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OPTIMAL CONTROL OF SATURATING SYSTEMS 

By Elwood C.  Stewart and W i l l i a m  P. Kavanaugh 
Ames Research Center 

SUMMARY ,9216 
This study is concerned with the  optimal control of n o d h e ~ r  c y s t e x  

kdiicii operate i n  the presence of random unwanted disturbances. Although the 
results are intended t o  be applicable t o  a cer ta in  c l a s s  of nonlinear systems, 
saturat ing systems a re  emphasized because of t h e i r  p rac t i ca l  importance. Such 
systems a re  important when operation occurs i n  c r i t i c a l  regions, f o r  example, 
i n  the  control of vehicles i n  s i tua t ions  where the available thrus t  is  
marginal . 

This report  presents an approximate method of syathesizing the optimal 
cont ro l le r  with noisy measurements which u t i l i z e s  the l imited control function 
i n  t h e  bes t  possible ?m.n.neT. The pr incipal  r e su l t s  show tha t :  
there  is no minimum, the  performance can approach a r b i t r a r i l y  c losely t o  a 
greatest. lower 5omd, arid (b) striking improvement i n  performance can be 
obtained i n  comparison with l i nea r  theory when operating i n  c r i t i c a l  regions. 
Computer results are used f o r  ver i f ica t ion .  In addition, dimensionless curves 
of t he  o p t i m l  performance a r e  given a s  a function of a dimensionless param- 
e t e r  involving the  input s t a t i s t i c s  and saturation value of the forcing 
function. 

(a )  although 

INTRODUCTION 

The o p t h m l  control of l i nea r  systems which operate i n  the presence of 
random unwanted disturbances has been the  subject of intensive research f o r  
m n y  years and appears t o  be f a i r l y  well understood. However much less has 
been done on the more important and more d i f f i c u l t  nonlinear problem. 

I n  one approach, when there i s  a l i n e a r  region of operation of t he  equa- 
The problem t ions ,  the  nonlinear regions are intent ional ly  avoided ( r e f .  l). 

is  t rea ted  as a linear var ia t iona l  problem with constraints by minimizing some 
function of the  e r ro r  with a constraint  on another function of the  control.  
Generally the  constraint  is placed on only the  expected value or  t i m e  average 
of t he  squared control function. 
l i n e a r ,  the constraint  must be chosen suff ic ient  so  that the probabi l i ty  of 
exceeding the  l i n e a r  range is smll. 

Thus t o  insure t h a t  t h e  equations remain 

This method works qui te  well a s  long a s  
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t he  l i nea r  range of operation i s  l a rge .  However, i n  c r i t i c a l  s i t ua t ions  where 
the  l i nea r  range of operation i s  not la rge ,  t h i s  approach gives excessively 
la rge  e r ro r s .  

Several other s tudies  i n  recent years have been concerned with a rigorous 
account of t he  nonlinear aspect (as Well as other aspects)  of t h e  s tochas t ic  
control problem. These s tudies  take various forms depending on t h e  propert ies  
of the inputs,  the  sources of noise,  t he  form of t h e  nonl inear i ty ,  and the  
form of t he  p lan t .  Recent extensive bibliographies and summaries of these 
r e su l t s  a r e  given i n  references 2 and 3 .  The se t t i ng  f o r  most of these s tud ies  
has been the  Chapman-Kolmogoroff equations or  t h e  r e l a t ed  Fokker-Planck equa- 
t i ons  which govern the behavior of t he  f i r s t  p robabi l i ty  densi ty  function. 
Such approaches hold much promise. A t  t h e  present stage of development, how- 
ever, solutions t o  only the simplest examples can be obtained. 

What i s  needed i s  an intermediate approach. In  t h i s  paper we w i l l  take a 
The problem t o  be 

