NASA TN D-3479

OPTIMAL CONTROL OF SATURATING SYSTEMS
WITH STOCHASTIC INPUTS
By Elwood C. Stewart and William P. Kavanaugh -

Ames Research Center
Moffett Field, Calif.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information
Springfield, Virginia 22151 — Price $1.00



OPTIMAL CONTROL OF SATURATING SYSTEMS
WITH STOCHASTIC INPUTSt

By Elwood C. Stewart and William P. Kavanaugh
Ames Research Center

SUMMARY 2/(

This study is concerned with the optimal control of nonlinear systems
which operate in the presence of random unwanted disturbances. Although the
results are intended to be applicable to a certain class of nonlinear systems,
saturating systems are emphasized because of their practical importance. Such
systems are important when operation occurs in critical regions, for example,
in the control of vehicles in situations where the available thrust is
marginal.

This report presents an approximate method of synthesizing the optimal
controller with noisy measurements which utilizes the limited control function
in the best possible manner. The principal results show that: (a) although
there is no minimum, the performance can approach arbitrarily closely to a
greatest lower bound, and (b) striking improvement in performance can be
obtained in comparison with linear theory when operating in critical regioms.
Computer results are used for verification. In addition, dimensionless curves
of the optimal performance are given as a function of a dimensionless param-
eter involving the input statistics and saturation value of the forcing

function. W

INTRODUCTION

The optimal control of linear systems which operate in the presence of
random unwanted disturbances has been the subject of intensive research for
many years and appears to be fairly well understood. However much less has
been done on the more important and more difficult nonlinear problem.

In one approach, when there is a linear region of operation of the equa-
tions, the nonlinear regions are intentionally avoided (ref. 1). The problem
is treated as a linear variational problem with constraints by minimizing some
function of the error with a constraint on another function of the control.
Generally the constraint is placed on only the expected value or time average
of the squared control function. Thus to insure that the equations remain

_ linear, the constraint must be chosen sufficient so that the probability of

exceeding the linear range is small. This method works quite well as long as
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the linear range of operation is large. However, in critical situations where
the linear range of operation is not large, this approach gives excessively
large errors.

Several other studies in recent years have been concerned with a rigorous
account of the nonlinear aspect (as well as other aspects) of the stochastic
control problem. These studies take various forms depending on the properties
of the inputs, the sources of noise, the form of the nonlinearity, and the
form of the plant. Recent extensive bibliographies and summaries of these
results are given in references 2 and 3. The setting for most of these studies
has been the Chapman-Kolmogoroff equations or the related Fokker-Planck equa-
tions which govern the behavior of the first probability density function.

Such approaches hold much promise. At the present stage of development, how-
ever, solutions to only the simplest examples can be obtained.

What is needed is an intermediate approach. In this paper we will take a
middle ground more closely allied with the former approach. The problem to be
considered is roughly the Wiener filtering and control problem with the addi-
tion of a zero-memory nonlinearity preceding the plant. The scalar problem is
illustrated in figure 1. Here as in the Wiener problem the plant we wish to
control is given by its transfer function. Preceding the plant is a zero-
memory nonlinearity f. By far the most important nonlinearity and the one to
be emphasized here is that due to saturation. However, a good deal can be
learned by specifying only general properties of the nonlinearity. The input
s(t) is the true signal entering the system. The measurement of the state of
the system, or, alternatively, the incoming signal, is contaminated with
unwanted noise n(t). It is assumed that the inputs are stationary ergodic
processes with known spectral densities, as in the Wiener theory. Thus we will
not consider the first probability density function directly in the optimiza-
tion. However, in the example we will take the noise to have a gaussian dis-
tribution as 1s usually the case, and will show that results are not very
sensitive to large variations in the signal distribution. And last, the con-
troller will be free to choose so as to minimize E[eZ(t)] or

T
lim(l/ET)I e2(t)dt while allowing operation of the system to extend into
Toc0 -T

the nonlinear regions. That is, we want to have an optimization procedure for
finding the best controller in which the system is allowed to operate in the
nonlinear region.

