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THE HIGHLY COUPLED SYSTEM - A GENERAL APPROACH TO THE
PASSIVE ATTITUDE STABILIZATION OF SPACE VEHICLES'

By Vernon K. Merrick and Francis J. Moran
Ames Research Center

SUMMARY

Implicit in the design philosophy of most vehicle control and stabiliza-
tion systems is freedom of choice to promote the types of configuration symme-
try which simplify the task of mathematical analysis. Such an approach can
unduly restrict the class of acceptable systems and may result in a greater
than necessary mechanical complication.

This report supports the above observation by showing that space vehicles
having certain types of unsymmetrical mass distribution can be passively sta-
bilized using fewer of the same components than is required with a symmetrical
mass distribution. The saving is a direct result of the inertial coupling
between the degrees of freedom. This coupling, when used to the best advan-
tage, ensures mutual dependence of all the degrees of freedom and usually pre-
cludes mathematical simplification.

Examples are given which show that the highly coupled system approach can
be used in the design of space vehicle passive attitude stabilization systems
when any of the three major ambient force fields (solar electromagnetic, earth
magnetic, and gravitation) are used to provide the prime stabilizing torques.
Some of the unique synthesis problems arising from the mathematical complexity
are discussed.

INTRODUCTION

Implicit in the design philosophy of most vehicle control and stabiliza-
tion systems is freedom of choice to promote advantageous types of wvehicle
configuration symmetry. For example, symmetry of mass and of force or moment
distributions are often employed to simplify a control system design by mini-
mizing control interaction. Almost without exception, a convenient result of
symmetry is both conceptual and analytical simplification. It is important,
however, to recognize that conceptual and analytical simplification cannot be
regarded, in themselves, as fundamental reasons for the adoption of configura-
tion symmetry. Indeed, if such an assumption is made, it can unduly restrict
the class of acceptable systems and may result in a greater than necessary
hardware complication.

This report supports the sbove cbservation by showing that space vehicles
having certain types of asymmetrical mass distribution can be passively

iPresented at the Third Congress of International Federation of Automatic
Control, London, June 1966.




stabilized with fewer of the same components than are required with a symmet-
rical mass distribution. This is easily understood when it is recognized that
symmetrical mass distributions are usually associated with dynamic decoupling
of some of the degrees of freedom of the system. Since, by definition, mechan-
ical energy cannot flow between decoupled degrees of freedom, the complete
removal of all energy resulting from disturbances can only be accomplished by
providing an energy conversion device for each of the decoupled degrees of
freedom. On the other hand, asymmetrical mass distributions can always be
found which do not permit decoupling and these provide the possibility of
removing all mechanical energy from the system with a single energy conversion
device. Although the principle of this approach is relatively simple, there
remains the vital gquestion of whether or not it is possible to find an asym-
metrical mass distribution for which the wvehicle, including the energy conver-
sion device, is stable. If this is possible, then it is further required to
know whether the degree of stabllity is- compatible, at least in the broad
sense, with the mission requirements. Although it is not possible, as yet, to
give a general answer to these questions, even for the relatively simple class
of passively stabilized vehicles, it is possible to demonstrate the feasibility
of the technique for particular systems of practical interest. This is the
main aim of this report.

The report starts with a description of the essential features of coupled
passive stabilization systems which may use one or more of the three major
anbient force fields (solar electromagnetic, earth magnetic, and earth gravita-
tional). Two of these systems are then analyzed, the first in considerably
more detail than the second. The first uses the gravitational field to provide
both the stabilizing and damping torques for an earth-pointing satellite. The
second uses the solar electromagnetic field to provide both the stabilizing
and damping torques for a sun-pointing interplanetary probe in a heliocentric
orbit. A brief description is given of the type of multivariable analysis
used, which in this case is a method of finding the system which has optimum

damping.
NOMENCLATURE

General

(j::l,2,3) unit vectors defining orthogonal reference frame fixed in the
satellite orbit such that 03 is directed towards the cen-
ter of the orbit, o3 is in the direction of motion,and oz
completes the right-hand set

Vj (3=1,2,3) unit vectors defining an orthogonal reference frame fixed in
the maln satellite body, in steady state (no disturbances)
Vs = 0y (3=1,2,3). ¥. (4=1,2,3) is related to
5= 1,2,3) by small“angle rotations of ¢ about ©oTi, 0

j \g=2s
about 0z, and VY about O3



53 (5= 1,2,3) unit vectors along principal inertial axes of the main satel-
lite body

Ij (3 =1,2,3) principal inertias of main satellite body

Ia inertia of damper rod

©,0,V¥ small roll, pitch, and yaw angles relating v (3= 1,2,3) to
Gy (j=1,2,3)

