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ABSTRACT

Title of Thesis: Partially Ordered Spaces and Newton's
Method for Convex Operators
James 8. Vandergraft, Doctor of Philosophy, 1966

Thesis directed by: Werner C. Rheinboldt, Research Professor

Some general theorems are proved concerning Newton's
method applied to convex operators which are defined on
partially ordered topological linear spaces. The spaces
are examined and various relations between the partial
ordering and the topology are discussed. A mean value
theorem is proved and is then used to study convex operators.‘
Several convergence theorems for Newton's method are
obtained and applications to differential and integral
equations are givep. Finally, these results are used to
simplify a theorem of Kantorovich concerning the converg-
ence of Newton's method applied to operators which are

defined on spaces with partially ordered norm.
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INTRODUCTION
If F is a nonlinear operator from one topological
linear space to another, then Newton's method consists of

finding the sequence {Xn} defined by

(1) x = % - (F'lx 1) Fx )

where F' [x ] is either the Frechet or Gateaux derlvatlve of
F at X . The first general theorem concernlng the converg-
ence of this method was given by Kantorovich in 1948 [13].
Under a number of assumptiohs on F, and the starting point
Xy he proved that the sequence exists and converges to a
solution of the equation F[x] = 0. The conditions on F
and XO' which are needed for the proof, involve bounds on
F'"[x] and on the inverse of F'[x]. Because of the complex-
ity of these conditions, it is often impossible to apply the
result to practical problems. Moreover, the restrictions
on x, may limit it to a very small region, as is already
shown by real functions. In a later paper [l4], Kantorovich
re-proved his basic theorem, using a completely different
method of proof. He also generalized this proof to operators
defined on spaces which have a partially ordered noxrm. In
this generalized theorem, however, the assumption is made
that, for a certain auxillary operator, Newton's method
produces a sequence which is monotone, bounded, and conver-
gent.

It is well-known that for many operators, the sequence
defined by (i) is monotone and bounded. In this case, the
proof of'convérgence may be simplified considerably. Such

special theorems have been given by Collatz [7], Kalaba
[111, and Greenspan and Parter [10]. All of these results
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use some sort of convexity assumption on the operator in
order to get the monotonicity of the iterates.

In the present work, we have proven some very general
convergence theorems for Newton's method applied to convex
operators. These theorems contain the results of Collatz,
Kalaba, and Greenspan and Parter cited above. The operators
we consider are defined on certain classes of topological
linear spaces in which a partial ordering is definéd.
Chapter I is devoted to a study of such spaces and of the
operators defined on them., After a review of some basic
notions about partially ordered spaces, we define partially
ordered topological linear spaces (PTL spaces), and discuss
some important relations between the ordering and the topol-
ogy. The treatment here is similar to Krasnoselski's theory
of partially ordered Banach spaces [18], however, we assume
that the spaces are only locally convex. In the section on
operators in PTL spaces, a mean value theorem is proved and
is subsequently used to study convex operators.

Chapter II is then devoted to Newton's method. We
first prove a general convergence theorem for convex
operators defined on a class of spaces which includes the
finite dimensional spaces and the ¥ spaces. The results
we prove differ from those of Kantorovich in several ways.
For example, we assume that F'[xn] is only a Gateaux
derivative, whereas, in Kantorovich's theorem, F'[xn] is
the Frechet derivative. Also, we write (1) in the weaker

form
Fl{Xn](xn+l— Xn) = _F[Xn]

and prove that {:xn} exists and converges, without proving
that F’[Xn] has an inverse. In fact, an example is given

to show that under our conditions, F'[xn] need not have an



inverse. Several examples are analyzed to show how the
theorem can be applied,'and some numerical calculations

are given. The rate of convergence is shown to be guad-
ratic, or super-linear, provided the derivative of the
operator satisfies certain boundedness conditions. Finally,
we discuss some possible modifications of Newton's method
which still lead to monotone and convergent iterations. We
also note the works of Baluev [1,2,3] and Slugin[24,25],
These papers, which are concerned with Chaplygin methods,
contain results that are guite similar to some of ocurs.
However, in all cases where a comparison can be made, it

igs clear that our results are stronger.

In the next section, we consider a class of spaces
which includes the spaces of differentiable functions.
Because of convergence problems here, we restrict ourselves
to operators of the form

Flx] = £(x) ~ L[x]
where L is a linear operator and £ is a convex operator.
The theorems for these operators are of the same type as
those of the previous section. Various differential
equations are studied, and it is shown that the results of
Kalaba in [l11] are covered by these theorems.

The last section contains a modification of the
second Kantorovich theorem mentioned earlier. Using the
previous results, we can actually prove that the auxillary
operator has a Newton sequence which is monotone, bounded,
and convergent. Hence, the Kantorovich result is simplified
considerably, and we obtain an interesting convergence

theorem for general (i.e., not necessarily convex) operators.



CHAPTER I
PARTIAL ORDERINGS

ially Oxdered Linear Spaces

The basis for all our discussions will be partially
ordered linear spaces. Many of the following results can
be found in Birkhoff [6], Namioka [20], or Schaefer [21],
but we include them here for the -sake of comp?f.eteness.

Definition 1. Let X be a real linear space in which
a binary relation £ is defined between certain elements
such that;

l) %x4¢x for all x in X

2) if x«cy and y£x then x =y

3) if x«y and v+ 2z then x& 2

4) if X<y then x+z ¢ y+z for any 2z in X

5) if xg¢y then ox<oay for any positive a.

Then X is called a partially ordered linear space, (BL space).

Conditions 1),2),3) say the grdering is reflexive,
anti~ symmetric, and transitive. The last two properties
provide a connection between the order structure and the
linear structure of the space.

If a and b are elements in a PL space, and asbh,
then the closed interval [a,b] is the set {x : agxeb) .
If S is any subset of X, then an element u in X is called

an upper bound on S if x ¢u for all x in S. Similarly,

a lower bound on 8 is any v in X such that v ¢x for all
x in S. An element u in X is called a supremum of S if,
u is an upper bound and, moreover, if v is another upper
bound on S, then u 4v. Similarly, an infimum of 5 is a
lower bound v, such that v »u where u is any other lower
bound. It is clear from condition 2) of the definition

that a set can have at most one infimum and supremum.
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A subset is called oxrder-bounded if it has both an upper

bound and a lower bound.

In a PL space, the set K= {x:xbo} has the properties:

1} K + K<CK,

2) aKCK for any positive @,

3) KN(-K) = {0}

These follow easily from definition 1. A subset of a
linear space which satisfies 1) and 2} is called a (convex)
cone, and if 3) is also fulfilled, the éone is called
proper. The set K defined above is called the positive
cone for the PL space.

It is important to observe the duality between proper
cones and partial orderings. We have just seen that the
order relation in a PL space defines a proper cone. Conversely,
if we are given a proper cone K in a linear space X, then
the order relation defined by

x4ty if and only if y-x €K
satisfies all the conditions of definition 1, and hence
makes X into a PL space. Thus we can completely define
a PL space by giving the space X and the positive cone K,
For this reason, we will write (X,K) for a PL space X with
positive cone K.

