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ABSTRACT Q
The design of a class of speclal purpose computing machines
which compute by counting is systematically developed. The basis
of the design philosophy is to limit the basic building elements to
three fundamental units and to dévelop the method of sym:hes'is such
that these three building elemeuts are represented as operational
units. In particular, the three basic building elements are (1) the
binary rate muitiplier which is a means of scaling down a pulse
stresm to some specified fraction, (2) the counter, and (3) the
anti-coincidence circuijt which is a means of separating pulses
arriving at the counter simultaneously. The computational errors;
i.e., rounding-off error and truncation error, introduced Into ‘the
machines when these elements are treatea as operational units are
studied in detail. The method of synthesis is explicitly stated
and a wide variety of machines obtained directly from this synth_e-
sis are presented. Finally, a series of machines is presented for
interpolation and extrapolation of a function which is available

only as empirical data.
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CHAPTER I
PRINCIPLE DESIGN ELEMENTS
Introduction

Computers are usually divided into two broad catagories, analog
and digital. Analog computers represent variables as physical quan-
tities. Th= solution of a problem in an analog computer is attained
by constraining a physical model of the problem to be solved. and
measuring the variables. The ;bility to pmgéxam a wide'variety-of
problems is achleved by haviﬁé functional components available (e.g.,
adders, multipliers, integrators) and in+erconnecting *h~m bv means
- of a patchboard. The resulting interzomnection is. scaled to maten
the desived equabion. On the other hand; digital dnm ters renreScnt
variables as discrete quantit1es- The usual method of solution of a
problem in a diéital computer is attained by sequencing a sequenc: of )
'iﬁstructions through the fetch-execute cycle of 1t8 control unit.—>-
Ano.her class - T digital ﬁbmputers,.knoﬁn_as incremental computers,
combine the parallel functional simplicity and speed of analog com-
puters with the ability of attain;ng ébmputational precision wh;ch is.
" not dependent on precision of measurements. Sgch comﬁgters-gttaig e
speed advantage over conventis nal genéral_purpoée ecapule by vranﬂ-—'__'
mitting and proces31ng only pnrtlal words in a number of paraLLeL '
_arithmetic orgens rather than the whole woras needed by the fetch~

execute cycle. Moreover the iinital.na+ure of these computers pernit



the problem solation to be repeated exactly and therefore does not
possess the drift cheracteristic of analog computers. Beyond a doubt
the incremental computer which has found the most interest in the
literature is the digital differentiel analyzer; i.e., DDA. This
corputer can be viewed as a digital analogy of an analog compnter.
The usual design practice in each of these machines is to permit them
to solve a large spectrum of problems. When a computer need arises
for a special purpose application, this versatility is felt as a cost
factor.

A class of incremental techniques which has been used in real
itime control is a class known in the industry as countup-countdown
technigues. The basis of these techniques is to represent data by a
unitary code. For example, ﬁhe number 28 is represented by 28 pulses.
A function may be represented by counting the sequence of pulses in a
forverd-veckward counter or converting them directly into an analog
quantity (e.g., by a stepping motor) for analog processing. Conse-
quently, when a real time application de#ls with continuous-smoothly
varying functions, countup-countdown technigues offer a simplicity
and ecconomy of hardware which is hard to beat with computing systems
designed tc handle a large spectrum of problems.

The purpose of this thesis is to investigate countup-countdown
techniques with the obJjective of demonstrating that they can, in
fact, be used to generate a wide variety of non-trival functiéns.
This will be done by displaying a circuit which will generate each
function. However, since the techniques upon which we base tnis

thesis are described in the literature only in an ad-hoc manner



(Refs. 4, 5, 9, 10, 12, and 19), we wi'l be specific as to which cir-
cults we will permit as basic building elements. In particular, the
fundamental units which we will permit are (1) the binary rate mul’c.i--
plier (abbreviated BRM) which is a means of scaling down a pulse
stream to some specified fraction, (2) the counter, and (3) the anti-
coincidence circuit which is a means of separating pulses arriving
at the counter simultaneously. In order to strengthen our argument
we will avold completely the explicit use of adders and subtractors.
A succinct recapitulation of the purpose of this study is to system-
atically develop and demonstrate the versatility of techniques based
on counting for solving sophisticated and practical special purpose
computer design problems. |

Our method of synthesis will be to describe the principle
bullding elements as operational units and then proceed by opera-
tional techniques tO show how to fabricate the various machines. In
particular, a first order difference equation can be represerted by
a counter, and approximate integration can be attained by using a
counter in cascade with a binary rate multiplier. These principle
design elements are described in this chapter.

It is to be expected that the results obtained by operational
means will deviate from tne actual results due to the finiteness of
the machine and the approximation implied by our synthesis. A dis-
cussion of these approximetions is presented in CHAPTER II. This
chapter is supplementea by Appendices A ani B where some gquantitative
results are presented related to the computational accuracy of the

BRM. In CHAPTER III we explicitly state the me.hod of synthesis and



demonstrate it by deriving a wide variety of representative machines.
Some of these machines have been simulated on 2 general purpose cor-
puter and these results are also presented and discussed in CHAP-
TER III. In CHAPTER IV the specific problems of constructiiz poly-
nomial generating machines are considered. In particular, a family
of machines are given for interpolating and extrapolating values of a
function defined only by empirical data.
Binary Rate Multiplier

A binasry rate multiplier (abbreviated BRM) is a means of scaling
down a pulse stream to some specified fraction. A logic diagram of
a BRM which is built out of stendard logic elements is shown in
Fig. i.la. This circuit is described in detail in several of the
references (e.g., Refs. 4 and 10). Consequently, a brief descriptica
will serve our purposes. The input pulse streau is applied directly
to the binary counter whose value is denoted by x.X,_7 . . . XpXj.
Eack flip-flop of the counter is operated as a trigger. For every
two input pulses to a trigger two output pulses are produced; one
pulse when the fiip-flop makes a O to 1 transitioﬁ called an o pulse
and one when the flip-flop makes a 1 to O transition called a
B pulse. The B pulse is used to trigg?r the successive stage of the
counter. The a pulses are gated through gated pulse generators and
mixed through a NOR element to produce the desired fraction of the
input pulses. This simple miking technique mey be used because the
o pulses from tfle various stages are separated in time from each
other. This timing factor is shown in Fig. 1l.lb.

The yuantitative relationship of a BRM may be expressed as
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follows: If O 1s the number cof input pulses, the number of cut-
put pulses prr>duced by the xth stage of the counter is &Ox - 2-k,

This multiplicaiive relation will remain valid over any interval for
which M is a mul.iple of Zk pulses. If y_; 1is the level set-

th

ting of che k™ stage gated pulse generator, the number of output

pulses which may be gated through this stage will be y_j &x - z‘k.
Since the output puli=ss from the various stages are simply mixed,
the number of output pulses Az of an n stage BRM over any inter-
val /x vwhich is & multiple of 2" pulses will be the sum of all

the pulses gated through all the stages. This output is

n
le = Ix z v.427" (1.1)
The quantity y = y_iZ'i is a bipary rumber. Therefore
i=1
Fg. (1.1) may be written as
fe =y Ix (1.2)
where the range of y is
0<y<1-2" insteps of 2% (1.3)

If y remains constant over a Ax interval of 2" pulses,
then the output shown by Eq. (1.2) remeins exact. However if Ax is
less than 2" pulses then this multiplicative relationship remains
valid only on the average. This can be demonstrated as follows: If
Ax is 1:,he number of input pulses into e n-stage BRM starting with
counter value x, and whose gated pulse generators are set to value
¥, then the output for this machine is Az,. Since there are i 2

possible starting values, then there are 22 possible different;
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machines. The average output; denote it by '&-, over all of these
28 gifferent machines is

En{:'.

x=0

2n-:‘1
The total pulse output ovsr all of these machines is Lz
=

pulses. This is equivalent to putting 2P Ax  successive input
pulses into a single machine since each transition over all of these
machines is attained XAx +times. For example, the transition ending
with counter value x 1is attained by the Ax machines starting out
with the counter value prior to x. Therefore, the total number of
output pulses over all of these machines is also given by Eq. ( 1.2).
28-1
ey =y - 28 M (1.5)
X=
Combining Egs. (1.4) and (1.5) we have
7z =y Ix _ (1.8)
Because of the approximate nature of Eq. (1.2) whea &x is
less than 2% pulses, -we will calculate the specific output sequence
in demonstrating specific machines. For these calculations, the
pulse stream shown in Fig. 1.1b may be displayed in vector form.
This will be called the p-sequernce. Each position of the vector in
this sequence represents the possible output at a particule_.z; ~puise
. time from a si';a.ge of the BRM. The p-sequence-for a tﬁo, three, an.

four stage BRM is displayed in Tsble 1.1.



TABLE 1.1 - EXAMPIES OF p-~SEQUENCES

Pulse |- 2 Stage 3 Stage 4 Stage
p-sequernce | p-sequence | p-seguence
1 10 100 1000
2 01 010 0100
3 10 100 1000
4 00 001 . 0010
5 100 1000
6 010 0100
7 100 1000
8 000 0001
9 1000
10 0100
11 1000
12 0010
13 1000
14 01.00
15 1000
16 0000

The p-sequences given above assuunes that thé BRM counter start-
ing value is zero. If another startihg value is used then its
associated p-sequence can be easily obtained. Moreover, if an in- -
terval grester than 2B pulses is used, then the p-sequt_ancé can bé-
obtained by repeating the p-sequence givén ebove..

The sequence of output pulses “may be .calcu];a.téd by mltipiying
‘Dit-'-by-bit'the p-sequence with the respective values.of the level -
_settings of the gated pulse génerators. - @his; process- is :‘Ll.'!._u_stratgd ,

below by two examples.



Exampie A:
fioc\  forororor  fo\
010\ 101.1.1011) =fo \
100 \ \11101111 0
001 0 }
100 o
010 0 /
100 ¢
cO0 0/
Example B:
100 010101 1\
o10\ [o1o0010} = [ 1 \
100 | \0001000 1
001 ' 1
100 1
10 i
1

\i%

The first matrix, in each of these examples, is the p-sejuence. The

P
~

néxt matrix represents successive values of the gate settings. When
these two matrices are multiplied; the regult is develoved along the
diagonal of the resultant matrix. ‘This.result is shown as a vector

on the right hand side.

The eipected output value of Example A by Eq. (1.8) is 35/8
pulses for the 8 input pulses. .However, as shown by actual computa-
tion, the BRM yields zeré output pulses. Oun the other band, the
expected value of Example B by Eq. (1.6) is 21/8 pulses for the
7 input pulses. The above computation yields 7 output pulses. Both_
of these examples are pathological cases in the use of the B%M. " The
approximate nature of Eq. (1.8) can ordinarily be expected to yield
more realistic results. Some of these results are presented in
CHAPTER LII.

The method of synthesis to be presented necessitates that the

BRM operate on signed quantities. In—particular, the level -setting of
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the gated pulse generators and the counter inpubt pulses musi be
signed quantities, and the BRM is to yield a signed pulse output.
If the output pulses are accumulated *n a counter then the sign of
the pulse will determine the direction of eranting. If the output
pulses are used to drive a stepping motor, then the sign of the pulse
will determine the direction the stepping motor is to turn. Through-
out this discussion we will consider that the signs-of.various gquan-
tities are available-thr?ugh level logic. Consequently, the output
sign can be obtained from the input signs by an exclusive OR circuit.
Counter

The purpose of the counter in the méehines which will be con-
sidered are_twofold; (1) to accumtilate the pulses erriving at the
counter in order to display the total number of counts, and (2) to
set the levels of the BRM's. In the first application the counting
seguence can be any desired sequence for a terminal device. ;n many
real time applications the ocutput pulées may not be accumilated-di-
rectly but ;re converted to an analog quantity for analog process-
ing (e.g., by a stepﬁing motor). In the second application, the
countiﬂggseqﬁence must be compatible with the BRM. Thigngeneral'ré:
quirement can be met by the circuit displayed in fié; 1.2. | '

A number is represented in :his counter by-magniﬁﬁde plus sign.
- As”hadzﬁéen stated earlier the signs are:representeé by leVe} logic.
The counter counts down :n magnitudé'ﬁﬁen the input pulse and counter _1

are opposite in sign/and”counts up in mggnitude when ﬁlébcounter and

— -

input pulse have the same sign. The circuit is designed sb.that'tﬁer’

—

jgy@ﬂiées are used to count down and the R pulses used to count up. .-
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There are two representations of zero; that is, minus zero and
positive zero. When the connter value is at +00 . . . Oand a -1
pulse arrives then the countef is set to =00 . . . O;. Thig end cor- _
rection is accomplished in three sheps. The normal sequence first
chantes the counter value to +11 . . . 1. The magnitude is then
corrected in the second step to +0 . . . Ol. ZFinelly, the sign is
changed to -00 . . .-Ol. The sign is.changed last s0 that the 38
pulses generated when the magnitude is corrected dc¢ not propagate to
the successive stages of the counter. In a slmilar manner to that
Just given, the counter is set to +0G0. . . OL when the counter values
is 00 . . . Oand a +1 pﬁlse arrives. The down counting sequence

fcr a three stage counter is giver in Tavle 1.2.

TABLE 1.2 - DOWN COUNTING SEQUENCE

-1 Input pulse +1 Tnput pulse

+111 -111
+110 ~110
+101 -101
+1.0C -100
+011 ) ~-011
+010 ' . =010
+001 4 - -001

_ +00C . -000

+111 - +001 - -001 | -111 - -001 - +001

The up counting sequence utilizing the -ﬁ pulses of the flip-

flops. is given in Table 1.3.
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TABLE 1..3 - UP COUNTING SEQUENCE

-1 Input pulse |+1 Input pulse ‘
-000 +000
-001 +001
-010 +010
-011 +011
-100 +100
-101 +101
-110 +110
-111 C O +111

Since the signs of both the pulse output of the BRM and counter
value are to be processed by level logic, then the activation of the
ﬁp-down line is accomplished by an exclusive OR circuit. This is

obvious from Table 1l.4.

TABLE 1.4 - COUNTER SIGN CONTROL

-{ Sign Sign Line
input | counter | activated
pulse

+ + Up
+ - Dowmn
- + Down
- - Up

Anti-Coincidence Circuit
Pulses arriving at a counter simultaneously aust first be

separated before they are entered into the counter. The circult

that accomplishes this task 1s called an anti-coincidence circuit.

Fundamentally, this circult necessitates storing each pulge as it
arrives. Bach stored pulse is-then presented to the counter accord-
ing to a fixed prograw. The circuit configuration which can écéoms)
plish this task for two inputs is shown in Fig. 1.3.