D damping constant associated with angular rate damper

X spring constant associated with spring that restrains motion

of damper relative to main satellite

Applicable to Gravity-Oriented, Gravity-Damped System

Ej (5 =1,2,3) unit vectors defining orthogonal reference frame fixed in
main satellite body; c (J 1,2,3) frame oriented relative
to b (J—-l 2,3) frame by Euler angle sequence Y about
bs, ® about bs, and ® about by

Ej (j= 1,2,3) unit vectors defining orEhogonal reference frame fixed in
damper rod such that d; 1is along axis of the rod, and do
along the hinge axis. In steady state (no disturbances)
dJ—CJ (J=1,2,3)

o) angle between €1 and Vv, Tfor configurations such that ® = O
and @& =0 (positive value of ©& 1is positive rotation
about Vi)

24 angle between El and vy for configurations such that ® = O
and @ = O (positive value of ¥y 1s negative rotation
about Vi)

B dimensionless damper constant D/wyIg

c dimensionless spring constant K/wogld

Applicable to Solar-Oriented, Solar-Damped System

Ej (5= 1,2,3) unit vectors defining an orthogonal reference frame fixed in

main satellite body such that c1 makes an angle { +to
bibs plane and n to bibs_ plane (p031t1ve £ and 1 are

positive rotations about bs and b3, respectively)

Ej (j=1,2,3) unit vectors defining an orthggonal reference frame fixed in

the damper body such that d; 1is along the axis of the rod.
In steady state (no disturbances) dJ = c (J-—l 2,3)



?ﬁ (3=1,2,3) unit vectors defining an orthogonal reference frame fixed in
the damper such that in steady state (no disturbances)

P3 = O3
unit vector in direction of hinge axis: lies in the 5&55

plane and mekes an angle £ relative to b, axis (positive
is positive rotation about bo)

~|

kbj (3=1,2,3) solar spring constants of main satellite body about

-B-J (J = 1;2:3)

kpj (5=1,2,3) solar spring constants of damper body about 55
axes, respectively

(J =l:2;3)

THE TECHNIQUE OF PASSIVE ATTITUDE STABILIZATION

For many important missions, requiring attitude stabilization relative to
well-defined directions in space, it is possible to choose an ambient force
field and arrange the satellite interaction with it to provide adeguate stabi-
lizing torques relative to the desired directions. With few exceptions, the
resulting dynamical behavior is typified by the existence of energy-type
invariants which, in turn, imply the existence of undamped modes of motion.

A general solution to the problem of damping these modes of motion, in a pas-
sive manner, is to connect to the satellite, through viscous dampers and pos-
s8ibly springs, one or more auxiliary bodies. These bodies are designed to
interact with force fields which need not be the same as those which interact
with the satellite. The satellite and auxiliary bodies are so configured that
their interaction with the selected force fields results in relative motion
between them whenever the system is disturbed from equilibrium. This permits
the mechanical energy associated with any disturbance to be removed from the
system by the viscous dampers. If any one of the auxiliary bodies, in its
design equilibrium position, 1s unstable (when not connected to the satellite),
then it must be connected to the satellite by means of a spring in addition to

a viscous damper.

It is important to recognize, at this stage, that passive satellite
attitude systems are subject to three types of error classified according to
the type of source. The first is caused by unwanted interaction of the satel-
lite with force fields other than those which provide the stabilizing and damp-
ing torques, and by micrometeorite bombardment. These can be termed errors due
to external disturbances. The second type of error is that due to any time
varying accelerations of the complete system, such as occurs when the satellite
orbit is eccentric. The third type of error is that which exists even in the
absence of external disturbances and nonuniform accelerations and is, in large
measure, inherent in the design. Thus, if both the satellite and its auxiliary
bodies are designed to interact with the same force field, then errors occur
because the lines of force may not coincide exactly with the directions about
which attitude stabilization is required. If, on the other hand, the auxiliary
bodies are designed to interact with a force field other than that which inter-
acts with the satellite, then, since none of the principal ambient fields have
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identical spatial distribution, the equilibrium position of the auxiliary
bodies relative to the satellite wvaries according to position in the orbit.
The resulting motion of the auxiliary bodies relative to the satellite imposes
torques on the satellite, which are transmitted to it through the springs and
dampers, and cause additional inherent attitude errors.

The practical mechanization of the technique described above is illus-
trated in the next section, where several possible configurations are described.
Each of these dynamically coupled stabilization systems utilizes a single aux-
iliary body, which will be referred to as the damping body or, simply, the
damper.

