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ABSTRACT ) é/ 5 j,7/

This thesis presents a comprehensive analysis and com-
parison of the relative effects of cascade and feedback
compensation upon the steady-state and dynamic performance
of feedback control systems. In particular, system sensi-
tivity, steady-state system error and actuating signal, log-
modulus response, and pole-zerc conslderations are investi-
gated for cascade compensation and various forms of feedback
compensation. Equations relating equivalent feedback and
cascade compensators for a given uncompensated plant and an
overall system transfer function are developed. Conditions
are specified for the realizablility of feedback compensators
as R-C networks. Specific advantages and limitations of the

varicus modes of compensation are noted and general insight

is provided into the relative sultability of cascade and feed-

back compensation for a given system and set of performance

specifications.
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CHAPTER 1
INTRODUCTION

1-1. INTRODUCTION TO CONTROL SYSTEM COMPENSATION

The control systems that are investigated in this thesis
are linear, continuous signal feedback control systems. Ac-
cording to the AIEE proposed definition:

A feedback control system is a control system which

tends to maintaln a prescribed relationship of one

system variable to another by comparing functions

of these variables and using the difference as a

means of control.l

The subject of control system compensation can be intro-
duced by considering a typical design procedure used in ar-
riving at a control system for a given application. This
procedure may be summarized as follows:

1l. The requirements for the control system are estab-
lished by a set of performance specifications.

2. A basic system 1s assembled to perform the desired
control function. This basic system will normally consist
of the minimum amount of equilpment necessary to accomplish
the control functilon.

3. The baslic system 1s analyzed to determine if the

performance specifications are met,

1"ATEE Committee Report, Proposed Symbols and Terms for
Feedback Control Systems," Elec. Eng., Vol. 70, pt. 2, pp.
905-909, 1951.
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. If the performance of the basic system 1s not satis-
factory, additional elements are introduced into the basic
system to modify 1its characteristics so that i1t can provide
absolute stabllity and meet the steady-state and transient
performance requirements. |

The elements that are introduced into the basic system
are referred to as a compensator or compensation network?
since they compensate for the undesirable characteristics of
the original system. If the network is introduced into the
forward path of the control system, 1.e., in series or cas-
cade with the original system, this is referred to as cascade
compensation. If the network is placed in a feedback path
around the original system, this is referred to as feedback
compensation. The network itself may consist of active ele-
ments such as amplifiers or tachometers, may consist entirely
of passive components such as resistors and capacitors, or

may be a combination of both active and passive elements.

1-2. THESIS OBJECTIVE

The obJective of this thesis is to present a comparison
of the relative effects of cascade compensation and feedback
compensation upon the steady-state and dynamic performance of

feedback control systems. The specific performance character-

2Tne compensation elements may in general be mechanical,
hydraulic, electrical, etc., in nature; however, this thesis
will be concerned with electrical networks when references
are made to specific types of compensators.




istics and relationships that are investigated are the
following:

1. The sensitivity of the controlled output of the
control system to changes in the basic plént and changes 1in
the compensation networks,

2. The steady-state system error and steady-state actu-
ating signal for compensated systems.

3. The approximate log-modulus response of compensated
systems.

4, The effects of compensation on the root-locus and
corresponding pole-zero configuratlons.

The conditions for equivalency between cascade and feed-
back compensated systems will also be investigated. And
finally, the relative advantages and dlsadvantages of the two

modes of compensatlion will be presented.

1-3. RESULTS OF LITERATURE REVIEW

The subject of cascade compensation has been developed
in considerable depth in the literature and this information
provides the basis of comparison for feedback compensation.

The subject of feedback compensation has, for the most
part, received only casual attention in the literature. A
notable exception is the chapter that 1s devoted to feedback

compensation in the textbook by D'Azzo and Houpis.3 However,

3John J. D'Azzo and Constantine H. Houpis, Feedback

Control System Analysis and Synthesis (New York: McGraw-Hill
Book Company, 196b6), Chap. 17,
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even this treatment 1s relatively superficial when compared
with the voluminous data that exists for cascade compensatlon.

Many of the discussions of feedback compensation 1in the
literature are limited to the special case of tachometric
feedback of type 1, third-order systems. Several references
have rather comprehensive discussions of the root-locus anal-
ysis of tachometric feedback compensation; however, the direct
comparison of feedback compensation and cascade compensation
is almost totally ignored.

Thaler, Bronzino and Kirk have described a technique for
reducing multi-loop feedback compensated systems to equivalent
cascade compensated systems.4 As a design tool, this tech-
nique is significant in that 1t permits the design of feedback
compensators by applying the well-known techniques of cascade
compensation. However, no general insight into the relative
advantages and disadvantages of the two modes of compensation

is afforded by this technique.

1-4, SYSTEM DESCRIPTIONS AND NOMENCLATURE

The block-diagram representations of cascade compensation
and the general case of feedback compensation are shown in
Figures 1-1 and 1-2, respectively. In these figures and

throughout the thesis, the letter "G" with qualifying subscript

4s. 3. Thaler, J. D. Bronzino and D. E. Kirk, "Peedback

oS L tdie N ATDR Momarmana A
Compensation: A Design Technligue, AIEE Transactions, Vol.

80, pp. 905-909, 1961.
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or superscript will denote elements of a system in the direct
path and, similarly, the letter "H" will denote elements in
a feedback path. The specific elements shown in Figures 1-1
and 1-2 are defined as follows:

1. Gy 1is the plant or original uncompensated (basic)
system.

2. G, 1is the cascade compensator.

3. Gp may be either a part of the plant or an additional
element added to the direct path during compensation.

y, Hy 1s a feedback compensator inserted in the inner
feedback path.

5. Hp 1s a feedback compensator inserted in the outer
feedback path.

R denotes the reference input for the system and C de-
notes the output controlled variable.

Two speclal cases of feedback compensation are developed
in depth during the course of this investigation. Both of
these special cases may be derived from the general case of
feedback compensation of Fig. 1-2 by selectively setting
certain elements in the general case equal to one (short-
circuit) or zero (open-circuit). The first specilal case is
derived by setting H, equal to zero and G, equal to one. The
block-diagram of Fig. 1-2 then reduces to a single feedback
path containing Hj as shown in Fig. 1-3. This special case
will be referred to as the "single-loop feedback co

system,"
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The second speclal case 1s derived by setting Gp and Hp
both equal to one in Fig. 1-2, The general case of feedback
compensation then reduces to the form shown in Fig. 1-4. This
special case will be referred to as the "double-loop feedback
compensated system."

The figures on page 7 depicting the four cases of com-
pensation will be referred to throughout the thesis to avoild
their duplication in each chapter. Special system configura-
tions and additional nomenclature will be developed as the

need arilses.
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Figure 1-1. Cascade compensated system.

REC; G"+&G| Crr

Hg

Figure 1-2. General case of feedback compensation.

R+ ¢

G| C»

H,

Figure 1-3. Single-loop feedback compensated system.

—O—0-t{e 5

H,

Figure 1-4, Double-loop feedback compensated system.




CHAPTER 2
CLOSED-LOOP EQUIVALENCY FOR COMPENSATED SYSTEMS

The vast majority of existing information on system com-
pensation techniques is concerned with the subject of cascade
compensation, However, for each cascade compensation network
it 1s possible to derive a mathematlical feedback function that
will produce the same overall system transfer function when
placed in a feedback path around the uncompensated plant. The
form of the feedback function depends upon the feedback con-
figuration, the uncompensated system, and the cascade compen-
sation network to be replaced. The equations relating equiv-
alent feedback and cascade compensation schemes for a gilven
uncompensated plant and an overall system transfer function
are developed in this chapter. It remains to be seen whether
or not the transfer function so derived can be physically
realized in a practical control system. Realizablility condi-
tions are therefore conslidered to determine if a physical
passive network can be syntheslized that will yleld the desired
transfer function. Speclal attention is given to the syn-
thesls of R-C networks for single-loop and double-loop feed-

back compensated systems.

2-1. EQUATIONS FOR EQUIVALENCY

The equations relating cascade and feedback compensation




networks wlll be developed first for the general case of
feedback compensation shown in Filg. 1-2, page 7. The corre-
sponding cascade compensated system 1s shown on the same page
in Fig. 1-1. The general equations for Gp and Hj are then
simplified for the special cases of single-loop feedback com-
pensation and double-loop feedback compensation by allowing

appropriate terms to equal one or zero.

Equations for General Case. The transfer function for

the general case of feedback compensation can be expressed

as follows:

c G1Go
—-—— (2"1)
R 1 + G1(Hy + GoHp)

The transfer function for the cascade compensated system is

given by

c G1G

—_—= __if__ (2-2)
For dynamic equivalence, Eq. {2-1) must equal Eq. (2-2).
Setting these equations equal and solving for Gop,

1 + G1(H1 + GoH2) 1 + G1G¢
Gp + G1GpG, = Ge + G1GcH1 + G1GcGoHp (2-3)
Go(1 + GG, - G1GcHp) = Ge + G1G.H)

Gc( 1l + G]_Hl)
G

= (2-4)
SR G;6,(1 - Hp)
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Solving Eq. (2-3) for G¢
Ge(1l + G1H] + G1GoHo - G31G2) = Go
G2

G, = (2-5)
v 1 + Gl[Hl + G2(H2 -1)]

Solving Eq. (2-3) for Hj

162G, - G, - G1GpGcHp

Go[1 + 63G.(1 - Hp)l - Ge

Hy = (2-6)
G1Ge

Finally, solving Egq. (2-3) for Ho
G1GoGeHo = G2 + G1G2Ge - Ge - G1GcH1
Ge[G1(G2 - Hy) - 1] + G2

Ho = (2-7)
G1GaGc

Equations (2-4), (2-5), (2-6) and (2-7) relate the various
transfer functions of the cascade compensated system and the
general case of feedback compensation for equivalence. For
a gilven uncompensated plant, Gj, and cascade compensation
network, Gc, three inter-dependent equations must be solved
for the parameters of the equivalent feedback system. Two
of the parameters can be selected arbitrarily on a trial and
error basis and the third parameter calculated from the

appropriate equation.

Cascade and Single-loop Equivalency. If Hp 1s set equal

to zero and Go 1s set equal to one in Fig. 1-2, page 7, the
block-diagram reduces to the single-loop feedback compensated

system of Fig. 1-3 on the same page. The same substltutions
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in Eq. (2-6) results in the following expression for H1l for

the single-loop case:

1 + Ge(Gy - 1)
Hy = (2-8)
G]_Gc

Similarly, substitution of Ho = O and Gp = 1 into Eq. (2-5)
results in the following expression for Ge

1
G

(2-9)

C =
1 + Gy(Hy - 1)

The equivalency that is assured by these equatlons can be
demonstrated by determining the characteristic equation for
the system employing a single-loop feedback compensation net-
work defined by Eq. (2-8). The open-loop transfer function
for thils system is GjHjy, where

1+ Ge(Gy - 1)

GiHy = . (2-10)
C

The characteristic equation for thils system is given by the
expression 1 + GiHy = O or
1+ G.(Gy - 1)

1 =0 (2-11)
GC

Equation (2-11) reduces to the following

1 + GG, =0 (2-12)
But Eq. (2-12) is also the characteristic equation for the
cascade compensated system, and equivalency is thus seen to

exist.

Cascade and Double-loop Equivalency. If Hp and Gp are
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both set equal to one in Fig, 1-2, page 7, the block-diagram
reduces to the double-loop feedback compensated system of
Fig. 1-4 on the same page. The same substitutlions in Eq.
(2-6) results in the following expression for Hj for the
double-lo0p case:

1l - G, )
H} = — (2-13)
G1Ge
Similarly, substitution of Ho = Gp = 1 into Eq. (2-5) results

in the following expression for Gg

G, = _r (2-14)

) 1 + GyHy
The same results for H} and G, could have been obtained
by equating the appropriate open-loop transfer functions
(OLTF) for the two systems. The appropriate OLTF is derived
by transforming the block-dlagram shown in Fig. 1-4 into its
equivalent form as illustrated in Fig, 2-1. The system G' in
Fig. 2-1 is simply Gy/(1 + GyHy), and this transfer function

is the OLTF for the equivalent unity feedback system.

R + e’ )

—4

Figure 2-1. Equivalent double-loop feedback
compensated system.

Equating G' and the OLTF for the cascade compensated system

e}

1

616, = ——a——
14 ;Hy

(2-15)
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Solving Eq. (2-15) for H;

l1 -G
° (2-16)

H1=
GIGc

And Eq. (2-16) and Eq. (2-13) are the same.

2-2. NETWORK SYNTHESIS

For a given uncompensated plant, Gl, and cascade compen-
sation network, Gc, Eq. (2-8) and (2-13) can be used to de-
rive the transfer function for equivalent feedback compensa-
tion networks that will yield an overall system transfer
function identical to the cascade compensated system. The
expressions resulting from Eq. (2-8) and (2-13) can then be
analyzed to determine whether the transfer functions they
represent are physically realizable as a linear passive net-
work. In general, if these equatlons indicate the require-
ment for an active element in the compensation network, the
cascade compensation approach would be preferred. An excep-
tion to this rule could exist in those cases where a tachom-
eter by itself or in combination with some form of passive
network could provide the desired transfer function for the
feedback compensation network.