Two examples of PL spaces are (Ez,Kl), where
Kl= {(x,y) : X220 and v> O} , and (E2,K2), where
K,= [(x,y) :+ x = 0 and y> 0} . That is, in the first
space, (%,y) < (u,v) means x¢u and y¢ v, whereas, in the
second space, (ﬁ,y)s (u,v) means x = u and y4£v. An
important difference between these spaces is that in the

. . 2
ordering defined by K any two points in E° have a supremum

ll
and an infimum, whereas, with the other ordering, the points
(0,1) and (1,1) do not have a common upper or lower bound,

and hence no supremum or infimum. PL spaces in which



every pair of elements have an infimum and a supremum

are called vector lattices. Hence, (Ez,Ki) is a vector
lattice while (Ez,Kz) is not. If, however, we have a

set S in (E2,K2) which is order bounded, then that set

has an infimum and a supremum, since all members of S

must have the same x-coordinate. A PL space in which every
order bounded non-empty subset has a supremum and an
infimum is said to be complete. If every countable order-
bounded set has a supremum and an infimum, the space is

called g~ -complete.

Some basic relations which hold in a vector lattice
are given in the following theorem. (The proof can be
found in [61, p.219).

Theorem 1 In a vector lattice X, the following
relations hold for any x,y,z in X.

a) sup(x,vy)+z=sup (x+z,y+z)

b) x+y=sup({x,y) + inf(x,y)

¢) dsup(x,y) = sup{ox,0y), for o> 0

d) asup(x,y) = inf(ox,0y), for < 0

e) sﬁp(inf(x,y),z) = inf (sup (x,2),sup(y.2)).
Moreover, all of these relations remain wvalid if sup and
inf are everywhere interchanged.

If the space is ¢ -complete, then these relations
can be extended to bounded countable sets. That is, if
{an is bounded,

a') sup(xn) + 2= sup(xn+z)

c asup(xn)

i

sup (axn) , for a >0

il

d'} dsup (xn) inf (or.xn) , for a ¢ 0.

One of the most important properties of a vector
lattice is the existence of an absolute value. For any
¥ in X,we define i+= sup (x,0)}, x = inf(x,0), and {x|=

sup (x, -x) . x+ is the positive part of x, x is the negative




part, andix) is called the absolute value of x. Some
properties of these quantities are given by

Theorem 2. Let X be a vector lattice. Then, for
any x and y in X,

1) %= X+ %

2) inf(x+,—x—) =0

3) ixy= x+-x“

4) 1x120 and ixi= 0 if and only if x = 0

5) taxi=toi-txi for all real o

6) Ixty1&IXI+1Y]
(The proof can also be found in [6], p. 220).

From the definition of x+and X it is clear that
X+a Q, x—é 0, so part 1} of this theorem says that any
element in a vector lattice can be written as a difference

of elements in the positive cone. That is, X = K - K.

Such a cone ,is called reproducing or generating.

We will now discuss a natural topology that can
be introduced into a PL space. The topology is natural
in the sense that it is defined in terms of order concepts
and is a vector topology. First, recall from the theory
of linear topological spaces the following basic theorem.
(see [17}, pp.34,35).

Let X be a topological space , and let B
be a local base. Then

1) for U and V in B there is a W in B such
that WeUaV;

2) for U in B there is a member V of B
such that V + Ve U;

3) for U in B there is a member V of B
such that aV< U for each scalar d with
ialsl;

4) for x in X and U in B there is a scalar
¢ such that xeqU;

5) for U in B there is a V in B and
a circled set W such that V=< W<U.

6) If X is a Hausdorff space, then
N{u:ueB} = {0}



Conversely, let X be a linear space and B

a non-void family of subsets which satisfy
1) through 4}, and let T be the family of
all sets W such that, for each X in W, there
is U in B with x + UcW. fThen T is a vector
topeology for X, and, B is a local base for
this topology. If, further, 6) holds, then
T is a Hausdorff topology.

Here we call a set S gircled if 0S<8 for all o with jaj¢l.
A set S is said to absorb a set V if there exists an . >0
such that ave s for all 0t as«da,. The next definition

is due to Namioka {20].

Definition 2. Let X be a PL space, and let B be

the family of all order bounded subsets of X. Let U be
the family of all subsets of X which are convex, circled,
and absorb every member of B. Then the topology for

which U is a local base is called the order bound topology.

To justify this definition, it must be proven that
U does in fact define a unique topology.

Lemma 1. The family U in the preceeding definition
is a local base for a unique locally convex vector top-
ology on X-which is finer than any other locally convex
vector topology for which order bounded sets are topolog--
ically bounded.

Proof. It is sufficient to verify that U satisfies

conditions 1) through 4) of the theorem stated above.
But, 1) is true since UNV is convex, circled, and given
s«X, if onls <y, 0523 <V then 0638 < U AV where a3=min (al,az) .
Condition 2) holds with V =)3U, since U is convex. Finally,
3) and 4) follow from the circled and absorbtion properties.
The last part of the theorem is clear.

Very closely related to the order bound topology

is the concept of relative uniform convergence, as defined

by Birkhoff [6].



Definition 3. A sequence {Xn} in a PL space X is
said to converge relative uniformly to x* if there exists
an element u >0 in X and a sequence {Oﬂn} of real numbers,
such that ala OL2>, eer 20, I]‘.l:br‘ri or.n =0, and

-~ anus:- 'xn— X% ¢ anu.

The relation between this convergence and the order
bound topology is given by a theorem of Gordon ([9],p.421).

Theorem 3. The order bound Eopology is the finest
locally convex topology such that if {xnj converges
relative uniformly to x* then {Xn.lf also converges to x*
in the order bound topology.

Proof. Let T be any topology such that order bounded
sets are topologically bounded. ILet {xn} converge to
x* relative uniformly. Then - anu.-': x = x*.{»anu for some
u>» 0 and Obn-é 0. Let V be any open set in T and let
B = {XEX : =us&x<ui . Then x - x*eanB. But B is order
bounded, so V absorbs B, i.e., a¢B<cV for all small o.
Hence, xn— x* e V for large n.

It is not true, in general, that order bound conver-
gence implies relative uniform convergence. Take, for
example, the space (E2,K2) considered above, with xn=
(% +%). Since the order bound topology is a vector top-
clogy, it follows that xn—-) 0 in this topology. But,
{xn‘} is not order bounded so clearly there is no u such
that - anuéxn.é anu, wh.ere ccn—-> 0. There is, however, a
very wide class of PL spaces in which order bound con-
vergence is eguivalent to relative uniform convergence.
Included in this class are those spaces which have an
order unit;

Definition 4. An element z in a PL space 1is called
an order unit if z » 0 and, for any x in the space there

is a real o> 0 such that -z ¢&x<¢0z,

In other words, we call z an order unit if [-z,z] is



radial at =zero.