METHOD OF SYSTEM ANALYSIS

Undoubtedly the two most important performance characteristics of any
satellite attitude stabilization system are the damping time and the steady-
state pointing error. The damping dictates how long it takes the system to
acquire the steady state after injection into orbit, and how long it takes to
reacquire after being disturbed. The steady-state pointing error is intimately
connected with the ultimate mission reguirements of the satellite. The analy-
sis technique adopted here is not so much aimed at determining the best system
to satisfy a given set of requirements, as in establishing the broad feasibil-
ity of using coupling to simplify system mechanization and to demonstrate the
kind of system performance to be expected. The specific procedure used depends
primarily on the evaluation of system parameters yilelding maximum damping for
various fixed values of one or more of the system parameters. The response of
these best damped systems to frequencies corresponding to those of the princi-
pal disturbances is then used to obtain some idea of their relative steady-
state behavior. These parts of the analysis are based on the linear autonomous
equations approximating the system behavior. The rationale justifying the use
of the linear equations is that if the system has any practical value, then,
apart from the period of initial acquisition, it is certain to be operating in
the region where the linear equations are valid. The system or systems which
appear to have acceptable damping and frequency response are evaluated to see
how sensitive they are to parameter variations. In addition, they are simu-
lated with a large angle digital computer program to check their acquisition
behavior.

The main difficulty involved in the adopted method of analysis is that of
finding the system which has the greatest damping in the presence of various
system constraints. The constraints are either imposed by the physics of the
problem or are arbitrary, as when a parameter is fixed at a given value. Sup-
Pose o3, 1 =1 . . . m, are the distinct real parts of the roots of the char-
acteristic stability polynomial. The problem is to find the set of system
parameters (n in number) which minimize, over the parameter space RE, the
maximim of the set of real numbers o;. ©Since the o3 are all negative for a
stable system, and it is usually less confusing to deal with a_set of positive

numrbers, the objective function can be written as max min(ci) where 05 = -05.
i

An application of the method of steepest ascent is used to solve this problem,
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although some modifications have to be made to overcome a difficulty which
arises when a set of functions (03) is involved rather than just a single func-
tion. To understand the nature of this difficulty, consider the case where,
for a given set of parameters, no two of the 03 have the same value. Then
the conventional method of steepest ascent may be applied directly to increase
the o! with the smallest value. This process may be continued until two or
more of the ci become egual. It is then no longer clear which is the best
direction - in the parameter space - along which to continue the steepest
ascent calculation. Herein lies the difficulty. It is resolved in the appen-
dix, where 1t is shown that the best direction along which to proceed corre-
sponds to the minimum distance to the smallest convex polygonal figure formed
by the tips of the vector derivatives of those functions that are equal. In
the degenerate case of only one function, this coincides with the usual steep-
est ascent rule. The minimum distance from a point to a convex polygonal fig-
ure, and the corresponding direction, is a particular example of a gquadratic
programming problem and can be solved by any of the standard techniques. The
method used to obtain the results given in this report is essentially that of
reference 1.

HIGHLY COUPLED PASSIVE STABILIZATION SYSTEMS

Gravity-Oriented, Gravity-Damped System for Earth Satellites

Due to the radial variation of the earth's gravitational field, any satel-
lite with unequal principal moments of inertia experiences torques which act to
aline its axis of minimum moment of inertia with the gravitational vertical.

In addition, gyroscopic torques exist on a satellite in orbit which act to
aline the axis of maximum inertia with a normal to the orbital plane. When the
angular deviations from equilibrium are small, the torgue about any principal
axis of inertia is directly proportional to the difference of the moments of
inertia about the remaining two principal axes.

The success of satellite attitude stabilization systems based on gravity
and gyroscopic torques depends on the practicability of creating satellites
and auxiliary bodies with large moments of inertia and large differences of
inertia for only a small weight penalty. Practical techniques for overcoming
this problem and for creating suitable "frictionless" hinges to connect the
auxiliary body to the satellite are presented in references 2, 3, and L.

A sketch of a dynamically coupled satellite configuration is shown in
figure 1(a). It should be noted that the auxiliary body or damper rod has
only one rotational degree of freedom relative to the satellite. The only con-
straint on the mass distribution of the satellite and the mass distribution
and orientation of the damper is that, in equilibrium, the principal axes of
inertia of the complete satellite (including the damper) must lie along the
5. (j=1,2,3) or orbital axes shown in figure 1(a). This condition is dic-
tited by the dynamical behavior of the complete satellite system. A necessary
condition for all axes of the system to be dynamically coupled is that the
mass distribution of the satellite alone be asymmetrical with respect tc the
orbital axes. This condition implies a nonzero value of at least one cross
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product of inertia of the satellite relative to the orbital axes and gives rise
to the term "inertially coupled" to describe this type of dynamically coupled
system.