The subject of network synthesis is so vast and involved
that no attempt will be made to develop the theory or tech-
niques in this paper. The only aspect of network synthesis
that wlill be discussed is the realizability of the transfer

functions expressed by Eq. (2-8) and (2-13). Basic conditions
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for the realizabllity of passive networks in general will be
presented first, followed by a discussion and delineation of
conditions for the special case of R-C networks. The reader
is referred to several references for the proof of these
conditions and the general development of synthesis tech-
niques,l The remainder of this chapter is concerned with the
application of the realizablility conditlons to the single-
loop and double-loop feedback compensation cases and the

interpretation of the results.

Transfer Functions for Passive Networks 1ln General. The

characteristics of passive transfer functions in general may
be summarized as follows:2

1. All poles of the transfer function must lie within
the left-half portion of the s-plane.

2. Zeros of the transfer functlion may lie anywhere
within the s-plane. Minimum phase-shift transfer functions
have their zeros restricted to the left-half of the s-plane.

3. The highest power of s in the numerator may equal

but cannot exceed the highest power of s in the denominator.

lyincent Del Toro and S dney R. Parker, Princigles of
Control Systems Englneering (New York: McGraw- 00
Company, inc., 1965) Chap. 12; Ernst A. Guillemin, Synthesis
of Passive Networks (New York: John Wiley & Sons, Inc., 1957);
John G. Truxal, Automatic Feedback Control System Synthesis
(New York: McGraw-H111 Book Company, 1lnc., 1955).

ov-- ) E oY - . . - ”~ »_ . L =) ™" . . Y SRR BN, R — A
“vincenit vel 10ro ana oyaney n, ramcer', PI‘..LHC.L 1€8 0O}
Control Systems Engineering, pp. 508-9.
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Transfer Functions for R-C Networks. Once the realiza-

bility of the transfer function for the feedback compensation
network 1s established, it would be desirable to syntheslze
the network solely in terms of resistance and capacitance
elements. Inductances are normally avoided since the fre-
quencies of interest in control systems are so low that
large and heavy inductors would be required. The simplest
R-C networks to achieve are the ladder networks; however, the
zeros of the transfer function are restricted to the negative
real axis of the s-plane for the ladder form. The lattice
is the most general network configuration and any transfer
function realizable as an R-C network can be synthesized in
the lattice form. The characteristics of R-C networks may
be summarized as follows:3
1. The poles of the transfer function are restricted
to the negative real axis of the s-plane,
2. For minimum-phase-shift networks, the zeros of the
transfer function are restricted to the left-half s-plane.
a) R-C ladder network--zeros must lie on the nega-
tive real axis.
b) Parallel-ladder or split-T networks--zeros
allowed off the negative real axis,
3. For non-minimum-phase-shift networks, the zeros of

the transfer function are permitted in the right-half s-plane.

31bid., pp. 509-11.
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A lattice network 1s required for this case.

Practical Considerations. For any given transfer func-

tion an infinite number of physical networks can be derived
that will satisfy the pole-zero location and gain require-
ments. However, most of these solutions will be impractical
for one or more of the following reasons: the network re-
quires too many elements, the magnitude of the element values
are lmpractical, the steady-state attenuation is excessive,
or the network transfer function 1s overly sensitive to small
deviations in the network element values, Even after these
factors are considered there may be many practical networks
that will satisfy the given transfer function. The final
choice of a compensation network may be arbiltrary or simply
depend on the availability of components and the circuit

designer's own preferences.

2-3. APPLICATION OF NETWORK SYNTHESIS CONDITIONS TO FEED-

BACK COMPENSATED SYSTEMS

The equivalent feedback compensation transfer functions
defined by Equations (2-8) and (2-13) are analyzed for their
realizability in terms of the functions G; and G¢ of the
cascade compensated system (See Fig. 2-2.). The functions

Gl and Gc are deflned as follows:

G1(8) =———0 (2-17)
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(2-18)

In general, the order of s in the denominator of @, will be
equal to or greater than the order of s in the numerator.

The order of 8 in the denominator of the cascade compensation
network, G,, will be equal to or greater than the order of s

in the numerator for a passive network.

Single-loop Feedback Compensation. If equations (2-17)

and (2-18) are substituted in Eq. (2-8), H; will take the
following form:

Lo ltG(e -1 14 (KcNe/s™Dg) [(X,N;/s%D;) - 1]
l= =

@46, (K Nc/sMD,) (XN, /s¥D;)
N-+M N
s DD, + K N (K,N; - s'Dy) N
= =T (2"19)
K N1KcNe

Analyzing Eq. (2-19) in terms of the network synthesis
conditions presented in Section 2-2, the following restric-
tions must be placed on G; and G, 1f H; is to be realizable
as a passive network:

1. The order of s in D' must be equal to or greater
than the order of s in N', i.e., 8[D'(s)] 2 o[u'(s)].u This
condition will exist for the following cases:

a) ©[N;(s)] = 9[s"D;(s)] and @[N ()] = @[s™D(s)])
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) ©[Ny(s)] < 8[s¥Dy(s)] and O[Nc(s)] > olaMp.(s)]
so that 6[D'(s)] 2 0[N'(s)]

2. The zeros of Gy and G, must lie in the left-half of
the s-plane. This restriction results because the zeros of
G, and G; are the poles of H;.

Realization of H; as an R-C network imposes the addi-
tional condition that the zeros of G; and G, must lie on the

negative real axis of the s-plane.

Double-loop Feedback Compensation. If Equations (2-17)

and (2-18) are substituted in Eq. (2-13), H; will take the

following form:

1 - G 1 - (KcNg/sMDe)
H1= = N ™
GG, (K1N7 /55Dy ) (K N, /57°D,)

N M
s™D,(s"™D, - K.N.) "
1 Cc c N
- ¢ == (2-20)
Kllech

A comparison of Eq. (2-20) and Eq. (2-19) reveals that
the same restrictions must be placed on G, and G, for H, to
be realizable as a passive network in general, or an R-C net-
work 1n particular, as were specified for the single-loop
feedback compensation case.

For the particular case where G, 1s a phase-lag or

phase-~-lead network defined as follows:

8 + 2
=

¢ * 355 (2-21)

Hy for the double-loop feedback compensation case may be
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expressed as

1 -G _11-(s+2z)/(s+0p)
GiGe G (s + z)/(s + p)

Hy =

1 (p - 2)

= — 2
Gy (s + z) (2-22)

Notice that the term (p - z)/(s + z) 1s a simple phase-lag
network if p > z. However, the transfer function for Hj may

still1l be very involved depending upon the form of Gy.

2-4, SUMMARY AND CONCLUSIONS

Equations have been presented that relate the transfer
functions for cascade compensation networks and equivalent
feedback compensation networks in terms of the uncompensated
system transfer function. The basis for these equations was
closed-loop equivalency for the compensated system. Since
two systems having the same transfer function are equivalent
both statically and dynamically, the equations relating the
transfer functions of the various forms of compensation are
applicable for both steady-state system error equivalence
(See Chapter 4.) and dynamic equivalence. The equations for
the feedback compensation networks for single-loop and double-
loop systems were analyzed to determine the conditions under
which they could be physically realized as passive networks,
with special attention given to R-C networks. It was noted
that the transfer functions for the feedback networks are

usually rather involved expressions, and more significantly,
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there are rather severe constraints lmposed on G; and G, to
permit an equivalent feedback network to be physically real-

izable with only resistances and capacitances.



CHAPTER 3
COMPARISON OF SYSTEM SENSITIVITIES

The characteristics of the components making up a con-
trol system can change as a result of changing environmental
condltlons, aging of components, etc. Any change in the com-
ponent characteristics willl be reflected by a change in the
transfer function for the system, with a resulting effect on
the controlled quantity. It has been shown by D'Azzo and
Houpls that the degree of accuracy and stability of a control
system can be improved by using feedback compensation.l The
conclusions by D'Azzo and Houpis are based on the comparison
of a single-loop feedback compensated system with a unity

feedback uncompensated system. It 1s true that the non-unity

feedback system can reduce the effects of system component
changes on the controlled quantity when compared with a unity
feedback system having the same forward transfer function,
Gy. However, the same conclusion 1s not valid when comparing
the non-unity feedback system with a cascade compensated sys-
tem. The significance of these concluslions will become ap-
parent in the development that follows,.

The effects of changes in both the uncompensated system,

1John J. D'Azzo and Constantine H, Houpils, Feedback
Control System Analysis and Synthesis (New York: McGraw-Hill
Book Company, 1960}, pp. 467-%70.
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G1, and the compensation elements, G and Hj, are evaluated
for the following system configurations: (1) open-loop,
(2) unity feedback uncompensated, (3) cascade compensated,
(4) single-loop feedback compensated, and (5) double-loop
feedback compensated. The input signal R and the frequency

are considered to be constant.

3-1. OPEN-LOOP SYSTEM SENSITIVITY

The open-loop system 1is shown in Fig. 3-1. The effect
of a change in Gl can be determined by differentiating
C = RGy (3-1)
giving
dC = RdGy (3-2)
Substituting R from Eq. (3-1) into Eq. (3-2)

L. & (3-3)
C Gy

Therefore, a change in G, causes a corresponding change in

the output C. The performance specifications of the compo-

nents of Gl must then be such that the system accuracy 1is

kept within specified limits.

R C

— G, |—

Figure 3-1. Open-loop system,
Employing the identity d(1lnu) = u~ldu, Eq. (3-3) can be
put into the following form:

dlnC = dlnGj (3-4)
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dlnC
TG, = 1 (3-5)
Defining C and Gy as follows:
Cc = |c] ed® (3-6)
e
6, = loq|e?% (3-7)

Substituting Equations (3-6) and (3-7) into Eq. (3-4)

ainlcl + jae, = din|ey| + jdeg, (3-8)
Equating real and imaginary parts of Eq. (3-7) results in the
following relationship between the differential changes in
the magnitudes and phase angles for the system, Gy, and the
output, C:

alnjcj din |G1| (3-9)

de, = dog, (3-10)

3-2. UNITY FEEDBACK UNCOMPENSATED SYSTEM SENSITIVITY

The unity feedback uncompensated system 1is shown in

Fig, 3-2. Proceeding in the same manner as in 3-1

Gy
C =R (3-11)
1 + Gl
4G4
dC = R, (3-12)
(1 + Gl)
Substituting R from Eg. (3-11) into Eq. {3-12)
dc 1 dGl)
—_ = -1
c 1+ Gy (Gl (3-13)
dln® ___ 1 (3-14)

dinG; 1 + Gy
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A comparison of Eq. (3-14) and Eq. (3-5) reveals that the
effect of parameter changes in Gy upon the output C 1is re-
duced by the factor 1/(1 + Gl) when going from open-loop to

closed-loop control.

R + C

Figure 3-2. Unity feedback uncompensated system.

3-3. CASCADE COMPENSATED SYSTEM SENSITIVITY

The cascade compensated system 1s shown in Fig. 1-1,
page 7. The effect of changes in the uncompensated system,

Gy, and the compensation element, G,, are evaluated below,

Sensitivity to Changes in Gj. First consider that the

compensation element is a constant with respect to the

changes that are affecting G;. Proceeding as before,

G1G
C = 0 (3-15)
1 + Gch
G.dG
cYYl
dC = R————— (3-16)
(1 + G1G¢)°
Substituting R from Eq. (3-15) into Eq. (3-16),
dc 1 4G,
= -1
C 1 + Gch(;l.) (3 7)
dinC _ 1 (3-18)
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Therefore cascade compensation has reduced the effect of
changes in G by the factor 1/(1 + G1G,) when compared with
the open-loop uncompensated system. Thls also constitutes
an improvement over the unity feedback uncompensated system

if the magnitude of G, 1is greater than one for the frequen-

cles of interest

Sensitivity to Changes ln Ge. Now consider that the

uncompensated system, Gj, 1s a constant and only the compo-
nents of G, are effected by changes. From Eq. (3-15),
R(1 + G1G¢)G] - G196,

ac =
(1 + 61G,)2
RG,dG
1%*¥%c¢
= 5 (3-19)
(r + Gch)
Substituting R from Eq. (3-15) into Eq. (3-19),
ac 1 dGo
A, -20
dinC 1
(3-21)

dlnG, 1 + GG,
A comparison of Eq. (3-21) and Eq. (3-18) reveals that the
effect of parameter changes in G, upon the output C 1s the

same as for changes in G, as would be expected.

3-4. SINGLE-LOOP FEEDBACK COMPENSATED SYSTEM SENSITIVITY

The single-loop feedback compensated system 1s shown 1in

Fig. 1-3, page 7. The effect of changes in G; and the com-

pensation element, H;, are evaluated below.
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Sensitivity to Changes in Gj. First consider that Hy

1s a constant with respect to the changes that are affecting
Gy. Proceeding as before

G

C = R—m——— -
1+ GH,y (3-22)
dG4 ( |
€ = R —— 3-23
(1 + G1H1)2

Substituting R from Eq. (3-22) into Eq. (3-23)

dc 1l dGl
—_ = — -24
C 1+ G1H1<;1>) (3 )

dinC 1
dlnGy -1 4+ GIHl

(3-25)

A comparison of Eq. (3-25) and Eq. (3-18) reveals the fact
that single-loop feedback compensation and cascade compensa-
tion offer the same reduction in the effect of changes in G,
upon the controlled quantity, C. That is; if G, and Hj are
equal, then Eq. (3-25) and Eq. (3-18) are identical.