The operation of the circult given in Fig. 1.3 is as follows:
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If a puise from input 1 exists, It is stored in flip-flop 1. If a
rulse from input 2 exists, it is stored in flip-flop 2. It will bhe
noted that these two inputs can arrive simultaneously. Two pulses
are emitted by the clock which are seperated from each other. If
flip-flop 1 had been set by input 1, it is reset by the clock

pulse Cj, which ir turn generates an cutput pulse. If flip-flop 1
had not been set, nc output pulse will appear in the output. Flip-
flop 2 is rese’ and an output is similarly generated by clock
puise Cp. Since clock pulses C7; and Cz are separated, the
corresponding output pulses sxre also separated.

Since the sign of a pulse is processed by level logic, the sign
need not be stored before they are presented to the anti-coincidence
circuit. However, when & pulse is presented to the counter, its
sign must also be presented. This may be simply accomplished by
shifting the sign level to a flip-flop by the separated clock pulses
Cp and C,. This circuit is also shown in Fig. 1.3 where S's and
S's are the sign levels of the pulses and their complements, respec-
fively.

If more than two inputs arrive at the counter simultanesously,
then a need arises for a circuit other than a simple clock to sepa-
rate the stored pulses A simple binary counting sequence such as
the leftmost sequence shown in Table 1.5 will serve this purpose.
However, it will be noted that while this ceguence can generate more
thaen two steps, the « and P pulses from the various flip-flops are
nct separated, so consequently can not both be used.

A1l the sides of the flip-flops could be used if the counting
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sequence utilizes .. unit distance code. Such a cnde would guarantce

that not more vhan one flip-flop would change state =t any step of
the counting sequence. Consicer the Gray code counting sequence
given by the middle seguence in Table 1.5. This counting seguence can
be used to szparate as many as six inputs arriving at the counter
simultaneously. However, this requires the counter itself to go
through eight steps. An example of a counting sequence which may be
used to hardle six inputs and yet go through only six steps in the

counting sequence is given by the rightmost sequence in Table 1.5.

TABIE 1.5 - PULSES GENERATED BY SEVERAL COUNTING SEQUENCES

Counting | Pulses Counting { Pulses Counting | Pulses
sequence | generated || sequence |generated|} sequence | cenerated
000 -=Q 000 -—q, 000 -
001 -af 0ol -0,= 001 -0~
010 ——C 0ol1 -8 011 A==
011 o 010 o= 111 --B
100 —-—q 110 - 110 ~-B-
101 ~oB 111 -B- 100 B-~
110 -=~q, 101 -8
111 BRB 100 B~

Schematic Representation
The three circuits described in this chapter are the principle
design elements. However, in describing the machines promised by
this thesis, these three circuits will be represented as operational
units. The advantages to be gained by using operational units rather
than these circuits are twofold. First, the method of synthesis can
be more clearly presented. Secondly, a considerable hardware reduc-

tion can usually be realized when the composite machine is con-
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sidered. These simplifications arise when all of the features of
these basic circuits are not required. A checklist of the feztures
vhich when removed would simplify the basic circuits would include:
(1) sign control of BRM may not be required, (2) counter may not

be required tc both countup and countdown, (3) two BRM's may receive
the same input pulse stiream with the result that one BRM counter may
be used with two sets of gated pulse generators, and (4) the level
setting cf the BRM may be constant with the result thai a scaling
circuit (see Ref. 10) rather then a BRM may be used. These three
circuits are, however, sufficient as principle design elements.

The three principle design elements as operational units uxrc
presented in Fig. 1.4. The BRM is represented by the schematic dia-
gram shown in Fig. l.4a. The value y in this diagram is less than
one and is obtained from level logic. The quantities Ax and Az
are the input ond output pulse streams, respectively. The input-
output relation for this diagram is expressed ty Eg. (1.2). Alter-
nately, the BRM is represented by the schematic diagrsm shown in
Fig. 1.4b when the value of y remains constant. .n these cases
the BRM may be replaced by a scaling circuit in the final design.
Fig. 1.4c presents the schematic diagram of the counter. The quan-
tity Az 1is an input pulse stream and 2z is the output which may be
used in level logic. When the counter is used to set the levels of
the gated pulse generators of a BRM a scale reduction of 2°B ig
implied by the connection. At times this scale reduction will be
shown explicitly by th~ same diagram shown in Fig. 1l.4b. The initial

conditions of a counter may be shown explicitly by inserting it in



the box; i.e., Z2(g)* Considering the counter value as a function of
iterative steps then the input-output relation may be expressed by

the first order cdifference equation

Z(k) = Z(k"l) + Az(k“l) (1.7)
The value of z/y) in Bg. (1.7) in terms of the initial condition

of the counter is

k-~
2(k) = %o) * 2 M%) (1-8)
1=0

Fig. 1.44 represents the schematic disgran of an anti-coincidence
circuit. 'This circuit accepts multipie pulse inputs and produces

2 single pulse output. The design of this circuit is such as to
permit the input p.lses to arrive simultaneously. However, at times
it will be converient to use this schematic diagram for muliiple
pulse inputs even if the pulses are known to be separated. This
usage, therefore, should permit'a corresponding simplification in

the final design.
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CHAPTER II
ANALYSIS OF MACHINE COMPUTATIONAL ERRORS
Classification of Errors
The difference between the actual output of a system and that
given by a theoretical model is considered the error of the system.
If f represents the theoretical process given by the mcdel, x
represents the values of the arguments, f; represents the actual
process, and Xg represents the values of the arguments vitiated
by previous calculations, then the total error € is given by
€ = £(x) -~ £a(xg) (2.1)
It is convenient to subdivide the error into the error propa-
gated from previous calculations and error generated locally. The
sum of these two errors is also equal to the total error as is evi-
denced by rewriting Eq. (2.1) as:
€ = fx) - £xg) + £xg) - £5(x;) (2.2)
The quantity f£(x) - f(xg) is error propagated from previous calcu-
lations and is called the propagatga error. The difference between
the value calculated locally b; the model and the value generated by
the actual process; i.e., f(xg) - falxg), is called the generated
error.
von Neuman and Goldstine (Ref. 1) classified phe gquxated"

errors into four categories according to their source. These four
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sources are simply listed as follows:

(1) Model errors

(2) Input errors

(3) Truncation errors

(4) Rounding-off errors

The last two errors are of primary concera to the numerical
araiyst and are called computational errors. Truncation errors re-
sult from expressing transcendental operations as numerical pro-
cesses. For example, if a transcendental function is evaluated by
an infinite sericus or as the fixed point of a process, then the
truncation error is the error introduced by terminating thc evalua-
tion short of the limit goals. In the case of an iterative process,
this error is called the iterative truncation error. Rounding-off
error is introduced into the resultant after each arithmetic opéra-
tion. In conventional digitel computers, this error is introduced by -
rounding or chopping a number such that it can be re,resentéd by a
register of fixed length. Tt can be viewed as an error in the
.arithmetic processes. |

If f. represents the numerical approximation of the theoreti;
cal process .f, then the differemce f£(x,) - £,(x,) is the generated
truncation ‘error and fb(xa) - fal(Xg) is the generated rouﬁdiné~
;rror. The generated error is equal to the sum of ‘these two eITOors

as is evidenced by

£x,) - £a(m) = 2xy) - £o(m) + Lo(x) - fulzy)  (2.3)
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Computational Errors of ..AM

Fig. 2.1 represents a counter in cascede with a BRM. If Y(x)
in this figure represents successive values .f y, each of which re-
main constant over some interval of 2P pulses, then the value of
the counter can be expressed by the following difference equation.

2(k) = 2(k-1) * ¥(k-1) &% (2.4)

If z(Q) represents the initial value of the 2z counter, then
Eq. (2.4) may be expressed as

11
T,

2(x) = 2(0) +4%E; ¥{1) & ' (2.5)

This equation is recognizad as saler's (rectangular) integration.

A model of this process which is convenient for machine synthe- .
sié is presented in Fig. 2.2. The.deviation of the results given by
the model from that given by Eq. (2.4) is the‘tfgncation error.

Tae counter z in Fig. 2.1 may be viewed as a lower register .
z; consisting of n stages and an u§per register 2, of an a&bi-‘
trary number of stages. Thus, after the first iteration of
Eq. (2.4), 27 contains the fraction y(ox,?n of input pulses.
Rounding of the upper register mey be accompllbhed by presetting
z; to one-half of the maximum'bounts possible in z,;, and chopping
may be accomplished by prééetting z; to zero. -After the second
iteration, V(l) Zn”/bvlses are added to the counter z. As éfresult
of thig/;aeratlon, z2, may or may nét overflow into 2z, Proceeding
_Ad thls manner, 1t 1s noted that zu represents. the- single precision
rounded or chopped sum shown: in Fq (2.5).

The above descriptlon bas been presénted only in.order’ to put )
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AX .._.__.;.\
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Yik) ]

Z(0)

* Figure 2. 1. - Euler's integration.

i) g— -
: \ ydx

g 40)
y ""“"‘/ - _ ’

Figure 2.2, - Integration model.
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the rcunding error in the framework of conventional computers. A
more realistic operational procedure may be realized is- x is a
subinterval of less than 22 pulses. The advantages to be gained in
this situation are twofold; (1) the speed of the computation may be
increased, and (2) a hardware savings may be realized by reducing or
eliminating the lower register. The output in this case is vi.itated
also by an errcr in mulliplication. In purticular, if Ax is a
subinterval of one pulse then the output is in error only by the
error in multiplication. Bécause of the importance of Eq. (2.4) in
this study, the multiplication error of this equation is presented
. in Appendices A and B and in fhe followirg sections.

Multiplication Error Formulas
Starting the BRM counuer with zero the‘; tual output of the BRM

=
is given by B

Entier (y Ox 1/2) . (2.8)
This functlon together with a plot of Egq. (1.2) is given in
Fig.;(z.s) foy a three étagé BRM for'the various values of Y. Thei

differénce B bétween these two quantities; i.e.,

" E = Entier (y &x + 1/2) - y & : (2.7)
is plotted for this three stage BRM in Fig. (2.4). The difference
E, when only one stage of an n stage BRM is gated by y, can also

- be expressed sysaematlcally in tabular form as shown ;n_Table 2.1.

~
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TABLE 2.1 - MULYIPLICATION FRROR E OF BRM

WHEN ONE STAGE IS GATED

| e
y"’l = 1! .‘/'_2 = 1 y_s =1 y._k = 1
H
X1 E XoXq B XzXoXq B ixyXp.y - - - XzXpXq E
olojoe| ojooo| ofoo .000 0
1/z{0 1 |-1/4j0 0 1 |-1/8|0 O ..001 -1/2k
10 2/4{010 |-2/8{0 0 .010 -2/2K
11| 1/4j01 1 |-3/3
100 4/¢
1014 3/8 L
1101 2/€lo1 111 |- (K1 . 3)/ek
111 | 1/sj10 ..000 1/2
10 ..001 | (2k-1_3j)/e2k
11 ...111 1/2K

An inspectior: of these tables shows that the error associated

with the various stages of a BRM may be expressed more concisely in

algebraic form as shown in Table 2.2.

TABIE 2.2 - MULTIPLICATION ERROR E

IN AILGEBRAIC FORM

Stage

E

N D) et

k

y-1(x1/2)
Y 2(x3/2 - x1/4)
V.5(x5/2 - /4 - xl/B)

*

y_k(xk/z - Xk_l/4 - .

. = xl/Zk)

For an arbitrary value of y, the value of E

combination of the values shown in Table 2.2.

18 the linear

This bilinear form

is shown in Eq. (2.8) for an n stage BRM. The element subscripts

of the Boolean vectors

+ and y (i.e., vectors whose elements are
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(a5

O ur 1) which are shown in this eguation correspond to the stage

numbers c¢f the BRM shown in Fig. 1.1l.

/ J. 1\\

[ V-2 )
E = (x1,%, « « ., x )M - l (2.8)
Yo/
/ b
/i 1 1 1 1 I
l’ 2 4 8 16 on-1 on
. T N S 1 1
i z 4 8 on-2 on-1
7 i1
2 4 ;
1
1
: - - ‘é’ . e -
M= . . . . . : (2.9)
I L
2 4 3
: 1 1
: .2 4
1
\O . . . 0 3
\ .
) s

In the formulation of E, the maximum values of the output
of the BRM were reflected at the pcints of discontinuities. It
will be observed that just prior tc these points the error is one
quanta less than that shown vty E. A formulation of ¥ in which
the minimum values are reflected at the points of discontinuities
can be obtained in a manner similar to that for obtaining E. The

gquantity F, when only one stage of an n stage BRM is gated by
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¥, is shown in tabular form in Table 2.3 (only a few cases are

exhibited).

TABLE 2.3 - MULTIPLICATION EREOR F WHEN

ONLY ONE STAGE IS ¢ .7ED

yp=1 Yo =1 yz=1
ojo| ojloojoo | omo00jooo] o
14l |-3/2f1 101 {-3/4j1 12001 |-1/8
1010 |-2/4110/010 |-2/8
slijr1ly/¢41Hv1l011 [-3/8
2 C0}100 {-4/8
011101} =/s8
010110 1{2/8
o0L1i1111{1/s

It will be observed that the F values equal the E values
except at the points where the discontinuity occurs. At these
points F equals -1/2 while the corresponding E value equals
+1/2. The € +values shown above correspcnd to the 2's comple-
ment of the x values. It will be observed that the ¥ values are
jdentical in terms of C +to the negative values of E. Conse-
quently, it can be asserted that F in terms of C is Jjust the

negative of E.

y-1
-2

F=-(C,C . . ., C M| - (2.10)
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An example will help clerify these formulas. In this example

h

the value of y 1is 101, and the values of ¥ and F are calcu-

lated for successive BRM counter values.

010 c o0 1/2
110
\ COl

/ou:-‘ (1/2 -1/4 -1/8\

100 0 1/z -1/4 )

30
\ 011
\111

oco\ (1i/z -1/4 -1/8
111 o 1f2 -if4

011 0 0 12 N
101 -7/8 \
001 -1/2
i10 -1/3
010 1/4 /

\100, -3/8

This example 1s shown in graphical form in Fig. 2.5.