System parameters corresponding to the best damping (minimm value of
Umax) have been determined for a range of damper rod inertias ranging from O
to 25 percent of the moment of inertia of the satellite about the roll axis.
The parameters which were allowed to vary during the damping optimization pro-
cedure were: the Euler angles, ¥, ®, ¢, defining the position of the damper
rod and hinge axis relative to the principal inertia axes of the satellite,
the satellite inertia ratios Iz/Il and I3/Il, the spring constant C and the
damping constant B. One general result obtained is that, in all the cases
considered, the configurations with the best damping are those which have @
and ® both equal to zero. From the definition of the Euler angle seqguence
(see Nomenclature) it follows that the best damped configurations have both
the damper rod axis and the hinge axis in the bibs plane. Thus, the princi-
pal axis of minimum inertia of the whole satellite (including the damper rod)
mist lie along the bs axis. This in turn implies that the products of iner-
tia I,5 and Ios are both equal to zero. It follows from the dynamics of the
whole satellite system that, in equilibrium, the bz axis is coincident with
the local vertical 33. These configurations are similar to those studied in
references 5 and 6. However, in reference 5 the inertia ratio Is/Ig was
maintained constant at an arbltrary value of 1.5, whereas in the present study
no such restriction was imposed on the mass distribution. A second general
result obtained from the damping analysis is that all optimum configurations
have a satellite (less damper rod) mass distribution which is planar, that is,
J3 is unity [Jg = (Iz - I1)/Is]l. In reference 5 a similar result was obtained
for many, but not all, of the configurations studied. While in practice a
planar mass distribution is impossible, the satellite with rods extended
usually has a Js +value close to unity.

The optimum damping in terms of the minimum op., 1s shown in figure 2
along with the associated system parameters. The maximum damping of O.47 orbit
to 36.8 percent of the initial amplitude® (min oygy = -0.336) occurs at a
damper rod inertia ratio I4/I1 of about 0.18.

The variation with Id/Il of the roots (both real and imaginary) of the
characteristic equation corresponding to the maximum damping (min Gmax) is
shown in figure 3. This reveals two interesting features which appear to be
true at least to within the limits of accuracy of the calculation procedure.
The first is that for values of Id/Il less than 0.08 or greater than 0.18,
three out of a total of four distinct real parts of the roots of the character-
istic equation are equal in value. The second is that for values of Ig/I;
between 0.08 and 0.18, not only are all four of the distinct real parts equal
but two pairs of complex roots are also equal (both real and imaginary parts).
In reference 7 Zajac was able to show, analytically, that for the case of a
simple pitch damper (v = 0}, all the real parts of the roots are equal at the
optimum damping point.

2The damping time constant in terms of number of orbits to 36.8 percent
(1/e) of the initial amplitude is given by -1/2mop -



The principal external disturbance torques acting on a satellite of this
type are due to solar radiation and the magnetic field (ref. 8). Solar pres-
sure torques occur when the center of solar pressure differs from the center
of mass. This can be due first to the basic geometry and surface characteris-
tics of the satellite, and secondly to changes of geometry due to thermal dis-
tortion, particularly of the extended rods. In practice, it is important to
distinguish between these two causes since, while the basic geometry effects
have a single periodic component, of orbital frequency, weo, the effects due to
thermal distortion contain, in addition, significant periodic components of
twice and three times orbital frequency. The influence of solar pressure dis-
turbances increases with satellite altitude, since the restoring gravity-
gradient torques vary as the inverse cube of the orbital radius, while the
solar torques remain roughly constant. Hence, at very high altitudes (above
gbout two earth radii) it becomes essential to design the satellite so that
the center of pressure coincides with the center of mass for all satellite
orientations relative to the sun and to minimize the thermal distortion of the
rods by minimizing thermal gradients. The disturbances caused by the earth's
magnetic field are due to its interaction with any residual magnetism of the
satellites. The magnitude of this disturbance is dependent upon altitude and
the frequency upon orbital inclination.

The remaining significant source of attitude error is orbital eccentric-
ity. In this case the attitude errors are functions of the eccentricity of
the orbit only and are, therefore, independent of altitude.