It is a well-kpown fact that the Minkowski functional
for a convex, circled set which is radial at zero is a
semi~ norm. This fact allows a very .useful character-
ization of the order bound topology:

Theorem 4. If (Z2,K) is a PL space which has an
order unit z, then the order bound topology on Z is the
semi- norm topology given by the Minkowski functional

p(x) = inf {OL : xeo&[—z,z]} .

Proof. As noted above, p is a semi- norm on Z.

Let 8 = {x:pxI<r}. Then s crl-z,z]les  _,£70.
Hence, since [-z,z] is absorbing, so is Sr' Also, Sr

is convex and circled so Sr551i, where U is the local
base for the order bound topology. Furthermore, each

Sr is order bounded, and every U€ U absorbs order bounded
sets, so every Ueé U contains some Sr' Therefore, the
topology determined by U is the same as the topology
determined by {Sr} .

In order for p(x) to be a norm, we need an additional
hypothesis.

Definition 5. A PL space is called almost Archimed-

ian if -Gx¢ y4ox for some x% 0, and all o> 0, implies
vy = 0,
Corollary. If a PL space has an order unit, then
the order bound topology is a norm topology if and only
if the space is almost Archimedian.
Proof. If the space is almost Archimedian, then
p{x) =0 implies -0z ¢ xs2 0z for all o> 0, hence x= 0.
Conversely, if p is a norm, then the topology is Hausdorff.
But -0x ¢ ysetx for all ¢ > 0 implies that y e U for every
U in the local base for the order bound topology. Since

this topology is Hausdorff, y = 0.
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To illustrate these resulis, consider E2 with the
positive cone K = {(x,y) : x>0 or (x = 0 and yZO)}
Then the point (1,1l) is an order unit, and so the order

bound topology is given by the semi-norm

p(x,y) = inf {Ot : (x,y)€ al(-1,-1}, (1,1)]_}
= inf {oa : (<,~a)¢ (x,y) ¢ (@,0) }
hence p{x,y) = |xt. This space is not almost Archimedian

because, if a = (1,1) and b = (0,1) then -da<b 4ca for
all a>0.

Using the semi-norm defined in theorem 4, we can now
prove the equivalence of order bound convergence and rela-
tive uniform convergence.

Theorem_S. If a PL space has an order unit =z, then
relative uniform convergence is equivalent to order bound
convergence,

Procf. Theorem 3 shows that if xn—-> x relative uniform-
ly, then xn—-> ¥ in the order bound topology. Now, if

xn—> X in the order bound topology, then p(xn— X)—> 0 as

1

n—ce . But, p(xn- x)} = 1nf{0b : ,(xn— X) & a[—z,z]}  hence
there exists a sequence aﬂ—* 0 so that xn- X ean[-z,z] .
i-eo’ —GZSX—X-‘-:Q'- Zo
n n n
As an indication of the close connection between the
ordering in the space and the order bound topology, we
prove a theorem in which an order concept (o ~completeness)

implies a topological concept (topological completeness).

11

Theorem 6. If a PL space with order unit is ¢ -complete,

then the order bound topology is topologically complete.
Proof. By theorem 4, the order bound topology is a
semi-norm topology, hence completeness is equivalent to
sequential completeness. Let {Xn} be a Cauchy sequence;
i.e., X~ xm——>0 as n,m->00 , By theorem 5, this implies

-0 ZEX - X £ 0 Z
n,m n m n,m
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where an ﬁ+-o as n,m-+<« . But then

’

X~ O ZEXR L QO Z + x
1 n,l n n,l 1

S0 {xn} is order bounded, and

su - a Z su X - X Su a d .
”’PET){ '} nv,g ( ) H‘-‘/ga n,m -}

By theorem 1, this implies

sup { } z ¢ su - X &£ supia 1=z
hbm h?;g. ni h?,‘g, t n,m}
so
0¢sup $Ix ~-x ¢supla 1z,
h:;-§| ni m h’;hp'l n:mj
Let u = sup {x . Then u_ 2 u_: 1nf {x so if
sup { %} 17 % § e

= 1nf {u ‘} then 0 & u - X < nag-{an’ ' z and

X*¥—- x &u - X 40 2
m m ™ m

where a = sup {a §-9 0 as m-»e0 . Similarly, taking
nzm
infima, we can show
X =~ X 4£0 2
m *7 m

where x_= sup inf {x }. But then
*
v Nz n
X¥= x = (x¥- Xm) + (xm- x*)£-2amz
where aﬁﬁ‘O. Thus x* = x, and
-0 Z<x¥— X £ Q2

. m m- m
hence xm~>x* relative uniformly. Again applying theorem
5, the proof is complete.

As a final comment on PL spaces which have an order
unit, we observe that these spaces are exactly those
used by Schroeder [23] in his work on operators with
positive inverses. In this paper, Schroeder defines
another type of ordering by setting x» 0 if, for every
Z in the space, there exists an a > 0 such that - ox ¢ z £ ax.
Hence "z » 0" is equivalent to "z is an order unit." This
ordering is not a partial ordering, in the sense of defini-
tion 1, because it is not true that 0>>0. Some basic

properties of this ordering are;

Lemma 2. If (Z,K) is a PL space with an order unit,
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then

1) %0 and y>» 0 imply ox + By» 0 for €20, B0,
and ¢ + B> 0.

2) x%0 and y»x imply y>>0

3) x>0 and y» x imply y»»0.

Proof.

l)Lm:aez.ﬂmnfm:mmeﬂlmzao,4hx£z$m3
and —T]ZY!: z é'ﬂzy. If either o or B are zero, the result

i . - = M My
is clear Assume both are non- zero and let '[]3 max ( Yad ) 1/_2§)
Then

“Ny@x + By)&-dx - Ty ez x + Ny, (@x + Py).
2 2 2 Tz 3
2} If ze€?Z, then for some N30, -Ny-x)4 z<TN(y-x).
But x %0 so -Myv&-Ny + Mx ¢z &«N(y-x) &Ny, hence y-»0.
3) Let 2z = y-x. Then 230 and y-2 = x>»0, so ym»wz.

Now apply part 2} to get y»0.

In the previous section, it was shown that we can
start with a PL space and define a topology on it which
will give a topological linear space. In most applications
however, a linear space is given which already has one or
more well- known topologies, and it is not always clear
how these topologies are related to the ordexr bound top-
ology. An alternative procedure for developing this
theory, which avoids this problem, is to start with a
topological linear space in which a partial ordering is
defined, and then try to prove the necessary relations
between the topology and the ordering. This is the method
used by Krasnoselski [18] for Banach spaces and by Schaefer
[21] for locally convex spaces. It will be shown, however,
that even the most basic relations cannot be proven without

some additional assumptions. One such relation which is



always very helpful is that the limit of a sequence of
positive elements should also be positive. For this
reason, we introduce the following definition.