Sensitivity to Changes i1n Hy. Now consider that G is

a constant and only the components of Hy are affected by
changes. From Eq. (3-22)
2
- Gy“RdH,4

= -26
(1 + GyHp) 2 (3-26)

ac

Substituting R from Eq. (3-22) into Eq. (3-26) and multiply-
ing and dividing the resulting equation by H, gives

g0 -Gty (d) (3-27)
C 1+ GiH\H;
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For those values of frequency where 'Glﬁl')> 1, Eq. (3-27)

reduces to the following form

ac dH,

c - (3-28)
dlnC
el (3-29)

A comparison of Eq. (3-29) and Eq. (3-5) shows that a change
in the feedback function has approximately a direct effect
upon the output 1in the same manner as for the open-loop sys-

tem.

3-5. DOUBLE-LOOP FEEDBACK COMPENSATED SYSTEM SENSITIVITY

The double-loop feedback compensated system 1s shown in
Fig. 1-4, page 7. The effect of changes in Gy and Hj are

again evaluated below.

Sensitivity to Changes in G]. Again consider that Hy

is a constant. Proceeding as before

G
C =R 1 (3-30)
1+ Gy(Hy + 1)
aG
ac = R 1 (3-31)

[1+ Gy(Hy + 1)]2

Substituting R from Eq. (3-30) into Eq. (3-31)

ac 1 a6,
- -32
T T T e(m + 1)(;;1 ) (3-32)

alnC 1
dlnG; 1 + Gy(Hy + 1) (3-33)
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A comparison of Equations (3-33), (3-25) and (3-18) reveals
that double-loop feedback compensation can have a greater
effect in reducing output changes due to changes in Gl than
either single-loop feedback or cascade compensation. The
degree of improvement depends upon the magnitude of Hy.

Sensitivity to Changes in H]. Again consider that G,

is a constant. From Eq. (3-30)

-G
dac 1

= -34
[1+6(H +1)1° T (3-38)

Substituting R from Eq. (3-30) into Eq. (3-34) and multiply-
ing and dividing the resulting equation by H, gives

ac - GqH; dH.)
,C - 1l + Gl(Hl + 1)(H1) (3-35)

d1nC - GyH; ;
dinfy = 7 6.(H; + 1) (3-36)

A comparison of Eq. (3-36) and Eq. (3-27) reveals a potential

improvement for the double-loop feedback compensated system.

3-6. SENSITIVITY FUNCTION

The sensitivity of a system's response to & variation in
a system parameter can best be expressed by the "sensitivity

2
function," ‘S?, which is discussed by D'Azzo and Houpis,3

2"Sensitivity and Modal Response for Single-loop and
Multiloop Systems," Technical Documentary Report ASD-TDR-62-
812, Fiight Control Laboratory, ASD, AFSC, Wright-Patterson

AFB, Ohlo, January, 1963.
3Dp'Azzo and Houpis, op. cit., pp. 469-470.
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and 1s defilned as

for specified (3-37)

S? - [ Change in system response :]
C r
parameter variations

hange in open-loop paramete

Change 1s defined as the ratlo of the differential variation
of a function to the function itself. Expressed differently,
change may be defined as the differential of the natural
logarithm of the function. For each of the system cases in
Section 3-1 through Section 3-5, M = C/R in Eq. (3-37). &
refers to G; for those cases where the uncompensated plant
is changing and refers to G, or Hj when the compensation ele-
ment is the changing quantity.

To demonstrate the application of Eq. (3-37), consider
the single-loop feedback compensated system with é = Gy

Then

¢ _ (do/R)/(C/R) __ac/C
s dG;/G1 dG1/G)

dinC 1
dlnG; 1 + GyH;

Similarly, for § = Hy

" (acm)/(c/R)  dac/c

S -
’ 461/G3 aG; /63
d1nC - G;H
- = % -1, for GHy » 1
T = T4 oy, s 1H1

The sensitivity functions for each of the system cases

are tabulated in Table 3-1.
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3-7. SUMMARY AND CONCLUSIONS

The effects of changes in the uncompensated system, G;,
and the compensation elements, Gc or Hy, on the controlled
quantity, C, have been calculated for several system config-
urations and parameter variations. The sensitivity of each
system's response to system parameter variations has been
expressed by the sensitivity function, S:, and the results
tabulated in Table 3-1. The sensitivity function never ex-
ceeds a value of one, and the smaller 1its value, the less
sensitive the system will be to parameter variations,

Referring to Table 3-1, 1t is noted that for variations
in G;, cascade compensation and single-loop feedback compen-
sation can provide the same reduction in the sensitivity
function for values of G, and Hy greater than one. For var-
jations in the compensation network itself, the cascade com-
pensated system's sensitivity function, 1/(1 + G1G.), will
normally be less than the corresponding sensitivity function
for the single-loop feedback compensated system, - Glﬂl/

(1 + GyH;). However, since the signal in the forward path

is normally going from a low to a high energy level while the
opposite is true for the feedback path, it wlill often be more
practical to provide the power requirement in the forward
path and then design the feedback compensation network to
glve the desired output accuracy and stability.

Double-i00p feedback compe

reduction in the sensitivity functions for changes in both



TABLE 3-1
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SENSITIVITY FUNCTIONS

CHANGING SENSITIVITY
PARAMETER “
SYSTEM OF SYSTEM* FUNCTION Sg
Open-loop (uncompensated) Gy 1
Unity feedback (uncompen- Gy 1/(1 + G3)
sated)
Cascade compensated G, 1/(1 + G;G¢)
Gc 1/(1 + G;G¢)
Single-loop feedback com- Gy 1/(1 + GyH,)
pensated
Double-loop feedback com- G, 1/(1 + G3(H; + 1)}
pensated
Hj - Glﬂl/[l + Gl(Hl +1)]

#The system input, R, is constant. For those cases
where G; is the changing parameter, H) and G, are constant
with respect to the changes that are affecting G;. Con-
versely, when Hy and G, are the changing parameters, G;

1s constant.
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the plant and the compensation network when compared with
the single-loop case., When compared with the cascade com-
pensated system, the double-loop system offers a potential
improvement in the sensitivity function for changes in the
plant., The actual improvement will depend upon the magnitude
of the compensation function for each case over the frequency

range of interest.




CHAPTER 4
COMPARISON OF STEADY-STATE PERFORMANCE

This chapter is concerned with the steady-state perform-
ance that can be achleved with feedback compensation as com-
pared with cascade compensation. The functions of interest
are the steady-state system error and the steady-state actu-
ating signal. For this analysis the system error, 8, 1s
defined as the difference between the input to the system
and the system response or output. The actuating signal, 8,
is defined as the difference between the input signal and
the feedback signal as they appear at the input to the com-
pensated plant. These functions are well known for the cas-
cade compensation case but they have received very llttle
attention in the literature for the case of feedback compen-
sation. The results of the analysis presented will give
valuable insight into the relative suitabllity of the two
modes of compensation for a given plant and a given set of

performance specificatlions.

j-.1., CASCADE COMPENSATION

Steady-state conditions are presented for the system

shown in Fig. 1-1, page 7. The first function of interest

is the steady-state system error,

Steady-state System Error. The system error, Og, 18
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defined as follows:
8¢ =R - C = R(1 - C/R) (4-1)
The system transfer function 1s

C G]_Gc
R~ 1 + G16e (4-2)

Substitution of Eq. (4-2) into Eq. (4-1) gives

G126
0e = R[1 - —2=¢ | __R (4-3)
1l + G]_Gc 1l + Gch

From Eq. (4-3), the steady-state system error is
Be(t)ss = 1im ©.(t)
t—=oo

1

= ln sR(s) T3 G1(s)Gc(s) (4-4)

The input, expressed in a general Laplace transform for step,
ramp, parabolic and other algebraic inputs, 1s given by

R(s) = re/s™ (4-5)
where

R(s) = r/s for a step input

rp/s2 for a ramp input
- r3/é3 for a parabolic input
Substitution of Eq. (4-5) into Eq. (4-U4) gives

_ T 1
Oe(t)ss = ;f% é“l[; + Gl(s)Gc(sé] (4-6)

The Laplace transform of the uncompensated system, Gq,

1s defined in the following factored form: ‘
Ki(1 + 87a)(1 + s7p) - KN

- sN(1 + 511)(1 + 8T,) .- sNDl (4-7)

Gy
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where
Ny = (1 + s1a)(1 + s1p)---
D; = (1 + 87)(1 + s12) .-~
In eq. (4-7), N denotes the type (number of pure integra-
tions) of the uncompensated system and will in general be
equal to, or greater than, zero.
Similarly, the compensatlion element, G,, is defined in
the following generalized form:
Kol + s72")(1 + s17) e KeNg
M1 4 5Ty (L + s1R") --- St (4-8)

Ge

where

No = (1 + stR")(1 + s1,') -

De = (1 + s13")(1 + s75") -~
In Eq. (4-8), M may take on any value (positive or negative)
depending on the form of the compensation element. If Ge¢ is.
of a form having a positive power of s in the numerator, then
M in Eq. (4-8) will be negative, and G, will be referred to
as a negative type M element.

Substitution of Eq. (4-7) and Eq. (4-8) into Eq. (4-6)

gives f M
8e(t)gg = lim :f; NN S L (4-9)
: S+o0 s ls D1De + KiN3D.Ng
Equation (4-9) may be simplified by noting that
1lim Nl = 1lim D] = 1im N, = 1im D¢ = 1 (4-10)

S+0 S+0 S0 S+0

Equation (4-9) then reduces to the following general expression
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for the steady-state system error:

r SN4M
0o(t) g = 1im —= (4-11)
€78 S0 g1\ gN+¥ KiK.

Note that N + M in Eq. (4-11) denotes the type of the compen-
sated system, where it is understood that if M 1s negative
and M} > N, a negative system type will result,

The steady-state system error can be developed 1n a
systeniatic manner by considering the value of Eq. (4-11) for
three values of the function N + M,

1. N+ M =0

8c(t)gs = gmo s:‘t‘lé +1K1Kc) (4-12)
=..._._....._..K1 forK =1
1 + KK,
= 00 foroX> 1
2. N+M>O0

8e(t)ss =0 for N + M > (oX- 1)
= ro/K,;K, for N + M = (O(- 1)
= OO for N + M < (ot- 1)

3. N+ MO
For negative values of the function N + M, Eq. (4-11)

may be converted to a more convenient form by multiplying
IN+M|

numerator and denominator by s giving
c>o s%H1 4 K3k n

-ro(roro(- 1l
=00 for X)> 1
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To demonstrate the application of the equations derived
above, consider the case of a step input, whereo = 1, and
Eq. (4-11) becomes

rlsN+M

8c(t)gs = lim (4-14)

s+o sN+M KyK,
Equation (4#-14) reduces to one of three values depending on

the value of N + M, 1i.e.,

8c(t)gs = O for N+ M2 1
= ry/(1 + K;K;) for N + M = 0
= 00 for N+ M <O

The term KiK. in the preceding equations corresponds to
what 1s usually referred to as the error coefficlent for a
system. For a step input, KK, is the position or step error
coefficilent, For a ramp input, K;K, 1s the veloclity or ramp
error coefficient. And for a parabolic input, KK, is the
acceleration or parabolic error coefficilent.

The steady-state system errors for several values of
N and M are tabulated in Table 4-1 for a step, ramp, and
parabolic input. Results can of course be obtained for
higher-order inputs by substituting the appropriate value of
K into Eq. (4-11).

Steady-state Actuating Signal. Referring to Fig. 1-1,

it 1s obvious that the steady-state actuating signal, &€ (t)gs,
and the steady-state system error, 8g(t)ss, are equal for the

cascade compensated system, l.e., & = 6 =R - C. Therefore,



TABLE 4-1 38
STEADY-STATE SYSTEM ERROR, ©c(t)gg, AND STEADY-STATE
ACTUATING SIGNAL, £(t)ss, FOR CASCADE
COMPENSATED SYSTEMS[0.(t)ss = &(t)gs]
COMPENSATED PARABOLIC
TYPE SYSTEM TYPE |STEP INPUT |RAMP INPUT INPUT
N M N+M (A= 1) (xX= 2) (X= 3)
0 0 r
0 I (¢ ) (o @)
P -P 1+K; K,
0 1
1 0 1 0 T2 (o ©)
K]_Kc
P+1 -P
1 1
2 0
2 0 0 r3
0 2 LSO
P+2 -P
2 1
1 2
0 3 0 0 o}
0 3
P+3 -P
Q+1 P >3 o o 0
0 -1
1l -2 <0 I'l O (& @)
P -Q
NOTE: P denotes any integer 2 1. Q denotes any integer

such that P< Q.
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the results in Table 4-1 are valid for both of these steady-

state functions.

4-2, FEEDBACK COMPENSATION

The steady-state system error 1s developed for the gen-
eral case of feedback compensation illustrated by Fig. 1-2,
page 7. The general expression for this case is then applied
to the special cases of single-loop and double-loop feedback
compensation. The steady-state actuating signals for these

special cases are then developed.