APPROXIMATE SOLUTION FOR THE OPTIMUM CONTROLLER

The approach we take here utilizes the linearization of the nonlinearity
as developed by Booton (ref. 4). This linearization idea has been widely used
in analysis problems with much success, but not in synthesis problems. Accord-
ing to this linearization method the nonlinearity f 1s replaced by a scalar
k which is dependent on E[u2(t)], the expected value, or u2(t), the time
average of the input to the nonlinearity (if the input is stationary and
ergodic). An inherent assumption in the choice of the scalar Xk is that the
input to the nonlinearity is gaussian. This assumption may not be accurate due
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to the nonlinearity in the system and due possibly to a nongaussian input
signal. Nevertheless, we will see that the controllers derived here will pro-
vide sufficient filtering that the approximation will be fairly good. Thus
the approach is consistent with not considering the exact propagation of the
first probability density function through the system. As a result of this
approach it is clear that both the controller and the equivalent gain k of
the nonlinearity are free and need to be determined so as to result in minimum
error.

As is generally recognized nowadays, a very convenient setting for
stochastic problems and one promising generalization is a Hilbert space.
Although there is more than one way the space can be defined, here the stochas-
tic process x(t,i) will be taken to be an element of a Hilbert space in which
the inner product is either

(v(t,1), w(T,3)) = E[v(t,i)w(r,3)]

or

T
(v, e 73 = vin gy [ wle,0vte 7,

depending on whether the events or the times are fixed. Although these inner
products will be identical due to the assumed stationarity and ergodicity,
time averages will be more convenient for experimental purposes. Usually the
event i 1is suppressed in the notation. The norm generated from the above
inner product is

v (£)|Z = (v(8), v(t)) <
Thus we take

F = {x(t,1) @ [jx(t,1)]] < ®, ~0 <t < o}

Now redrawing figure 1 in the usual equivalent open-loop form because of
linearity, we have figure 2. The box labelled H 1is assumed to be a linear
operator H:x(t) — u(t) of the form

u(t) = Bx(t) = f x(7)n(t - T)ar

where x(t) = s(t) + n(t), and is in &. The operator P is similarly defined.
The problem to be solved, stated abstractly, is to find

Min||s(t) - Pkix(t)|? (1)
k,H

2

subject to

g(|Ex(e)|?) -x =0 (2)
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Note that the describing function g, which i1s the exact relation between k
and HHx(t)Hz, is not specified. One could attempt to solve equations (1) and
(2) by looking for a stationary value by means of classical variational
methods. However, this approach will not lead to a solution as will be seen
later. Instead we will follow a different route. Separating the minimization
into two steps and interchanging the order of the operations on x(t), we have
the equivalent problem

Min{Min||s(t) - xPHx(%)|") (3)
k H

sub ject to
g(|Ex(t)||®) - x = 0 (1)

Assuming g has an inverse, letting Z = kP and T = kPH, we see that equa-
tions (3) and (4) become

Min{Min||s(t) - Tx(t)||?} (5)
k H
subject to
lz=trx(t) || = g=3(x) (6)

Now consider the inner minimization of equation (5) subject to equa-
tion (6). It is known that a sufficient condition for an absolute minimum of
this inner minimum is that

ls(e) ~ mx(e)||® + Nz~ 2rx(t)|® (7)

attain an absolute minimum, where A 1is an unknown multiplier. The absolute
minimum of equation (7) is expressed by the following.

THEOREM: Let Y bYe a closed convex subset of a Hilbert space X .

Given any s(t)e #, then a necessary and sufficient condition for the
existence of a unique yOeY satisfying

() - v (DI + Mz~ (6)]|% < lls(e) - y()|P + Nz (®)|F  for a1l y
(8)
is that
(y(t), s(t) - Uy (t)) =0  for all y(t) (9)
where
U=1I+a\" g1
and * denotes the adjoint operator.

N




The proof is sketched in appendix A. Eguation (9) is another form of
the Wiener-Hopf equation which accounts for the restriction on the control
function first developed by Newton (ref. 1) by variational principles. It
should be noted that this theorem insures the existence and unigueness of an
absolute minimum rather than only a stationary value. This equation is
appealing because it maintains close contact with the geometrical notion of
orthogonal projection. That 1s, it says that the optimum y_ vector is one
w?igh makes the optimum error vector s(t) - Uy,(t) orthogonal to all arbitrary
y(tleX.

The applicability of the preceding theorem is clear from an examination of
the set Y, consisting of output vectors, which is generated by the mapping
T:x(t) » y(t). This mapping produces the output set Y such that

Y = {y(t) : y(t) =f°o x(7)q(t - T)ar for all +t,xe¥}

It is well known that as long as T satisfies the condition

[e o] [+ 4] 2
f f la(t - 7)|” at dr <=
—00 —00

T will be linear, bounded, and completely continuous. Thus from the bounded-
ness, |ly(t)|| < M{x(t)}] <= for all =x(t)eH for some M >0 so that
y(t)exor YcH. Also from the complete continuity of T, Y is compact and
therefore closed; Y is also convex.