Clearly, the response of the satellite will depend upon the proximity of
the disturbance frequency to the modal frequencies. Thus, figure 3 shows that
the response of all optimum-damped systems to disturbances of frequency 3wg
is likely to be far less than the response to disturbances of frequencies wg
and 2wo. Detailed calculations show that not only is the response of these
systems to torques of frequency 3w, small but the anticipated amplitudes of
these torques is smaller than those of frequencies w, and 2w,. Torques of
frequency 3wg may, therefore, be neglected in a preliminary analysis. Fig-
ure 3 also suggests that the smaller the value of Id/Il the greater may be
the response to torques of frequency 2wy, while the higher the value of Id/Il
the greater may be the response to torques of frequency wp. This conjecture
is to some extent supported by figure 4 which shows the response to orbital
eccentricity, and figure 5, which shows the response to oscillatory pitch
torques of fregquency wp and 2wg. Perhaps the most significant feature of
figures 4 and 5 is that the responses of systems with Id/Il between 0.08 and
0.25 do not differ widely.

Once a system has been found which has good damping and steady-state
pointing accuracy, the question of sensitivity to off-design conditions arises.
Such off-design conditions can result, for example, from temperature varia-
tions, manufacturing tolerances, or deterioration with time. The sensitivity
of the damping of the least damped mode to change of spring constant, damper
constant, and angle ¥, is illustrated in figure 6. This sensitivity is illus-
trated for two damper-rod inertia ratios. The largest is Id/Il = 0.18 which
is the best damped system, and the smallest is Id/Il = 0.08. It is clear
that the critical parameter is the spring constant. When Id/Il = 0.18 a
reduction of spring constant by more than about 8 percent is sufficient to
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cause instability. The case Id/Il = 0.08 is significantly less sensitive to
changes of spring constant and this may be a compelling reason for adopting a
system with a value of Id/Il considerably less than that which gives the best
damping. It is important to recognize that the instability produced by a weak
spring is of the static type and merely means that the destabilizing gravity
torque on the damper rod is sufficient to overcome the spring torque. When the
true nonlinear nature of the gravity-gradient torque is considered, the damper
rod will merely be found to have a stable equilibrium position other than hori-
zontal. One method of alleviating the spring constant sensitivity problem
might be to design the spring to be stronger than the optimum value so that

any reduction within the anticipated tolerances does not cause instability.

Even if the linear damping and frequency response of a passive satellite
appear satisfactory, there is no guarantee that the large angle motion, such
as might occur at injection into the orbit, is well damped. In the case of
coupled systems of the type considered here, no general results relating to
large angle motion have been discovered and recourse must be made to the study
of particular systems with particular injection errors. A considerable number
of time histories of motion from various initial conditions have been made for
coupled systems. The conclusions from this work is that systems which have
good linear damping also have good acquisition characteristics. Two examples
of typical time histories for a coupled system having an Id/Il = 0.08 are
given in reference 5.

To sum up, from the point of wview of pointing accuracy, there seems to be
little to choose between any system with Id/Il values in the range 0.08 to
0.18. In this range the greatest errors of a system without an orbital control
capability are probably due to orbital eccentricity. However, the extreme
sengitivity to changes of spring constant of systems with Id/Il values close
to 0.18 may make it preferable to use systems with Id/Il values close to
0.08, even though the damping is reduced. If still smaller damping can be tol-
erated, systems with Id/Il less than 0.08 may have better pointing accuracy.

Solar-Oriented, Solar-Damped System for Interplanetary Probes

In this system the torques required both for orientation and damping are
obtained by erecting solar sails on the satellite and the auxiliary body. The
auxiliary body, or solar damper, is allowed to have one rotational degree of
freedom with respect to the satellite, as shown in figure 1(c). The orienta-
tion of the hinge axis and the mass distribution of the satellite and solar
damper are arranged to promote the desired coupling between the degrees of
freedom of the system.

It is important to recognize that, in practice, this system is capable of
providing only a sun-pointing capability, or two axis stabilization. The rea-
son is that even at the minimum practical orbital radius, as dictated by satel-
lite temperature, the orbital angular velocity is too low to yield usable
information about the orientation of the normal to the orbital plane. In other
words the gyroscopic torques due to orbital angular velocity are too small to
be of value in providing stabilization about the sun-pointing axis. This
situation should be contrasted with that of the previous earth-pointing system
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where full three axis stabilization is possible as a result of the relatively
larger orbital angular velocity and correspondingly larger gyroscopic torques.

It is difficult to visualize any sources of significantly large errors
for this system. Errors from such external sources as the solar magnetic
field, the gravity gradient of the sun, and gravitational perturbations caused
by the planets are very small. There may possibly be significant transient
errors due to micrometeorites. Unfortunately it is not possible to state with
certainty whether this constitutes a problem, since there is little knowledge
of micrometeorite statistics, particularly in regions of space far distant
from the earth.