Consider the difference & - ¥. For a three stage BRM this is:

y y
-1 -1
E-T= (Xl,Xz,XS)M y-Z + (Cl’CZ’CS)M y_z (2.11)
\}"_‘Z Y_s

The premultiplier to the vector y; i.e.,
(x1,%p,%5M 4 (C1,C2,C5)M = (x3 + Cp,%p + Cp,x3 + C3)M
is equal to the values given in the p-sequence.

ood\ f[1/2 -1/4 -1/8\ /000

211 0 2 1/4) = [ 100
021 o o0 1/2 C10
211 100
002 cnl
211 100
021 J10

2 100,
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éRM counter value

58] /|
//
/ -318
1 14
78
/{1!8
w| )
/
/
-y2l |
/
usf’
V' |as
14
38| /|
|4
”:’ftsm
i
1 2 3 4 5 6 7

Figure 2.5. - Multiplication error resulting from y =101,
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¥When a BRM counter starts out with an arbitrary value, then
the starting value must enter into the error formula as a param-
eter. Theve errcr formulas are given explicitly by Eqs. (2.12)
and (2.13). In particular, Egs. (2.12) and (2.13) reflect the maxi-
mum and minimum values of the actual output at the pointé of dis-
continuities, respectively. In these formulations x and xg rep-
resents the-value and the initial value of the counter, and C
and Cg represents the 2's complements of these values. The sub-
scripts on those literals represent, as befare,jﬁhe stage ol the
BRM. In Eg. (2.13), xgg identifies the righ: most counter bit

whose value is 1; e.g., for the counter val - 100 then XsgpY_R= V_3»

for counter value Oll then Xgry.r = ¥.j» ste. .

71
J-2
G = (Xl - Xg1sXp - Xg2, - . .y Xpy - Xsn)M . (2.12)
Y-n
J.1
Vo2
H = _XSRY"R - (Cl - CSl,CZ - CSZ, . _. .9 Cn - CSn)M . (2-13)

)

The maxinum positive error and the minimum negative error for a

Multiplication Error Bounds

n stage BRM whose counter starts out witn zero may be obtained by
an analysis of BEqs. (2.8) and (2.10), respectively. These values
will then form a bound of the deviation of the BRM from that of

exact multiplication. This analysis is presented iu Appendix A. Tt
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is shown in that analysis that for an n stage BRM these values

are:
7 -1)2 .
Emax(n) = Bt % * g l)_zn (2.14)
7 n  (-1)° .
Fata®) = -5 -5 5o (2.15)

Eq. (2.14) is plotted together with Eq. (2.15) in Fig. 2.6. As
a by-product of developing Egs. (2.14) ard (2.15), it was necessary
to find the points where these values occurred. These points are
tabulated for various BRM in Tables 2.4 and 2.5.

Apperdix B presents an analysis of a BRM whose counter starts
out with an arbitrary value. The basis of this analysis is to use
Eq. (2.12) to o};tai' e maximum positive error and to use
Bq. (2.13) to obtain the minimum negative error. For a n stage-

BRM these values are:

_1l,n_ (-u)° S
Gpax(n) =5%3 e (2.16)
_1.n (1
Bpin(n) = -5 - 3 - = (2.;7)

These values form a bound for the géne::jafced round-off error.
Fortunately, these values é.ré +taken on at only two points of the .
BRM (for n >2), and therefore one can expect better results than
would be predi: »d by these values. These values are pio_tted in
Fig. 2.7 and are also presented t;.)gether with the points at which '
they occur in Tableg 2.6 and e.7. -

The prcblem which has been considered in Appendices A and B.



TABIE 2.4 - x AWD y VALUES FOR Ep.,

n X7...Xl y_l...y_7 X7...Xl y_l...y_7 Emax
2 1111 11{11 3/4
3 101|101 111{111 7/8
4 1011{1101 1101{1011 17/16
5{ 10101|1010L 11011{11011 39/32
6! 101011{110101 110101{101011 89/64
7/1010101}1010101  {{1101011}1101011 | 199/128

TABIE 2.5 - x AND y VALUES FOR Fpj, |

N{X7ee X Yogee Ty || X7 X {¥o1---¥-7 | Fpin

2 01}11 0L{11 - -3/4

3 011}101 001111 -7/8

4] 0101{1101 0011{1011 -17/16

5{ 01011}10101 00101} 11011 -39/32

6| 010101}110101 001.011}101011 -89/64

7/0101011{ 1010101 |} 0010101 1101ull -199/128J

TABLE 2.6 - X, Xg, AND y VALUES FOR Gpoy
N{XG7e e %G1 [ X7 e X1 T e e o Y7 XS7...Xsi X7?..Xl Taleeo¥a? Gpax
2 c1 10} 01 o0f = 11j11 3/4
3 001 110} 011 010 .101}101 9/8
4 0101}  1010}0101 - 0010} 1101}1011 23/16
5 00101| 11010{01011 01010{ 10101}10101 57/32
6| 010101| 101010{010101 001010} 110101}1010%L. 135/64
7| 0010101}1101010{ 0101011 0101010{1610101}1010101 | 313/128
TABIE 2.7 - x, Xg, AND y VALUES FOR Hg;, .

n XS7' . -XSl X7- . .Xl y__l- . .y_r] Xs7. . .XSl .X.7. B .Xl y_l. . .y_7__ H:fnin
2] 11 01 i1 11 01{11. -3/2
3 101 011} 101 S 111 - 001111 -7/4
-4 1101} 0011} 1011 1011 0101}1101 -17/8
5/ 10101} 01011} 1010L 11011} 0010111011 -35/16
6{ 110101} 001011} 101011 101011} 010101}1i0101 -89/32 _
7{ 1010101}0101011} 1010101 1101011} 0010101 1101011 ~l99/6%J _
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and in this section is illustrated in Figs. 2.8a and 2.8b. The
actual and desired outputs for = 2 and 3 stage BRM are plotted in
these figures for all starting values. As is illustrated, finding
the multiplication error bounds by graphical means is not trivial.
The pcints labeled Epax, Fpins Gmpa.s 8nd Hyin in these simple
cases agree with those predicteda in Appendices A and B.
Error Bounds

The usual formulation of the error problem is to calculate
bounds of the total errcr based on bounds of the genera®ted errors.
In the case of Euler's integration these results are available in
~ the .iterature (e.g., Refs. 15 ang 16). Since the analysis by which
the tounds are obtained is based on worst case . conditions; the re-
sults are usually too pessimiétic for design purpose. In particu-
lar, P. Hdenrici (Ref. 15) has presented the complete analysis of
the initicl value problem l

y' = £(x,y), y(a) =1 - (2.18)

appfbximated by Buler's integration. The bounds that he presents

are in terms of Lipschitz function; i.e.,

. Ix
EL(X)='-e——-i—i L>0

X ' L=20 (2«19);
where- L is a constant such that for any x in the interval
a < x<b and any two values y arnd y* |
|£(x,5) - £(x,5%)| < Lly - ¥¥] - (2.20)
* The bounds for the truscation error t(x) and the accumilated

' rounding76£f'error 1(g) are given b&
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X, BRM counter

(a) Two-stage.

Figure 2.8. - Output of BRM for all starting values.
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tk) < O Mx(i))Brix(x) - 2} {z.21}

) e - ¢

(1) < & Brlx(x) - &) {2.22)
where N(x) = 1/2 maxiy“(t)] for alli t in the interval a < t < x
and e is the maximum local rounding error.

The total error 8(-Kx is bounded by the sum of these two

Y

bounds; i.e.,

€(x) < & Nz )Er(x(x) - &) + = Br(x(x) - a) (2.23)
Consider now the generaticn of this funetion by use of a BRM.
The function f£(x,y) is used to set the level of the BRM, and the
output of the BRM is summed in a counter which representé the vailue
of y (see Eq. (2.18)). If the value of f(x,y) is updated €very
/x pulses, then the bound given by Eq. (2.23) may be appli:
directly to this process. Suppose “he interval size is chosen such
that the error bound given by Eq. (2.23) is a minimum. If £(x,y)
is updated every pulse .instead of every &x pulses, we could expect
that the actual error would be smaller than this minimum. In any
event we will take this minimum as the error bc;und for the function
generated by the BRM. The minimm of the right-hand side of
Eq. (2.23) is
&) < Ve VRGx(x)) Er(x(x) - &) (2.24)
The va-.lue' of e in Eq. (2.24) may be obtained from Eq. (2.17).
This equation may be used to form a bound of the multiplication -
error. Moreover for large values of -n, this may 5e approximate_d by
7/9 + n/S.. If the maximum value of y; i.e., ¥yays 18 represented

in the ~ounter by 22 counts, then
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e < 7/9 + /3

S o0 Ymax (2.25)

Combining Egqs. {2.24) and (2.25) the error bouna is

/
&) < !,v7/9 +nn(5
N 5

This eguation has the property that the error bound decrease

Ymax M(x(x)) Erfx(x) - &) (2.26)

as the number of stages of the BRM is increased. However, it is too
pessimistic for design purposes. This point will be illustrated
in the next chapter by applying this formula to a specific countup-

countdown machine.
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CHAPTER III
GENZRATION OF FUNCTIONS
Synthesis (Differential Equaticn)

The method of syathesis which will pe applied in this section
is to express the function to be generated as the solution to a
differential cquation: It has been demcnstrated with analog tech-
niques that a wide variety of functions can be generated by -
utilizing only integrating units and adders (é'g., Ref. 8). For
exasmple, with a mechanical differential analysis the bssic units
are a ball-disc igﬁegrator and a differential. Im the synthesis of
countup-countdown machines,'ﬁhe integrato? model of Fig. 2.2 and
the antiwcoincidence circuit which permits the summation of two
pulse-streams will serve as these operational units. It should be
reemphasized that the principle design elements were recognized as -
entities only foy purposes of synihesis, and that the fabrication
of the actual machines may permit circuit Simplification which may
résult in reductions of the hardﬁaie requirements.

The first step in this synthesis is to express the function e

be generated as a differential eqﬁation such tha. thé'highest'ordérr

derivative is isolated; i.e.,

gty fam-ly - ¢
dzz = 1 ~mu{’ .o e 5%’ Yig) (3.1)

The indepeudent variable in the above equation.is_représeated by a
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ciock. The next step in the synthesis is to assume that a circuit
has been designea to generate the highest order derivative. Inte-
grators may then be used to successively reduce the order of the

derivative according to the equation
k-
31—-1;]_91 f——-‘l ax (3.2)
a1

A circuit for generating the highest order derivative, whose exis-
tence had previously been assumed, may now be developed by the con-
straint defined bty the right hand side of Eq. (3.1). The above
process terminates the désign of the basic configuration for gener-
ating the function.

The sche atic dlagram of the machine Just désigned must then
be scaled in order to (1) exactly match the “efining equaticn andr
(2) accommodate the range of variables in a finite machine. Iu par-
ticglar,“the counters which are used in the.macﬁine configuration to
handle magnitudes having a finite excursion based on the-number of
stages. Therefore, when é bidirecsional counter is used then its
magnitude Qust_ie such thatA
o | |counter value| < 28 -1 _ R (3.3)
Since'the level setting of a BRM must bé'lesé:thah one, thbn;whbﬁs
a counter ié used for this purpose its”scalé‘will?befrgduced T
accordingl&, i.e., ) ‘

[level settlng of BRM] = 27R [Pounter value] - (3.45
Firally, the scale of both 31des of the deflnlng equatlon, i e.,

Eg. (3.1), must be the same. _"
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This procedure may be reduced to a finite number of steps. A
synopsis of these steps is as follows:
Ster_l. Isolate the highest order derivative in the differential
equation as shown in Eq. (3.1).
Step 2. Assume the higacst order derivative has been generated in
a counter.
Step 3. Gensrat~ each successiv: lower derivative by using an
integrating unit.
Step 4. Constraint the independent var:able, the function, and its
derivatives accordiirg to the right rand side of Eq. (3.1) and con-
nect its output directly o the counter representing the highest
order derivative. A
Step 5. Assign arbitrary constants to the independent variable and
its highest order derivative.
Step 6. Write constraint equations aﬁ 2ach ;ounter based on the
maximum excursion and number of stages. .
Step 7. Write constraint equation based on the definiﬁg equation.
Step 8. Calculate scale fac ors to satisfy thé equations of Steps 6
and 7. V _

We cpntinue with the application of this procedure in ﬁhetde-
sign of specific comtdown-covntup machines. The first tﬁb exam-
_ples will be a machine for gererating the éxponéhtial.functidn.and

anqﬁher machine for geuergtingithe siﬁé-cosine funqtidns. These

two machines will be illusfrated in detail.
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Exponential Function
The differential equation .

y' =y, y{0) =1 (3.5)

whose solution is
3 o= e¥ — (3.6)

will be used to design the circuit for generating the exponential
function. The design solution for this cirvcuit is presented in
Fig. 3.1. The detail procedure for this synthesis is as follows:
Step 1. The defining differential equatior given by Eq. (3.5) is ia
the desired form. - -
Step 2. Assume a ciicuit has been designed to generaﬁe the highest
order derivative. This is represente& by the line labeled Yy’ "ln
Fig. 3.la.
Step 3. The fuartion y 1is gepergte& by integrating -y'.
Step 4. Since by Eq. (3.5) the aséumed highéét order derivative
y' is equai ﬁo y, then y is directly connected té'the line y'. .
:This ccmpletes the basic circuit shown in Fig._s-iah .‘
Step 5. This is the first steé in the design of-#ﬁé_scalea éircuit
shown in Fig.s.lb.The'arbitféry constants A and-B are aséﬁgﬁe& as
gcale factors to the:independent variaﬁlefand théﬂﬁighest order .
derivative, respectively. The interpretation of A is "A counts
per unit of x". ‘The inter§wetation of B is "B counts per_unit!
of;-y'“'Npte fhat the scele factor of the countéf;in Fig,_swihxis
reduced by 27R when it is used to sét the levels of the BRM. If

_the'value of the counter is B&' counts, -then. the level setting of . ™

‘the BRM is- 27 °By'.
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Step 6. Constraint squations are written for the counter; i.e.,
|etaBy|_ <2% -1 (3.7)
Step 7. The mechanization of the defining equation is justified vy
the following constraiat equation.
' By' = 2 BABy (3.8)
Step 8. From Eq. {%.8) it can be calculated that
A = 2" counts/unit of x (3.9)

The calculation of B depends on the waximum excursion of the

variable y according to the equation

B|ypax| < 2% - 1 (3.10)
This essentially completes the schematic design of the circuit for
éenerating eX. ‘

In order to select the number of stages; i.e., n, it would bhe
desirable ifﬂan equati-on were available relating n to the accuracy
of the m:;.chine. Unfortuﬁately, th2 equation- obtained in CHAPTER II
is ﬁot suitable for thié purpose. This may be demonstrated for this
machine by calculating the bound given by Egq. (2.26) for various

values of n. Using L =1 &nd ¥y, - ©. for this process, then-:

6 <1)=1.907 /[T 13m (3.11)

E g ~= ey —_—
A artl V 28

Fq. (3.11) wmay then be used to calculate the bound for this machine.
] ‘l’kiese_ calculated values.are presented in tabular form in Table 3.1
for various values.of n. . -

~



TABLE 3.1 - ERROR BOUND FOR
EXPONENTIAL MACHINE

n Bound
e 1.190
7 ,892
8 .664%
9 497,
10 .362

This bound does have the property, which was »bserved earlier,
of decreasing as n increases. Unfortunately, it does not deuease
rapidly enough for design purposes.