Now consider the minimization over k as given in equation (5). We can
show what this step involves by examining the properties of the operator T
which are contained in the orthogonal projection theorem of equation (8). Let
kX be arbitrary. Then take A3z and As To be two values of A in equation (8)
such that O < A; < Az, and let Vq and y, be the corresponding opiimum cutput
vectors. Then for these two values of A we have, from equation (8),

ls(6) = 7y + A lla (0 < fs(e) - 12 (@R + Az, (®)F (10)

ls(t) = ya(®| + Mallzyy (6)|®

IN

s(t) - v, (B2 + 7\1\\2"1;)r2(1:)\\‘2 (11)

Solving equation (11) for ||s(t) - y,(t)||® and substituting in equation (10) we
see that

15() = Yo (P + Al (@2 < ls() - v (02 + 7,2y, (0)|

- IZ7 3 (O] + A l127 Yy (0D




ALz 2y, ()12 - 127y (0 F] < Aallizm (0|12 - Y|z 2y, (8))1B)

Thus we conclude
1227, (OF < [127 %y, (e)])® (12)
Considering equations (12) and (11) we see
ls(t) - ya (01 < Yls(v) - w6} (13)

Thus the operator T which makes equation (7) attain an absolute minimum has
the monotonic property

A<hz 2 |2y, (BB < \\Z_lyl(t)nz
> [Py, (0] < Bty (0)|
= {ls(t) - ¥, (0% < |ls(t) - y,(0)|7 (1%)

Obviously, this property holds for arbitrary linear plants.

To continue the minimization over X we must assume some properties for
the describing function g. A particularly important class of describing
functions is that described by the property that k2g~1(k) is a monotonically
decreasing function. For example, the describing function for a saturation
nonlinearity or a relay satisfies this property. Now consider two values of
k, k3 <ks. Then from the above property and equation (6), we will have

ki <kz 2 [Py, (8)|® <Py, (0)|® (15)

Then from the property of the optimum operator given in equation (1k4),
k1 <kp 2 |ls(t) - ya(8)]2 < |[s(t) - y ()3 (16)

Now if the describing function is assumed to be restricted further by the
commonly occurring property

O0<k<1l
it will be clear from the monotone property in equation (16) that there will
be no minimm error, that is, no minimum of equation (5) subject to equa-

tion (6). Note that this conclusion has not required the exact form of the
describing function g to be specified other than by its general properties
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that it have an inverse, be greater than zero, and kag—l be monotonically
decreasing. This conclusion also shows that the stationary value which is
sought in the variational approach does not exist.

Even though there is no minimum, from a practical viewpoint, one would be
interested in determining the greatest lower bound, glb, of performance, that
is,

gﬁb{M%n“s(t) - x(t)|]2} (1)

subject to
Iz 22 (6) [ = g=*(x) (18)

However, to do so, more must be assumed about the nonlinearity. Because of its
obvious practical importance it will be assumed that the nonlinearity is due

to saturation. In this case we may find the exact form of g~1 in equa-

tion (18) as k = 0. For, from an analysis of the saturation describing func-—
tion, it is known (ref. 4) that

G e

2”5 (e) |1/ t

- [oe)

where L is the saturation value for the nonlinearity. In other words,

Iz () = llz7mx(e)P 28 5 as k- o0 (19)

Thus as the error becomes smaller as a result of decreasing k, this expression
may be interpreted as the behavior of the restriction equation (18) by defin-
ing g~1. But since, by definition Z = kP, equation (19) becomes

[Pax(6)|[2 ~21%  as k-0

Then since glb{k} = 0, the above relationship together with the property in
equation (15) implies 1ub{|[P~2Tx(t)||2} = 2I2/x. Using this fact and the

property in equation (14), equations (17) and (18) are equivalent to

Mﬁn“s(t) - x(¢)|® (20)

subject to

[B=2x() % = |lelu(t) 1|2 = 2 12 (21)




3

The solution to these equations by conventional methods then gives the limiting
value of performance. Note that no assumptions other than linearity are made
concerning the plant. Although eguation (19) is valid for a saturation non-
linearity, one could arrive at similar results for other nonlinearities by
examining the limiting behavior of equation (18) for that particular
nonlinearity.