Steady-state System Error--General Case. The system

error, Qe, is defined as follows:
e =R -C = R(1 - CAR) (4-15)
The system transfer function is

GG
172 (4-16)

=IQ

1 + Gy(Hj + GoHp)

Substitution of Eq. (4-16) into Eq. (4-15) gives

] G,Gp

1 + 63(H; + GoHp)

1 + Gy(Hy + GoHo - Go)

_R 1\Hy oHo 2 (4-17)
1 + G1(Hy + GpHp)

From Eq. (4-17), the steady-state system error is

1+ G;(H; + G - Gp)
0.(t) = 1im R(s) 1M v 822 - B2l (4.18)
S0 1 + @y(Hy + GpHp)

Again expressing the input in generalized form
R(8) = ry/s* (4-19)
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Substitution of Eq. (4-19) into Eq. {4-18) gives the expres-
sion for the steady-state system error for the general case
of feedback compensation

6.(t) lim g |1 + G1(Hy + Golp - G2)
8s < o -
¢ e -1 1+ Gl(H]_ + G2H2)

(4-20)

Steady-state System Error--Single-loop Feédback Compen -

sation. The block-dlagram for the single-~loop feedback
compensated system is shown in Fig. 1-3, page 7. The steady-
state system error for this system is derived from Eq. (4-20)
by setting Hy, = O and Gp = 1. If these substitutions are

made, Eq. (4-20) reduces to the following expression:

1im  rg [* Gy(H; - 1)

8 (t)ge = (4-21)
€ 88 §+0 g%-1 1l + GjHy

Gl and H; are defined by the same expressions as for the cas-
cade compensated case, i.e., G; is defined by Eq. (4-7) and
H, is the same as G,, defined by Eq. (4-8). Substitution of
these equations into Eq. (4-21) gives

Mm  Tee |SVTDID, + KiNp (KN - sMDc)
S=+0 gx-1 sN+Mp D, + KiN1KcN,

8c(t)gs = (4-22)

Equation (4-22) may be simplified by making the substitutions
of Eq. (4-10)., The resulting equation is the general expres-
sion for the steady-state system error

N+M - oM
0. (%) _lim _ru [; + Kl(Kc 8 ).] (4-23)
e S8 S+0 .l =N+M 11 XX

= L 17 c _I

Equation (4-23) is evaluated for a step input (= 1)
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and for higher-order inputs (o> 1) as follows:
1. For a step input, o = 1 and Eq. (4-23) takes the form

NM 4 k4 (k. - sM)
= 1lim 3 i\Pe
9c(t)ss seo T1 R g (4-24)
c

The evaluation of Eq. (4-24) is more involved than for the
comparable cascade compensation equation [See Eq. (&-12).].
Notice that Eq. (4-12) reduces to only one of three values
depending on the value of the sum of N and M. Equation (4-24)
reduces to one of five values depending on the separate values
of N and M. As in the cascade compensation case, N is assumed
to be equal to, or greater than, zero, whereas M may take on
any value. The steady-state system error for the various
possible combinations of M and N are tabulated in Table 4-2,
These results were obtained by substitution of the appro-~
priate values of M and N into Eq. (4-24)., For negative

values of M, Eq. (4-24) can be converted to a more convenient
form by multiplying the numerator and denominator by the
factor s’M‘ as follows:

;N+M + Ky(Ke - sM)| . s M
BT o Ml

i 8N + Kq(Kos M - 1).|
swo 1 | 8N 4 kik s M _I

Equation (4-25) is valid only for negative values of M.

Oe(t)gs = ;‘_1:; ry

, M< 0 (4-25)

2., For X>1, i.e., for inputs of an order greater than

a step function, the steady-state system error approaches




TABLE 4-2

STEADY-STATE SYSTEM ERROR, ©e¢(t)ss, AND STEADY-STATE
ACTUATING SIGNAL, E(t)gg, FOR SINGLE-LOOP

FEEDBACK COMPENSATED SYSTEMS

b2

HIGHER~-ORDER

TYPE STEP INPUT (XK= 1) INPUTS (X > 1)
N M 8e(t)ss E(t)ss Oe(t)ss*
14K, (K, -1) r

1+K K¢ 1+K1K,

K.-1
>0l o r, — 0 <o

Kc

.>_0 >0 ri 0 v (o @/
0 -1 ri(1-K;) ry lo'®)
>0 | <0 - Q0O -- oo

#*The actuating signals for higher—order inputs (¢ >1)
are not shown since the corresponding error signals are

infinite.
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infinity for any value of M and N. Referring to Eq. (4-23),
it 1s obvious that 8g(t)gg—+0 for M 2 O since N 2 0 (by
definition) and the numerator of Eq. (4-23) is always finite,
whereas the denominator approaches zero due to the factor

g*-1, (The 1limit of s¥-1 as s— 0 1s zero for &€ > 1,) The

ot

same result is obtained for negative values of M, Eq. (4-23
is again converted to a more convenient form by multiplying

numerator and denominator by s'MI. Thus

N Imi
ro |s" + Ki(K.s - 1)

M<O (4-26)
S+0 1| N 4 KiKes ™ ’

By reasoning similar to that used for the case where M2 0,
it follows that Eq. (4-26) approaches infinity for o> 1.

A number of significant conclusions can be drawn from
Table 4-2 concerning the steady-state response of a single-
loop feedback compensated system.

1. Since the steady-state system error is infinite for
any input function of a higher order than a step, a single-
loop feedback compensated system can never function as a

follow-up device.l The steady-state system error will be

1, step input refers to a step change 1n the reference
function, whatever form the reference function may take. For
example, if the reference input is velocity (zero for t < O
and a constant value for t > 0), this 1s a step function
input in velocity and the single-loop feedback compensated
system can produce a finite steady-state system error 1in
velocity. However, if the reference input 1s considered to
be position, then the step input in velocity corresponds to
a ramp input in position and the steady-state system error
in position 1is infinlte. This fact is evident when the
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finite and the system can behave as a regulator (constant
output for constant input) only for the following values of
M and N with the additional restrictions on K, and K. as
noted:
a) N=0,M=0

-

1+ K(Kg, - 1)

Oe(t)ss = m _l (4-27)

1 + KK,
For K, = 1, 8¢(t)gs = r1/(1 + K;) and the error can
be made small for K3 » 1. For K; = 1, 8e(t)ss =
rK./(1 + K.) = r1/(1 + 1/K;) and the error can be
made small for K, <« 1.
b) N> O, M=0

Kc -1
0e(t)gs = ry|——n0 (4-28)

c

Notice that the error 1s independent of K; and can
be made equal to zero for K, = 1. Therefore, it 1is
possible to reduce the error to zero by proper selec-
tion of the gain or attenuation constant of Hl. Ky
can then be adjusted independently to place the roots
of the characteristic equation for the closed-loop

system in the proper location for the desired system

finite error 1n velocity is considered in terms of the posi-
tion functions. The input position and output position will
be ramp functions having different slopes due to the velocity
error. At steady-state (t-»o), the error between the input
and output position will thus be infinite.
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transient response, A change in K, will not affect
the steady-state system error. An example of a
system that takes advantage of this principle is
presented in Section A-1 of the Appendix,
c) N=0, M= 21
Be(t)eg= r1(l - Ky) (4-29)
For 0 < Ky €1, 6g(t)gg < ry and for the special
case where K, = 1, the error is zero. Notice that
the error 1s independent of K.. Xy can thus be
ad jJusted to give a small error and K, adjusted in-
dependently to give the desired trancient resvonse,
2. The steady-state system error for M > 0 is equal to
r, regardless of the value of N (the type of the uncompen-
sated system). This situation exists because the steady-
state output 1s always zero when the compensating element 1is

type 1 or greater,

C(t)gg = 1im sC(s)

$—+0
C G
lim sB(s) | (s) = lim rl/__l__
$+0 s—-0 Kl + G H,
sHK N.D
lim r llc (4-30)

s=0 |s"*Mpp, + KN KN,
Equation (4-30) is equal to zero for M 2 1 so that

Ge(t)as= r(t)ss - C(t)ss

=r‘ - 0= ™_
i "1l

3. The steady-state system error approaches infinity
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for a type 1 or greater uncompensated system (N > 0) for any
negative value of M (M< 0),

Block~-diagram manipulatlion gives insight to a physical
interpretation of the results of the steady-state system
error analysis. An example of block-diagram manipulation
and interpretation of a single-loop feedback compensated sys-

tem is given in Section A-2 of the Appendix.

Steady-state Actuating Signal--Single-loop Feedback

Compensation. The steady-state actuating signal for

the single-loop feedback compensated system (See Fig. 1-3,

page 7.) is defined as follows:
C ,
€ =R -cCH; = R(1 -5 Hq) (4-31)

The system transfer function 1is
-§ I - (4-32)
1 + G;Hy
Substitution of Eq. (4-32) into Eq. (4-31) gives
Gy R

e - R( ) 1 + GyHy .’ Hl) ) 1 + GyHy (4-33)
But Eq. (4-33) 1is the same form as Eq. (4-3) for the cascade
compensated steady-state system error (or steady-state actu-
ating signal). Therefore, the actuating signal for single-
loop feedback compensation can be determined by substituting
Hy(s) for G,(s) in the appropriate equations derived in

Section 4-1. Since the generalized equations for H,(s) and
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Ge(s) are the same, the results for single-loop feedback
compensation can be obtained directly from Table 4-1. The
actuating signals for a step input are tabulated along with
the error signals 1n Table 4-2, The actuating signals for
higher-order inputs (o{>1) are not shown in this table since

the corresponding error signals are infinite.

Steady-state System Error--Double-loop Feedback Compen-

sation. The block-diagram for the double-loop feedback
compensated system is shown in Fig, 1-4, page 7. The steady-
state system error for this system is derived from Eq. (4-20)
by setting Hy = 1 and G, = 1. If these substitutions are
made, Eq. (4-20) reduces to the following expression:
1 + GyHy

& _ lim _Te _
ee( )SS S+0 S«_l 1+ Gl(Hl + 1) (u' 34)

Gy 1is defined by Eq. (4-7) and H,; is defined by Eg. (4-8).
Substitution of these equations into Eq. (4-34) gives

sN+Mpyp, + KyN;KcN, (4-35)

ge(t)ss = Hm 2* M
§+0 *-1{sNMp. p. + KN (KcNe + s'Dg)

Equation (4-35) may be simplified by making the substitutions
of Eq. (4-10). The resulting equation is the general expres-

sion for the steady-state system error.

NHM | K.K
8c(t)ss = lim Tt ° T e
S+»0 s°"’1 ,N+M + Kl(Kc + s“)

As will be shown, the steady-state system error

double-loop feedback compensation case can be finite for input
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functions of an order greater than one (X >1). The most
convenient method for developing the system error is to cate-
gorize the compensated systems first in terms of the value of
M, the type of the compensation element; secondly in terms
of the value of N, the type of the uncompensated plant; and
finally in terms of o<, the order of the input function. The
indicated substitutions for M and N are made in Eq. (4-36)
to arrive at each 9.(t)gs in the development which follows.

1. M=0
sN 4+ Kch ]

_1lim _r
8e(t)gs = ceo s“':‘j

L?N + Kl(K'c + 1)
a) For N =0,
1 + KK

r 1%c
0. (t)qq = 1im (4-37)
€788 7 s+0 o1y Ki(Ke + 1)
1 + KiK,
=r for =1

1 + K1(K. + 1)
= forX> 1

b) For N > O,

K
e.(t) = iim _I.‘z(__c__) (4-38)
e 88 O
$+0 g x-1 Ko + 1
KC
= ryf——=—\ forX =1
Kc + 1 )
=@ for X> 1
2. M> 0

For any value of N (N2 O by definition),
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Ge(t)ss = éimo 5::‘1(1) (4-39)

=r) for ¢ =1

3. M<O

r,
o.(t - lim e
e( )SS S+0 X-1|gN+M | Kl(KC + 8

N+M K ) "
N KoK , s M

i (4-40)
§+0 sL[aN 4+ Ky(Kes ™ + 1)
a) For N = O,
ou(t = lm  rece f 1\ -
e(t)ss S+0 $°-1\1 + K, H
= r1/(1 + X;) foreX =1
—forX =1
N -
11m =S 1 + KyKgs M N
ee(t)ss = -0 d—l
_lim =71 (4-u)

S+0 ox-1
s K,

8c(t)ss = O for N ) (o¢- 1)
_ re/Ky for N = (- 1)
=oofor N < (o~ 1)

c) For N> M,

r g'¥ s"= l'l! + K K -1
- 1%c
8e(t)gs = by \

§+0 X-1| N, x (Kes™M + 1)
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r s M

= ?i"o :q_l (Ke) (4-43)

0 for M| ) (X- 1)

Be(t)gg = KX for M = (- 1)
=00 for IM] < (o¢- 1)
d) For N = [Ml,
N
i TS 1+ KK 1
S=+0 go-1{gN Kl(Kcs'M' + l)_J

qxslml 1 + KjK¢

ee(t)ss

_ 1lim
s+0 %-1|gN K1 (K8 M 1)

(4-4y)

Y

8e(t)gg = 0 for N> (X- 1), iMI > (oX- 1)
1 + K3k,
rf—————) for N = |[M| = (X- 1)
A\ x
1

=00 for N < (o¢- 1), IM| < (eX- 1)

[l

The steady-state system errors are tabulated in Table 4-3
for step, ramp, and parabolic input functions.