The sca l a r  problem i s  

middle ground more closely a l l i e d  with the  former approach. 
considered i s  roughly the  Wiener f i l t e r i n g  and control  problem with the  addi- 
t i o n  o f  a zero-memory nonl inear i ty  preceding the  p l an t .  
i l l u s t r a t e d  in  f igure 1. Here as i n  the  Wiener problem the  plant  we wish t o  
control i s  given by i ts  t r ans fe r  function. Preceding the plant  i s  a zero- 
memory nonl inear i ty  f .  By far the  most important nonl inear i ty  and the  one t o  
be emphasized here i s  tha t  due t o  sa tura t ion .  However, a good dea l  can be 
learned by specifying only general  propert ies  of t h e  nonl inear i ty .  
s ( t )  i s  the  t r u e  s igna l  entering the  system. 
the  system, or ,  a l te rna t ive ly ,  the  incoming s ignal ,  i s  contaminated with 
unwanted noise n ( t ) .  
processes with known spec t ra l  dens i t i e s ,  as i n  the  Wiener theory.  Thus we w i l l  
not consider the  f i r s t  probabi l i ty  densi ty  function d i r e c t l y  i n  the  optimiza- 
t i o n .  However, i n  the example we w i l l  take the  noise t o  have a gaussian d i s -  
t r i bu t ion  as i s  usually the  case, and w i l l  show tha t  r e s u l t s  a r e  not very 
sensi t ive t o  la rge  var ia t ions i n  the  s igna l  d i s t r ibu t ion .  And l a s t ,  t he  con- 
t r o l l e r  w i l l  be f r ee  t o  choose so as t o  minimize 

lim(l/2T)J 

the nonlinear regions. That is, we want t o  have an optimization procedure f o r  
finding the  bes t  cont ro l le r  i n  which the  system i s  allowed t o  operate i n  t h e  
nonlinear region. 

The input 
The measurement of  t he  s t a t e  of 

It i s  assumed t h a t  the  inputs a r e  s ta t ionary  ergodic 

E[c2 ( t ) ]  o r  
T 

c 2 ( t ) d t  while allowing operation o f  the system t o  extend in to  
P~ -T 

APPROXIMATE SOLUTION FOR THE OPTIMUM CONTROLLER 

The approach we take here u t i l i z e s  the  l i nea r i za t ion  of the  nonl inear i ty  
as developed by Booton ( r e f .  4 ) .  
i n  analysis  problems with much success, but not i n  synthesis problems. Accord- 
ing t o  t h i s  l i nea r i za t ion  method t h e  nonl inear i ty  f i s  replaced by a sca la r  
k which i s  dependent on E [u2( t ) ] ,  t h e  expected value, or  m, t he  time 
average of the  input t o  t he  nonl inear i ty  ( i f  t he  input i s  s ta t ionary and 
ergodic).  An inherent assumption i n  the  choice of t he  sca la r  k is  t h a t  the  
input t o  t he  nonl inear i ty  i s  gaussian. 

This l i nea r i za t ion  idea has been widely used 

This assumption may not be accurate due 
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t o  t he  nonl inear i ty  i n  the  system and due possibly t o  a nongaussian input 
s ignal .  
vide su f f i c i en t  f i l t e r i n g  t h a t  the approximation w i l l  be f a i r l y  good. 
the  approach is  con:i&en% with n o t  considering the  exact propagation of the 
first probabi l i ty  densi ty  function through the system. 
approach it is  c lear  t h a t  both the controller and the equivalent gain k of 
the nonl inear i ty  a re  f r ee  and need t o  be determined so as t o  r e s u l t  i n  minimum 
e r ro r .  

Nevertheless, we w i l l  see t h a t  the control lers  derived here w i l l  pro- 
Thus 

A s  a result of t h i s  

A s  i s  generally recognized nowadays, a very convenient setting f o r  
s tochast ic  problems and one promising generalization i s  a Hilbert space. 
Although there  is more than one way the  space can be defined, here the stochas- 
t i c  process 
the  inner product i s  e i t h e r  

x ( t , i )  w i l l  be taken to be 3- elemrit of a Eiiibert space i n  which 

o r  

depending on whether the  events o r  the  times are fixed. 
products w i l l  be iden t i ca l  due t o  the  assumed s t a t i o n a r i t y  and ergodicity,  
time averages w i l l  be more convenient for experimental purposes. 
event i is suppressed i n  the  notation. The norm generated f r o m t h e  above 
inner product is 

Although these inner 

Usually the 

Ilv(t)Il' = ( v ( t > ,  v W >  < 

Thus we take 

Now redrawing f igure 1 i n  the usual equivalent open-loop form because of 
l i n e a r i t y ,  we have figure 2. The box label led H is  assumed t o  be a l i nea r  
operator H : x ( t )  + u ( t )  of the form 

m e r e  x ( t )  = s( t )  + n ( t ) ,  and is in=. The operator P is  s imilar ly  defined. 