Unlike the previous example, the orientation and damping torques acting
on a solar-stabilized satellite are independent of its mass distribution. It
follows immediately that if the system has no practical design constraints,
there is no optimum damping, since the damping can always be improved by reduc-
ing the satellite inertias or by increasing the solar-stabilizing torques.
Therefore, since design constraints must be included to make the problem real-
istic, it is impossible, in the short space available here, to treat the sys-
tem with the same degree of generality as the previous system. The best that
can be done to demonstrate the feasibility of a coupled system is to choose a
reasonable set of design constraints and evaluate the remaining system param-
eters corresponding to the optimum damping.

Consider a satellite such as that shown in figure 7 which is required to
operate in a circular orbit at a distance of 1 astronomical unit from the sun
and be stabilized relative to the sun line ©3. The configuration is assumed
to have symmetry of mass, geometry, and solar reflection properties relative
to the bs axis,® so that I; = Is and kp, = kp, (kbl is the solar spring
constant for rotations about the El axis). Furthermore, in equilibrium, it
is required that bs = Oz and, in this condition, that the solar torques act-
ing on the satellite (less damper) be zero. The assumed moments of inertia
and solar spring constants of the satellites are given in table 1 of figure 7.
Finally, it is assumed that the mass distribution of the damper body is approx-
imately that of a rod and has symmetry of geometry and solar reflection prop-
erties relative to the P axis. Thus, Ig, = Ig; = Ig, Ig; = O, kpz = kps
and, in equilibrium (ié = 0g3), the damper body has no solar torgues acting on
it. The optimization procedure previously described was used to determine the
inertia ratio Id/Il and solar spring constant kpl of the damper, the

orientation of the damper rod and its hinge line relative to the satellite and
the spring and damper constants corresponding to the best damped system. In
addition, the damper rod inertia ratio was fixed at several values less than
the optimum and the system reoptimized to find the best damping. The results
are summarized in figure 8. The time constant of the best damped system is

13 hours and occurs with Id/Il = 0.4115. A reduction of damper inertia
ratio to 0.1 increases the time constant to 120 hours. Figure 7 shows how the
damper might be attached to the main satellite body. In this case the hinge
point is located at the end of a spike attached rigidly to the main satellite
body. Some such arrangement is required to avoid having the damper rod foul

SNote thet in this example ¥j = by (J=1,2,3).
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the main satellite structure. Probably a more efficient alternative is to
replace the spike by a rod rigidly attached to the damper cone and hinged to
the satellite structure. This would violate the assumption that the damper
mass distribution approximates that of a rod, but the optimum damping should be
of the same order as those quoted. It should be noted that orbital eccentric-
ity should have very little effect on the pointing accuracy of these satellites
because the time constant of the system is several orders of magnitude less
than the orbital period.

The sensitivity of the system with the best damping (Id/Il = 0.54115) to
changes of spring or damper constants is shown in figure 9. Changes of %20
percent in either spring or damper constants do not reduce the damping to less
than half its optimm value. It is concluded, therefore, that manufacturing
tolerances are not particularly critical. It is conceivable, however, that
different design constraints may result in more sensitive systems than the one
demonstrated here.

Other Coupled Systems

Sketches of two other possible coupled systems are shown in figure 1.
One is a gravity-oriented, magnetically damped system (fig. 1(b)) in which the
damper rod of the gravity-damped system is replaced by a magnet and damping
torques are obtained through the interaction of this magnet with the earth's
magnetic field. The other coupled system (fig. 1(d)) is gravity oriented,
gyroscoplically damped. In this case the damper rod of the gravity-damped sys-
tem 1s replaced by a suitably oriented, single degree of freedom, constant
speed flywheel. Although this stabilization system does not strictly fall
within the domain of this report, since it contains an active element (the fly-
wheel), it is included as an example because it clearly illustrates the thesis
of the report. A complete analysis is given in reference 9.

CONCLUDING REMARKS

It has been demonstrated that it is feasible to passively stabilize earth
and sun-pointing satellites using a single auxiliary body with a single degree
of freedom. In addition, it has been indicated that the underlying principle
of dynamic coupling may be useful in reducing the number of components in pas-
sive attitude stabilization systems of all types. It may be conjectured, fur-
ther, that the introduction of dynamic coupling may offer some advantages in
the design of stabilization systems for a wide variety of aerospace vehicles.
It is not the intention here, however, to claim that dynamic coupling provides
the ultimate answer to all vehicle stabilization systems. Rather the intention
is to show that in considering systems to meet a given requirement, the
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arbitrary adoption of configuration symmetry on some vague aesthetic grounds

is a needless restriction, particularly if mechanical simplicity is an all
important factor.