Referring to Table 4-3 and the preceding development,
several significant conclusions can be drawn from the results
of the steady-state system analysis. These conclusions are
summarlized below.

1. The steady-state system error for input functions of
a higher order than a step (&> 1) is finite only if (a) the
compensatlion element has a positive power of s in the numer-
ator (M € 0), (b) the type of the uncompensated system is one

or greater (N > 0), and (c) the lesser value of IM| and N is




STEADY-STATE SYSTEM ERROR, ©e(t)ss, AND STEADY-STATE

TABLE 4-3

ACTUATING SIGNAL, £(t)gs, FOR DOUBLE-LOOP 51
FEEDBACK COMPENSATED SYSTEMS
TYPE STEP INPUT RAMP INPUT PARABOLIC INPUT
(cX=1) (o= 2) (= 3)
N M Be(t)ss |B(t)ss | @elt)ss [B(t)ss™]| @elt)ss [E(t)ss*
0 [+ KK n - -
0 tfetes)| mRa| o
o | >0 ry 0 oo - o0 --
0 <0 |pMl4Kp |riAl+K)| oo -- a0 --
i Qo
0 —— 0 -- --
! IR A o0
1 | >0 rq 0 oo -- co --
14K, K,
1 -1 0 0 Pz. Kl I‘Q/Kl m -
1 <-1 0 0 1‘2/((1 I‘2/K1 QO -
2 | o |r Ke 0 oo -- o --
Ko+1
2 | >0 ry 0 oo -- e @) --
2 -1 o) 0 raKc 0 © o) -
2 -2 0 0 0 0] o) -
14KK,
2 -2 0 0 0 0 I'pe r
< | M
K¢
>2 0 r‘ln 0] oo -- I"3ﬂ(l ]."3/}(1
K.+1
>21 >0 ry 0 oo - (e'®) -
>2| -1 0 0 roKe 0 oo -
>al .2 0 0 0 -- oc --
>2] <2 o 0 o - r3Ke 0
*€(t)ss 1s not tabulated for those cases where the
corresponding Be(t)ss 1s infinite.
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equal to, or greater than, the order of the input function
minus one (o{- 1). The error will be equal to zero for those
cases where the lesser value of [M| and N is equal to or
greater thano{. The significance of these conditions in
terms of the physical system is presented in Section A-3 of
the Appendix.

2. PFor N=M=0and=1or N=-MandX=N + 1,

1 + K K,

1
1 + Ky(K, + 1)

6e(t)gs =

The error can be made small by making KC<Z 1 and K12> 1 so

() 1+K1KC 1
8e(t)ss ¥ | —————) = o, [— - K,

3. For M <0, N =0 and (=1,
8c(t)gs = r1 /(1 + Kq)
For M <O, IM[>N>OandX=N + 1
8e(t)gs = rou/XK;

The error for both these cases 1s lndependent of Kc and can

that

be made small for large values of Kj. The steady-state system
error can be set by adjusting K;, and the dominant roots can
be set for the desired transient response by adjusting Kc.
4, For M <O, IM| ¢ Nand &= IMI + 1
Oe(t)ss = ryKe

The error is independent of Kl and can be made small for
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5, For N> O, M=0and X =1,

Be(t)gs = riKe/(1 + K¢)
The error 1s independent of K; and can be made small for

K, <1.

Steady-state Actuating Signal--Double-loop Feedback

Compensation. The steady-state actuating signal for

the double-loop feedback compensated system (See Fig. 1-4,

page T7.) 1s defined as follows:

g =c/5
£
R

C
R (4-45)

1
Gy

The system transfer function is

c. G1 (4-46)
R 1 +Gy(Hp + 1)

Substitution of Ea. (4-46) into Eq. (4-45) gives
[ 1

R 1 +Gy(H + 1) (4-47)
From Eq. (4-47) the steady-state actuating error is
E(t)gg = o R(s) = (4-48)

© 1 + Gy(s)[Hy(s) + 1]

Again expressing R(s) in the general form of Eq. (4-5), and
G,(s) and Hy(s) in the general forms of Eq. (4-7) and Eq.
(4-8), respectively, Eq. (4-48) becomes

. 14im T stDch

o C
s =540 T C _NH M
s s DD, + KlNl(Kch + s DC)

P i)
.F-
|
b
O
S
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Equation (4-49) may be simplified by making the substitutions
of Eq. (4-10). The resulting equation is the general expres-
sion for the steady-state actuating signal.
r

N4M
8(t) = 1lim L
88 = §*0 gor-1f JN4M Ki(K, + sM)

(4-50)

he steady-state actuating signal is developed by catego-
rizing the compensated systems first in terms of M, secondly
in terms of N, and finally in terms of &X. The indicated sub-
stitutions for M and N are made in Eq. (4-50) to arrive at
eacrlg(tﬁss in the development which follows.

1. M=0

sN

r
8(1—,) = 1im X
88 7 sw0 x-1|N K,(Ke + 1)

a) For N =0,

r ' 1
E(t)gs = Mim 2 (4-51)
58 T gwo &1l 4 K, (Ko + 1)
r
= 1 for'd: 1
1+ Ky(K, + 1)
= (o o] fOI‘O‘) 1l
b) For N2> O,
E(t)gg =0 for N > (o¢- 1)
= ro/K1(Ke + 1) for N = (- 1)
= for N < (ot~ 1)
2. M>O0

E(t)gg =0 for (N + M) > (o<~ 1)
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= r/K1Ko for (N + M) = (o(- 1)
= OO for (N + M) < (- 1)

3. M<0
- N+ o Ml

E (t) - lim .
55 T 50 O-1|NeM Ki(K, + sM) s M

1im et sN
T sw0 1N Ky(Kcs M, 1) (4-52)
a) For N =0, B
E(t)g = 11 = - (4-53)
s 1+ Kl(Kcs + 1)
=ry/1 + K, for oA=1
= 00 for X > 1
b) For N> O
E(t)gg =0  for N> (oX- 1)

ra/Ky for N = (o - 1)
= 0 for N< (oxX-1)
The steady-state actuating signals for step, ramp, and
parabolic lnputs are tabulated in Table 4-3 for cases where

the corresponding steady-state error 1is finite.

4-3, SUMMARY AND CONCLUSIONS

The discussions and developments presented in this chap-
ter have brought to light the important fact that the choice
of feedback versus cascade compensation must be considered

in terms of the steady-state system error as well as the




56
dynamic behavior. Finite system error is impossible to
achieve for ramp, parabolic, or higher-order input signals
into a single-~loop feedback compensated system. The use of
this form of compensation 1s therefore limited to regulator
applications where the input is a reference-level type of
step function, (See Footnote on page 43.) The double-loop
feedback compensated system maintains a direct correspondence
between the system input and output functions because of the
unity feedback path. The steady-state system error for this
configuration can be made finite, in fact zero, for a ramp or
higher-order input function by proper choice of the compensa-
tion network.

There are several additional conclusions which may be
deduced from Tables 4-1, 4-2 and 4-3 by interpreting the
results in these tables in terms of the block-diagrams of
the physical systems represented. For example, for a double-
loop feedback compensated system with N = O, M < 0, it 1s
noted from Table 4-3 that the steady-state actuating signal
and the steady-state system error are both equal to rl/ﬁ + K.
From a physical standpoint thls result 1s expected since the
inner-loop for the system 1s open-cifcuited at steady-state
(s— 0) and the system would therefore reduce to a simple
type 0 unlty feedback system for which the steady-state system
error and actuating signal are equal, i.e., rjfl + Kj). The
mwith N =0, M =0

enu [ av - es — W3

single-loop feedback compensa

reduces to the same unity feedback system at steady-state




57
when K, = 1 (See Table 4-2). Carrying this physical inter-

pretation further, the double-loop feedback compensated system
for N> 0, M €0 (See Table 4-3) will reduce to a unity feed-
back system of type N as s—+0 (H}-»0). The steady-state
system error and actuating signal are therefore zero for a
step iInput, because a step input into a type 1 or greater
unity feedback system produces both zero steady-state system

error and actuating signal.




CHAPTER 5
LOG-MODULUS ANALYSIS OF COMPENSATED SYSTEMS

The log-modulus plot 1s an effective method for graph-
ically comparing the relative effects of cascade and feedback
compensation in terms of frequency response. This method is
normally applied to the open-loop transfer function for the
cascade compensation case, and the closed-loop system response
is then determined from zero db. crossing points and the phase
margin.l The approach in this chapter is to develop a system-
atic method for approximating the magnitude of closed-loop
transfer functions. The closed-loop transfer functions for
cascade compensated systems and various forms of feedback
compensated systems are then analyzed to establish the rela-
tive effects of the two modes of compensation.

The validity of the approximation that is used in arriv-
ing at the magnitude of the closed-loop transfer function is
demonstrated for the simple unity feedback system of Fig. 5-1,
page 62. This proof applies to the compensated systems that

are investigated in thls chapter as well.

5-1. AN APPROXIMATION FOR THE MAGNITUDE OF A CLOSED-LOOP

TRANSFER FUNCTION

1Vincent Del Toro and Sydney R. Parker, Princisles of

Control Systems Englneer New York: McGraw 0
Company, inc., 1928), Chap. 9.
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The closed-loop transfer function for the system shown
in Fig. 5-1 is
Gy

C
—=—1 (5-1)
1 +Gl

The magnitude of C/R 1s given by

c |61

Rl = TI_:_E;? (5-2)

The denominator of Eq. (5-2) may be expressed as follows:
)
|1+ 6] = {}1 + Re(G1) 1% + [Im(Gl)]é} (5-3)
where Re(G;) is the real part of G; and Im(G;) is the imagi-
nary part of Gy. The approximate value of ‘1 + Gy | will
depend on the value of [G;| as follows:
1. When |G;| <1,
Re(G;) <« 1 and Im(G;) < 1
Therefore, referring to Eq. (5-3),
'l +-Gll 1
2. When |G;| » 1, one of the following must be true:
a) Re(Gy)» 1 and |Gl|
b) Im(G;) » 1 and |G|
c) Re(Gy)>» 1

2 '
and [G,] = {tﬁe(Gl)] + [Im(Gy) ] }
Im(Gy) D 1
For any of these cases, |1 + Glliv 1G]

Therefore, the following approximation is seen to be

valid:
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G

% Y 19, =1 for |G| » 1 (5-4a)
Gy

C

& e, for |G| « 1 (5-4b)

5-2. LOG-MODULUS REPRESENTATIONS FOR COMPENSATED SYSTEMS

The magnitude spproximation technigue developed in
Section 5-1 is employed in the analysis and comparison of
cascade and feedback compensated systems. The first system

to be considered 1s the cascade compensated case.

Cascade Compensation. The transfer function for the

cascade compensated system shown in Fig. 1-1, page 7, is

given by

e, &% (5-5)
R 1 +640,
The magnitude of this transfer function may be expressed as

follows:

|%|,\~,1 for |Glac| »1 (5-6a)

2|08, | for |e,0.| «1 (5-6b)
The straight-line log-modulus plot of Eq. (5-6) is con-
structed by plotting 'Gchl in db. units versus log w on semi-
log paper as illustrated in Fig. 5-2, page 62. The frequency
where the plot crosses zero db. will be referred to as w,.
At w, |Glac| = 1, Usually |Gch| will be greater than one,
i.e., +db., for w < w, and will be less than one, i.e., -db.,
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for w > LI This 1s the case when the order of s 1ln the
numerator of GG, is less than the order of s in the denom-
inator, such that as w-+0, G;G,-»o0and as w—+o00, G;G,—0.

The magnitude approximation for the cascade compensated
system transfer function can be represented in block-diagram

form as shown in Fig. 5-3.

Feedback Compensation. The magnitude approximation

technique 1s applied to the single-loop and double-loop feed-
back compensated systems. The information derived from these
systems 1is then used in developing the magnitude approxima-
tion technique for the general case of feedback compensation.
The single-loop feedback compensated system is shown in

Fig. 1-3, page 7. The system transfer function 1is glven by

c G
e — (5-7)

The magnitude of this transfer function may be expressed as

follows:
c 1 1
Cla-2 for |GH | D12 |G _— -8a
l Rl ~ |H1| or | 1 ll | or ll» Hy] (5-8a)
c 1l
|F' 2 |Gy| for |01H1| &1 or |c.'.1|<<m (5-8b)

Notice that |GyH;| = 1 for |G| -_‘*ll—ﬂ .

The straight-line log-modulus plot of Eq. (5-8) 1is con-
i ' 1 - . .. ..
structed by plotting IGli and |H,j| ! in db. units versus log

on semi-log paper as illustrated in Pig. 5-4, page 64. The




Pigure 5-1. Unity feedback system (uncompensated).

Logw

T

Figure 5-2. Straight-line log-modulus plot of |C/R|
for a cascade compensated system.

1 ——wlCl for 16,641

IRI

]EE%&———#-ICJ4brIGﬁgh«J.

Figure 5-3. Magnitude approximation for a cascade
compensated system transfer function.

62
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frequency where |01| = |Hll'l is determined by the intersec-
tion of these two plots. If we call this frequency, Wy, the
same reasoning applies to the plot of }%1 with respect to
this frequency as was specified for w; in the previous cas-
cade compensation case.

The single-loop feedback compensated system may be con-
verted to an equivalent cascade compensated system with ani~l
block preceding the summation point as shown in PFig. 5-5. The
magnitude approximation can therefore be represented as in
Fig. 5-6.