The problem t o  be solved, stated abstract ly ,  i s  t o  f ind  

sUb jec t  t o  



Note that, t he  describing function g, which i s  the exact r e l a t i o n  between k 
and \\Hx(t))\2, i s  not specif ied.  
(2) by looking f o r  a s ta t ionary  value by means of c l a s s i c a l  va r i a t iona l  
methods. However, t h i s  approach w i l l  not lead t o  a solut ion as w i l l  be seen 
la te r .  Instead we w i l l  follow a d i f f e ren t  route .  
i n to  two s teps  and interchanging the  order of t h e  operations on 
the  equivalent problem 

One could attempt t o  solve equations (1) and 

Separating the  minimization 
x ( t ) ,  we have 

Min{Min\\s(t) - kPHx(t)\I2] 
k H  

( 3 )  

subject t o  

Assuming g has an inverse, l e t t i n g  Z = kP and T = kPH, we see t h a t  equa- 
t i ons  (3)  and (4) become 

Min{Minlls(t) - Tx(t)1I2] 
k H  ( 5 )  

subject t o  

Now consider t he  inner minimization o f  equation ( 5 )  subject t o  equa- 
t i o n  ( 6 ) .  
t h i s  inner minimum i s  t h a t  

It is  known t h a t  a suf f ic ien t  condition fo r  an absolute minimum of 

a t t a i n  an absolute minimum, where A i s  an unknown mul t ip l ie r .  The absolute 
minimum of equation (7)  i s  expressed by t h e  following. 

THEOREM: Let Y be a closed convex subset o f  a Hilber t  space X . 
Given any 
existence of a unique y0cY sa t i s fy ing  

s ( t ) E X ,  then a necessary and su f f i c i en t  condition f o r  the  

i s  t h a t  

( ~ ( t ) ,  s ( t )  - uyo( t ) )  = o f o r  a l l  y ( t )  

u = I + AZ-l*z- l  

where 

and * denotes the  ad jo in t  operator.  
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. 
The proof i s  sketched i n  appendix A.  Equation ( 9 )  i s  another form of 

the Wiener-Hopf equation which accounts f o r  the r e s t r i c t ion  on the control 
function first developed by Mewton (ref. 1) by var ia t ional  pr inciples .  It 
should be noted t h a t  this theorem insures the  e x i s t e x e  and uniqueness of an 
absolute minimum ra ther  than only a s ta t ionary  value. 
appealing because it m i n t a i n s  close contact with the  geometrical notion of 
orthogonal proJection. That is, it says t h a t  the optimum yo vector is one 
which Illakes the  optimum er ror  vector 

This equation is 

s ( t )  - Uya(t) orthogonal t o  all a rb i t r a ry  
Y ( t ) € Y .  

The app l i cab i l i t y  of the preceding theorem is c lear  from an examination of 
the s e t  Y, consisting of output vectors, which i s  generated by the mpping 
T : x ( t )  -, y ( t ) .  This mapping produces the outpdt. set Y such t h a t  

f o r  a l l  t,x€X] 
03 

Y = { y ( t )  : y ( t )  =I  X(T)q(t - T)d? 
-a2 

It is  w e l l  known t ha t  a s  long a s  T s a t i s f i e s  t he  condition 

T w i l l  be l i nea r ,  bounded, and completely continuous. Thus from the  bounded- 
ness, \ \y ( t ) l \  < M\\x(t)\\ < 03 f o r  a l l  x( t )EX for  some M > 0 so  t h a t  
y ( t ) E x o r  YcK Also from the  complete continuity of T, Y i s  compact and 
therefore closed; Y is a l s o  convex. 

Now consider the minimization over k as  given in  equation ( 5 ) .  We can 
show what t h i s  s tep involves by examining the properties of the operator T 
which a r e  contained h the orthogonal projection theorem of equation ( 8 ) .  
k be a rb i t r a ry .  Then take A1 and h2 t o  >e tvo values of A i n  equation (8) 
such t h a t  be the corresponding opi , ica  m Q u t  
vectors.  Then f o r  these two values of A we have, from equation (e), 

Let 

0 < Al < A2, and l e t  y1 and y2 

Solving equation (11) f o r  \ \s(t)  - yl( t ) \ l2  and subst i tut ing i n  equation (10) we 
see t h a t  
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Considering equations (12) and (11) we see 

Thus the  operator 
t he  monotonic property 

T which makes equation (7) a t t a i n  an absolute minimum has 

Obviously, t h i s  property holds fo r  a r b i t r a r y  l i n e a r  p lan ts .  