Definition 6. A partially ordered topological linear

space (PTL space) is a PL space with a locally convex
vector topology such that the positive cone is a closed
set.

We will use (Z2,K,T) to denote a PTL space 2 with
closed cone K and locally convex vector topoclogy T. The
fact that the cone is closed also implies that intexrvals
[a,b] are closed sets.

A PL space with its order bound topology is not
necessarily a PTL space. Take, for example, the space
E2 with K = {(x,y) : x>0 or,x = 0 and yao} . In the
previous section, we showed that the order bound topology
for this space is determined by the semi- norm p(x,y) =)xl
hence K is not closed.

We will now list some common PTL spaces which will
provide us, throughout the remainder 6f this chapter,
with examples and counter- examples.

1) ¢[0,1], real valued functions, continuous on [0,1],

T the topology given by the norm WEil = maxl|f(t)],
K={£f: £(t)% 0 for t €[0,1]1} .
2) Cn[O,l], real functions with n continuous deriv-
atives on [O0,1],
TO the norm topology with I £fll = Tax FE(E)],
T_ the norm topology with |)f|l=;§émax lfmktﬂ
K= {£f: £(t)>0 for tel0,11}
3) BvV{0,1], functions of bounded variation on [0,1],
T given by the norm {{ £1li=}£(0)] + V(f), where
V(f) is the total variation of |£] ,
K={f: £(t)%0 for te€[0,1]}

14
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4)L[Ol],0<p<oo N
T given by the norm [if{] = {!f[flpdt}
K = {f : £(£)2 0 a.e. }
5) °[0,1], bounded measurable functions on [0,1]
T given by the norm lfll = ess sup | £()}
= {£: £(&)» 0 a.e.}
6) E , real n—dlmen51onal space

T given by [{x|l = gljixl }

Klm{(x IXI"'!X) =Xi>/op i"—"'l,Z,...,n}

K2 = {(x ,x reeed X } : x.>0, i=1,2,...,n-1, xn= O}

7) H(Sz), real valued functions which are harmonic in
the open unit sphere S {(x,y) : x2+ y2{ l} ., and bounded on
the closed unit sphere in E

T given by the norm [[fl] = 1im Jpax | JE(x,v)]
*y L

= {f : £(x,y)> 0 for x 2y v 4 l}
It is simple to check that all of the above examples are
PTL spaces. Using them, we can easily show that the
closedness of the positive cone is not, in general, a
strong enough connection between the ordering and the
topology. Consider, for example, the following properties
of sequences of real numbers:

A) X. &% 4%, 4 +..4x* and sup{xn} =x* implies lim x = x*.,

B) lim x = 0 implies that there exists {yn} with
Y1 %Yy ees 70, inf{yn} =0, and -y &% &y .
& & d 1i = i i lim x = 0.
c) 0 x ¢y an lim Y, 0 implies lim o
Unfortunately, these statements are not true for all PTL
spaces:
a) In (C[0,1],K,T) let x_(£)= -t". Then x ¢ X, ¢ ... 40,
and sup {xn} = 0, but Hxnll= 1, all n, so lim X
does not exist. Hence A) does not hold.

b} In (Ll{O,l],T,K) let xn(t) =n forh“51:41* and
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zero elsewhere. ‘Then lim Hxnu = 0 but clearly,
property B) does not hold.

1 n
c) In (€7[0,1],T,K) let x (t) = ¢, y () =F.
Then Oé:xn& Yn' and 1lim yné 0, but in the T. norm

n-1 L
| =4+ 1> 1, hence X

nxio= max ]%tnl + max |t
doces not converge to zero.
The remainder of this section will be devoted to a
brief discussion of certain types of PTL spaces in which
some of the above statements are true.
Definition 7. A PTL space is called xegular if every
order bounded increasing sequence has a limit.
Examples of rggular PTL spaces are (En,T,Kl), (En,T,
KZ)' and (LP[O,l],T,K), whereas (Cn[O,l],TO,K) and (Cn[O,l},
Tn,K) are not regular, as was shown in example a) above.
If {:Zn} is a monotone increasing sequence, and

lim Zn= z* exists, then for any ko, n:k_ implies zn& Z

0 Ke

Hence z* = lim =z i.e., z*¥ is an upper bound on {Zn} .

n> %!
Moreover, if w is any other upper bound, then zns w and
hence z* = lim z_¢ w, i.e., z* = sup {zn} . We have shown
that in any PTL space, the closedness of the positive

cone guarantees that, if a monotone increasing sequence
has a limit, then it also has a supremum. In a regular
space, the converse of this is true, i.e., if a monotone
increasing sequence has a supremum, then'it also has a
limit. It is important to note that the definition of
regularity involves both an order concept {monotone bound-

edness) and a topological concept (limit).

Definition 8. If the positive cone has an interior

point, then the PTL space is called golid.
Examples of solid spaces are (C[0,1],T,K} and (En,
K.,T). The first has £(t)=1 as an interior point of K,

1

while (1,1,...,1) is an interior point of K The spaces

1°
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(LP[O,l},T,K), 0<p<oo , are not solid because, given

any £€X, and any ¢ > 0, there is a g¢ K such that lif-gli¢ ¢t
An equivalent characterization of a solid space is given
by

Lemma 3. A space is solid if and only if there exists
an open set 8 containing the origin, with € «[-a,a], for
some a2 0.

Proof. If 0€ ©<[-a,a], then a€ © + a< [0,2a] € K,
hence a is an interior point of K. Conversely, if ace 6 ckK,
then 0 € [6-a t (-6+a)] <« [-a,a].

The theory concerning order units which was developed
in the preceeding section can be applied to solid spaces
because of the following result.

Lemma 4. If (Z2,T,K) is a solid PTL space, then z0 is

an order unit if and only if z_ is an interior point of K.

0

Proof. If z_  is in the interior of K, then zoe 0K,

0
where € is an open set. Let z be arbitrary in 2. Then

TNz 0 as N> 0 and since e-zo, -tz are both.neighborhoods

0
of 0, for some ﬂl> 0,
o'Zo]

for all T}éTh: That is, Nz E[-zo,zo] and hence 24 is an

is an order unit, and

Nz e(e—zo)fﬁ(-e+zo)C:[uz

order unit. Conversely, if Zg

2y is an interior point of K, then for some T, nzls z
But zlE- CK s0 'ﬂzle Ne ¢K and
= - C + - C
ZO nzl+ (zO ﬂzl) ne (ZO ﬂzl) K,

where TI@ + (zo— nzl) is an open set. Thus zO is an interior

0-

point of K.

A consequence of this lemma is that if a space is
solid, then it has an order unit. The converse is not
true, in general, as is illustrated by the following
exampile. Let'Z = C[0,1], K the usual ordering, and T the
topology given by the Ll[O,l] norm. Then £(t) = 1 is an
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order unit, but there is no interior point in K, as was
pointed out earlier, hence (Z,T,K) is not solid.