Ames Research Center

National Aeronautics and Space Administration
Moffett Field, Calif., Feb. 25, 1966



APPENDIX

THE DIRECTION OF STEEPEST ASCENT WHEN TWO OR MORE

FUNCTIONS ARE EQUAL

The problem is to find the direction TeR" (parameter space) that ylelds
the maximum simultaneous rate of increase of those functions (of the set 01,
i=1.. .m,) which have the same value. Suppose the functions c;,
i=1. . .m, have been renumbered so that those that are equal occur first.
Let their number be p. Then each of these p functions has a derivative,

along a chosen direction %, of the form
1
dos - .
—aé = VG T, i=1...0mD

where s 1s the distance measured along the direction r The required direc-
tion % is that which maximizes the minimum value of voj - %, i =1 . . . p.
The formal solution to this problem is provided by the following two theorems.

Theorem 1: TLet B{Y} be a compact, convex subspace of R" and the vector YeB
be such that HYH = mln Hy” Then

[7]] = max [min(:? : f)}

2eR"| FeB

where T is a unit vector in ﬁn. Furthermore, the corresponding unique unit
vector T is given by T = Y/HYH.

Proof: The equation u¥ . (§ - uf)=0, where p is any real scalar, defines a

hyperplane in R which is distance i from the origin. The hyperplane
divides the space R" into two subspaces RE and. Rg defined as

Ri = {F:uf . (F - ud) = 0}

¥ - uf) <0}

1
~
<
-

R
Pamn
e

R

Since B is a bounded subspace of R® , a value of 1 can always be
found such that BeRl with the tip of at least one wvector in B 1in the hyper-

plane. Thus, g can be chosen such that every vector ¥FeB satisfies the
inequality.

(¥ -pt) 20 (1)

and at least one vector FeB satisfies the equation

~

pd . (F - pP) =0 (2)

13



Inequality (1) and equation (2) can be rewritten

v .T>u for all TeB (3)

(since * . T = 1 by definition) and

y.¥=np for at least one yeB (L)
It follows that
po=min(y¥ . ) (5)
veB
since ¥ . & < |7 IZl = lFll, it follows from inequality (3) that
I#l > u for all ¥eB (6)

Tnequality (6) shows that, provided inequality (3) and equation (L) can be
satisfied

nex_ 1 = minlg] = |9

feR TeB

Equation (4) is then satisfied with ¥ = ¥ and ¥ = ¥/II¥ll. Tt now remains to
show that inequality (3) also holds when u = |[Y|| and % = Y/|I¥||. Assume first
that inequality (3) does not hold, that is

(¥ . ¥ - 7" <o

Since B 1is a convex set and 7, YeB, it follows that if O <A <1 then
¥' = AF¥ + (L - A)Y is also in B. Thus

1215 - 1507 = 120% - g+ (2 - VTP
=an(lf® -5 . D -2%(F -0
=a2(FE -7 . D - (F - DA
if
fr -7 D
¥ - O

I121% - fig )" > o

1L



. il > 115"

which violates the definition of Y. Hence, (3) must hold and the First part
of the theorem is proved. The uniqueness of the minimum vector to a convex
set is proved in most texts on linear vector spaces (ref. 10).

Theorem 2: If VG; (i=1 ... p) are a set of vectors in R® and ¥ is the
vector of the set
P p
B={(y:iy = }z ain;, }: ai = 1, a3 20 (i=21. . .p)

il

such that Hf” minHyH then,

yeB

reR

19| = rilaxn[m%n(VG;L . %)} (7)

and the corresponding unique unit vector ¥ is given by 7T = YVHYH

Proof: Let
ka = min(vo; . %)
i

then
ks < voi . T, i=1 D
and
kp = V63 . T for some j
thus
asky < Vo' r, i=1 P
(since o3 >0 1=1. . . p) and
b P
E: ajks < jr QEVO; 7
(A
i=1 i=1
or
kg <§¥ . r for all YyeB

15



<since ¥ = E ouch;-_ and i oy = l> . It follows that kp = r_gig(fr . 7)
[ ye
i=1 i=1

since if this were not so, it would be possible to find a k; > kg for which

ka <¥ . T for all ¥eB

H> -

but since VOBEB this would mean that

1
ks < V03 . T = ke

! A . —_— A
which contradicts the assumption that kg > k. Thus, min(Vci. )= glg(y - 7)
i

ye
and since the foregoing arguments are for an arbitrary %
. t A - — N
max [mln(voi . r)} _ max [mln(y . r)} (8)
?eRY 1 PeRLTEB

and both must occur at the same . Since it follows from the definition that
B is compact and convex, theorem 1 can be applied to the right side of (8)
and the theorem is proved.