The'double-lodp feedback compensated system is shown in
Fig. 1-4, page 7. The system transfer function is given by
G

1

- o, + 1) (5-9)

o0

The magnitude of this transfer function may be expressed as

lc I 1 1

=|w for |G,(H, + 1 1 G -10

R 1™ or |ay(Hy + 1)| » 1 or 63| » T (5-10a)
> IGll for 'GI(HI + l)I «1 or IGll & F{ﬁ-l (5-10b)

The straight-line log-modulus plot of r%1 may be con-
structed from Eq. (5-10) by plotting |Gl| and |H1 + 1|‘1;
however, a more systematic approach is to convert the double-
loop system of Pig. 1-4 into its equivalent single-loop form
shown in Pig. 5-T, page 66. The approximate magnitude of
C/R is then evaluated in two steps as follows:




Figure 5-4, Straight-line log-modulus plot of |C/R| for a
single-loop feedback compensated system.

Figure 5-5. Equivalent block-dlagram form for a single-icop
feedback compensated system.

1 |[— (Cifor |6H,|»1

IR|

——ﬁ |H}

|G H,||—= IC| for |GH,|«<1

L ennn L W

Figure 5-6. Magnitude approximation for a single-locp feed-
back compensated system transfer function.
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1. Pig. 5-7 1s in the same form as Fig. 5-1, and

¢ _a
R 1 +@G!
Thus
c
l;' ¥ 1 for |a' » 1 (5-11a)
®|eY| for |6'] « 1 (5-11b)

2. Since G' is the transfer function for a single-loop

feedback compensated system [See Eq. (5-8).]

Gy

le!| = | ———

for |GH;|» 1 (5-12a)

oL
|Hy]
% |G| for |aH;| €« 1 (5-12b)

The stralght-line log-modulus plot of L%1 may be con-
structed now by plotting |Gll and lHll'l in db. units versus
log w as illustrated in Fig. 5-8. Notice that if w_  is less
than the frequency w,' where the plot of lGl| crosses tne O
db. axis, then lC/Rl 1s equal to one for w < w,' and equal to
|Gy| for w >w,'. The function |H1|‘1 is not involved in tne
solution for |C/R| in this case.

The general case for feedback compensation is illustrated

in PFlg. 1-2, page 7. The system transfer function is

c 6,0,

R 1 4+ 6y(Hy + GpHp) (5-13)

The magnitude approximation for C/R may be derived in a sys-
tematic manner by converting Fig. 1-2 into its equivalent

single-loop feedback form shown in Fig. 5-9. |C/R| is then




Figure 5-7.

$ db

Figure 5-8.
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Wy > Wg!

Equivalent block-diagram form for a double-
loop feedback compensated system.

j db
\\\\
PN
-1 ~
e T
1nmfuk' 10 ~
C
'\

b) Wo < We!

Straight-line log-modulus plot of |C/R| for a

double-loop feedback compensated system.

Figure 5-9.

Gl

H2

Equivalent block-diagram form for general case
of feedback compensation.
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evaluated in two steps as follows:
1., Fig. 5-8 is in the same form as the single-loop feed-

back compensated system of Fig. 1-3, and

S a9
R 1+ G'Hp
Thus
£ P for |G'H2| » 1 (5-14a)
R|" |Hy
c
%1 16| for Jam,|« 1 (5-14b)

2. Since G' is the transfer function for a single-loop
feedback compensated system preceded by the function Go

GG G,

Hy

e = |——2 | % for |GyH)| » 1 (5-15a)
1 + G.H,

¥ (616, | for [G1H)| K1 (5-15b)

Referring to Equations (5-14) and (5-15), to determine
|c/R| 1t 1s necessary to plot only |H2l‘1, |G2/H1| and
|GlGa|. The plots of |GQ/H1| and |GlG2| will determine 'G"
and then the plots of |G'| and |Hp|™! will fix | C/R| for the

general case of feedback compensation.

Example. To 1llustrate the principles that have been
developed in this chapter, consider an example where
G, = 10/s2(s + 1) and G, = H) = s. The magnitude approxi-
— fn 4

PR N - = v o b ann
Mation L0 Ttne sSystem

the cascade compensated system and the single-loop and double-
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loop feedback compensated systems.

For the cascade compensated system, the following term

is plotted in db. units in Fig. 5-10:

|G1°c| =

!C/R! for the cascade compensated system 1s constructed

10
s(s + 1)| (5-16)

according to Eq. (5-6) and appears as the heavy line labled

@ in Fig. 5-10. The closed-loop system transfer function can

be derived as follows:

c . GG _ 10/s(s + 1)
R 1466, 1+10/8(s +1)
2
20 = “n (5-17)
2 + s + 10 g 2

s + 25wns + Wy

Notice that the straight-line log-modulus plot of Eq. (5-17)
yields the same result as was obtained from the plot of Eq.
(5-16), with wp = Y10 corresponding to we.

For the single-loop feedback compensated system, the

following terms are plotted in db. units in Fig. 5-10:

(5-18a)

10 |
a2(s + 1)

jHy| ™t = s -2 (5-18b)

|Gl|=

IC/Rl for the single-loop feedback compensated system is con-
structed according to Eq. (5-8) and appears as the heavy line
labled @) in Fig. 5-10. The closed-loop system transfer func-

tion can be derived as follows:
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c Gy ) 10/s2(s + 1)
R 1 4+6H; 14+ 10/8(s + 1)
10 w2
-— - 5 (5-19)

s(s© + s + 10) 3(32 + 26w, S+ wp

Again, notice that the straight-line log-modulus plot of Eq.
(5-19) yields the same result as was obtained from the plot
of Eq. (5-18).

For the double-loop feedback compensated system, the
same terms apply that are plotted in Fig. 5-10 for the single-
loop feedback compensated system, 1.e., Eq. (5-18). |c/R]
for the double-loop case 1s constructed according to Equations
(5-11) and (5-12) and appears as the heavy line labled(3) in
Fig. 5-10. The closed-loop system transfer function can be
derived as follows:

G, 10/%2(3 + 1)
1 + Gy(Hy + 1) "1+ 10(s + 1)/52(s + 1)

L.
R

- 10 _
(s + 1)(s2 + 10) (5-20)

Finally, notice again that the straight-line log-modulus plot
of Eq. (5-20) yields the same result as was obtained from the
plot of Eq. (5-18).

5-3. SUMMARY AND CONCLUSIONS

The log-modulus plot has been shown to be a convenient
graphically displaying the approximate closed-

loop frequency response for compensated systems. Several
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important characteristics of compensated systems become
apparent from the log-modulus plot analysis. It is noted
that the cascade compensated system transfer function is
unity for lower frequenciles and falls off according to the
product G1G, for higher frequencies, providing that
G1(Jw)@c(Jw)— 0 as w+co. The transfer function for the
single-loop feedback compensated system depends on the in-
verse of the compensatisn network for lower frequencies and
falls off in accordance with the uncompensated system trans-
fer function, Gy, at higher frequencies. The transfer func-
tion for the double-loop feedback compensated system will
elther have a positive slope (if H, has a positive slope)
or be unity as in the cascade case for low frequencies, At
intermediate frequencies, the transfer function can assume
several forms depending upon the form of the compensation
network and the uncompensated system, G,. At higher frequen-
cies, the transfer function falls off in accordance with G;,
as in the single-loop feedback compensation case.

Each form of compensation has been shown to affect the
closed-loop system response in its own characteristic man-
ner. These results must be considered in the selection of
a compensation network and the system configuration for this

network for a given plant and desired system response.



CHAPTER 6
POLE-ZERO ANALYSIS OF COMPENSATED SYSTEMS

The characteristic equation for a control system 1s
determined by setting the denominator of the system's closed-
loop transfer function equal to zero. The roots of the re-
sulting equation are the poles of the closed~loop transfer
function. The zeros are the roots of the numerator of the
closed-loop transfer function. The transient response of a
control system depends upon the pole-zero configuration of
the closed~-loop transfer function for the system. For a
given plant, cascade compensation and the various forms of
feedback compensation will affect the pole-zero conflguration
of the closed-loop transfer function in a different manner.

For a second-order system, the roots of the character-
istic equation may be calculated by solving a quadratic equa-
tion. PFor higher-order systems several techniques are avall-
able for calculating the roots of thevcharacteristic equation.
The technique that is employed in this chapter 1is the root-

1 The theory

locus method developed by Walter R. Evans.
behind this method will not be developed in this chapter,

but is readily available to the reader in almost any recent

11.1-1; -
waiuvoerl

cr n.
McGraw-Hill Book
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control systems textbook. Basically, the root-locus method

is a graphical technique for determining the roots of a
characteristic equation in terms of a system parameter that
varies from zero to infinity. The parameter that is usually
varied 1s the open-loop gain of the system. An important
point to note is that the root-locus method uses the open-loop
transfer function of a system to yleld precise information

about the closed-loop transient response of the system.

The first part of this chapter compares the relative
effects of cascade compensation and feedback compensation on
the pole-zero configuration of the open-loop and closed-loop
tfansfer functions. An example 1s presented to illustrate
these effects in terms of the root-locus plot. The latter
part of the chapter invéstigates the effects of zeros on the

transient response of a control system.

6-1. POLES AND ZEROS OF COMPENSATED SYSTEMS

The poles and zeros for cascade compensated systems and
the single-loop and double-loop forms of feedback compensation
are defined in terms of the poles and zeros of the uncompen-
sated plant, Gj, and the compensation network, G or Hj.

First consider the cascade compensated system.

Cascade Compensation. G,(s) and G.(s) for the cascade

compensated system shown in Fig. 1-1, page 7, are defined as

follows for this analysis:




T4

ay(s) = 2% (6-1)
D]_(s)
N.(s)

Gc(s) = Dc(s) (6-2)

The adjustable gain parameters occur as factors in N, and N..
The open-loop transfer function for the cascade compensated
system is G;G_. Substitution of Equations (6-1) and (6-2)

into this expression gives

N4N
G0, = — (6-3)
D
Dl c
The closed-loop transfer function for thls case is
c G,G
== —1c (6-4)

Substitution of Equations (6-1) and (6-2) into Eq. (6-4) gives

N.N
% I . (6-5)
DD, + NyN,

From Eq. (6-5) it is noted that the zeros of C/R occur
where N;N, = 0, and therefore, C/R has zeros where G, and G,
have zeros.2 Referring to Eq. (6-3), the zeros of the open-

loop and closed-loop transfer functions are the same.

2This conclusion is in general valid only when the uncom-
pensated plant and the compensation network have no common
poles or zeros. When the compensation network introduces
pole-zero cancellation, this conclusion must be re-interpreted.
See page T9 for a discussion of this problem.
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The poles of Eq. (6-5) occur where .
D,D, + N3N, = 0 3 (6-6)
Equation (6-6) is the characteristic equation for the cascade
compensated system. This equation is put into root-locus
equation form by dividing through by D;D,, giving the expres-
sion

N54N
l1e_.1 (6-7)

D;De
The left side of Eq. (6-7) is the open-loop transfer function

(Gch) for the cascade compensated system.

Single-loop PFeedback Compensation. The single-loop feed-

back compensated system 1s shown in Fig. 1-3, page 7. Gy(s)
for this system is defined by Eq. (6-1) and Hl(s) is given by

(6-8)

The adjustable gain parameter agaln occurs in the numerator,
No.. The open-loop transfer function for this case is the
same as for cascade compensation, i.e.,

N,.N
1c (6-9)

GiH, =
171 Dch

The closed-loop transfer function 1is given by

% (6-10)

C
R 1+ 60y

31bia.
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Substitution of Equations (6-1) and (6-8) into Eq. (6-10)
glves

N-D
1°¢ (6-11)

E_
R~ D;Dc + N3N

From Eq. (6-11) it is noted that the zeros of C/R occur
where N,D, = O, and therefore, C/R has zeros where G; has
zeros and where H; has poles.u The zeros of C/R are not the
same as the zeros of the open-loop transfer function [See
Eq. (6-9).] as was the case for cascade compensation. The
significance of the difference in zeros will be established
in Section 6-2.

The poles of Eq. (6-11) occur where

D,D, + NN, = O 2 (6-12)

Equation (6-12) is the characteristic equatlion for the single-
loop feedback compensated system. Notice that this equation
is identical to Eq. (6-6) for the cascade compensated system.6
Equation (6-12) will yield the same root-locus equation as
Eq. (6-7), 1.e.,

N3N
1%c --1

D3De

Therefore, the root-locus plots will be the same for cascade

b1pia.

SIbid.

61p14.
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and single-loop feedback compensated systems.

Double-loop Feedback Compensation. G;(s) and Hl(s) for

the double-loop feedback compensated system shown in Fig.

1-4, page 7, are defined by Equations (6-1) and (6-8) respec-

tively. The closed-loop tranafér function for this case 1is
¢

z- (6-13)
1+ 6y(Hy + 1)

Substitution of Equations (6-1) and (6-8) into Eq. (6-13)

gives

N.D
1e (6-14)

DD, + Ny(Ng + D)

¢
R=

A comparison of Eq. (6-14) and Eq. (6-11) reveals that
the zeros for the double-loop case are the same as for the ‘
single-loop case,

The poles of Eq. (6-14) occur where

DD, + Nj(N, + D) = O 7 (6-15)
Equation (6-15) is the characteristic equation for the double-
loop feedback compensated system. Notice that the poles of
Eq. (6-15) are not the same as for the single-loop case.