'Us;ng a value of yyax < 3.2, some values of B have been
calcilated and are given in Table 3.2 together with the initial
value of the counter to match the initial condition y(0) = 1.

TABLE 3.2 - SCAI¥ FACTORS AND INITIAL CONDITIONS
OF EXPON"™7T.JAL MACHINE

n A B Initial counter
valuae

5 32 10 10

6 64 20 - 20

7 128 40 40

8 256 80 30

This series of machines have been s;mulated M a computgr anrd the
results are presented in Fig. 3.2. When these results are compersa
to the desired output it is iﬁmediately observed that these results
are much better than those predicted by the error bourds given by .
Eq. (3.11). Moreover, the fiverand seven stage machines are seen L
to give betﬁer resﬁlts fhan the six and eigﬁt stage machines.

- A more realistic evaluation of the results presented L

Fig. 3.2 would be to compare thém to the Aiffevence equation solu-

tion. The difference equation for thé'exponential machine may be
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obtained directly from Fig. 3.3, which is identiicel to the circuit
shown in Fig. 3.1 but labeled according to Buler's integration.
The scale factor associated with the counter #3 "B pulses per unit

i ]

of y." When the counter is at iterative step k-1, then its value
1s at y(y_)- During this iteration 2B Ax pulses arrive at the
BRM counter and the BRM puts out By(k-l) &x pulses. These output
pulses are added to the counter to form the counter value for
iterative step k. Mathematically the value of the counter may be

expressed by the difference equation

If each clock pulse is taken as an iterative step then Ax = 2-1

and Eq. (3.12) may be rewritten as
' Y(k) = V(x-1)(L +277) (3.13)
Solving Bg. (3.13) in terms of the initial conditious of y (i.e.,
y(0) = 1), then
y) = (1 + 2 8)" (3.14)
The difference between the difference equation solution and
the differential equation sclution .s the truncation error of the
process. The difference between the difference equation solution
and the actual output is error due to round-off and is illustrated
by the difference in the curvéé ghown in Fig. 3.2. Since the
round-off error has been shown to-be dependent on the starting value
of the BRM, it can be changed by using a different starting value
with the cbjective of obtaining better agreement between the

solutior and the actual output. Fig. 3.4 presents the actual output
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Figure 3.4. - Output of six-stage exponential mechine,
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for the six stage 53M for a number of starting values together with
a riov of the desired resuits. It is noted that by iris simple
means meacsurable imrprovement has been attained in the total error.
Finalliy, coasider a configuration of {hiis machine built out of
logic elements on the Case Logic Breadboard {(see Ref. 10) for gener-
ating the function. This is shown for a four stege system in
Pig. 3.5. Since the exponential function is a monotonic increasing
function, the counter showr in this circuit is a simple forward
counter.
The synthesis and analysis of & countup-countdown machine for

the generstion of the general exponential function
¥ = yoe¥ (3.15)
from the differential equation
y' =a, ¥(0) = 59 (3.16)
follows with orly minor modification the design of the machine for
generating eX. The schematic diagram Yor this machine is given in
Fig. 3.6a and the logical design is given in Fig. 3.6b.

Sine-Cosine Generator

The differential equation
y' = -y, y'(0) =0, y(0) = 1 (3.17)
is used to design the sine~cosine generator. The besic schematic
diagram and th» scaled schematic diagram are shown in Figs. 2.7a
and 3.7b, respectively, and may be developed systemutically as
follows:
Step . The defining differertial equation given by Eq. (3.17) is

in the desired form.
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yl
]
N y
sin x
dx
dy’ - Y
cos X
yH
(a) Basic design.
ABZ 2Ny
A232~2ny

(b) Scaled design.
Figure 3.7. ~ Sin-cos generator,




57

Step 2. Agsume that a circuit has been designed to geuerate the . -
bighest order derivative. This is represented by the line labeled |
y"' in Fig. 3.7a.

Step 3. The function y' is generated by integrating y", and the
function .y is generated by integrating y'. _

Step 4. Since y enters the differential equation negatively, the
pulses arriving at the y counter kavz a sign change with the re-
sult that the output of the counter is -y corresponding to y"
(see defining equation).

Step 5. Arbitrary constants A and B are assigned as scale
factors to the independent variable and the highes% order
derivative, respectively. The interpretation of A is "A  counts
per unit of x" (i.e., per radian). The interpretation uf B is
"B counts per unit of y ". If y' counter is set to O and ¥
counter is set to -1 (noté that this correspopds to the cosine
being +1), then y' will countup to generate sine and y will
countdown to generate the cosine.

e

Step 6. Conséraint equations are written for each counter; i.e.,

AB2 Ry | o S 2% - 1 (3.18)
APpe2yy| < 2R -1 (3.19)

Step 7. Constraini equation is written to Jjustify the defining

equation.
By" = -A2p2-2hy (3.20)

Step 8. Fror Egs. (3.10) to (3.12), the scale factors can be chosen.

A = 28, BlY|max < 2% - 1 (3.21)
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S~ cholces for A .and B are givern in Tabls 3.3 nased .
qu is- .'-.i.)'t
TAE’ 7,5 - SCATE | aC0TCRS ™ (NTTIAL

CONT™ ATONS FUX sin-cos WACHTNG

i S S -T B
n h { b sin ¢es
courter counter
3 8 4 0 -4
4 13 8 0 -5
5§ 3z 116 0 -16
& 64 | 52 0 -32°

This series of machines has been simulated on a computer and the.

“resiz s plotted ozﬁ -_F‘ig; 3.8. - s 0 Y

The truacation error ag_;sociaﬁed with this éiréuit ruay ﬁe _cé.l-
cilated by sclvipg the difrererice equ%;r,ioné aséociatcé with this
cir-cu"tt . ._Qallin'g tﬁe va lue'; of_ t_he s-iln_e couz'l-te:i-' .é.nd cosine éountér
at iterativs ste p Ik "PE(y;" ama "BC(;{'),, __'; ré;pg;ti;\rély,ﬁ the differ--

ence eyuaticas zb these two counters are: . - -

>

00 7 Bea) T o) A
B(y) = B(gq) - Big)de 0 (52)

o more concisely.
e~ = -5y - . 3.23
TR )
vhere V_ZSK" 14 the sec¢ond backward diferepce. Therefore, the
second derivavive in tihis mechine is approximeted by the s==ond
backward difl~rence.

Ir' each ciock pulse is vexen &s in lterative step, then

1. {(3.22) may be written in watrix form as
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- \

(st {1 2%\fsx 1) /

lcoy/ =tz 1 Re,, . (3.24)
(k) ' {k-1)

An approximate sclution of Eg. (3.24) for large n in terms

of %Lhe initial conditions

2(0? - i (3.25)
(G)
may be written as
S(x) = (1 + k272071) gin 27 (3.26)
Cryy = (1 + k2720"1) co5 27k (3.27)

~ quantitative evaluation of this circult is complicated by the
fact thai it is used to generate two functions. One method which
seems sspecially well suited for testing such a circuit is to plot
one output function with respect to the other function rather than
with resp2ct to the independent variable. For the sin-cos generator
this is called the "zircle test" since the resultant figure for a
perfect sin-cos generator would be a circie. Moreover, it is
possible to study the errors due to round-off independent of those
due to truncation by comparing the actu.l output to Eq. (3.24) out-
put. For the sin-cos generator a composite piov of the solution to
the difference equation may be simply obtained by expressing
Bgs. (3.28) and (3.27) in polar coordinates, with the result that

o = (1 + 270 1p) (3.28)

The difference between this equation and the circle represents the
truncation error of the process and is geen to increase as the

spiral of Archemedes. The results plotted in Fig. 3.8 are compared
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to the plot of Eq. (3.28) in Fig. (3.9) by this method.
Ccher Differential Equation Machines
The sinh and cosh machine is based on the differential equation
y' =ty (3.29)
The schematic diagram for this machine is similar to the sine-cosine
generator except that all outputs from the BRM's are added to the
counters. The basic circuit and the scalea circult for this machine
is shown in Fig. 2.10. It will be noted from this diagram that the
values of A and B are defined by the equation set {3.30) below.
By" = A%Bp %Py
A=2"
Blypax| <27 - 1

B| <et-1 (3.30)

Taaxl
The output for a sinh and cosh generator is plotted in Fig. 3.11
for a five stage system where B 1is chosen equal to 16. It is
instructive to display the p-sequence calculation from which these
results were obtained. These are shown in Fig. 3.12.

A series of other useful machines will be illustrated in this
section. In particular, if two pulse streams du and dv are
given, then the product, uv, may be generated by using the eguation

quv = u dv + v du (3.31)

The basic design for this product machine is shown in Fig. 3.13.

The machine for generating the square of a function is shown
schematically in Fig. 3.14. This machine will generate the function

y = x@ (3.32)
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Figure 3.9, - Sin-cos circle test,
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Figure 3.10. - Sinh-cosh generator.
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Figure 3,11, - Output of 5 stage
sinh-cosh machine.
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and is based on the equation
y' = 2x (3.33)
The square machine is utilized as a subassembly in the machine
for generating the reciprocal of a function; i.e.,
v = 1/x (3.34)

The basic design for this reciprocal machine hased on the differen-.

tial equation
y' = -y (3.35)
is shown in Fig. 3.1Z.

The machine for generating the solution to the second order

differential

y" + 20pky' + oy = 0 (3.36)
is shown in Fig. 3.16.
The tan machine is shown schematically in Fig. 3.17. This
machine is based on the differential equation
y' =1+ y° (3.37)
A similarity will be noted between this machine and that of the
reciprocal machine.

The square root machine is based on the soiution of the differ-

ential eyuation

y' = -1/(2y) (3.38)
It will be noted by this equation that it will form a subassembly
of the reciprocal machine. That is, the differential equation

az/dy = 22° (3.39)
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2 dx -———\
2 dy|
dyldx —o 112 ; Yy 1+
, ian x / 1+tan? x
|
Figure 3.17. - Tan machine,
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Figure 3,18, - Square root machine,
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is used in order to form the function
z = -1/(2y) (3.10)
The besic design of this machine is shown in Fig. 3.18.
Synthesis (Difference Equation)
Consider the iterative process of successive substitution in
the functional equation
X(g41) = m(x(k)) (3.41)
where o¢(x) is chosen such that the fixed points of o(x) (i.¢.,
the points x; where x; = ¢(xj)) are the roots of f£(x) = 0.
One simple form of ¢ might be x - f(x) which leads to the iter-
ative process
X(k+1) = ¥(k) - f(X(k)) (3.42)
A more general form is x - g(x)f(x) which leads to the iterative
process
Xig1) = 'x(k) - g(x(k))f(x(k)) (3.43)
A restriction on g(x) in this latter form is that it has no zeros
that are not zeros of f(x) and that the multiplicity of its poles
at the zeros of f(x) be less than the multiplicity of the zeros
of f(x) at these points. With these restrictions, it can be
readily seen that the iterative Eq. (3.43) has fixed points at the
zeros of f(x) (i.e., x = x ~ 0). The Punction g(x) in Bq. (3.43)
is chosen so that the process converges.
The basic equation of a counter immediately suggests a method
for generating an equation of the form of Eq. (3.43). This method

of synthesis is simply to generate a pulse stream equal to g(x)f(x)
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w3 d feed 1t into a cournter. This procedure may be outlined as
follows:
Step 1. Write the defining equation in the implicit form g(x)f(x)= 0.
Step 2. Assume a countsr with the value of x and generate a
puise vtream equal to g(x)f(x)p, where g(x)f(x) is the level
setting of & BRM and » d1s the input to the BRM counter.
Step 3. Feed t2ck the pulse stream generated in Step 2 into the x
countar.
Step 4. Assign an « hitrary constant to each variable represenved
in the machine.
Step 5. Write constraint cquations and calculate the scale factors
gsuch that taese equations zrez satisil=g.
Divide Algorithm
Th2 mechine for generating x such thut
x =a/b (3.44)

may be designed as follows:
Step 1. One vay in which Eq. (3.44) may ke rewritten .o -~ut it
into the desired form is

xb -a =0 13.45)
Step 2. Assuming & counter value represanting x, a pulse siream
equal to xb - a way be generaved. Tihig is shown in Fig. 3.19.
Step 8. The pulse stream generated in Step 2 is fed into the
counter representing x.
Step 4. The schematic of Fig 3.1% is redrawn in Fig. 3.19b, and

oach variable is assigned an arbitrary constant.
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Step 5. The constraint equations may be written directly from

Fig. 3.19%, in which an iteration is taken every clock pulse.

Clxpax] <27 - 1
Alaggy) <2 -1
Blbpax| <27 - 1 (3.46)
Cx(x+1) = Oxx) - B ,.\:(k)z'zn + Ap2"B (3.47)
Suppose for the sake »f argument that
A=2=C=2" (3.48)
Eq. {3.48) implies that
Xpay S 1 - 278
fpax £ 1 - 27"
bpax <1 -271 (3.49)
and Eq. (3.47) may be rewritten as
X(x+1) = X(k) = 27Pbx(x) + a2™® (3.50)
If Eq. (3.50) converges to a fixed point, x, then
x =x%x -2 %x + a2™® (3.51)

If 8(k) is the iterative truncation error at iterative step k; i.e,

€(k) = X - X(x) (3.52)
then from Egs. (3.50) and (3.51)
E(er1) = (1 - v277)Ey) (3.53)
This may be written in terms of &(¢) as
k
€rx) = (1 - B2™R) &(p) (3.54)
This process will ccnverge if
lim &(x) = O (3.55)
k-0

which implies the condition
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|1 -2 <1 (3.56)
for convergence. Therzfore, by Eq. {3.56) the process is seen to
converge. However, If the sign of the outputs of the BRM are re-
versed such as shuwn in Fig. 3.20. then an analysis will show that
the process will not converge.

