  t = 0)  r e s u l t  i n  

Based on the hoop s t r e s s  and 
ness is  

p, = 0, the mass of a tank of uniform w a l l  thick- 

The mass of the uniform insulat ion covering i s  

The r a t i o  of usable propellant mass t o  the f i l l e d  tank mass r) i s  defined a s  

mZ - m10 
( B9a ) 7 E m t  + mins + m2 

or  
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I -  

r l =  - 
Pm ( 2 + 4 &  D) D E  2 s + Pins d(2 +- 

Case B 
c 

A l l  the heat  input f o r  t h i s  case is  converted t o  boi lof f  vapor without 
a f fec t ing  the  bulk l iqu id .  This b o i l o f f  mass is l o s t .  Equation (E) of cases A 

t' i s  changed t o  

Accordingly, equation (B10) is changed t o  

L 
D 

( T ,  - To) 1 + 4a - t 
a p  L - 

2 0  

'I= 

Cases C and D 

Where there  i s  a thermal ba r r i e r ,  t he  m a s s  l o s t  i s  a r e s u l t  of the  heated 
l i qu id  t h a t  would cause pump cavi ta t ion and s a c r i f i c i a l  boi loff .  
of l i qu id  l o s t  f o r  cases C and D can be determined by 

The t o t a l  m a s s  

- 
mZo - Ika20(no b a r r i e r )  

where r i s  defined by equation (17), evaluated by equation (18), and p lo t ted  
i n  f igure  8. To obtain values of I? from f igure  8, Values of [(Q/A)/Ub](A/Ab) 
must be determined. If t h e  b a r r i e r  i s  close t o  the  tank w a l l ,  A/Ab 2: 1, and i f  
tank pressures a re  low, T,,, - T s  N T, - To, 

- Q - Q 
A A - A  
'b Ab 'b 

- - - - %  
Tcm - T, 

1 

2 1  



I l l  I1 

The insulat ion weight per un i t  surface area is  given 

f o r  case C, t he  foam type insulat ion bar r ie r ,  and 

f o r  case D, t h e  l i q u i d  thermal ba r r i e r  of three bags. 

The usable propellant f rac t ion  i s  then 

where I? and ( w / A ) ~ ~ ~  are determined by the  appropriate equations f o r  each 
case. 

The useful propellant f rac t ion  Tl f o r  each of t h e  cases just discussed 
w a s  calculated by using the  following numerical values of parameters, 

t = 2/60 h r  

S = 4 .25~10  p s i  4 

8, = 10 Btu/(sq f t ) ( h r )  

po = 15 ps i a  

p, = 0 ps i a  

T, - To = 500' R 

D = 15 f t  

L = 30 f t  

a, = 0.9 

= 4.4 lb/cu f t ,  ( l i qu id  hydrogen) 
0 

pb = 100 lb/Cu f t ,  (Mylar) 
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p = 500 lb/cu ft 
m 

ns = 0.01 Btu/(ft)(hr)(OR), (foam) 

pins = 5 lb/cu ft, (foam) 

Ub = 10 Btu/(sq ft)(%)(hr) 

Insulation thicknesses 

1 1  Case A: d = g, z, 1 and 2 inches 
1 1  d = - or 7 inch 
8 B: 

1 
8 

d = - inch, C: 

1 
8 d = - inch, db = 6x10-4 

and the results are presented in figure 

D: 

4 

F j = -  inch 
8 

inch (Mylar film thickness) 

2. 
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Figure 1. - Schematic drawing of l iqu id  and heat flows du r ing  outflow from pressurized tank. 
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Figure 2. - Idealized comparison of cavitation prevention methods. 
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(‘IA)to tank 

Figure 3. - Schematic drawing of method of us ing  sacri f icial boiloff t o  
reduce rate of l iqu id  heating. 
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Figure 4. - Thermal barr ier  principle that uses l iqu id  as insulat ion. 
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/ 

5 
0 
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Tank pressure, p', psig 
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Figure 5. - Maximum thermal conductance of single layer of l iquid hydrogen subjected to maximum 

temperature difference of ATmax = T 
S( p) 

40 psig 4 
" 

Temperature difference across thermal  barrier, ATb = T,I - Tbqt, 

Figure 6. - Analytical and experimental values of overall thermal  
conductance for two-layer conical thermal  bar r ie r  described in 
inset. 
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Assumed 
temperature 
profile-’ 

Warm layer 
lost by 
cavitation 

(a)  Without thermal barr ier .  

C D -8251 

(b) With thermal barr ier .  

Figure 7. - Idealized model of conditions in pressurized tanks w i th  heat 
leak f rom environment. 
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Y 

1 2 4 6 8 1 0  20 40 60 100 200 400 600 loo0 
Ratio of heat-transfer parameters, (Q/A)A/U$b, "R 

Figure 8. - Comparison of l iqu id  losses from a tank wi th  and wi thout  a thermal barr ier  (eq. 18). 
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(a)  Schematic drawing of test setup. 

Figure 9. - Thermal barr ier  experimental apparatus. 
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( b )  Areas of bags have been cut away to show barrier construction and 

Figure 9. - Concluded. 
instrumentation. 
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L lo I 

(a) Tank pressure, 8 pounds per square inch gage. 

Gtur i ion 
temDeratut-6 

2 4 6 8 10 12 14 
Height above tip of inner cone, h, in. 

(b) Tank pressure, 40 pounds per square inch gage. 

Figure 10. - Experimental temperature profiles at centerline of inner cone. 
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Figure 11. -Thermal  data for barr ier  layers derived 
f rom temperature data and used in equation (24). 
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Figure 12. - Proposed thermal-barrier application i n  propellant tank. 
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Figure 13. - Schematic drawing of gas flows dur ing  pressurized outflow of cryogenic 
liquid. 
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