To continue the  minimization over k we must assume some propert ies  f o r  

kZg-l(k) is a monotonically 
the  describing function g.  A pa r t i cu la r ly  important c l a s s  of describing 
functions is  t h a t  described by the  property t h a t  
decreasing function. For example, t h e  describing function f o r  a sa tura t ion  
nonl inear i ty  or  a re lay  s a t i s f i e s  t h i s  property. Now consider two values of 
k, kl < k2. Then from the above property and equation (6), we w i l l  have 

Then from t h e  property o f  t he  optimum operator given i n  equation (14), 

Now i f  the describing function i s  assumed t o  be r e s t r i c t e d  fur ther  by the  
commonly occurring property 

O < k < l  

it w i l l  be c l ea r  from the  monotone property i n  equation (16) t h a t  there  w i l l  
be no minimum er ror ,  t h a t  is ,  no minimum of equation ( 5 )  subject t o  equa- 
t i o n  (6) 
describing function g 

Note tha t  t h i s  conclusion has not required the  exact form of the  
t o  be specif ied other than by i ts  general  propert ies  
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t h a t  it have an inverse, be greater  than zero, and 
decreasag. 

k2g-’ be monotonically 
!!%is conclusion a l s o  shows that the  stationary value which i s  

sought in- t h e  var ia t iona l  

Even though there  is  
interested i n  determining 
is, 

approach does not ex i s t .  

no minimum, from a prac t ica l  viewpoint, one would be 
the  grea tes t  lower bound, glb, of performance, t h a t  

subject t o  

However, t o  do so, more m u s t  be assumed about the nonlinearity.  
obvious p rac t i ca l  importance it w i l l  be assumed t h a t  the  nonlinearity is  due 
t o  saturat ion.  In t h i s  case we may f ind the exact form o f  g-1 i n  equa- 
t i o n  (18) a s  
t ion ,  it is known (ref. 4) that 

Because of its 

k -+ 0 .  For, *om an analysis of the saturat ion describing func- 

where L is  the  saturat ion value f o r  the nonlinearity. I n  other words, 

Thus as the e r ro r  becomes s e e r  as  a resu l t  of decreasing 
m y  be interpreted a s  the  behavior of  the r e s t r i c t ion  equation (18) by defin- 
ing g-l. But since, by def in i t ion  Z = kP, equation (19) becomes 

k, t h l s  e x p e s s i o n  

Then since 
equation (15) implies 

property i n  equation (141, equations (17) and (18) a r e  equivalent t o  

glbIk3 = 0, the above relationship together with the  property i n  
lub{\\P-?Px(t)l(2] = 2J.?/x. Using t h i s  f a c t  and the 
k 

subject t o  



The solut ion t o  these equations by conventional methods then gives t h e  l imi t ing  
value of performance. Note t h a t  no assumptions other than l i n e a r i t y  a r e  made 
concerning the  p lan t .  Although equation (19) i s  va l id  f o r  a sa tura t ion  non- 
l i nea r i ty ,  one could a r r ive  a t  similar results f o r  other nonl inear i t ies  by 
examining the  l imi t ing  behavior of equation (18) f o r  t h a t  pa r t i cu la r  
nonlinearity.  

It is  apparent now tha t  the  optimum performance f o r  t he  sa tura t ing  case 
i s  related d i r e c t l y  and simply t o  t h e  performance f o r  t he  completely l i n e a r  
case. In  the  l i n e a r  case (denoted by subscr ipt  L ) ,  i n  which f = 1, equa- 
t ions  (20) and (21) become 

Min\ \s( t )  - Tx( t ) \ lL2  ( 2 2 )  
H 

subject t o  
2 

\ \ u ( t )  \ I L  = constant 

In  comparing the performance for  the  saturat ion case (denoted by subscr ipt  
with the l i n e a r  case, we see t h a t  

s )  

w i l l  imply 

Thus the glb of the nonlinear error  performance, as a function of t he  satura- 
t i o n  leve l  L, i s  the  same as the optimum l i n e a r  e r ro r  performance as a func- 
t i o n  of \ \ u ( t ) \ \  where \ \ u ( t ) \ \  is  replaced by L.  