Equation {6-15) can be reduced to three different root-
locus equations corresponding to three different forms of
block-diagram manipulation of the double-loop feedback

Tibia.
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compensated system shown in Fig. 1-4, page 7. These root-
locus equations are derived as follows:

1. If Eq. (6-15) is divided through by D;D., the follow-
ing root-locus equation results:
Nl(Nc + D)

D;D,

- -1 (6-16)

Notice that Eq. (6-16) corresponds to the system block-diagram
form shown in Fig. 6-1(a), page 80, which has the open-loop
transfer function

Ni(N. + D)

G,(Hy + 1) = (6-17)
11 D10,

2. If Eq. (6-15) is divided through by the expression
DjD, + NjN,, the following root-locus equation results:
N;D

¢ = -1 (6-18)
Dch + N]_Nc

Equation (6-18) corresponds to the system block-dlagram form
shown in Fig. 6-1(b), page 80, which has the open-loop trans-
fer function

Gl NID

c
= (6-19)
1l + G].Hl Dch + NlNC

Notice that Eq. (6-19) is the closed-loop transfer function
for the single-loop feedback compensated system.
3., If Eq. (6-15) 1is divided through by the expression

, the following root-locus equation results:
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DyD, + N1D,

Equation (6-20) corresponds to the system block-diagram form

shown in Pig. 6-1(c) which has the open-loop transfer function
a,H,; NqNg

- (6-21)

The usefulness of each of the previous forms for the
root-locus equation will depend on which system parameter

needs to be isolated as the variable for the root-locus plot.

Effects of Pole-zero Cancellation. For each of the com-
pensated systems that have been discussed in the previous
paragraphs, certain statements were made concerning the pole-
zero configurations for the closed-loop transfer functions
that do not necessarily apply when the compensation network
introduces pole-zero cancellation. These statements were
indicated by a reference to the Footnote on page T4. Since
compensation networks are often selected to produce a pole-
zero cancellation, it is necessary to investigate this situa-
tion and re-evaluate the statements in question. An example
will serve to clarify the problem.

Consider an uncompensated plant having the transfer

function
K (s + 1) Ni(s)
0, - 1 - (6-22)
{2 + 2}{(s +3) Dy(s)




H+1

(a)

‘F)

1+GH,

(c)

Figure 6-1. Block-diagram forms for the double-loop
feedback compensated system.
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The closed-loop transfer functions are calculated below for
each form of compensation that has been considered previously
and for two cases of pole-zero cancellation: (1) Zero of com-
pensation network cancels pole of plant, and (2) Pole of com-
pensation network cancels zero of plant. Exceptions will be
noted to the previous statements that have been referenced
to the Footnote on page Ti.
l. The compensation network 1is given by
Ke(s +2) N(s)
(s + 4)  D(s)

The open-loop transfer function for cascade or single-loop

G, = Hy = (6-23)

feedback compensation is

KiK.(s + 1)
G1G; = GyH; = a3 h (6-24)

The zero of the compensation network has canceled one of the

poles of the plant.
The closed-loop transfer function for the cascade com-

pensated system 1s
c _ @,G, lec(s +1)

- (6-25)
R 1+0:6, (s +3)(s+4) +KK(s+1)

Notice that the zero of Eq. (6-25) is the zero of G; but not

the zero of G,. Also, the poles of Eq. (6-25) do not occur

where DD, + NiNg = O.

For the single-loop feedback compensated system
(s )

1 + GyH, - (s +2)[(s +3)(s + 4) + K;K,(s +1)]

&

G, Klis + 1i){s +

(6-26)
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Notice that the characteristic equation for this case is not
the same as for the cascade case,
For the double-loop feedback compensated system
G,

C
R 1+ ay(H341)

, K, (s+1)(s+4)
- (s+42) (843) (8+4) +K; (K +1) (8+1) [s+(2K +4) /(Ko+1) ]

(6-27)

Notice that the poles of Eq. (6-27) do not occur where
DD, + N;(N, + D) = 0.
2. The compensation network is given by
Ko(s + 4) N (s)
(s + 1) D¢(s)

G, =Hy = (6-28)

The open-ioop transfer function for cascade or single-loop
feedback compensation is

K, Ko(s + 4)
(s +2)(s + 3)

The pole of the compensation network has canceled the zero of

@16, = GH, = (6-29)

the plant.
The closed-loop transfer function for the cascade com-

pensated system 1is

@16, KiK.(s + 4)

- - (6-30)
14+066, (s +2)(s +3)+ KiK. (s + 4)

Notice that the zero of Eq. (6-30) is the zero of G, but not

Also, the poles of Eq. (6-30) do not occur
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For the single-loop repdback compensated system
G, Ki(s + 1)

) 1 + G4Hy .,(s +2)(s + 3) + KyK (s + 4) (6-31)

la

Notice that the zero of Eq. (6-31) is the zero of G; but not
the pole of Hy. Also, the poles of Eq. (6-31) do not occur
where D1D, + NjN;, = 0.

For the double-loop feedback compensated system

Gy

1 + G (H; + 1)

o

Kl(s+1)2
- (s+1){1s+2)(s+3) + Ky[(Ko+1)s + hKc+lf}

Kl(s+1)

- (6-32)
(s+2)(s+3) + Kl(Kc+1)[s + (2K +4) /(Kqo+1) ]

Notice that the poles of Eq. (6-32) do not occur where
D1Dc + Nl(Nc + Dc) = Oo

Example--Tachometer Plus Phase-lag Compensation. As an

example of the principles that have been developed in this
section, consider the system having the transfer function

o ! (6-33)
Y] e

The root-locus for the uncompensated system is sketched in

Figo 6'2, page 86.8

8'rhe root-loci and the pole-zero configurations that are

presented for this example are not drawn to scale but serve
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The compensation network for this example consists of a
tachometer in serlies with a phase-lag network and has the
transfer function
K8
(s + 4)

The rooct-loci and the pole-=zero configurations of the

G, = Kl - (6-34)

closed-loop transfer functions are developed below for the
cases of cascade compensation and single-loop and double-loop
feedback compensation.
1. Cascade compensation. The open-loop transfer func-
tion for the cascade compensated system is given by
8,0, = K,K.s _ K.K. (6-35)
s(s + 1)(3 +4) (s + 1)(s + &)

The root-locus corresponding to Eq. (6-35) is shown in Fig.

6-3, page 86, for Ky as the variable parameter. The closed-loop

transfer function for the cascade compensated system is given

by
R 146,0, sl(s +1)(s +8) +KK,)
KXo

(6-36)

- (s + 1)(s + 4) + K3K,

Notice that the zero at the origin and the pole at the origin
cancel each other in Eq. (6-36). The pole-zero configuration

to 1llustrate the relative effects of the various forms of
compensation on the original system.
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corresponding to Eq. (6-36) is shown in Fig. 6-4 for an arbi-
trary value of K;, indicated in Pig. 6-3 as K;'.

2. Single-loop feedback compensation. The open-loop
transfer function for this system is the same as that of the
cascade compensated system, i.e.,

K.K,
e PRPEY TPy (6-37)
The root-locus corresponding to Eq. (6-37) is shown in Pig.

6-3. The closed-loop transfer function for the single-loop

feedback compensated system is
Kl(s + &)

. S (6-38)
1+ GH) sl(s+1)(s +4) +KK,]

) 0

Notice that the pole at the origin was canceled in the open-
loop transfer function but appears in the closed-loop trans-
fer function. The pole-zero configuration corresponding to
Eq. (6-38) is shown in Pig. 6-5 for K;', an arbitrary value
of K;.

3. Double-loop feedback compensation. The closed-1loop
transfer function for this system 1is

@, |

"1+ ay(H +1)

wlo

xl(l + “)

- i ‘ 6-
| s(s + 1)(s + 4) + K;[s(K, + 1) + 4] (6-39)

and will therefore yleld three roots (poles) for a given value
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Figure 6-2, Root-locus for uncompensated system.
(@) = Ky/8(s + 1) ].

Jow

S VIS )¢ >4

Figure 6-3. Root-locus for cascade compensated system
and single-loop feedback compensated system.
[GIGc = GiH) = lec/(s +1)(s + &) ].

v Ao
X X
\ |
. + ,' — " ‘.‘ —Q : + + x '6
-4 : -1 -4 : -1
X X
Figure 6-4, Pole-zero config- Pigure 6-5. Pole-zero config-
uration for cascade compensation. wuration for single-loop feedback
c KK, compensation.
- B -
R (s +1)(s + 4) +K3K, c Ky(s + &)

R° sl(s + 1)(s + &) + K3K.]
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of K, and K,. The root-loci and corresponding closed-loop
pole-zero configurations are determined below for the three
system cases depicted in Fig. 6-1.

a) For the open-loop transfer function
Ki(K, + 1)(s + 8/, + 1)

(6-40)
s(s + 1){(s + &)

Gl(nl + 1) =

The root-loci will assume one of three forms, depend-

ing on the value of K,. These root-loci and the

corresponding pole-zero configurations for an arbi-

trary value of Ky, K;', are shown in Pig. 6-6.

Notice that when K, = 3, there is a pole-zero cancel-

lation in Eq. (6-40) but Eq. (6-39). the closed-loop

transfer function, yields a pole at s « 1., PFor

Kc > 3, a dominant pole occurs on the negative real

axis,

b) For the open-loop transfer function
@, Ki(s + 4)

- . : (6-41)
1+@H; sl(s +1)(s + #4) +KK¢]

Notice that Eq. (6-41) is identical to Eq. (6-38),
the closed-loop transfer function for the single-loop
feedback compénaated system. The pole-zero config-
uration for the opcu-ldop transfer function for the
double-loop system is therefore specified by Fig. 6-5
for K;', the arbitrary value of K;. The ;esulting

root~locus for the double-loop system with Kc as the
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a) 0<K,<3(-4<z<-1),
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X
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Pigure 6-6. Root-loci and pole-zero configurations for
double-loop feedback compensated system having open-loop
transfer function of G(H; + 1).
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variable parameter is shown in Fig. 6-T7(a). If K;
is chosen to correspond to a set of real poles in
Fig. 6-3, page 86, the root-locus for the double-
loop system as shown in Fig. 6-7(b) will result.
The pole-zero configurations for the closed-loop
systems are alsc shown in Fig. 6-7 for an arbitrary
value of Kc, Keo'.
c) For the open-loop transfer function

= (6-42)
1+G; (s +4)[s(s +1) +K;]

Notice that the bracketed term in the denominator
of Eq. (6-42) is the characteristic equation for the
closed-loop system consisting of the uncompensated
plant, G;, with a unity feedback path. The root-
locus for this system is shown in Fig. 6-2, page 86.
For K,', an arbitrary value of Kl, the resulting
root-locus for the double-loop feedback compensated
system 1s shown in Fig. 6-8. An arbitrary value of
the varying parameter, K.', has been selected to
produce the corresponding pole-zero configuration

shown in the same figure.

6-2. EFFECT OP ZEROS ON TRANSIENT RESPONSE
It has been shown in the previous section that a cascade
compensated system and a single-loop feedback compensated

system may have the same open-loop transfer function and the
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same characteristic equation, but different zeros. In par-
ticular, one system may have finite zeros while the other
system does not. The effect of a zero on the transient
response of a system has been discussed by Del Toro and
Parker for a second-order system.9 The results of this dis-
cussion can be extended to higher-order systems providing
these systems can be approximated by an equivalent second--
order system over the frequency range of interest.

Consider a second-order system having the normalilzed
closed-loop transfer function
c wn2

= (8) = (6-43
R 82 + 28§wWys + wna )

W, 1s the natural frequency of the system and § is the system

damping ratio. The system response to a step-input of mag-

~

nitude ry is

2
r W
c(s) =—% 55— 5 (6-4b)
s 8C + 28wps + Wp

If a zero at - z; 1s added to the transfer function of Eq.

(6-43), the system's response to the step-input becomes

ry 1+ 8/2zy
C(S) = . 3
s (s/wp)e + (28/wp)s + 1
ry wn2 8 + 2y

= — 6-4
s 82 + 285wps + wp® zq (6-45)

Yincent Del Toro and Sydney R. Parker, Principles of
Control S stems;ggg%neeri New York: McGraw-Hill ESOE
Company, Inc., 1 , PP. 434-5.
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A comparison cof Eq. (6-U45) and (6-44) reveals that the addi-
tion of the zero cannot alter either the damping ratio or
the natural frequency of the system because the characteristic
equation of the system is unchanged. However, the presence
of the zero may affect the amplitude of the transient response
of the system, depending upon the relative magnitude of zZ;
compared with §w,. According to Del Toro and Parker:

ess 1f z; is large compared with the values of s

which are predominant in characterizing the time

solution (1.e., that portion of the frequency

spectrum up to w, of the prevalling complex roots),

then the influence is very small because (s + z )/21

is not appreciably larger than unity. On the other

hand, in those situations where the magnitude of

z, 1is small compared with the w, of the predomlnant

c&mplex roots, the effect may 28 quite significant

depending upon the value of §.