It is now possible to relate the topology in a solid
PTL space to the order bound topology. First, however, we
need some basic facts about these spaces.

Lemma 5. If (2,T,K) is a solid PTL space, then

1} K is reproducing;

2) every topologically bounded set is order bounded;

3) every compact set is order bounded.

Proof.
1) Let Z, e an interior point of K and let z be
arbitrary. By lemma 4, [-z_,z.] is radial at 0, so for

0" 0
some N> 0, nzoa z. Hence z = ﬂzo- (ﬂzo—z) where ﬂzo and

(ﬂzo— z) are in K.
2) If S is topologically bounded, and ZO is an interior
point of K, then NS < [~z _,z.] for some 1> 0, because [~z

0" 0 0
contains an open set. (See the proof of lemma 3).

,20]

3) Every compact set is topologically bounded, hence
is order bounded because of part 2).

Theorem 7. If (%,T,K) is a solid PTL space, then T
is finer than the order bound topology.

Proof. Let U be the local base for the order bound
topology, and let Wbe a local base for T. By lemma 3,
there must be order bounded sets in W, and every UeU
absorbs such sets, hence every U€U contains some We W .
Thus W is finer than U .

An important consequence of this theorem is the
following result.

Corollary. In a solid PTL space, all sequences have
property B). That is, if lim X = 0, then there exists
{yn} with ylz,yza....z.o, inf {yn} =0, and -y, ¢ X &Y -

n
Proof. If lim Xn=0' then xnfbo in the order bound
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topology, hence by theorem 5, xnﬂ->0 relative uniformly.
Thus, there exists ﬂlz ﬂzb ees 20, and u »0 such that
1 —_ — é -(.. -
inf {T]n} 0 and - uéx ¢MNu

The last type of PTL space we will consider is defined
by

Definition 9. A PTL space is normal if, given any

local base U for the to_po]fogy, there exists an N> 0 so
that if 0z ¢UeW, then [0,z]< NU.

The spaces (E,T,K), (tF[0,1],T,K) and (c[0,1],T,K)
are normal, while (Cn[o,l],Tn,K} and (BV[0,1],T,K) are not.
If T is a locally convex topology, then there is a family
{Po.}' of semi- norms such that the family of sets of the
form {z : pa (z) 4 r} , for r real, is a local base for
the topology T. Hence, the definition says that there
exists an T70 so that 1f 04 x ¢y and Py (v) ¢ r then b, (x) < Tr.
From this observation, we can prove several statements
which are equivalent to normality.

Theorem 8. Let (Z,T,K) be a PTL space. .Then each of
the following statements is necessary and sufficient for
the space to be normal. For any continuous semi- norm p,

1) there exists an T > 0, which is independent of
P, such that p(x} 4 Np(y) for 0<s¢xsvy.

2) (Sp+ K} n (Sp— R) < T]Sp where T] is independent
of p, and SP= {z : pl{z) & l} .

3) there is a continuous semi- norm ¢, equivalent
to p, such that g(x) £ g(y) for 04 x4y.

Proof. We first observe that the collection of all
continuous semi- norms defines a local base, hence the
family {Poc} , in the remark following the definition,,can
be this collection.

1) If 2 is normal, and 04 x <&y then p(y)<,’41p (%)
would imply p(x) < ip(y) € p(x) which is impossible, so
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P(y)> % p(x). Conversely, if 0<¢x sy implies p(x) < Np(y),
where T} is independent of p, then clearly p(y) < r implies
p(x) 4 Tir, hence normality.
| 2) If (2,T,K) is normal, and z ¢ (SP+ K) N (Sp— K),
then z = u+x = v-y where p(u) <1, p(v) ¢1, and x,y 2 0.
But then 0 ¢ x <x+y so by 1),

p(x) £ Mp{x+y) = Np(v-u) £ N(p(v)+p(u)) £ 21,
hence p(z)‘= p(utx) € p(u) + p{x) 4 1+27, thus z € (1+21))S .
Conversely, if UP= (SP+ R) N (SP- K) < T]SP then p(z) < 1) fof:)
all z e Up. But then, if 0¢x4¢y and O0<p(y) < r, letting
v¥*=¢y, x*=¢x, we have 0 & x¥%= y*, p(y*) ¢ 1, and x*=y*+ (x*-
~y*) so x*e UPand hence p(x*) {7. i.e., p(x)< Br where
B is independent of p.

3) If every p has an equivalent monotone ¢, then
part 1) is true with T = 1. Conversely, if Z is normal,
then SPC UP== (SP-I- Ky n (SP— K) C:T]SP. But SP is radial at
0, and hence Up is a convex, circled set, radial at 0.
Thus the Minkowski functional g(z) = inf {"ﬂ : xc—ﬂUp}
is a continuocus semi- norm. Furthermore,

a) p(x) = 0 implies q(x) = 0 since for such X,
xe’nUP for all NN>0. Also, p(x)?> 0 implies g(x) =
p(x)a(3e) < p(x) since §f;w6Up. Hence, g(x) £ p(x).

b} By part 2), p(UP) £k, but g(x}z 1 where )"r,x eUP,
hence p (45X ¢ k. That is a(x)2Nz¢ p(x).
Thus for any x€¢Z, ¢ p(x) 4 q(x) ¢ p(x) so g is equivalent
to p. Finally, if Os£xzty, and p(x) & 1 then Yy eUp implies
Yny = uta = v-b where u,v eUP and a,b ¢ K. But x=y-(y-x) so
WX = v=b-ty (y-x) = v- (]:)+’/r;t (y-x)) where b+ki-(y-x) ¢ K.
Hence, % x eUP and so {T] : yc'ns} < {T‘\ : xc:ﬂS_% and
therefore g(y) & g(x).

The last part of this theorem has an interesting

consequence, Given any family ipaj of semi-~ norms, the



theorem says that normality is equivalent to the existence
of a family {qa} of semi- norms with q, equivalent to P,,
and qa monotcone on K. Hence we have

Corollary. A PTL space is normal if and only if
there exists a local base U for the topology, such that
if 0¢x¢UcU, and 0¢ysx, then y €U,

This is, in fact, the statement used by Schaefer to
define a normal PTL space. (See [21], p.1l21). If the
topology is a norm topology, then part 1) of the theorem
says that there exists an T) so that 0£¢x ¢y implies
Uxti £ Mty « This is equivalent to the condition used
by Kelley and Namioka ([171,‘p.227), and Krasnoselski
([18], pp. 20,24) to define a normal normed space. This
theorem shows that these two definitions are the same.

Some further properties of normal spaces which will
be needed in the next chapter are:

Theorem 9. In a normal PTL space,

1) every order bounded set is topologically bounded;

2) the topology is coarser than the ordei bound top-
ology;

3) property C) holds. That is, if Os;xnﬁ-yn and
lim Y= 0 then lim x = 0.

Proof.