In  order t o  i l l u s t r a t e  t he  comparative performance between the  l i n e a r  and 
nonlinear cases it w i l l  be expedient t o  take an example. Since the  d e t a i l s  of 
the  example a re  unimportant, we mention only t h a t  the  example represents a 
hypothetical  intercept ion problem taken from a l a t e r  sect ion.  
t h e  optimum l i n e a r  performance, where f = 1, is  given i n  f igure  3.  In  order 
t o  achieve results predicted by l i n e a r  theory, it is  customary t o  design such 
t h a t  \ \ u ( t ) \ \L  = L/2 However i n  
the  nonlinear case we  have seen t h a t  t he  glb of t he  e r ro r  performance occurs 
when \ \ f [ u ( t ) ] \ \  = 
t r o l  i n  comparison t o  the  l i n e a r  case. This increase may be s igni f icant  
depending on the  value of L.  For example, i n  f igure 3 it is  c l ea r  t h a t  an 
increase i n  \ \ u ( t ) \ \  by a fac tor  of  1 .6  w i l l  not be of much value i n  reducing 
minimum error a t  point 
reduction in  e r ro r  a t  point B where \ u ( t ) \ \  is small. This comparison i s  
shown even b e t t e r  perhaps i n  f igure  4 i obtained i n  an obvious way by t h e  d is -  
cussion of the preceding paragraph) where the  performances o f  these two systems 

For t h i s  example 

so  t h a t  t he  system remains e s sen t i a l ly  l i n e a r .  

L. Thus there  i s  a 60 percent increase i n  e f fec t ive  con- 

A where \ \ u ( t ) \ \  i s  la rge ,  but  it w i l l  o f fe r  grea t  
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are given as a f m c t i o n  of t he  sa tura t ion  l e v e l  L. 
u n i t s  in f i g x e s  3 and 4, 1 ft = 0.3048 m and 1 g = 980.7 cm/sec2.) 

(Note t h a t  f o r  metric 

Up t o  now only the  glb of t he  e r ro r  performance fo r  the sa tura t ing  
system has been discussed. 
f r o a  a p r a c t i c a l  viewpoint we are in te res ted  i n  obtaining performance which i s  
reasonably close t o  the  glb. Thus it will be desirable t o  consider how t h e  
system should be designed so t h a t  i t s  performance will be close t o  t h i s  
This can be done by considering the  describing function charac te r i s t ic  given 
i n  f igure  5 where the  dimensionless i s  given as a function 
01 %he equivalent gain k. For a given L and any choice of m, 

Even though t h i s  performaace i s  not attainable 

glb.  

m = I \ f [u( t ) ] \ \ /L 

and t h e  corresponding e r ro r  performance i s  obtainable from f igure  3. 
may choose t h e  value of m so t h a t  the  e r ro r  will be s a t i s f a c t o r i l y  c lose t o  
the  glb performance. The decision regarding t h i s  choice of m can best be 
shown i n  f igure  4 where t h e  performance i s  shown f o r  several  values of 

Hence one 

m. 

DIMENSIONLESS PERFORMANCE CURVES 

It w i l l  be t h e  purpose of t h i s  sect ion t o  present sone dinensionless 
performance curves f o r  t h e  saturat ing system. The motivation here is that one 
would l ike  t o  be able t o  d r a w  some general conclusions regarding optimal per- 
formance. A similar approach f o r  l i n e a r  systems was taken a t  about t h e  same 
time by Coales (ref. 5 )  and Stewart (ref. 6 ) ,  although t h e  details of t he  two 
stz5ies are s l i g h t l y  d i f f e ren t .  Since it i s  not possible t o  choose a system 
which i s  optimal f o r  d l  i~~pi-its and p lan ts ,  some narrowing of t h e  t a sk  w a s  
required t o  car ry  out t h i s  approach. In  bO& $he ?.hove s t d i e s ,  t he  c l a s s  of 
inputs and p lan ts  w a s  r e s t r i c t e d  t o  a special  but  yet very importarii clsss 
prac t i ca l ly .  Fromthese assumptions a set of dimensionless curves were 
obtained which are useful  i n  determining optimal l i n e a r  performance and t h e  
design of the optimal l i n e a r  system. 