It is apparent now that the optimum performance for the saturating case
is related directly and simply to the performance for the completely linear
case. In the linear case (denoted by subscript L), in which f = 1, equa-
tions (20) and (21) become

M%In\\s(t) - mx(t)]|° (22)

subject to

Hu(t)HLZ = constant (23)

In comparing the performance for the saturation case (denoted by subscript s)
with the linear case, we see that

(), = o)1, = B o

will imply

ls(t) - Tx(t)\lS = |[s(t) - Tx(t)|

Thus the glb of the nonlinear error performance, as a function of the satura-
tion level L, is the same as the optimum linear error performance as a func-
tion of |lu(t)|| where |lu(t)| is replaced by J2/x L.

In order to illustrate the comparative performence between the linear and
nonlinear cases it will be expedient to take an example. Since the details of
the example are unimportant, we mention only that the example represents a
hypothetical interception problem taken from a later section. For this example
the optimum linear performance, where f = 1, is given in figure 3. In order
to achieve results predicted by linear theory, it is customary to design such
that ||lu(t)ll, = L/2 so that the system remains essentially linear. However in

the nonlinear case we have seen that the glb of the error performance occurs
when ||f{u(t)]|| = ¥2/x L. Thus there is a 60 percent increase in effective con-
trol in comparison to the linear case. This increase may be significant
depending on the value of L. For example, in figure 3 it is clear that an
increase in ||u(t)]| by a factor of 1.6 will not be of much value in reducing
minimm error at point A where |ju(t)|| is large, but it will offer great
reduction in error at point B where Qu(t)n is small. This comparison is
shown even better perhaps in figure 4 (obtained in an obvious way by the dis-
cussion of the preceding paragraph) where the performances of these two systems




are given as a function of the saturation level L. gNote that for metric
units in figures 3 and 4, 1 ft = 0.3048 mand 1 g = 980.7 cm/sec2.)

Up to now only the glb of the error performance for the saturating
system has been discussed. Even though this performance is not attainable
from a practical viewpoint we are interested in obtaining performance which is
reasonably close to the glb. Thus it will be desirable to consider how the
system should be designed so that its performance will be close to this glb.
This can be done by considering the describing function characteristic given
in figure 5 where the dimensionless m = ||f[u(t)]||/L is given as a function
of the equivalent gain k. For a given L and any choice of m,

\flu(t) ]} = oL , 0<m <~/%

and the corresponding error performance is obtainable from figure 3. Hence one
may choose the value of m so that the error will be satisfactorily close to
the glb performance. The decision regarding this choice of m can best be
shown in figure 4 where the performance is shown for several values of m.

DIMENSIONLESS PERFORMANCE CURVES

It will be the purpose of this section to present some dimensionless
performance curves for the saturating system. The motivation here is that one
would like to be able to draw some general conclusions regarding optimal per-
formance. A similar approach for linear systems was taken at about the same
time by Coales (ref. 5) and Stewart (ref. 6), although the details of the two
studies are slightly different. Since it is not possible to choose a system
which is optimal for all inputs and plants, some narrowing of the task was
required to carry out this approach. In boik the ghove studies, the class of
inputs and plants was restricted to a special but yet very importani class
practically. From these assumptions a set of dimensionless curves were
obtained which are useful in determining optimal linear performance and the
design of the optimal linear system.

Similar dimensionless performance curves for the saturating system may be
obtained because of the relationships developed earlier. ©Since we utilize the
results of reference 6 for linear systems, it will be desirable to summarize
the assumptions in this reference along with a few remarks:

1. The class of inputs was restricted to a very common and important
form which occurs in many physical problems; the power spectra of the
signal and noise were defined, respectively, by &g(w) = o/w*(w® + £2) and
QN(w) = N. This form for the signal is valid for many stationary and non-
stationary processes. Furthermore, this form may often approximate a
variety of experimentally determined input data. The other function for
the noise is approximated by a constant, and this is a good approximation
vwhen the noise bandwidth is larger than the resultant system bandwidth.




2. The plant was assumed to be of the form c¢/s=. Although the
plant will generally be much more complicated, it was found that the more
complex form is not only often unnecessary but undesirable. That is, the
more complex form can often be approximated by the simpler form c/s2.
Moreover, it was shown (ref. 6) that the effect of additional dynamic
terms is detrimental to optimum performance so that the simpler form
should be striven for when there is control over the plant dynamics.