1) If s<{a,b] then 8'= S-ac<[0,b-a]. If ipaj is
a family of semi~ norms which defines the topology, then
pa(s')é:ﬂpa(b—a) , all a. Hence pa(s) = P&(S‘+a)é'3a(sl)+
Ra(a)é;ﬂpa(b-a) + pa(a), so 8 is topologically bounded.

2} The order bound topology is, by definition,
finer than any topology for which 1) is true.

3} If O:sxng:yn and lim Y= 0, then for any p,.

B, (xn)éﬂpa (yn)-w"o as n—e. Hence, p_ (xn)—)o for all

¢, and therefore, lim xn= 0.
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Combining part 2) of this theorem with theorem 7, we
see that the topoleogy in a solid normal PTL space is
equivalent to the order bound topology. Actually, we can
prove a little more about such spaces, but first we need
some more definitions.

Definition 10.

1) A PTL space in which the topology is given by a
norm {|-J| which satisfies IJxy ¢ kliyl} for 0 &¢x ¢y, where

k is independent of x,v, is called a partially ordered

normed linear gpace, (PNL space).

2) A PNI space which is also a Banach space is called

a partially ordered Banach space, (PB space).

3) A PB space which is also a lattice in which the
absolute value and the norm are related by I{ Ix] || = lixy

for all x, is called a Banach lattice, (BL space).

Notice that PNL, PB, and BL spaces are all normal,
since condition 1) of theorem 8 is satisfied. PFurthermore,
by this same theorem, any normal PTL space, where T is a
norm topology, is a PNL space. That is;

Theorem 10. If T is a norm topology, then (Z,T,K)

is a PNL space if and only if it is a normal PTL space.
Now we can summarize some of the characteristics
of a solid and normal space.
Theorem 1ll. Let (Z2,T,K) be a PTL space which is
both solid and normal. Then
1) T is the order bound topology:
2) (2,7,K) is a PNL space;
3) if (2,K) is o -complete, then (%,T,K) is a PB space.
Proof. Part 1) was proven above, and 3) follows
from théorem 6. To prove part 2) it suffices to show

that the order bound topoleogy is a norm topology. But by

the corollary to theorem 4, this is true if (Z,XK) is



almost Archimedian.

x20 and all o > 0.

Suppose that -Gx £y £ dx for some

Then since X is closed, and T is a

vector topology, letting ¢—0 gives y <0 and y >0, hence
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we must have y = 0. That is, the space is almost Archimedian.

We conclude this section with a summary of the spaces

we have been using as examples.

Lattice o ~comp.

Regular

Solid Normal PB Space

(En,Kl,T) ves

(En,K +T) no

2

P x,T)

(L
(L ,K,T)
(CIKIT)

(C:K:Tl)

n
(C,K,T_

(BV,K,T)

(H,K,T)

yes
yves
yves
1) yes
) no

yes

ves

yes

yves

yes

yes

no

no

no

yes

yes

yes
yes
yes
no
no
no
no

yes

yes

no

no

yes

yes

no

yves

no

yes

yes

yes

yves

yes

ves

no

no

yes
ves
yves
yes
yes

n03 )

n02 )

——— — ———— T oo 8 T — — " o . A P S P T o ) ) S S S S A ] P W S P S R (e S G S — ——— = A .

1

T. is given by the Ll norm;

The norm is these spaces is

This space is not complete.

The regularity of this space follows from Harnack's

theorem.

i
1}fH=J; £ (£)| at.

not monotone.

Table l. PTL Spaces



Spaceg with Partiallyv Ordered Norm

Let X be a real linear sgpace and suppose there is
a mappi.ng [I-1) from X into a PTL space Z, which satisfies:

1) uxiy > 0 for all x in X;‘

2) nxuy= 0 only if % = O3

3) jax) =lo) nxlyifor all real o;

4) (Ixtylsuxi +auyh .
Then X is said to be normed by Z. This concept has been
used extensively by Kantorovich ({14], also see [4]), who
has pfoven a convergence theorem for Newton's method
applied to operators in such spaces. In order to apply
the results of the next chapter to these spaces, we will
now define a topology on X which is induced by the partially
ordered norm.

Suppose the linear space X is normed by a normal
PTL space Z. Let U be a local neighborhood base for
the topology in Z, and, for each U€¢U let

o{u) = {x eX @ yxiicU}

Then, the collection 3= {Q (VY : Ue u} is a local base
for a vector topology in X. This is true because we can
assume that U has the property: 04x £y eUe U implies
x € U, for all UeW and v €U, in which case,

1) for any Q(U) ,Q(V), there is a W< UNV and hence
QW< () N Q(V);

2)for any Q(U) there is Vc¢U with V+V €U, hence

Q(V)+Q (V) € Q(U) because if x_,x_, € Q(V), then 1x,i ¢ V,

1772 1
£ + . U
il xzuev so Oéflxl+x2u & "Xl” + HX21I and |] Xl” ”Xz”E p

i +x, ¢ Q(U):
hence by normality, I x X, [T e 0 (U)

3) for any Q(U), there is a VeW with aVe U for all

“ &€ U, i-eo: X

¢ with loi & 1. Hence o (V)< Q(U).

24
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4) for any x€¢ X, and any Q(U), nxi e aU for some a,

hence x ¢ aQ(U).
Thus, by the theorem on local bases quoted earlier,¥ is
a local base for a locally convex vector topology. This

topology will be called the norxm topology induced by Z.

If Z is Hausdorff, then so is this topology, because, if
x€ {10(U) then uxie AU = {0} and, by condition 2) of the
definition, this implies that x = 0.

If Z is a PNL space, then the topology induced by
%z is also a norm topology. To show this, we use the fact
that 2 has a norm p which is monotone. Hence, the function
g defined on X by g(x) = p(uxl ) is a norm because:

a) g(x)? 0 for all x in X;

b) g(x) = 0 only if x = 0;

¢) gox) = p(raxy) = plalhixy ) = lolg(x);

d) 0¢ iix+yl &£ Uxii + Uyl , hence plixtyit) & p{nxutuyn)s
pixn) + pliyn), i.e., glxty) £q(x) + qly).
Furthermore, a local base for the topology induced by
g consists of sets of the form {x:q(x)é r} ={x:puxn) ¢ r}
But these sets also form a local base for the topology

induced by Z, hence these two topologies on X are identical.

Opexators on PTL Spaces

The purpose of this section is to define convex

operators and prove some properties of them which will

be needed in the next chapter.‘ These proofs'will use

an integral theorem of the form f(l)-f(0)=‘[f'(t)dt, and

so we will first have to define the derivatgve and integral
of an operator. These definitions do not make use of

the ordering in the space and hence are given for topolog-
ical linear spaces. Much of this material can be found in

Vainberg [27] and Kantorovich and Akilov [16].
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Let X and Y be locally convex topological linear

spaces, and let D be a convex subset of X. If XO is an
0

interior point of D, (xoe DO) , then for any he€ X, x0+th€ D

for small enough t, and hence if F:DCX—>Y then F[x0+th]

is defined for small t. (We use F:DcX—=+Y to denote an

operator F defined on a subset D of X, with range in Y)
Definition 1l1. If F:DcX->Y and xoé-DO and if the

limit VF[XO'h]iﬁip'%-{?[X0+th]_F[XOﬂ' exists and is unigyuc

for all h in X, then F is said to have a Gateaux differential

at x_., and VF[xO,h] is called the Gateaux differential in

0
the direction h.