Similar dimensionless performance curves f o r  the  saturat ing system may be 
Since we u t i l i z e  t h e  obtained because of t h e  relat ionships  developed earlier. 

results of reference 6 f o r  l i n e a r  systems, it will be desirable  t o  summarize 
the  assumptions in t h i s  reference along with a f e w  remarks: 

1. The c l a s s  of inputs was re s t r i c t ed  t o  a very common and important 

Qs(u) = a/u4(* + E 2 )  and 
This form f o r  t he  s igna l  i s  va l id  f o r  many s ta t ionary  and non- 

form which occurs i n  mny  physical problems; t he  power spectra of t h e  
s igna l  and noise were defined, respectively,  by 
%(") = N .  
s ta t ionary  processes. rFwthermore, t h i s  form may often approximate a 
var ie ty  of experimentally determined input data .  The other function f o r  
t he  noise i s  approximated by a constant, and t h i s  is  a good approximation 
when the  noise bandwidth i s  l a rge r  than t h e  resu l tan t  system bandwidth. 

9 



2 .  The plant  w a s  assumed t o  be of the  form c/s2. Although the  
plant w i l l  generally be much more complicated, it w a s  found t h a t  the more 
complex form i s  not only of ten unnecessary but undesirable. That i s ,  t he  
more complex form can of ten be approximated by the simpler form 
Moreover, it was shown ( r e f .  6 )  t h a t  t he  e f f ec t  of addi t iona l  dynamic 
terms i s  detrimental t o  optimum performance so t h a t  the  simpler form 
should be s t r iven  fo r  when there  i s  control  over the  plant dynamics. 

c/s2. 

With these assumptions, the  dimensionless e r ro r  can be determined as a function 
of the dimensionless control function when the  system is l i nea r .  This r e l a -  
t ionship i s  given i n  f igure  6, where the  dimensionless parameters P and v are 
defined as: p = 
without dimensions. 

and v = E/p. (Note t h a t  i n  f i g .  6, 32.2 i s  a sca la r  
Thus \ lu ( t )  \I/@ is  dimensionless .) 

The corresponding dimensionless curves f o r  t he  sa tura t ing  system p a r a l l e l  
f igures 4 and 5 fo r  t he  spec i f ic  example discussed earlier. 
gives the  dimensionless glb 
parameter 2 defined by 2 = L/32.2 N1/2j35/2, where L i s  the  saturat ion 
l e v e l  of the  forcing function. (Again note t h a t  both 32.2 and L/N1/2P5/2 a r e  
dimensionless.) These curves, va l id  f o r  any s e t  of conditions, might be useful  
i n  several ways. 
could be achieved i n  a spec i f ic  case f o r  purposes of comparing with other sys- 
tems t o  indicate  p o s s i b i l i t i e s  f o r  improvement. They might a l so  be used in  
preliminary design t o  evaluate the r e l a t i v e  importance of those f ac to r s  a f fec t -  
ing the optimum performance. 
i s t i c  is given i n  dimensionless form. This f igure,  i n  conjunction with 
f igure 6, is  useful  i n  deciding how close t o  the  
The detai led design of the optimum cont ro l le r  can be accomplished by combining 
the  r e su l t s  i n  t h i s  paper with those of reference 6 .  

F i r s t ,  f igure  7 
of t h e  e r r o r  as a function of a dimensionless 

They might be used t o  determine t h e  bes t  performance which 

Second, i n  f igure  8, t h e  nonl inear i ty  character- 

glb curve one wants t o  be.  

EXPEBIMENTAL FESULTS 

Since the  r e s u l t s  presented e a r l i e r  depend on t h e  describing function 
approximation, it i s  important t o  invest igate  the  v a l i d i t y  of t h i s  approxima- 
t i on .  
analog computer simulation, t h e  results of  which w i l l  be described b r i e f l y .  