Other Difference Equation Machines

The sgquare root machine; i.e.,

x = v/a (3.57)
mey be designed by finding the zeros of the equation
Xt -a=0 (3.58)

This machine is shown schematically in Fig. 3.21. If the scale
factor of = aad a are both taken as Zn, then an analysis

similar to that of the divide algorithm shows the iterative process

-n_2 - -
x(k’*‘l).‘.:.:x('k) -2 X(k) + 2 Dg (a.SQ)
is generated by the machine. The iteration truncation error for

this equaticn may be written as

1

Ex+1) = 1 - 27%(x +'x(x)) &x) (3.60)
wvhere x 1is the solution. A sufficient condition for this process
to converge is that

. |1 - 2 %(x + x())] <1 (3.61)
Since
Xgax < 1 (3.62)
with the scale factor chosen, then the process converges, however,

had we chosen
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Figure 3.22. - Hterative process product machine.
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X(x+1) = X(x) - 2 ™a - X(k))z (3.83)
as the lterative process, then the process would not converge.
A product machine may also te designed using this method of
synthesis. Ir particular, it
x = ab (3.64)
then the product may be fcund by the .iterative process
1), = k) - p(X(k) - ab) {3.65)
This machine is shown in Fig. 3.22. If the scale factors for x,
a, and b are a1l taken as 2P, then the machine generates the
iteretive process
X(g+1) = ¥(k) - Z-D(X(k) - ab) (3.68)
The iterative truncation error for this machine in terms of
8(0) is
&) = (1 - 2-n)k8(o) (3.67)
Synthesis (Regenerative Circuit)
Consider the schematic disgram shown in Fig. 3.23. The value
of K is bounded such that
jKj <1 -2 (3.68)
The output equation for this circuit may be written as

dz = K{ax + dz)

dz _ K \

As K- 1 in Eq. (3.69) then the ratio dz/dx -~ «. However,

Eq. (3.68) fixes an upper bound on this ratio such that

K n
_k - 3.70
T~ ¢ "1 (3.70)
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Figure 3.23. - Regenerative circuit.
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Figure 3.24. - Amplification of regeneration
circuit.
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Therefore, by using this regenerative circuit, the BRM may act as
an amplifier. However, if large amplifications are to be considered
other ractors must be taken into eccount. In perticular, suppose a
4x pulse arrives at the BRM and this éenerates a dz pulse. The
dz pulse is delayed by & gated pulse genermtor and is fed back to
the BRM. This in turn may generate enother dz pulse. This process
may be continued depending on the velue of K. However, each time a
dz pulse is recirculated the puise shape deteriorates. For exanple,
if leading edge logic is used then the rise time of each pulse will
be increased until the dz pulse is not sharp enough to be utilized.
Moreover, enough time must be allowed between the dx pulses to
permit the maxiwzum number of dz pulses. The maximum value cf K
usually utilized in these circuits will in genersl be less than
that permitted by Eg. (3.68).

This point is illustrated by the plot of Eq. (3.89) in
Fig. 3.24. If -1<XK < 1/2 then at most 1 pulse will be fed back
with each input pulse. If 1/2 <K < 1 then more than 1 pulse will
be fed back with each input pulse. Therefore, by fixing the upper
value of K, the maximum number of feed-back pulses may be re-
stricted.

The method of synthesis in this section is similar to that
used in the synthesis by differential equation. However, in this
seciion the differential equation will involve the highest order

derivative on both sides of the equation; i.e.,

i%{. = f(:'—g, o e ey y,x) (3.71)



5

Ir. general the equaticn is written in this form when the highest
order derivative can not be isolated In particular, if the highest
order derivative has a non-constent coefficient then it may be
written as Eq. (3.71) by adding and subtracting a constant from

this coefficient (see Refs. 6 and 7). The design of the circuit
based on Eq. (3,71) implies the use of the regenerative circuit
since the generation of the highest order derivative invoives itself.

Square Root Machine

Consider the generation of the square root

¥y = /% (3.72)
from the equation
y o 1/2 (3.73)
dx

The first step of this technique is to write Eq. (3.73) as
(y -c+¢C) % = 1/2 (3.74)

and then isolate the highest order derivative as shown in the

following equation.

dy = % %5 - (y - C)d}j (3.75)
The basic and scaled circuit for generating Eq. (3.75) is shown in
Figs. 3.25a and 3.25b, respectively. Following the same techuique
used to derive a machine based on s differential equation, the con-
straint equations are written.
A dy = B dx - A22"R(y - C)ay (3.76)
is the defining equation for the machine, and

AlC - y| <2t -1 (3.77)



dy %{%"E—W-C)dy}

Y"C

(a) Basic design,

A dy *
\L A% My - My N\ B dx - A% Fify - Cldy ;

My -C) C / dev

{b} Scaled design.
Figure 3. 25. - Regenerative circuit squars root machine.

o\, ~ feveg)

Figure 3.26. - Scaled diagram for four-stage square root machine.
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is the counter limiting equation. From these equations the scale
factors may be computed by

A = 28/c, B = 28-1/c2 (3.7¢)
where C 1is chosen such that it satisfies the inequality

1. ¥

y <1-28 (3.79)

max

Based on this design, Fig. 3.26 gives the computed scales and cir-
cuit for a four stage regenerative circuit square root machine.
The output of this machine together with that of the desired output
is shown in Fig. 3.27.

Other Regenerative Circuit Mschines

The natural logarithm machine

v = 1ln X (3.80)

may be designed as a regenerative circuit by the equation

{
= ax 4 - X)
- dy = kl o dy (3.81)

The circuit for generating this function is shown in Fig. 3.28.

The yuotient machine

z = x/y (3.82)

may be designed as a regenerative circuit by the equation

dz = é-[}y -a)dz +z dy - d%] (3.83)

The schematic circuit for this function is shown in Fig. 3.29.
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Figure 3,27, - Output of regenerative
circuit square root machine.
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CHAPTER IV
PIECEWISE POLYNOMIAL MACHINES
Polynomial Machines
When a function to be generated is available only as empirical

data (e.g., such as in sampled data systems) then the design must
be based on generating an approximation function. Variows classes
of approximation functions .nd techniques for obtaining approx-
mavions have received considerable attention in the literature
(2.g., see Ref. 14). A particularly convenient form for approxi-

mating a continuous function is that of & polynomial. The general

polynomial
x@ an_ a
fa) = Ber Bkl B ax e (4.1)

may be generated by the circuit shown in Fig. 4.1. However, it is
usually the cage that all the datae is not immediately available for
generating the function over its entire range, or if it is available
the polynomial needed to meet the accuracy requirements is of ex-
cessively high degree. In these applications the requirements of
the problem may be met by using a series of relatively low degree
polynomials where each polynomial is used to fit date only in a
restricted range. ©Such machines are called piecewise polynomial
machines.

Because of their wide spread use in applications (see Refs. 9,
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simple circuits, this chapter will be devoted exclusively to de-
seriving a series of machines for generating piecewise polynomiais
arising from finite difference technigues. These machines are
groupved into two broad categories based on applications; i.e.,
interpolation or extrapoleticn. Each machine of this series will
generate a2 low order polynomial fitted to data aveilable at ejual
intervale of the argument. In passing from one segment into the
next new datz is introduced. The form of the data in each case is
simply generated from the empirical data.

In order to facilitate the description of the machines in the
next two sections, ordinary difference notation will be used. In
particular, w, is the value of the independent variable where the
value of the function is obtained; i.e.,

oy, = T, (4.2)
The guantity &v represents the spacing of the independent vari-
able, and &4, A%, . ey Aﬁ are the successive differences which

may be obtained from lower orqer differences as follows:

L = Ty - By
2 - -
l¥‘- Aﬁ+l Ah
R (1.5)

In form:lating the approximation formula which passes through
the given points, it is converient to display these varicus differ-

ences in tabular form as shown in Fig. 4.2. From this difference
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f_
2 A / Gregory-Newton Backward formula
-2 2

f
-1 A

A-l/ 2 A§2
fo < A% Newton-Sterling formula
; AU\A; A":l Newton-Bessel formula

Ay [
f A 0~ <
2 A i Gregory-Newton Forward formula
f3 0

(a) Direct path difference formulas.
A g Aéz
Newton-Gauss Backward formula

fo Agl

//\/ Newton-Gauss Forward formula

At A

(b) Broken path difference formulas.

Figure 4.2. - Difference table and paths of difference formuias.
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table, alternate forms of the approximation formula may be derived
dependent on the differences which are utilized; i.e., on the path
through the differencc table. The paths of some of these formulas
are shown in Fig. 4.2. The form of the formula which will be
utilized in the following discussion will be such that in each case
the value of the variable x will vary from O to 1 in the interval
of interest.
Interpolation
A piecewise linear interpolstor can be obtained by passing a
linear polynomial through successive pair of points of the function
to be generated. This scheme is illustrated in Fig. 4.3. A linear
polynomial is generated which pesses through the points Py and Pl'
At the point P, the point Po, 1is added to the scheme and a linear
polynomial is generaied which passes through the points Pl and Po.
This procedure may be expressed in terms of ordinary differences by
the Gregory-Newton interpolation formula; i.e.,
flog + x80) = f + Opx (4 4)
The first derivative of this formula is
Bt (w, + x0w) = 4, (4.5)
This interpolation formula may be generéted by the linear polyncmial
generator shown in Fig. 4.4a.
The corresponding equation and its first derivative for the
next interpolatiun interval is given by,
oy + x8w) = fp47 + Oppyx (4.6)

Saf (a4 + XB0) = Ay (4.7)



Py
P1
f(x)
Po

X
Figure 4.3. - Scheme for piecewise
linear interpolation.

X —
S — fn
sae An+2, An+1 s ot An

(a) First difference input data.

X —
fo - 1
>

:O___. A

dx -

.o an, fmz it fn+1

(b) Function values input data.

Figure 4. 4. - Machines for piecewise linear interpolation.



At the end of the first interval of the values of the function
and its derivative given by equations (4.4) and {4.5) are
flay + &w) = fn + &y = fp4q (4.8)
dwft(wy, + dw) = &, (4.9)
The corresponding values of these two quantities needed at the start
of the next interval are given by Eqgs. (4.6) and (4.7) and are:
£logyq) = fpiq (4.10)
Swf ' (wp+1) = Spey (4.11)
By direct computation it may be verified that in order to proceed
from one interval to the next, the quantity A% (which is 4y - On)
needs to be added to the setting of the BRM, and the output (i.e.,
the end point of the interpolation interval) need not be modified.
However, since adders have been excluded as basic design elements,
the same result may be attained by transferring An+1 as the set-
ting of the ERM (since Ayq =4, + Ag). Consequently, the circuit
shown in Fig. 4.4a may be used for piecewise linear interpolation
of a function by transferring successive first difference as set-
tings for the BRM in order to proceed from one interval to the next.
The circuit derived above is well suited for an application in
vhich an incremental encoder is used to generate the input data. If
an absolute encoder is used to generate the primary data, then the
above circuit may be adapted for this input by using the defining
equation for first differences; i.e., Eq. (4.3). This circuit is
shown in Fig. 4.4b. As in the previous case, only one new piece of
information must be transferred into the circuit in order to pro-

ceed from one interpolation interval to the next. However, in this
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case, before the new information, i.e., f;;», 1s transferred as the

setting of the lower BRM; the value of the lower BRM; i.e., T

n+l’
must be trensferred to the upper one
Two piecewise gquadratic interpolators will be derived. The

schem~ for the first one which will be called the back interval
quadratic interpolator is illustrated in Fig. 4.5. A quadratic
polynomial is generated which passes through points Py, Py, and

PZ’

This polynomial is used to generate the curve between points
Pop and »r3. The point Pz is then added to the scheme and a
guadratic polynomial is derived which passes through the points

Py, Po, and Pz This polynomial is then used to generate the curve
between Pl and Po.

This procedure may also be conveniently expressed by the

Gregory-Newton quadratic interpolation formula; i.e.,

floy + X60) = £ + Apx + -’5(-’-5-2‘——-9- re (4.12)

The successive derivatives for this formula are

st (ay + xb0) = (& - = £8) + Mgx (4.13)
(8w)2t™(m, + xBo) = 48 (4.14)

The corresponding equation and its derivatives for the next

interpolation interval are:

Anlz

Plapy + x00) = 1 + (Bpay - 5 Mg )x + (4.15)
&Df‘(d)ni_l + X&D) = %_;.l - %LXZ].*.]_ + %.’.lx (4.-16)

(80)3f "(wpey + x0w) = AZyq (4.17)
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f(x)
Po

X

Figure 4.5, - Scheme for piecewise qua-
dratic interpolation (back interval).
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Consequently, the correction to be added to the second deriva-
tive, first derivative, and function at the end of the inverval in
order to rroceed to the next interval are ‘%1: -32'- %?ﬂ’ an¢ O,
respectively. From this formulation, however, addition is required
in order to proceed from one interval into the next. A formulation
of this process which leads to the elimination of the explicit
adder is to splinter the polynomial given by Eq. (4.12) into the

following two polynomials.

2
falw, + x0w) = £, + Hx + -‘.}1- xé (4.18)

2
fplay, + x00) = -Z—;"ﬁ- p'e (4.19)

Wwhere
flay + xto) = f{a, + x00) + fi (o, + x50) (4.20)
The first and second derivatives of Eg. (4.18) are

(sw)fa'(a, + x6w) = &, + Aox (4.21)

z 11 . . .’-_
(8w)es, (@ +xbw) = 28 (4.22)

The corresponding splintering of Eq. (4.15) yields

2

folwpyg + X0w) = £,494 + Hgq x+A“;rl X% (4.23)
(8@)falansy + X00) = Aneg + ASiax (4.24)
(8028 (wyey + X00) = A2, (4.25)

Consequently, no correction need be adder to the first deriva-
tive in generating the function fg. BEgs. (4.18) and (4.19) may
then be used to design the circuilt shown in Fig. 4.6a. It will be

noted that in order to proceed from one interval to the next, only
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{c} Function values input data,
Figure 4.6. - Machines for piecewise quadratic interpolation (back interval).
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new second difference date need be transferred to set the levels of
the leftmost BRM..

Based on the defining equation for second differences; i.e.,
Eq. (4.3), the machines shown in Figs. 4.6b and 4.6¢c may be obtained
directly from the machine shown in Fig. 4.6a. In these mschines,
rrevious first differences and values of the function are trans-
ferred directly from the lower BRM’s to the upper ones befors a

new first difference and a value of the function, respectively, is

transferred into the-lower one in order to proceed from one inter-

val into the next.

The scaneme for piecewige front interval quadratic interpolation

illustrated in Fig. 4.7 may be derived by use of the Newton-Gauss

interpolation formla given in the following equation.

oy, + x80) = £ + x Oyoq + E(i‘zlﬁ A (4.28)

If Eq. (4.26) is implemented directly, then the first deriva-
tive and second derivative must be corrected by adding %‘- A:fl
and A§1, respectively, to these quantities in order to proceed
from one interval to the next. The explicit need for an adder may

be avoided in a manner similar to that used in the previous dlscus-

sion by splintering Eq. (4.26) into the following pair of equations.

foloy + x80) = 2y + x Ay + 232 &2y (2.27)
12
fplay, + xbw) = 541 X (4.28)

Bagsed on this pair of equations, the circuit shown in Fig. 4.8a

may be derived directly. The machines shown in Figs. 4.8b and 4.8¢c
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f(x) y

Figure 4.7, - Scheme for piecewise qua-
dratic interpolation (front interval).
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{a) Second difference input data,
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{b} First difference input data.
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N

[
fhe ""')-

{c) Function values input data, - .