From this definition, it is clear that VF[x,ah]}
aVF [x,h] for any real a. If VF[x,h] is alsc additive
in h, then the operator F'{x] defined by
F'[x]h = VF[x,h]
is a linear operator. (It is not always true that VF[x,h]

is linear in h.) If P'[x] is a continuous linear operatox

then it is called the Gateaux derivative of F at x. If

Sc:DO and F has a Gateaux derivative (G-derivative) at

every point in S, then F is G-differentiable in 8. F is

called continuocugly G-differentiable in S if the mapping

F':S*E(X,Y) is continuous, where E(X,Y) is the space of
continuous linear operators from X into Y, with the weak
operator topology.

The G-derivative at a point is a generalization of
the directional derivative. For this reason, it is to
be expected that certain important results cannot be
proved using this type of derivative. For example, an
operator can have a G-derivative at a point without being
continuous there, and, in general, the composite function

theorem
(FH) ' [x] = F' (HIx])H' [x]
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does not hold for G-differentiable operators. By adding
another condition to the definition of the G-derivative, we
get the Frechet derivative, which has all the properties
needed of a derivative. This added condition can be given
for an operator defined on any topological space [19], but
since it will be used here only in normed spaces, we define
it as follows:

Definition 12. Let F:DCX2Y be G-differentiable at

0
XOEED . where X and Y are normed linear spaces. If the

operator F'[xo] satisfies

3 . - - ' hi =
nhﬁfglﬂh” llF[x0+h] F[XO] F [XO] 3 0

then F is called Frechet differentiable (F-differentiable)

at xo. The operator F'[xO] is called the Frechet derivative.

If P is either G or F-differentiable in a convex
set S8, then F' is an operator from 8 into E(X,¥). If
this operator is also differentiable, in the same sense,
then F is said to be twice G or F- differentiable. The
derivative of F' at XO ig denoted by F"[XO]. Note that
F“[xojzx->E(X,Y), hence F"[xo](x) is a linear operator
from X into Y. That is, F"[xo] can be interpreted as a
bi-linear operator from X*X into ¥. Higher derivatives
are defined similarly.

Tt is possible to define the integral of an operator
F:X—Y where X and Y are locally convex spaces. For our
purposes, however, it will suffice to consider only the
special case where X is the unit interval [0,1]. Let [ti}
i=0,1,...,n, be a subdivision of [0,1], i.e., O=t0$ tl$

( 4 k1 i i ,t - If
t2\ .....tn 1, and let Ek be any point in [tk k+l}
=i

the Riemann sums EE:F[ﬁg](t ) approach a unique limit,
k=0

e+l ok

as max (}t |) goes to zero, independently of the

+1 " T
choice of the subdivisions and the points Ek' then this
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limit is called the Riemann inteqral of F, and is denoted
by jﬂF(t)dt. The reason we define the integral of an
0pe£;tor is to allow us to prove the formula F(l)}~ F(0)=
‘EE'(t)dt. If F:{0,1]1—- Y, where Y is a Banach space, and
F is continuously G—differentiable, then this formula is
indeed true. (See [16], p. 666). However, using PTL spaces,
we can give other conditions on F and Y which will allow
us to prove a result more useful to us than the Banach
space theorem. In order to state these conditions, we
first need some properties of operators defined on PTL
spaces.

Definition 13. If F:Z—W, where Z and W are PTL

spaces, then F is called positive (F2 0) if F[z] 2 O for
all z20.

If F and G are two operators from Z into W, then
we write F2>G if F - G is a positive operator. Thus, the
ordering in the spaces induces an ordering between the
operators.

" Definition 14. An operator F is called monotone if

zls z, implies F{zl]$ F[zz]. '

If F is linear, then F>» 0 is equivalent to the mono~
tonicity of F.

Definition 15. An operator F is called inverse positive

if F[z] % 0 implies z > 0.
If F has an inverse, then F is inverse\positive if
and only if the inverse of F is positive. A linear operator
which is inverse positive is also one-to-one because,
if F[z#*]=0 then, by definition, z*¥ 2> 0 and also z*<¢ 0,
hence z#*=0.

Definition 16. An operator is order bounded if it

maps order bounded sets into order bounded sets.

Every monotone operator is clearly order bounded,
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but not conversely.
If x and y are elements in a linear space X, then the

segment (x, xX+y) is the set of points of the form x+ty, for
0st=sl.

Definition 17. An operator F:Z2-*W is uniformly differ-

entiable on the segment {z,z+h) if F is G- differentiable

at every point in the segment, and there is an operator
w:{0,1]- W such that (-w)} is monotone, %%% w(t) = 0, and

~w(lati)e L (Flz+(t+at)hl-F{z+th])-F' [z+thlh ¢ w(iat)
for all &, ot with 0¢t 4£1 and 0 £ t+at £ 1.

This concept has been used by Kantorovich [14] for
operators in spaces normed by a PTL space. In this case,
the condition becomes;

“ =& (F[z+ (t+ t)h]-F[z+th])~F' [z+th]lhl] £ w(lat]),
where the range of w is in the space which norms the range
of F. The relation between uniform differentiability
and continuous differentiability is given by:

Theorem 12. Let F:D< Z—2W where Z and W are PTL
spaces, D is convex, and F is continuous in D. If W is
normal and F is uniformly differentiable on every segment
in DO, then F is continuously differentiable in DO. If
W is solid and F is continuously G- differentiable in
D0 then F is uniformly differentiable on every segment
in DO.

Proof. Let h be arbitrary in Z and let zl,zze DO. Then
P [zl]h - F'[z,]h = alg(F[zz+&th] —F[ZZI)HF' [z,]h -

At (Flz +ath]-Flz,])-F'[z,]h +
&% (Flz toth] -F[z +tath]+F(z, ] -Flz,])
& w,(lat]) + wy (1atl) +
& (Flz tath] ~Flz tothl + Flz ]1-Flz,])
where ot is small enough that zl+Ath and 22+Ath are in

DO. Similarly, we can show that
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F'lz,1h - F'[z,]h> -w, (lati) - wl(lé.tl) +
s (F[zl-i-Ath] —F{22+Ath]+F[22} -F[zl]) .
But, wi (At} 0 as At—=20, F is continuous, and W is normal,
go it follows that F'[z]lh is continuous in z.. Conversely,
if W is solid and F is continuously differentiable then,
for (z,z-!-h)C-DO, the functlon
G(t,at)= 2 (Flz+ (t+At)h] ~F[z+th])~-F' [z+th] h
is continuous in t. Thus, for fixed At, the set
{e(t.at) = 0¢t s 1]
is compact. But compact sets are topologically bounded,
and by lemma 3, there is an order bounded open set in W.
Thus there is a positive WO in W, and a real function £,
such that {G(t,At) t0¢ k¢ l} < f({AtI)-[-WO,WO] . il.e.,
-£lAthw & G(t,at) £ £(0At)w,. Since G(t,at)— 0 as at—>0,
uniformly for 0¢ t4 1, we can assume f is monotone decreasing
and lim fat) = 0. Setting w(at) = f(At)wO completes the
proof.