The gecmetrical interpretation of theorems 1 and 2 is that the sought
after direction T corresponds to the minimum distance from the origin to the
smallest convex polygonal figure defined by the tips of the vectors

vcg (i=1. . . p). It should be noted that there is no restriction on the
size of p relative to n and, therefore, it is not necessary that the
vgi (i==l . . . P) be independent. If p < n, the tips of all the vectors
Vo define the bounding edges of the polygonal figure. If, however, p > n,

i
then, in general, the tips of n of the vectors VG; define the bounding

edges while those of the remaining ©p - n vectors are located in the interior
of the polygonal figure.

16



10.

REFERENCES

Wolfe, Philip: The Simplex Method for Quadratic Programming.
Econometrica, vol. 27, no. 3, July 1959, pp. 382-398.

Kamm, Lawrence J.: 'Vertistat!': An Improved Satellite Orientation
Device. ARS J., vol. 32, no. 6, June 1962, pp. 911-913.

Paul, B.; West, J. W.; and Yu, E. W.: A Passive Gravitational Attitude
Control System for Satellites. Bell System Technical J., vol. XLIT,
no. 5, Sept. 1963, pp. 2195-2238.

Moyer, R. G.; and Foulke, H. F.: Gravity Gradient Stabilization of
Synchronous Satellites. Presented at the IEEE 11th Annual East Coast

Conference on Aerospace and Navigational Electronics, Oct. 21-23, 196L.

Tinling, Bruce E.; and Merrick, Vernon K.: Exploitation of Inertial
Coupling in Passive Gravity-Gradient-Stabilized Satellites. ATAA J.
Spacecraft and Rockets, vol. 1, no. k4, July-August 1964, pp. 381-387.

Zimmerman, BenJjamin J.: Study of ATS Gravity Gradient Experiment.
Presented at Symposium on Passive Gravity Gradient Stabilization,
Ames Research Center, May 1965.

Zajac, E. E.: Damping of a Gravitationally Oriented Two Body Satellite.
ARS J., vol. 32, no. 12, 1962, pp. 1871-1875.

Sabroff, A. E.: A Two Damper Passive Gravity Gradient Stabilization
System. Presented at Symposium on Passive Gravity Gradient Stabiliza-
tion, Ames Research Center, May 1965.

Scott, E. D.: Control Moment Gyro Gravity Stabilization. Preprint 63-3
Am. Inst. Aeron. and Astronaut., August 12-1L, 1963.

2L,

Berberian, Sterling Khezag: Introduction to Hilbert Space. Oxford Univ.

Press, London, 1961.

17






DAMPER ROD DAMPER MAGNET

(HINGED TO SATELLITE (HINGED TO
THROUGH VISCOUS SATELLITE
TIP MASS o | DAMPER AND SPRING) THROUGH VISCOUS
DAMPER AND
FIXED RODS SPRING)
- - N\
%2 72N
NORMAL =<y ORBITAL PATH ~~ ¢ \A_QMH
TO ORBITAL ° "j/(i "
PLANE///:/ \,>FIXEDRODS 017 i\\
= “HINGE \ )
3 \ HINGE LINE
o LINE \
\ _ \
\ 33 VERTICAL oy
a) GRAVITY ORIENTED, b) GRAVITY ORIENTED,
GRAVITY DAMPED MAGNE TICALLY DAMPED
__—~SOLARSALS | \ver
LINE
ORBITAL PATH _
~2 [ ORBITAL PATH
) o—30 Y
_ AR

DAMPER WHEEL

—
IS
m
L
=
m
ol
\
\
\
\
5
/7/]

\\  (HINGED TO
SOLAR DAMPER | |\ SO \' SATELLITE
(HINGED TO \  THROUGH VISCOUS
SATELLITE \ 33‘\ DAMPER AND
THROUGH VISCOUS \ SPRING)
DAMPER AND o3
SPRING) SUN
POINTING
AXIS
¢) SOLAR ORIENTED, d) GRAVITY ORIENTED,
SOLAR DAMPED INERTIALLY DAMPED

Figure 1.- Dynamically coupled passive and semipassive satellite stabilization
systems.

19



NOTE: ALL BEST DAMPED SYSTEMS HAVE Jz =1
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Figure 2.- Damping of least-damped mode and associlated system parameters.
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NOTE: J3=I
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Figure 9.- Sensitivity of damping of least-damped mode to variations of spring
and damper constants.
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