The precise manner in which a zero affects the value of
the maximum percent overshoot for a system 1s shown in Fig.
6-9. As noted by Del Toro and Parker, the maximum overshoot
is not appreclably affected by the presence of a zero when

Example. Consider a plant with the transfer function
G, = K/s(s + 2) and the compensation network G. = Hy = (s + 4).
The closed-loop transfer function for the cascade compensated

system 1s

c
z - - (6-46)
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= - (6-47)
1+ GyH; s(s +2) +K(s +4)

=l O

A comparison of Eq. (6-47) and (6-46) shows that the damping
ratio, 5,, and the natural frequency, wp,, of the two systems

are the same but the magnitude of the transient response will

owrshoot

]
o

o= W s+ )

% \ g asuns+ad,

Masimum
-1

-

1 o i o —

B N
S 6 7 e 9

z &
Sl
Figure 6-9. Variation_of maximum percent overshoot
with a zero of C/R(s).11
be greater for the cascade system because of the presence of
the zero. A check to determine whether the difference is of
significance is made by calculating the function z/Bwn. The
factors & and W, are determined by comparing the character-
istic equation for the two systems, s© + s(2 + K) + 4 = 0,
with the normalized form for the second-order system,

s2 + 28wps + wna = 0. It is seen that wp = 2JK and § =

(2 + K)/4JK. Calculating z/sw, and calling this expression X,

11l1pid., p. 435.




z &
Win (2 + K)/um

Solving Eq. (6-48) for K
X2 + (4 - 256/X%)K + 4 = 0

- (4 - 256/%2) + (& - 256/%x2)2 - 16
. /x2) J;f 56/%2) (649)

K must be real and positive. Therefore, from Eq. (6-49)
(4 - 256/%2)2 > 16
4 - 256/x2 < -4 (6-50)
Solving Eq. (6-50) for X
X = z/gw, < uf2

X (6-48)

Since the condition z/§w, 2 10 has not been met, the zero will
have an apprecilable effect on the transient response of the
cascade compensated system. The overshoot for this system

must therefore be determined from Fig. 6-9.

6-3. SUMMARY AND CONCLUSICNS

The pole-zero configurations for cascade and feedback
compensated systems have been compared and similarities and
differences noted. 1In particular, for identical compensation
networks and no pole-zero cancellation, 1t was noted that the
poles of the closed-loop transfer functlion are the same for
cascade and single-loop feedback compensation. Also, the
zeros of the cascade compensated system are the same as the
zeros of the open-loop transfer function; whereas the zeros

of the single-loop feedback compensated system are the same
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as the zeros of the plant and the poles of the compensation
network. The zeros of the closed-loop transfer function for
the double-loop and single-loop feedback compensated systems
are identical. It was also noted that the characteristic
equation for the double-loop feedback compensated system can
be put intc three different root-locus equation forms that
correspond to three equivalent single-loop forms of the orig-
inal system and the three corresponding open-loop transfer
functions.

When the compensation network introduces pole-zero can-
cellation in either the open-loop or closed-loop transfer
functions for a system, the general statements concerning the
system pole-zero configuration must be re-interpreted. It
has been shown that the effects resulting from pole-zero
cancellation when the zeros involved are in the plant and
the poles involved are in the compensation network differ
from the effects when the poles are in the compensation net-
work and the zeros are in the plant.

The presence of zeros in the closed-loop transfer func-
tion for a system have been shown to increase the maximum
percent overshoot of the system response. The significance
of the increase depends upon the magnitude of the zero com-
pared to the product of the system damping ratio and natural

frequency (§wy,).



CHAPTER 7

SUMMARY AND CONCLUSIONS

7-1. SUMMARY

As stated in the introduction, the objective of this
thesis has been to analyze and compare the effects of cascade
and feedback compensation upon the steady-state and dynamic
performance of feedback control systems. This objective has
been observed throughout the thesis, with significant results
being summarized in the closing section of each chapter.

Several relative merits of cascade and feedback compen-
sation have been disclosed by the investigations in this
thesis., These factors are summarized in the following sec-
tion. Some of the analyses have not resulted in conspicuous
advantages or limitations, but rather have indicated the char-
acteristic effects of the various modes of compensation, or
have introduced supporting information, For example, Chapter 2
revealed the problems involved in synthesizing a passive feed-
back compensator to replace the corresponding cascade compen-
sator in a given system. Simililarly, Chapter 5 introduced a
convenient technique for approximating the magnitude of
closed-1loop transfer functions for compensated systems and
analyzed the effects of compensation in terms of this tech-
nique, And finally, Chapter 6 presented the relative effects

of cascade and feedback compensation upon the pole-zero
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configuration for a glven system and discussed the signifi-
cance of these effects., All of these results provide insight
for selecting a particular compensation mode and compensator

type for a given plant and given performance specifications,

7-2. T COMPENSATION MODES

The relative advantages and disadvantages of the various
modes of compensation are summarized below., The reader 1is
referred to the appropriate chapter for a detailed discussion

of these pointa,

System Sensitivity. The sensitivity function for a sys-
tem is defined in Section 6 of Chapter 3. The smaller the

value of this function, the less the control system output

is affected by changes in a given parameter. The sensitivity
function is in general less for the cascade compensated sys-
tem for changes in the compensation network. The double-loop
feedback compensated system offers a potential reduction in
the sensitivity function for changes in the plant when com-
pared with both the single-loop and cascade compensation
cases. Another consideration in favor of feedback compen-
sation in general is the fact that it may be more practical
to design the feedback compensator to give the desired output
accuracy and stability, regardless of whether or not the
sensitivity function is less for the cascade compensated sys-

tem,
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Steadyv-atate Parformance. Some very significant conclu-
sions were developed in Chapter 4 concerning ths steady-state
error and steady-state actuating signals for compensated sys-
tems. Far example, this investigation revealed that finite
system error is impossible to achieve for ramp or higher-order
inputs into e single-loop fsadback compengated system. This
liaitation restricts the single-loop syatem to regulator appli-
cations. No such restriction exists for cascade and double-
loop feedback compensated systems. The steady-state errors
and actuating signals are listed in Tables i1, 4-2 and &3
for each of the compensation modes and various input functions.
An evaluation of these tables reveals that it is difficult to
uake gensral statements concerning the relative magnitudes of
the steady-state functions for each of the compensation nodes,
In fact each of the modes of compensation can offer reduced
steady-state system errors and actuating signals for specific
combinationg of plants and compensators. In other words,
esach given system should be analyzed independently in terms
of the snalyses of Chapter 4 and the information presented
in the aforementioned tables,

Additional Copaidarations. In addition to the factors

that have been discussed in the previous paragraphs, there
are several other considerations that should be taken into

account when making & choice hetween camcade and feedback
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compensationlz

1. The design procedures for cascade compensation tend
to be more direct than those for feedback compensation.

2., Because of the physical form of the contrnl system,
a particular type of compensation may not be possible or at
least not be practical,.

3. The type of signal seen by the compensator must be
considered. For example, the design of a feedback compensa-
tor may be more difficult than a cascade compensator when the
feedback signal is modulated on a carriler,

4L, Some control systems require the isolation of the
dynamics of one part of the system from other parts of the
complete system. This isolation can be accomplished by intro-
ducing an inner feedback loop around the part of the system
that requires isolation,

5. The signal normally goes from a low to a high energy
level in the forward path, whereas the opposite is usually
the case for the feedback path. An amplifier is therefore
generally required for a cascade compensator but will often
not be necessary for feedback compensation. Also, the capac-
itors and other components for the cascade compensator may
be larger and heavier than for the corres onding components

in the feedback compensator.

1yonn J. D'Azzo and Constantine H. Houpis, Feedbacik
Cont A a , (New York: McGraw-Hill

Book Company, 19 , Pp. 465-467,
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APPENDIX

SPECIAL STEADY-STATE CONSIDERATIONS
POR FEEDBACK COMPENSATED SYSTEMS

A-1. A SPECIAL CASE OF A SINGLE-LOOP FEEDBACK COMPENSATED
SYSTEM (N = 1, M = 0)

Consider a type 1 uncompensated system

Ky
Gy = (A-1)
8(1 + sTR)(1 + s1p)
and the feedback compensation network
K (1 + B'ra)
H) =—o (a-2)
(1 + s1¢)

The open-loop transfer function for the single-loop feedback
compensated system of Fig. A-1, page 106, is
Kl(l + S'fa)

611 = s(1 + sTa)(1 + sfp)(1 + sTg)

_ Ky . 1
To1e s(s + l/fb)(s + 1/4/(:)

The compensation network is selected so that its zero will

(a-3)

cancel a pole of the uncompensated system. The root locus
plots for the uncompensated system and the compensated system
are shown in Fig. A-2, page 106.

From Table 4-2 on page 42, the steady-state system error

for a step input is
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0c(t)gs = ry—— (A-4)
Ke

The error 1s not a function of K;. If K, is made equal to
one by proper cholce of preamplifier or attenuation network
in Eq. (A-2), the steady-state system error is reduced to
zero. Now K; can be adjusted independently to place the dom-
inant roots in Fig. A-2(b) in the proper location for the
desired transient response. Since the system error is inde-

pendent of K,, the error will not be affected by setting the

roots.

A-2. BLOCK-DIAGRAM MANIPULATION AND INTERPRETATION OF STEADY-

STATE SYSTEM ERROR FOR SINGLE-LOOP FEEDBACK COMPENSA -

TION

Consider the single-loop feedback compensated system of
Fig. A-1, with G; being a type 1 or greater system (N 2 1)
and H, being type O (M = 0). From Table 4-2 on page 42, the
steady-state system error for a ramp input into thils system
is seen to be infinite. At first thought, this result might
appear to be incorrect. The fact that the error is indeed
infinite may be seen by transforming the block-diagram of
Fig. A-1 into the equivalent form shown in Fig. A-3.

Since Hj 1s a type O element, it reduces to K, at steady
state. The input function R and the function R' = R/, are
. A-4, page 108. These functions diverge and

the difference between them approaches infinity as t-+oo.
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H,

Figure A-1l. Single-loop feedback compensated system.

b Ju

a) Uncompensated system. b) Compensated system.

Figure A-2. System root-loci.
Gy = K;/5(1 + sma)(1 + s1y)

H] = Ko(1 + sq3) /A1 + 81,)

E_.H"'R"” C

-3. Eguivalent block-diagram for a single-loop
c mpenaated system
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Since the error is finite for a ramp input into a type 1 or
greater unity feedback system, the error between R' and C is
finite (in fact zero for N2 2). The error for the single-
loop feedback compensated system is defined as R-C and is
therefore infinite for steady-state conditions.

A-3. BLOCK-D1AGRAM MANIPULATION AND INTERPRETATION OF STEADY -

STATE_SYSTEM ERROR FOR DOUBLE-LOOP FEEDBACK COMPENSA -

TION

The physical significance of the steady-state system
errors for a double-loop feedback compensated system may be
made more apparent by analyzing the system obtained by trans-
forming the system of Fig. A-5(a) into the equivalent unity
feedback system of Fig. A-5(b).

The inner-loop of the double-loop system has been
replaced by its transfer function G', where

Gy

G' (A-5)

B 1 + GjHy
The steady-state system error for a unity feedback system was
developed in Chapter 4, Section 1, and these errors are tab-
ulated in Table 4-1 on page 38 in terms of the compensated
system type (N + M) and the order (of) of the input function.
Referring to Table U4-1, the error 1s seen to be infinite when
the system type 1s less than the order of the input functlion
minus one; the error is a constant when the system type

equals the order of the input function minus one; and the
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@) 4

Figure A-4. Parameters R, R', and C versus ¢t.
(See Figure A-3, page 106.)

R+ + C R +
6, > —b?—‘ c' C’
H,
a) Double-loop feedback b) Equivalent unity
compensated system. feedback system,

Figure A-5. Block-diagram transformation of a double-
loop feedback compensated system,
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error 1s zero when the system type 1s greater than the order
of the input function minus one.

The error for the system of Fig. A-5(b) is a function
of the type of G' just as the error for the cascade compen-
sated system is a function of the type of &,G,. It is there-
fore necessary to define thé type of G' in terms of the type
of the uncompensated system, G, and the feedback compensation
element H;. Expressing G' in its generalized form [See Eq.
(4-30).]

s"KINIDc

G' =
sN¥p,p, + K N1K N,

(2-6)

Equation (A-6) reveals that G' is a type O system for M 2 O.
For negative values of M, Eq. (A-6) may be put into a more
convenient form by multiplying the numerator and denominator
by s ™Ml After this operation is performed, Eq. (A-6) becomes

K1N1D,

G’ » M<O (A-7)

sND;D, + s MK N1K N,
For |M| < N, Eq. (A-7) can be expressed as
KiN)De

- >, IM[< N (A-8)
s M (s“" MDDy + KiN1KN,)

G?

Therefore G' is & type |M| system for M < O and |M| < N,
Similarly, for {M| > N, Eq. (A-7) becomes
K1N;D,

= ’ 'u I >N (A-Q)
sN(D1D + s ™! ¥k MK N¢)

G!

Therefore G' 18 a type N system for M < O and |M| > N.
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Relating the type of G' to the system type in Table 4-1,
page 38, and the steady-state system error for the double-
loop feedback compensated system with the errors in Table 4-1,
the physical significance of the restrictions on M and N for
finite error that were stated on pages 50 and 52 for the

double-1loop feedback compensated case becomes apparent.