With these assumptions, the dimensionless error can be determined as a function
of the dimensiocnless control function when the system is linear. This rela-
tionship is given in figure 6, where the dimensionless parameters P and v are
defined as: B = &/o/N and v = £/B. (Note that in fig. 6, 32.2 is a scalar
without dimensions. Thus |[u(t)||/A/NB° is dimensionless.)

The corresponding dimensionless curves for the saturating system paralilel
figures 4 and 5 for the specific example discussed earlier. First, figure 7
gives the dimensionless glb of the error as a function of a dimensionless
parameter 1 defined by 1 = L/32.2 N¥/28%/2, where L 1is the saturation
level of the forcing function. (Again note that both 32.2 and L/Nl/265/2 are
dimensionless.) These curves, valid for any set of conditions, might be useful
in several ways. They might be used to determine the best performance which
could be achieved in a specific case for purposes of comparing with other sys-
tems to indicate possibilities for improvement. They might also be used in
prelinminary design to evaluate the relative importance of those factors affect-
ing the optimum performance. Second, in figure 8, the nonlinearity character-
istic is given in dimensionless form. This figure, in conjunction with
figure 6, is useful in deciding how close to the glb curve one wants to be.
The detailed design of the optimum controller can be accomplished by combining
the results in this paper with those of reference 6.

EXPERIMENTAL RESULTS

Since the results presented earlier depend on the describing function
approximation, it is important to investigate the validity of this approxima-
tion. One expedient way of investigating this approximation is by means of an
analog computer simulation, the results of which will be described briefly.

The example chosen for the simulation was a hypothetical interception
problem in which the target executes a constant amplitude switching of acceler-
ation with a Poisson distribution for the length of time between switches. The
spectrum for such a function is known to be

0 () = Ka2/mit (K2 + u2)

so that the dimensionless curves just presented are applicable. The other
functions, the noise and plant, are assumed to be of the form described

earlier, that is, the noise spectrum is a constant and the plant is of the
form c/SZ. The following typical numerical values for the parameters were
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taken: a = 0.968 g, K = 0.431, and N = 15 f£t2/rad/sec. Two values of the
saturation level of the forcing function were chosen as L = 2.87 g and 2.3 g.
The systems were designed so that the theoretical errors were reasonably close
to the glb curve as indicated in figure L.

The experimental results which were obtained (using norms based on time
averages for convenience) are shown in figure U4, and the errors may be seen to
be reasonably close to the theoretical values with which they should be com-
pared. Also see table I for the comparison. It is difficult to estimate the
accuracy of the experimental results because although the measurements extend
over a few minutes the results varied somewhat with different noise and signal
sample time histories.

Several other interesting experimental results were cbtained which are
difficult or impossible to examine analytically. We itemize these results in
the following. First, measurements were made directly from experimental data
of the distribution at the input to the nonlinearity and the equivalent gain.
Although data cannot be given here, the distribution was exceptionally normal
and the equivalent gain calculated from the well-known relation

ff; uf(u)p(u)du

Ii; u2p(u)du

was in excellent agreement with theory. BSecond, the saturating element was
replaced by a constant gain equal to the theoretical value for which the sys-
tem was designed. The experimental value for the error performance is given

in table I; it agrees well with the theoretical value as it should. Third, the
erfect of the first probability density function of the signal on the results
was examined. Interest centers on this effect because the theory presented
depends on only the second probability density function. However, it is clear
that a rigorous account of nonlinear system behavior must depend on ihe first
probability density function. Thus if the method is to be useful, the results
must not be very sensitive to the first probability density function. To
investigate this effect two signals were chosen with the same spectral densi-
tles but with widely different first probability density functions. The dis-
tribution of the random square-wave of acceleration used earlier was, of
course, two impulses, at +a and -a. In addition, a signal with the same
spectrum but with a gaussian distribution was used. From the results indicated
in table I it appears that the error for the gaussian case is fairly close to
but slightly greater than for the random square-wave signal. Since the differ-
ence between these two distributions is extreme, it appears that the results
are fairly insensitive to distribution. Fourth, a series of experimental runs
were made to investigate the local behavior of the error performance for the
saturating system with the random square-wave signal. That is, since the
theory presented is only approximate, it is of interest to measure the gradient
of the error with respect to the parameters, «;, of the optimum controller, or
more properly Aeﬂ&xi. The controller, which is given by the ratio of a
second-order polynomial to a third-order polynomial, contains six parameters.
By varying each of these parameters individually and sufficiently to cause a
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small change in error, Ae/Aai was found to be positive for each parameter oj.
Thus the design was experimentally verified to be optimum, at least locally.