Figure 4.8, - Machines for plecewise quadratic inierpolatidn (fi_bnt intérval), _
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are adaptel from the circuil shown in Fig. 4.8a by using the defini-
tion of the second jifference given in Eg. (4.3).
A cubic interpolator may pe obtained from the Newton-Gauss

interpolation; i.e.,
oy, +70w) = £+ x O+ = x(x- 1) A1+ = x(x~1)(x +1) A5 (4.29)
Wy, TAOW,} =1y 2 & % -17 ¢ \ -1 .

However, in this case the discussicn will be limited to using this
formula for central interval interpolation only. This scheme is
illustrated in Fig. 4.9. The points Py, Py, Pp, 2nd Pz are used
to generate an interpolation formula for interpolating between Py
and P,. The point P,; is then added to the sciheme ard the points

Py, Py, Pz, and P; are used to interpolate between points Py

3
and Pxz.

Eq. {(4.29) mey be applied directly to yield a central interval
cubic interpolztor. However, in this case the third, second, and
first derivatives must be corrected by adding Afl, 0, and %’ALl
to these quantities, respectively, in order to proceed from one
interval te the next.

A configuration may be obtained which conforms with the design
practice of not using an adder by splintering Eq. (4.29) into the

following pair of eguations.

Lo 3
1 Z X
fa(u).rl + x&w) = fp + X f\,l -3 Zg“;_l) + 5 Ag_l + 3 Ag-l (4.30)
X 3
fpla, + x&w) = =8, (4.31)

Based on this pair of ejuations, a circuit may be obteined such

that the fuaction, its first derivative, and its second derivative
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Figure 4.9. - Scheme for piecewise
cubic interpolation (central in-
terval).
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need not be changed in order te proceed from one interval to the
next This circuit is shown in Fig. 4.10a. The circuits rresented
in Figs. 4.10b, 4.10c, and 4.104 are modifications of this circuit
based on the definition of the third difference.
Extrapolation

Extrazciation presents an added problem in that the output .
the machine must also be corrected in order to proceed from one
interval to the next. This is illustratzd in Fig. 4.11 for linear
extrapolation. A linear polynomial through Pp and P; 1s used
to extrapolated the values from T3 to P;. The point Pp is
then added to the scheme, and u linear polynomial through P; and
Po 1s used to extravolate cthe next interval. The predicted value
Pg and the nevw value F, can be expected to be different. Con-
sequently, the output must be corrected for this new value Po. In
order to avoid putting a jump in the ouvput function at this point,
the scheme which will be employed is to put the correction in
linearly over the entire next interval. This scheme (as well as
that of gquadratic extrapolation which will be described next) is
closely related to the Porter-Stoneman digital filters (see
Ref. 13) and may be extended accordingly.

The Gregory-Newton backward finite difference formula may be

used to design the linear extrapolation machine; i.e.,

flay, + xqw) = £ + A ,x (4.32)
The corresponding formula for extrapolating the next interval is

flopsy + xBw) = fpaq + Ax (4.33)
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Py
ot
— PZ 3
o~ Pl

f(x)

X

Figure 4. 11. - Scheme for piece-
wise linear extrapolation.



102

~{ these fourmulas are applied directly, then the circuit must
be corrected zt the end of the interval by adding A%_l to both the
function and its first derivative in order to proceed into the next
interval. This, however, would cause a jump in the output function.
This Jjump may be avoided by putting the correction term in the out-
put in a linear manner over the entire next intervel. The result-
ing polynomial has the property that its initial value corresponds
to the end point of Eq. (4.32) and its final value corrasponds to
the end point of Eq. (4.33). A polynomial which satisfied these
constraints may be vwritten as follcws:

Papy + x00) = (£, + &,7) @ ) + Bq)x (4.34)

The second difference in Eq. (4.34) may be elip: >ted by
using the defining eguation given by Eq. (4.3). This substitution
yields the following equivalent equation. _

flapey + x80) = (£, + Ay ) + (24, - 4, 1)x (4.35)

Eq. (4.35) may be implemented to yield the linear extrapolator
shown in Fig. 4.12.

The scherme for guadratic extrapolation is shown in Fig. 4.13.
The gquadratic equation through points PO, Pl, and P2 is used to
extrapolate the data to the point Pz. The point Pz is then
added to the scheme and can in general be expected to be different
from PX. The guadratic equation through the points Pl, PZ’ and

3

P.. is then used to extrapolate to the point PZ. in order to

avoid putting a jump in the output when new information is added



103

i

I-Ug, Y

J0jejodea)xa Jeaul] asimaocald Joj auiyoew - ‘21 'y 8anby4

I .H+C< .N+C< oo

I-Uy




104

Pt
3
3 %
Py 77
|
/O/
x) //
\ p ,
J /
O/
X

Figure 4,13, - Scheme for piecewise qua-
dratic extrapolation,



105

to the scheme, the correction may be put in  the output *+ a
linear manner over the entire next interval in the same menner as
that employed for linear extrapolation.

The Gregory-Newton backward difference formula forms the
basis of the gquadratic extrapolation. This formula may be written

as follows:

: x(x +1) 2 .
f(wh + xdqw) = fn +x401 +’"'"“§"l'éh-2 (4.36)
The corresponding formula for the next Interval is:
x(x + 1)
Plapey + 280) = fppq + x & + D=2 A 5 (4.37)

If Eqs. (4.36) and (4.37) are implemented directly then the
quantities Ag_z, 3&2_2/2,and Ag_z must be added to the output
function, i1ts derivative, and its second derivative in order to
proceed from one interval to the other. As was indicated earlier,
the jump in the output function can be avoided by putting in the
correction over the entire next interval. A polynomial which
satisfies these constraints (i.e., has the end of Eq. (4.36) as
its initial point and the end of Eq. (4.37) as its final point)
may be written as follows:

AC

A°
-1 h-1
£lanyy + x00) = Ty + A3 + g * (&t +A131-2X+"%*‘"X

(4.35)
Substituting the difference relationship given by Eq. (4.3)

into Eq. (4.38) yiel"
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flops] + x80) = £+ By1 + Mg

/ 2
5 -
+ (\/-‘n~1 2 M - Af;,z)x + A’; L2 {(£.39)

Eq. (4.39) may be splintered into the two equation

2
Dp-1,
faloyy + %00) = £+ &y g + &y + &y gx + 5= (4.40)

£y (@ + x60) = (g- 58, - A,ﬁ_)x (4.41)

to yield the circuit shown in Fig. 4.14.

The circuits shown in Figs. 4.12 and 4.14 may be readily ex-
panded bty use of finite difference relations (as was done for
interpolators) %o yield circuits which accept . ~tional values

and first differences as the primary source of data.
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CHAPTER V
CONCINSICN
Summary
A handful of circults have been reported in the literature
which have been designed tc meet the needs of special purpose
digital computer problems arising from real time aprlications.
The organizztion >f these circuits is to utilize simple counting
techniques as the basis for compvting and result in a simplicity
of hardware which make them attractive for such special purpose
applications. The design of these circuits have been examined in
this study with the objective of (1) "explaining" the circuits and
(2) generalizing the design philosophy such that new circuits may be
admittes with the same organization. In order to be specific
we limited the principle decign elementz to three fundamental
units. The elements are (1) the binary rate multiplier which is a
meuns of s¢ 1ing down a pulse streem to some specified fraction,
. ) the counter, and (3) the anti-coincidence circuit which is a
means of separating puises arriving at a counter simulteaecusly.
These design elements are represented as operational units

which may be used +to describe the machines. Operational techniques
are then used as the method of symthesis. In particular, a counter

is utilized to represent a first orier difference equation and a
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counter in cascade with a BEM is utilized to redres=nt approximate
integration. The computational errors; i.e., rounding-off error
and truncation error, introduced into the machines as g result of
treating the principie design elements as operational vuiits are
identified and studied in detail. The rule ¢ round-off, which is
simply stated in conventional computers, is not as easily formu-
lated in these machines. Definite results, however, were obtained
and the rounding-off error was shown to be dependent on the start-
ing value of the BRM counter as well as n, the number of stages.
The approximate error bound of 7/9 + n/3 for the generated
round-off error proved to be disappointingly pessimistic for pre-
dicting the propagated error for design purposes. HNevertheiless,
having identified these two sources are errors rermitted us to
obtaia better results experimentally by two methods; (1) in-
creasing the number of stages and (2) changinz the round-off error
by changing the starting value of the BRM counter.

The method of synthesis is presented in three parts; (1) ex-
pressing the function to be generated as a differential equation,
(2) expressing it as the fixed point of an iterative process,
and (3) expressing it in terms of a regenerative circuit which
is presented. The method of synthesis is expliciily stated and
is satisfactory in that all known circ its may be directly obtained
rrom it. A wide variety of other itvrctions are also obtained using
these synthesis techniques. Many of these examples are illustrated

and in some cases actual experimental resulis were obtained and
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discussel with the machine.

A series of machines is presented for interpolation and ex-
trzpolation of a function whick is available only as empirical
data. In perticular, the function is generated over its entire
range by a sequence of low order polyncmiels. Finite differeace
techniguss are used to describe the polynomials. The order of
the polynomial is limited to a cubic for interpolation, and a
guadratic for extrapolation since these seem to be the important
cases in practice. Nevertheless, these techniques can be easily
extended to include higher order polynomials.

Recommendetions for Further Invesiigations

We feed that the choice of orincip e design elements has
been correctly limited to urits that operate as incremental devices.
It would be interesting to investigate other components in this
framework. In selecting the new components two apprcaches appea:x
appaven%. First, the components used in this study may be sub-
divided into smaller functional urits with a view of studying sim-
plification uethods of the final design. S=zcondly, new functional
units may be introduced with a view of admitting new machines.
Howvever, if components which operate on the whole word are included
they should be simple decision type circuits (e.g., sign and mag-
nitude comparators) and not new fundamental units like an adder
which would dominate or supplant the other components.

It is expected that using werst case conditions for obtaining

error bounds would not produce satvisfactory design results which
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>

may te used in the whole spectrum o problems. The study which
should produce gcod results would be to consider each circuit
individually and obtain Jdeterministic design results which can be
applied to that circuit. Ir particular, an aligebraic approach as
wes used in Apperdices A and B might yield satisfactory results
for processes which ivvolve only addition and multiplication such
as the generation o polynomials. Fbr transcendentel functions
the bounds may be obtaineC by experimental technigques or perhaps
by comparing the desired function to ome whica is attainable by
algebraic means.

New methods of synthesis should also be scught either to
include the pathological cases discussed earlier in the repors
or to exclude them as possible machines.

Other piecewise curve fiiting machines should also be stuided,
especially those in which functions cther than low order polyno-
mials are used and those in which the first and higher order
derivatives are kept continuous.

The investigation ¢f these machines would be facilitated if
hardware and good display facilities were available which would
permit the circuit to be easily fabricated and studied. We do
not have in mind the design of still another general purpose com-
puter since it is felt that these circults best serve the needs

of special purpose applications.
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APPENDIX A
MULTIPLICATION ERROR BOUNDS (ZERO STARTING)

In this section the error equation of an n-stage BRM whose
counter starts with zero will be analyzed with the objective of ob-
taining tight error bcunds. Nevertheless, some of the intermediate
results which will be obtained in this section are interesting in
their own right. Becaise this analysis is involved, we will proceed
formally. The basic outline is to use Eq. (2.8) to find the points
where the r ximum positive value is attained and then evaluate the
equation at these points. In a similar m -ner, Eg. (2.10) will be
used to find the minimum negative value.

We begin by stating and proving Lemma A.1.

Lemme. A.1 A sufficient condition for E given by Eq. (2.8) to
attain its maximwr value i3 that x; = &éi.

Eq. (2.8) may be rewritten as a bilinear expression such that
the terms which are dependent cn either x; or y_; are grouped
together. The guanity A din the resultant expression is independ-

ent of either x; or y_;.

( 5 1 1.1 1 1
E‘Xi’y-i) A+ §- Xi¥ai = §' ¥y (Z Yaial + Z- Vaia2 + . . . F zi-n Yun

1. 1 1 1
- "2- y_i\'z" Xi_l + Z:" Xi-Z + . . . + —‘_—'zi-l Xl) (Aol)

By direct evaluation the value of this expression is as follows:



1315

E(2,0) = A

if1 1
E(O,l) =A-§'(§'y‘_i_l+ . . e +£-i-:£

It

Z\2 oiel

V-n)

)

Moreover, for the specific case when i is n +then the value of

EBq. (A.1) is

E(0,0) = A
B(0,1) = A
_ 11 1
E(1,0) = A - = (2 Xgap +oeo o F e

; 1 1/1 1
E(1,})= A + é"'z'(é'xn-l"‘ . o . +£-I-1—:i-xl)

)

This lemma is proved by observing that the velue of E when

1

X =¥y = 0 is always greater than or equal to the value of E

in both cases when x4 94 Y.; @nd that for the nth component the

value of E 1is always greater when Xpn=V.p = 1.

Based on this lemma, the maximum value of Eg. (2.8) will be

found by finding the maximum of the quadratic form expression

Q(Xl:xg: L ':Kn) = gxl’xZ’ L ':x-ﬂ)M

Theorem A.1 For all values of the components Xxj,

Q(l,Xz,.XS, e o o’x'.n) > Q(O,Xz,xs, . .’Xn)

[
X2

|

(A.2)

Eq. (A.2) may be rewritten such that A is a quadratic ex-..

pression independent of X%;.