One expedient m y  of invest igat ing t h i s  approximation is  by means of an 

The example chosen for t he  simulation w a s  a hypothetical  intercept ion 
problem i n  which the  t a rge t  executes a constant amplitude switching of acceler-  
a t ion  with a Poisson d i s t r ibu t ion  for  t he  length of  time between switches. The 
spectrum for  such a function is  known t o  be 

SO t h a t  the dimensionless curves j u s t  presented a re  applicable.  The other 
functions, t h e  noise and p lan t ,  a r e  assumed t o  be of t he  form described 
e a r l i e r ,  t h a t  is, t h e  noise spectrum is a constant and the  plant  is  of t he  
form c / s 2 .  The following typ ica l  numerical values f o r  the  parameters were 
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taken: a = 0.968 g, K = 0.431, and N = 15 ft2/rad/sec. Two values of the 
saturat ion l e v e l  of t'ne forcing function were chosen as L = 2.87 g and 2.3 g. 
The systems were designed so that  the theoret ical  e r rors  were reasonably close 
t o  the  glb curve as indicated i n  f i g - ~ e  4. 

The experimental r e s u l t s  which were obtained (using norm based on time 
averages f o r  convenience) a r e  shown i n  figure 4, and the errors  m y  be seen t o  
be reasonably close t o  the  theore t ica l  values with which they should be com- 
pared. Also see t ab le  I f o r  the  comparison. It is d i f f i c u l t  t o  estimate the 
accuracy of the experimental r e s u l t s  because although the  measurements exter;d 
over a few minutes the  results varied solnewhat with d i f fe ren t  noise and signal 
sample J c i ~  hist .ories.  

Several other in te res t ing  experimental results were Gbtained which a r e  
d i f f i c u l t  or impossible t o  examine analyt ical ly .  We itemize these results i n  
the  following. F i r s t ,  measurements were made d i r ec t ly  from experimental data 
of  the  d i s t r ibu t ion  a t  the input t o  the nonlinearity and the equivalent gain. 
Although data  cannot be given here, the d is t r ibu t ion  was exceptionally normal 
and the  equivalent gain calculated from the well-known re la t ion  

was i n  excellent agreemnt  with theory. Second, the saturating element was 
replaced by a constant gain equal t o  the  theore t ica l  value f o r  which the  sys- 
tem was designed. 
i n  table I; it agrees well with the  theoret ical  value as it should. Third, the  
eyfect sf t he  first probabi l i ty  density function of the signal on the res3dts 
was examined. 
depends on only the second probabili ty density f - a z t i n n .  However, it i s  c lear  
t h a t  a rigorous account o f  nonlinear systembehavior must depend on iiie first. 
probabi l i ty  densi ty  function. Thus if the method is t o  be useful, the r e su l t s  
m u s t  not be very sensi t ive t o  the f i r s t  probabili ty densi ty  function. 
invest igate  t h i s  e f fec t  t w o  s ignals  were chosen with the  same spec t ra l  densi- 
t i es  but with widely different  first probabili ty densi ty  functions. The dis-  
t r i bu t ion  of the  random square-wave of acceleration used e a r l i e r  was, of 
course, two impulses, a t  sa. and -a. In addition, a s ignal  with the same 
spectrum but with a gaussian d is t r ibu t ion  was used. From the  r e s u l t s  indicated 
i n  tab le  I it appears t h a t  the  e r ro r  fo r  the gaussian case is f a i r l y  close t o  
but  s l i g h t l y  grea te r  than fo r  t he  random square-wave signal.  Since the d i f f e r -  
ence between these t w o  d i s t r ibu t ions  is extreme, it appears that the  r e s u l t s  
a r e  f a i r l y  insens i t ive  t o  d is t r ibu t ion .  Fourth, a ser ies  of experimental runs 
were mde t o  invest igate  the  loca l  behavior of the  e r ro r  performance fo r  the 
saturat ing system with the random square-wave s ignal .  That is, since the 
theory presented i s  only approximate, it is  of i n t e re s t  t o  measure the gradient 
of the e r ror  with respect t o  the parameters, %, of the optimum control ler ,  or 
more properly &/hi. 
second-order polynomial t o  a third-order polynomial, contains six parameters. 
By varying each of these parameters individually and su f f i c i en t ly  t o  cause a 

The experimental value for t he  e r ro r  performance is given 

In te res t  centers  on t h i s  e f fec t  because the theory presented 

To 

The control ler ,  which i s  given by the r a t i o  of a 



, 
small change in  error,  &/&i 
Thus the  design w a s  experimentally ve r i f i ed  t o  be optimum, a t  least  l o c a l l y .  

w a s  found t o  be pos i t ive  for each parameter ai.  