CONCLUDING REMARKS

The method given here shows that when operating in critical regions one
can obtain significant improvement over linear performance by nonlinear opera-
tion. The method is appealing because it agrees with ones intuitive notions
concerning optimum performance for saturating systems. However, the validity
of the method depends on the accuracy of the describing function concept which
generally cannot be predicted a priori. The simulation results indicate the
approximation is valid to about the same accuracy as is usually associated with
the describing function.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Feb. 24, 1966

12




APPENDIX A
PROCF OF THEOREM

THECREM: Let Y be a closed convex subset of a Hilbert space % .
Given any s(t)ed, then a necessary and sufficient condition for the
existence of a unigque yoeY satisfying

|s(t) - y-o(t)‘,'.2 Nz (O < lls(6) - 3P + Az Yy I for a1 y
(A1)
is that
(y(t), s(t) - Uy (t)) =0  forall y (A2)
where
U=1I+az Yzt (43)

and * denotes the adjoint operator.

To prove the existence of a minimizing vector, let

m = glb{||s(t) - y(£)|F + Allz(£)]|Z : yey)

Now choose a seguence {yq} such that
ls(®) - yg(®)I° + Az g ()] > m

It can be shown that {yq} is a Cauchy sequence. For by the parallelogram law,

vy = wgll® + Alz2p - v9)I2 = 2(lyp - sl + Nz )
+2(fls - yll* + Mz 2yg?)
- M| 2 (v *+yg) - sl®

Mz R () 4yl (ak)
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Due to the assumed convexity property of Y and the definition of m, the
last two terms are less than -Um. Hence

lyp = vall® + Nz - vl < 2y, - sl + Allz 1)
+ E(HS - quz + 7\“Z‘1qu2) - iy

-0

because of the way in which the sequence was chosen as described following
equation (A3). Thus {y,} is a Cauchy sequence. Since Y is a closed subset
of ¥ , it is complete, So that yq < Yo€JH . It will then follow that

s = 3gll® + Nlzm2gll® = lls - 5,lI* + Az, |I°
Thus

s = vol1# + Miz7 3y [[2 = m
and the minimum is actually attained.

To prove uniqueness, assume there are two elements y_ and z, in Y that
are optimum. Let the minimum value be m. Now consider

7o = 2ol + N2y, - 2

By means of the parallelogram law we can show, as in the preceding paragraph,
that

o = 2lI° + Mz 2y, - 2% <0

Hence it follows Yo = Zo and the optimum is unique.

To find the necessary and sufficient condition which y. must satisfy,
we consider the following expression which can be expanded as follows

lIs - 5l® + Nlz73® = fls - v )2 + Mzw I + lly - vol2

+ 7\\\Z_l(y - yO)H2 - (y - yO’ 5 - yo)

+ M2y - yo)s Z) = (¥ - Y5 8 = Vo)

+ M2y, 27y - vo)) (A5)
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Using the adjoint operator denoted by *

(v ~ 550 8 - ¥5) *MZHy - 505 T%,) = (v - vor 5 - Uy,) = (v, s - Uy,)

(A6)
where
U=1I+r1z2
and y - ¥y, 1s an arbitrary element of Y and is relabelled as y. Now
equation (A5) becomes
s - ¥l + Allz=wll® = {ls - v /1% + Az |12 + Iy - v, lI®
+ )\Hz—l(y - yo)H2 - ERe(y) 5 - Uyo) (AY)

It is clear that a sufficient condition for y, to satisfy equation (A1) is
that

(y, s - Uyo) =0 for all y (a8)

For necessity, we assume equation (Al) holds. Then in view of equa-
tion (A7), it will be necessary that

ly - %12 + Az 2y - y )I° - 2Re(y, s - Uy,) >0  for all y (49)

If p is any scalar, py belongs to Y. Hence for (A9) to hold for all vy,
it will be necessary that

ly - vl + Mz Uy - y )12 - 20R. (v, 5 - Uy,) >0
for any scalar p. This will require

(v, s -Uy,) =0 forall y (a10)

15
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Figure 1l.- Nonlinear filtering and control problem.
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Figure 2.- Equivalent open-loop problem.
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Figure 3.- Example error performance for linear system.
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Figure 4.~ Example error performance as a function of saturation level.
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