/
UxqoXg, « o oox ) = A+ x‘(

By direction evaluation of Eq. (A.3)

Q(O,Xz, o o o,}cn) = A
1 1 1
Q(l)xz, ¢ o ',xn) = A + (5 e sz s o o = Ei-xn)

Since

1 .
- . . o T e >
X3 o0 ¥p » 0

DOf
t
B
(we] Yol

-Xz-

then

*
L
b d
S

Q(l,xl:xz’ . o -:xn) > Q(O:Xl)xz, .
Theorem A.2 For all values of the components x-

Q(Xl,Xz, o .,Xn-l,l) > Q(Xl,XZ, . "X‘n-'-l’o)
This proof proceeds similar to Theorem A.l1. Q may be re-

written as

1 1 1
Q(Xl,X2, * o o,xn)'—-A +. xn(é' - Z Xn_l “ e e e ™ "2“‘"5 X]) (A.4:)

where A 1is independent of x,.
By direct evaluation

Q(Xl’xg, o .,Xn_l,O) = A

' 1 1. . 1
Q(Xl,XZ’ e @ .’Xn"‘l’l) = A+ '2"'- an"l -, . « ™ Z_ﬁ.xl

Therefore

Qfxl’XZ’ . . 'an_l,l) > Q'(xl’xﬁ’ . '-":_,Xn_l:o) .
Theorem A.3 For all valiues of the components Xy -

Q(J-:xg:xga . "xn-l’l) = Q(‘l:?fg:szg: ‘o ':%_lsl)
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where Xj 1s the complement of x4.
The difference

Q(l,XZ,Xz, . [ o,xn_l,l) haad Q(l’iz,is, * . o,sc-n-l’l) =

’1 (1
Xp X
(Loxpy o o osx _1,1)M | - - (L%, o o X 4,10M :
XNl X'n..
i 1 \ 1
(A.5)
may be written equivalently as
Xz 'J-fz !
(XZ, o . o’}(n_l)K . -'-()?2, e o .’}_f;a_l)K . (AoG)
Xna1 lxn-
where
4/'/,.--_’ -
. .;//_
. . ) N
/ -

(39
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Expanding Eq. (A.5) and asing Eq. (A.7) to simplify the cross

product terms, then a typical term x; mey be written as

11111 3
XNz~ ol T on-1+l T4T8T T ooned .
S b S T I S S T
2 21 zn-i'i-l 4 8 21-1

- 2 . 1
i1 1 - 1 1 o T 1
= « w s—s S ol ¥ ro———— Lol N + ———. W p——— . -
*1j 21+2n-1+1j xi{zn-iﬂ. "31} LCE TR W ' (4.8)
w .

Since (x; + X;) = 1, then Eq. (A.6) is independent of the Xy

variable and the contribution from this term is

11l
{m;} - (a.8).

Similarly. the contribution to the difference exprééééd-in

Eq. {A.5) from the term invol “r is

€ xn-i+;

1. 1 1 L o
{;-Bn_m | (=

-

Consequently, the contributioﬁ to the difference expresaié by

Eq. (A.6) by each elemsnt may be ‘paired by the contribution from - -

another element such as ﬁé_:ancel.each;othér out of -thé expressicn.

I# 'n'.1s. 0dd; then the middle term cannot be péired.. But(sih&e-

this is the (n + 1)/2 term, then by Eq. (A.9) its contribution lb -

v

{ ITE - 2(n+D/j} B 7.«-

Therefore; the value of the dlfference: shown by Ea. (A.S) is _Z“a:"”

&

' equai %0, z6r0. This implies that B ‘[‘ :"ﬁ- ’1“#: T

- Q(l,%z, s ’xn-l’l) = Q(long: . "°:xﬁ,1:l)

rly




Lerma =2, FOr v = .Yz, « - .,X. a&né r = 31,0,2,0, ., .,1,C

<{1,v,0,2,1) > '{1‘*4',1'.?.,],)
vhere v and X are the component by component complement of v
zné a, respeciively.
3y Theoren: A.2 it is noced that

1T 5 N
Sy Vyly

{i,v,31,8,1) = &
Therefcre, the difference between the tvo guadrstic forms of
the lemms 2an Le =ynressed as
5 = 1,v,0,a,1) - &i,7,0,a,1) (A.13)
Partitioning the M matrix of Eq. (A.11) such that M; and

M, are compatible with the vectors, then & may be written as

5 = (1,¥,9, a,l,-.l + (1,v,0, d.,l)Nz(l)

1
-~ 1,7, O,E,l)Ml(w"r'

¥ - (1,?,0,5.”,1)1»12@) (A.12)

But it will be noted that
1 1
(1,v,0,8,1)M\ 7 |= (1,V,0,8,1)¥;| ¥
O 0/
Therefore

8 = (1,V,o,a,1)M2(:) - (1,\7,0,5“,1)»42@) (A.13)

It will now be proved by induction on the length of a that
52 0. It may be immediutely verified that 8 =0 for a of
length zero. Assume that Gx 2 O where O is the value of B

when a is of length 2k. It will now be verified that Oy41 = O-



- ! 3 rpit2kstl 121 +2k+3)
i ] Ila]-,'i' = ] "ll 2lFLK
[%p o [aleiiekss X \ :
j X3 / -1/t 7kre 33 e
. K . i
" < ‘ . * l;
. ! . * ‘ "
Os41 -1/22k+4 0141
= 8+ | 142 -1/23%% = Oie2 .
0543 -1/e2kt2 1i+3 ‘
o Y ; . !
Oj+2k-1 | | -1/64 lisgk-i gl -
1342k | |-1/32 O3+2x 1] -
Ci+zk+L | 1-1/16 li+2k+1 [ -
1i42k+2] 1-1/8 } Oi+zk+2 | |-1/4
0i+2k+3 i-.L/4 1:i47%k+3 | | 1/2
li+2k \1/2 / \lié-ZKM/ 0
1 -1/2142k+4) 1| e
'13'!'2 \ ] 2 ll -1 /2i%2k+1
i-s . . LI
%3 0i+1 | -L/22k*Z
0141 Oj4g |1 -1/e?kHl
0142 . + 1i+3 'l/zdk
1 i +3 l . .
. | O14zx || -1/8
1i42k-1 Lok} | -1/4
0i+2x  J{- 1i+2k+2 ‘ 1/2
1i+2k+1{}-
Oi+2k+2f 1.
1i+2k+3] |-1/4
livpueg |1/2 \

———_

(A.14)
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e O's an

]
¢
]
¢
+

position in the vector, and the vecter itsell is displayed as a
column rather than a row in order to chow the correspondence be-
tween the terms which must be multiplied to form the value.

Multiplying cut the terms of Eq. (A.14), then

S, =& <+ l-- ;-{1 + £-+ + 1 - 1
k+1 k"2 8 \f 4 et 22k 2itTk+d
1 - 1= .1 =
- Ys =% . . . ———
22kt (vl 7 *-1 T ois 2)
1 1 1 1 1
ol iiud + - + * o & + -
TETI (l z 22k-2) e
.1 - 1 . o=\
" ZeE+5 (xi TEEat - -TE R
3 ) , X 1 3
"1%18 ( gt ? szuz) s
I 1 y '
- En-g—k_‘*%- 5!-1 + 5 ii-l + . . o F é—j-:%é- 5{-2) . (A.-'.S)
Using the relations
i 1 4 1

and

1 : 4! 1
l+""+ooo+ :"'l"'_——_’
Z xz = 3\ z?k)
then Eq. (A.15) becomes

i-2

1 1 1 ZE T1
=8 + - e - -—:-.-'.o .
Pkl = Ok ¥ G < STRERTS T A S 53 i
J=0
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Bt by direct evaluation

i-2
1 P | 1 2 __1
o2k+L 23 i=d T o2ktE oI-T C o2kH T ,2k#D
J=0

Therefore Sk +1 > 0.
lemma A.3. For V = Xp,Xz, + « «)X4- and a = 1,0,1,0, . . .,1,0
&(3,v,1,0,8,1) > Q(1,v,0,0,a,1)
vhere V and @& are defined as in Lemma A.2.
Proceeding in a manner similar to Lemma A.2, it is first noted
by Theorem A.3 that
Q(1,v,90,0,a,1) = @(1,7,1,1,5,1)
Therefore, the difference between the two quadracic forms of
the lemma can be expressed as
5 = q(1,v,1,0,a,1) - Q(1,v,1,1,8,1) (a.16)
Partitioning the M matrix of Eq. (A.16) such that M; and
M, are compatible with the vectors, then 3 may be written as

1 ) 0
5 = (1,¥,1,0,a,1)M '-VT:)"' (l,?’:%,p}aililﬁ ".3'\

1 \1/

1
-~ (l,?}l,l,;’l)Ml ;) - (l};,l,l,a"l)%(

But it will be noted that

1 1
(1,’&',3.,0,5,1)5(1(?;‘}.(1,?,1,1,5’,1)MJ(V>
1

0
8 =2 (l,;,l,o,a,l) a) - (l,;’l’l,g’l)
1

o=

(A.17)

(-

Therefore

) (A.18)

s
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Using Sk to denote the value of & when a is of length

2k, it will now be proved by induction on the length of a that

1l - S 1 - 1
% 2 Zzies MY JEeed X1 Yt T %2 Y ek~ O
{£.19)
First we note that for a of length zero
{1 "_l/zi-i-S {l \ _l/?‘i—i-Z‘ 1 / 23 /2:’.1.4-3
fs . i ‘is . is .
80 = . . - . . - - l 3 .
¥y -1/16 %y -1/8 Wy -1/16
li41 |l -1/8 1341 | | ~1/4 lien )y -1/
0142 | | -1/4 ii+2f | 1/2 li+2; | -1/4
\1i+3‘ \'1/2 J \li+s: 0 1i+3l \ 1/2
=L+ X+, .o+t o5 1 y
A i S ST 2 T SieE (4.20)

The notation used in Egq. (A.20) is similar to that used in
proving Lemma A.2.

Assume that 8y > 0, it will now be shown that 8y > O



Spe1 = Ot

1256

1 -1 /21+2k+51 i1 {1 /214 2k
- i
% -1/21+2k+4 % | / ] :
is . -fs i { . i
X3 -1 /32k+6 / -2} ‘

li41 ‘ li+1 \

01+2 . | 1 l

1i:3 -10 '

Oi+4 i . l %

1is2xenf} - 0 . f
Oi+2k+2{| - 1 e

lisoxss| | -1/8 0 |
\ 03 4+2k+4] —1,/4 P2 t1/2 !
142K+ -/2 \li+2k+s | O /
[1 Coa1 /2i+2k+5§‘ 1 i1 [21+2k+3,

X2 / X2 i .

X3 ‘X3 / .

X3 Xy

1 1441

1 1342

0 . + | 0i+3

l li+4 h .

Y . O1+2k+L! L.

1/} 1i+2k+2; \-1/4

0 \Li+2k+3 | 1/2 i

1 _1/4 '

i \1/2

Multiplying out Eq. (A.21), then &, becomes

(A.21)
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1"%(1'}‘-}:—'*'.'."' ] ) l X.

1 22 22ki2 | T pokv6 11 Tt
1 - 1 3.3 2 1 3
" IR X2 T ik T2 18 (l ToEteee? 22k) " F7KAE
3 - 3 - 3 1
PRt -t o R Y T Y 2
1 1 1 1 4
- '4- (l "' 'é“'z' + s o e + zzk) - 22k+3 bud 22k-!-6 x.-f. - e e e
4 - 4 o)
[ S x T t——— A' 2-.
SI2kd 2 T 142K+ (4.2)
Equation {A.22) may be reduced to
1 - 1 - 1
Opt1 = B - >2k+5 o S o1+2k+3 X2 - ol+2kt+d
(A.23)

Using Eq. (A.19), then the rvight hand side of Eq. (A.23)

becomes
1o 1= 1 i
TR Y e oY oTEET et yhE  Aws 4 T

1 1l -

1 - 1= 1
" TS X2 jTeekd gowrs Mt e ¢ o iR *e t ivewr - ©

Theorem A.4. There exists a v¥ such that for 21l v

Q(1,v*,0,8,1) > Q(1,v,x;,4,8,1)
where v and a are defined as before.

First, we note that Q(1,v¥¥,0,s,1) > Q(1,v,1,a,1) because sup-
*
pose it were false then there would exist a v** guch that for all
¢ v
*
Q(1,v**,1,a,1) > Q(1,v,0,a,1)
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But rrom Lezmna A.2
* *
Q(1,v%,0,a,1) > Q(1,v*¥,1,a,1)
Therefore, a contradiction exists.
Moreover, we note that |
Q(:L,v**-t,o,a,l) > (1,v,0,a,1)
+that is, there is a largest.
Therefore, Thecrem A.4 is proved by choosing either v*¥ or
v for v*; that is, wkichever make Q(1,v*,0,a,1) the largest..

Theorem A.5. ‘There exists a v¥ such that for all v

Q(1,v*,1,0,8,1) > Q(1,v,%;,7,0,8,1)

First, we note that Q(1,v*¥,1,0,8;1) >'Q1,v,0,0,5,1) because
suppose it were false then there. would exist a vt* such that f:or
all v |

Q(l,v?‘;,o,o,a,l) > @f1,v,1,0,a,1)
But from Lemma A.3 ‘
Q(l,?ﬁ,l,o,a,l) > Q(l,v:*,o,o,a,l)
Therefore, a contradiction exist.
Moreover, a vt* can be chooscn such that
Q(l,v;(‘-')’g,o,(;,a,l) > Q{1,v,0,0,a,1)

Therefore '

Q(1,v*,1,0,a,1). > Q(1,v,x,7,0,8,1)

T.eorem A.8. There exists a v* such that for all of - v

Q(1,v*,0,1) b Q(l,v,xi_,_l,l)
Frst, we note that there exist a v** guch that

Q(1,v**,0,1) > q(1,v,1,1), because suppose 1t were false then there
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would exist a vi* guch that for i1l v

Q(3; ".,'?%*,-l,l). > Q(1,v,0,1)

But by Theorem A.3
Q(l,w’o,l} =i Q‘l)v**’l’l)
Therefore, a contradiction exists.
% -
Moreover, a vﬁ* can be chosen such that
e ; -
Q(1,v**,0,1) > &(1,v,0,1)
Therefore _
Q(1,v*,0,1) > Q(lyv:xi+1,l)

It will now be demonstrated by an example how these thedorems,

k2

G
s

can be used to obtain the value of x such thac the érror is the -~

maximum positive value. 'Suppose we congider a 7-sta.ée EPM. By -

Theorem A.1 and Theorem A.2 ) : o

-~
-~

.Q(l,‘X2,X3,X4,X5,X6,l) 2 Q("X;L:XZ.?Xg’xé’xs:xéj;'l;)% T
by- Theprem A.6 _ o . ) | ;
- Q(l,xé,.xg,xz,xg,o,l) > QAL,%p,%Xz,5%, 5%55%g 5 1) -
by ':El“_zeorém A.5 . = | . |
| QL% %,1,0,0) 2 (1,8, w8, o, 4%,0,1)
by Thec;rein'A.é_ -
4Q(l,x§‘}x§*,0,l,o,l) > W1, %,1,0,1)
by Théo_rex;; A.5 o _ | |
' Q(l,xggg,,l,o.,l,c,l)»z Q(i,xg*',xg‘*,O,i,Obl)_

v Theorem A.6

Q(2,0,1,0,1,0,1) > Qf1,x; ,1,0,1,0,1)
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Putting these inequali"‘ies ’cogether
Q(1,0, 1,0,1,0, 1) > Q(xl,xz,xs,xé,xs,xe,x.,)
Moreover, by Theorem A.3
Q(1,1, 0;1)9:1:3:) 2 Q/(X]_:Xzixz:x4:-x§:y3’x7)
Using the theorems in the pattern iJJ.;zstr-.. ed by the example,
it is easy to verify that the maximum .'positive velue will occur at
the points shown in Table 2.4.-

The maximum positive value of the eri'o:r'*'may be expressed ‘_g_':oh-'

: cisely as follows

Let. Emaac(m ﬁe=note this. value for an L stage mM 'If L

is odd, then '. _ >

Iy };‘{..’172?'_*?0\‘ AR L

Bax{2) = Bpeg(® +- 1. |- T
' ' ik H-1/8 -
s h I B/
lk+a 1/2 . _

Evaluating Eq_. (A 85), this y:.elus 'bhe differonce equa‘biou B s

- 1 . l ) _o o -,
E 1x§1;~&2.._)d = Emaxgk) ¥ (1 + 1<+4’ S (A.zs) w
o Solv,iné Eq. (A;SO)- for a .n - stage:m. infbermgof _Ea .' (l) _ ‘ ”",J

ylelas: . S . L

SN U TR ST A
Emaxén) = Enaxl) AFRE TG

Bt B D) SVa e T

e
-
AY -
<
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Therefore, the maxi-mm positive errcr of an n-stage BRM

wherc n 1is o3dd is:

7 n 1 .
A = s e e v At
P‘ma.x(n) i8 g G .213 ta a‘;)

If k 1is even, then

1z -1/2k*s

' 03 .
14 .