CONCLUDING REMARKS 

The method given here shows t h a t  when operating i n  c r i t i c a l  regions one 
can obtain s ign i f icant  improvement over l i n e a r  performance by nonlinear opera- 
t i o n .  The method i s  appealing because it agrees with ones i n t u i t i v e  notions 
concerning optimum performance f o r  sa tura t ing  systems. However, the  v a l i d i t y  
of the method depends on t h e  accuracy of t he  describing function concept which 
generally cannot be predicted a p r i o r i .  The simulation results indicate  t h e  
approximation i s  va l id  t o  about t he  same accuracy as is  usual ly  associated w i t h  
t h e  describing function. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  Calif . ,  Feb. 24, 1966 
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. 
APPENDIX A 

PROOF OF THEOfG3lvi 

TXEOX3k L e t  Y be a closed convex subset of a Hilbert space ;y: . 
Given any 
existence of a unique y0eY sa t i s fy ing  

s( t )EX, then a necessary and suf f ic ien t  condition for the  

2 
Iis(tj - ; Y o w I I  ‘ L  1 It + J.\Iz-’+)II~ < I I S W  - Y(t)112 + hIIz-’y(t)II‘ for a l l  y - 

f f l - t )  
\-/ 

is  t h a t  

where 

(A3 1 u = I + hZ-=*Z-1 
and * denotes the ad jo in t  operator. 

To prove the  existence of a minimizing vector, l e t  

m = glb{l \s( t )  - y(t)j i2 + h l l z -S ( t ) / / 2  : Y ~ Y ]  

Now choose a seqienze ry-] such t h a t  
C Y  

il4t) - Y q ( t ) I l 2  + hilz-lyq(t)/j2 + m 

llYp - Yqll + hllZ-l(Yp - Yq)112 = “IIYp - sl12 + ~llz-%pl12) 

It can be shown that {y is a Cauchy sequence. For by t h e  parallelogram l a w ,  9 

2 

- 411 1 (yp + yq) - Sii2 



Due to the assumed convexity property of Y and the definition of my the 
last two terms are less than -4m. Hence 

because of the way in which the sequence was chosen as described following 
equation ( A 3 ) .  Thus cyq] is a Cauchy sequence. Since Y is a closed subset 
of X ,  it is complete, so that y + yO€X. It will then follow that q 

\Is - Yql12 + A(IZ-lYqIl2 -+- l ls - Yol12 + hllZ-ly,l12 

Thus 

11s -- Yol12 + ~llZ-Sol12 = 

and the minimum is actually attained. 

To prove uniqueness, assume there are two elements y and zo in Y that 
0 are optimum. Let the minimum value be m. Now consider 

By means of the parallelogram law we can show, as in the preceding paragraph, 
that 

- Hence it follows yo - zo and the optimum is unique. 

To find the necessary and sufficient condition which yo must satisfy, 
we consider the following expression which can be expanded as follows 

11s - ylj2 + h\jZ-ly1/2 = 11s - Yol12 + AIlZ-lYol12 + IIY - Yol12 
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. 
Using the  adjoint  operator denoted by * 

where 

u = I + AZ-l*Z-1 

auu --a 9 - yD is an a rb i t r a ry  element of Y and is relabel led as y. Now 
equation (A?) becomes 

It is clear  t h a t  a suf f ic ien t  condition fo r  
t h a t  

yo t o  s a t i s f y  equation (Al) is  

(y, s - uy 0 ) = o for a n  y (A8 1 

For necessity, we assume equation ( A l j  holds .  !hen i n  view of equa- 
t i o n  (A7) ,  it w i l l  be necessary t h a t  

If p is  my scalar ,  py belongs t o  Y. Hence for (Ag) t o  hold f o r  a l l  y, 
it w i l l  be necessary t h a t  

IIY - Yol12 + AlIZ-l(y - Yo)lj2 - 2pRe(y, s - vyo) 2 0  

for any sca la r  p. This w i l l  require 

(y, s - uy0) = o f o r  a l l  y 
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Figure 1.- Xonlinear f i l t e r i n g  and control problem. 

Figure 2.- Equivalent open-loop problem. 
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