. - : _ L1011
Epax(k + 2) = 5y, (k) + | . . = By (k) + 3”3 oke2
Ok-1 | -
Ix -1/8
Ogea | | ~1/4
Iz | 1/2
(A.27)

Soiving this difference equation for an n-stage BRM in terms
of Fhm(Z) and then evaluating the r.sultant expression for

£..(2) = 3/%, yields

. 7 n .
Epayfn) = fg + 5+ ge2n (A.28)

Combining equations (A.26) and (A.28) gives a closed form

equation for the maximum positive error of a n-stage BRM.

_ 7 ,.n_(-1)n
Epax(n) = wre®t oon (A.29)

By avplying Eq. (2.10) the minimm negativ= value for a n
stage BRM can be obtained. Comparing the form of Xq. (2.8) to
Eq. (2.10), it is seen that our previcus results can be utilized

with a slight mcdification. In psrticular, the value of the ninimum
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is equal to the negutive of the maximum and occur at points which
are the 2's complement of the maximum value. Consaquently, the

minimum negative values will occur at the points shown in Teble 2.5.
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APTENDIX B
MULTIPLICATION ERROR BOUNDS (ARBITRARY STARTING)

The error formulas given by Fgs.(2.12) and (2.13) expresses
the multiplicetion error of a BRM whose counter starts with an
arbitrary value. Eg. (2.12) is the error formule resulting when the
maximum velue of the actusl output is considered at the points of
discontinuities. Eq. {2.13) is the companion equation resulting
when the minimum value of the actual output is considered at these
points. In this section these errcr formulas will be analyzed with
the objective of cbtaining error bounds for a BRM with this added
degree of frecdom. We begin by analyzing Eq. (2.12) to obtain the
maximum positive error of sm n stage BRM.

It is convenient for this discussion tc define a vector ©»

such that
b.1y Va1
b~2j. Y2
. l =M]"® (B.1)
lb-nj Jen

1]
Theorem B.l For all x; and xgc in Eq. (2.12), G < Z }b_i] .
i=1

Moreover, if y_p = Xx = Xg, then G = Z ]b_il where Xg de-

i=1
notes the complement of Xegeo
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The elements of the vector defined ty Eq. (B.1) are

I
BOp

b -

1 1
-1 Y-]_‘(th-z+§)’.-3+~--+

1 1 1
b-2=§Y-2 - (Z__‘Y-s TEY4 T . .

1 1 1
bk = 5 ¥k - (7 Yokl * g Vk-z + - -

1

=5 ¥un

‘U‘
B
{

Since 1/2>1/4 + . . .+ 1/20 then

b, <0 if y_ =0

>0 if y =1

i
zn V-0

an~1 y"n)

PR
© 7 onokdL Yen

(3.2)

It is next noted that each element (xk - Xr}k) may have only

three possible values; that is, 0,1, or -1.

by direct computation.

0 0 0
o i -1
1 0 1
1 1 o)

Since |[x - xg| <1 then

This may be verified

(B.3)

n
G = (Xl - XSl)b_l + (Xz - X&)b_z .. . * (Xn - J%n)b_n SS— fb-i!

i=1

(B.4)

A sufficient condition for G to attain the upper bound of

n
Eq. (B.4), that is, > |by|, is that:
=



]

¢

)
o=
Hl
=3
A
o

]

+1 if by >0 (B.5)

Cembaning (B.2), (B.3), and (k.5) resulits in

L
‘o|<o 1 Jo

krb_kc xk - xSk xk{’-“‘k[

1 |
150 A |1 | o
Therefo,.e, Yo = X = S‘ is a3 sufiicicent condition for
6=> o
i=1
As a consequence of Thecrem B.l the maximum of G; denoted by
n
Gpaxs 15 such that Gmax = Max g !b__i§ . Tie procedire Which is to be
Yy o=l n
followed is to find the value y vwhere the meximur of Z ]b_,j}

i=1
is attained and then evaluating this function. Ir order to aid this
analysis tbe notation b_j(y) is introduced, where
Y=y ¥ o ¥, 8and b_;(y) denotes the value b_; for the
vector (y_y,¥_25 - - «»¥.y). For an n stage BRM, all possible
b_i(y) values may be cbtained by muitiplying M with all possible

values of y. We will cail this particular mztrix B..
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Theorem B.2. For all values of Y, fb_i(y)[ = [b_i(zn-y){
This result follows by induction on the number of stages K.
It was shown as an example for the k = 2 case. Assume it is true

for the k=n -~ 1 case., Then the k = n case is

!-?-‘.. -_2" ~2n-1 -1 3_. 2n~l -1l 2__1
on on  ° on 2 on T oon
0
Bp = Bhat . Bpa1
\ 5 |

where this case is partitioned to show its structure. This theorem
is obviously true for the first row. The b_;(y) element for the

n -1 case is now the b_;_3(y) and the b_3_;(2" + y) elements of
the n case; and the b_i(28 - y) element of the n - 1 case is
~ow the b4 _1(22 - y) and the b_;.1(2% + 22 - y) elements of the
B, case. By the induction hypothesis |b_;(y)} = {b_;(2® ~ y!!

for the n - 1 case. Therefore, these elem:nts fo~ the nth cas:
yield

ooy @] = by q(2% - 3)] BT

angd

lb_j_l(zn -y = ,b,i_l(zn + )| (8.8)

Substituting u = 2% = y irto Eq. (B.8) then

oy ;)] = lb‘_i“l(zn'*'l - u)|

whick completes the proof.
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Lemma B.l. There exists a y* in the domain

010...00<y*<0111. .11 such that
Y ka2 > o]
i i

This theorem states that G,.. 1s attained in the domain
010...00<y<011...11. As aresult of Theorem B.1,
the search for a point where Gy, is attained cen be immediately
restricted to the y domain 0<y<100...00. Consider B,

for these values of y.

L1 L2 L 1
zn zn . L] . 4 - L] - 2 . . L]
1
5 0
Bo- | B, 0B oo...
" * * -
[-1/4 0
The vector 1/2 results from the y vector |1 The
0 0
. 0
0 .
0

vector can be immediately ruled out.

s OO

The structure By, [1/2| By in the above matrix is By ;.
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Because of Theorem B.2, the absolute values of the elements in By
are identical to the absolute values of the elements Bg. More-
over, since the elements of first row, that is, |b_j(y)], increase
as y increases then for each column sum to the left of ju1/4

1/2
0

O e o o

l

there is a column sum to the right which exceeds it  Therefore,

G

ey Must lie to the right.

As a result of Theorem B.2 and Lemms B.l, there must be at
least two values of y where Gpg., 1s attained. For an n stage
BRM, we will call the y value corresponding to G .. on the left
of y =1000 . . . 00, L,; and the one on the right of
y =100 . . . 00, Ry.

Lemma B.2.  For an n-stage BRM
ORp.; <L,<011...11 _

This result follows from the proof of Lemma B.l. Since phe
first row |b.3(y)| dincreasing then G ., must lie between 't,hé
right maximum of B,_7 and the rightmost value of Lemma B.1.
Lemms B.3. For an ne-stage BRM

Consider B, for the values of y of Lemma B.l, that is .

010000.05y50110001_0
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-
-

1 22 +1 20242 ;‘_\
-4 * & o 2

2n-2 -1l 2n-2 -2

.. 0

o
i
DOft-

o/
The sums of the abeoluie value of the firet two rows are

zn“’l + 2&"2 - l Zn"l + 2n"'2 - 2
zn ’ 221

3
Z?

, L * *

fTwer.sore, this is a decreasing sequence. Since by Theorea B.2 and
Lorus 3.2; B, .p atteins at a meximm for. st least two values s then
Gmax [ust iie batween the leftmos* value of Lemma B.l and OlL, o+

Thaorem B.3. ¢Cr an n-stage DRM

ORp.y S Ip S 01 Inop

...;uis sheoren is.’che combi _.on of Lemms B.2 and Lemm "3,

Theorem F.4. R

R ST o n

and L, are unigue and ORp.y = Iy = 77 iu.p-
This theorem follows immediairly from the proofs »7 % wums R.2
and Lemms B.2 bj using the priﬁciple of stréag icduc=! . as ‘Ehe
method of proof; that is, assume it is true for k < n and prove
for the ca-.se' k = n.
The values of ¥y __where Gmax is attained can he found by

using Theorem B.4. These values are listed in Teble B.l.
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TABLE B.1 VALUES OF y WHERE G,,, IS ATTAINED

Ulpy | Ofp1 | I P

n y"l.. 'y-G y_looo‘y-e y"‘l"'y‘s y-l"'y—G
1 1 1

P Ol 11

3 1011 011 011 101

4 10101 0101 0101 101:

S 101011 01011 01011 10101

6 1010101 010101 010101 101011

The BRM counter value and starting value corresponding to the
y values listed in Table B.1l can be obtained by Theorem B.1l. - These
values are tabulated iﬁ Table 2.6. ' B
An equation for Gpgy as & function of n may be o’btaiﬁed.'by _
a procedure similar to that used to obtain Epgy. In particula.r;,
using the pattern estaplished above s difference ;quatiéﬂ may ‘Be _’
written for n even, and a difference equation may e written for—

n odd. Combining the solutions of thesé difference -equations, - -

Gmax may be obtained as & function of n.

1 JE S
Gmax(n) =-9"+'B~§ on ) R _ (39)

Noting the similarity between the rightmost ‘term of Bq (2 13)
to that of Eq. (2.12), one may esteblish immedia‘te.cy B minimmn errox'

bound mhen the BRM counter starts with an. _gr'bitra.ry value.

n | (-nBp T T T
n >----..—+------__ - (B 0) e -
Byin(n) 3 g ?n _ T L ( ,) g
A tight error bound nay e ob‘bained as follows. Expanding °‘
Eq. (2.13), then equa.tion forr H may be expressed as . «' o

H= -XgpVp - [(01 = Cgv, + (Cp - Csz)"’ g ¥ e ot (C’n - CSza)"’--n]

(B.J.l)
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¥sg 1dertifies the rightmost 1 in the initial value ¢f the
BEM counter. It may be simply argued that if a binary number has a
rightmost 1 in pocition R theun its 2's complement also has a 1 in
that position and, morecver, has zeros at all positions j where
J < R. Therefore, XsR = CSR and CSj =0 for all j <R.
Eq. {B.11) may be expressed as
H=Cggy_p + {Clb_l FOpbp + . . .+ cR_lb_Rﬂ}

+ (Cg - Cgplbp + {(le - Core1)bpay + -+ - + (Cy “'CSn)b-n]

(B.12)
or alternately as
-H=Cyby +Cgb_p + . . . + Cgb_g + (Cre1 ~ Cgr+1)PR-1
+...+%(C =-Co )b +C [}—y_ +]-'-y__ + ...+
n Sn’/“-n SR{2 Y-R ' 4 Y-R-1 3
(B.13)

Therefore

< |Cibay] + jC2b2] + . . . + jCRb.R]

+ |(Cpy1 - Copea)broil * - - « + [(Cy = Con)byp]

.] (B.14)

The upper bound of <-H is attained when equality is attaired

.

1 1
+ CSR['é- Y-R + Z Y-R-1 + .

in Eq. (B.14). It can be demonstrated by an argument similar to
that used in Theorem B.l, that the conditions for equality are

y .=¢C for all §
and
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Therefcre, Eq. (B.14) may be written as

c
"H = (Cl,CZ,Cs, e . .,Cn)M cz

1
C3
‘.- i
k |

. - Cy
- (0,0,0,. + « 0,C5,9505,05 -« - ..,Cn)M Jo

031

1 1
+ CSR[-E- CR+ 7 CReL + -+ & ] /B.15)

<Y .

n

The last two terms in Eq. (B.15) is always nonnegative.
Moreover, the sum of these two terms is nondecreasing as E de-
creases. Since by Theorem A.1, C; =1 1is a condition for maximiz-
ing the first term of Eq. (B.15), it muct also be a coadition for
meximizing Eq. (B.15) itself.

Eq. (B.11l) may be rewritten with this condition as fcllows

-2
H=y_ 4+ (Cy - CgpsCs - COggs -+ + -5Cp = Cp M .
y.
(B.186)
Therefore, the equation fcr H ;, can be immediately
written as:
H () » -1 - Goy(n-1) = ---199 -2 1_()° (B.17)

g9.20"1
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Based on this analysis CSl’ Ay s Cl’ X1 and y., are equal
to 1 for Hp:,. The remaining stages are determined suck as to
maximize G for an n - 1 stage RRM. 7The values of y, C, and
Cs where Hpy, is attained are listed in Table B.3.

TABLE B.3 C,.y, AND Cg WHERE Hpj, IS ATTAINED

; n y"l...:)r“s : CS'..Cl i CSS...CS]_
i f
, & 11 ; 11 01
N 101 101 011
2 1011 | 1101 0011
5 10101 | 10101 01011
6 101011 110101 001011
b yd\-l. . oy~6 ) CG. . ocl CSG. - aCSl
2 11 11 oL
3 111 111 001
4 1101 1011 0101
5 11011 1i011 00101
6 110101 101011 010101

The BRM ccunter value and initial value for these Hpip
values are the 2's complement of the above numbers. These values

are tabulated in Table 2.7.