The hypothesis that W is solid in the last part of
thigs theorem is necessary. To show this, considexr the
following example. Let F:[0, l]—?L [0,1] be given by
Fit] (x) = (1:--}{)3/3 . Then F is continuously differentiable,
with F'[t]=7% (t=x)%, but the difference jx(F[t+at]-F[t])-F'[t]
is not order bounded, hence no w{at) can exist. That is,

F is not uniformly differentiable.

We can now prove the important result;

Theorem 13. Let F:[0,1]— W be uniformly dlfferentlable
on [0,1], where W is a normal PTL space. Then JF (t)dt
exists, and F{l)- F(0) jF (t)dt.

Proof. Let {ti} be a part:l.tlon of [0,1]. Then

F(l)-—F(o)—'EF'(t ) (e, -t )—R (F(tk+l

—E(kh_t(F(t )-F (£, ))-F(£,) (£, ~5,)

+}

~F (£, )-F' (t,) (£, 1=t))
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by T}

Thus, F(1)-F(0)-)F’ (t,) (£ "t )& ;éw(tkﬂ“tk) )

Rzp
z -
& w(maxltk+l tki)
Similarly, we can show
)
F "'F - ! — > - — .
(1) ~F(0) RZOF (t,) (e, .-t )2 ~wimax e, -t [). Hence,

by normality, as the size of the partition goes to zero,
the summation converges to F({l)-F(0), and the conclusion
of the theorem follows.

The form in which this result will be most often used
is;

Corollary. Let F:D & Z W where 2 and W are PTL spaces,
W is normal, and F is uniformly differentiable on the
segment (z,z+h)CD0. Then :

F{z+h] -F[z]= | F' [z+thlhat.

Proof. Apply the theorem t; the operator f(t)=F[z+th].
Using the above theorems, we can now prove some
important results about convex operators. First considex
a real valued function f£(t) defined on some interval [a,b]
of the real line. If f is convex, then it has the following

properties, any of which may be used to define convexity.

a) f(T]xl+ (l-ﬂ)xz) & T]f(xl)+(l—T])f(x2) for 04T «1 and
X 0%, ¢ [a,b].

b) If £'(x) exists for x € [a,b], then for x,xt+h ¢ [a,b],
£ (%) & f;[f(x+h)-f(x)] .

c) If £''(x) exists for x e [a,b], then £''(x) » 0 for
all x & [a,b].

These statements can be interpreted in any PTL space.
Let F:D¢ Z->W where Z and W are PTL spaces, and D is a
convex subset.

a') F[T]zl-i- (l-ﬂ)zzl £ T]F[zl]-i-(l-ﬂ)F[zz] for 0 &M £¢1 and
21'22 €D,

b') If F is G- differentiable in D, then for z,z+he D,

F'[z]lh & F{z+h]-Flz].
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c') If F is twice G~ differentiable in D, then F''{z]2 0
for all z D.
For differentiable functions, a) and b) are equivalent,
and we also have

Lemma 6. If F is G- differentiable in D then a')
and b’') are equivalent.

Proof. If ') holds, then for x,yé&D, 041 <1, we
have z=Tx+ (l-T)y ¢D and

Flyl-Fl(z]1% F'[z] (y-2)
Fix]-F[z]1> F'[z] (x-2).
Multiplying the first by (1-T), the second by T, and adding,
gives, MF[x]I+(1L-MNFlyl-Flz]z ¥'[z] (x+ (1-N)y-2)
= F'{z](z=-2) =0
hence a') holds. Conversely, if a') is assumed to be
true, then for 0t t+«1 and x,ve¢ D,
Fltx+ (1-t)y] ¢ tFIx]+(1-t)F[y].

Hence, '4‘5 (Fltx+ (1-t)y]-Flvy]) ¢ F[x]~-Fly]. Letting t-0,
the left side converges to F'[y] (x-y), hence b') holds.

Condition b') is used by Collatz [7] to define a
convex operator. In view of the above lemma, however,
we use the more basic property a'). That is,

Definition 18. If F:D<CZ-3W where Z and W are PTL

spaces, D is a convex subset, and F satisfies a'), then
F is convex in D.

In the next chapter, we will need a property of
convex operators which, in certain spaces, is equivalent
to a').

Lemma 7. If Z is a PTL space, W a normal PTL space,
and F is uniformly differentiable in every segment in D,
then F is convex in D if and only if

a') F'[u] (v-u)4£ F'[v] (v-u) for all u,v in D.

Proof. If F is convex then b') holds and hence we have,
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F'{u] (v-u) & F[v]-F[ul & ¥'[v] {(v-u)}). Conversely, if d')
holds, then by the corollary to theorem 13,
F[u+z]—F[u}=‘[}'[u+tz]zdt.

éut by d'), F'[ultz¢ F' [u+tz]tz, hence, if £t %0, then

5 ' [ut+tz] zdt >\fF [u]zdt = F'[u]lz. Thus b') holds.
Condition c¢'), (1 e., F"[z] 0), is not, in general,

related to convexity. In E" for example, a twice differ-

entiable functiocnal F: DC;Enﬁ>El is usually called convex

if the quadratic form ﬁigL”g ;9 4iis positive definite,

._

whereas, the condltlon F"[z] 0 means thata4zx'0for
all i,j=1,2,...,n.- These conditions are c¢learly not
equivalent., In fact, they are not even related in the
sense of one implying the other. The condition of positive
definiteness can be generalized to
e') F is twice G- differentiable in D and F''[z]hh > 0
for all z, z+h in D.
Lemma 8. Let F:DeZ-»W be twice G-~ differentiable
in the convex set D, where Z and W are PTL spaces.
1) If F is convex, then e') holds.
2) If W is normal, and F'[z] is uniformly differentiable
on every segment in D, and e') holds, then ¥ is convex in D,
Broof.

1) F"[z]hhxi%gg:i(F'[z+th]h - F'[z]h). But convexity
implies, by lemma 7, that F'[z+th]th - F'[z]th2 0, hence e').
2) F'[u+h]lh-F'{ulh = de"[u+th}hhdt-;0, and hence,

again using lemma 7, we coﬁglude that P is convex.

Notice that a'),b'),d'), and e') make sense even if
the domain space has no order relation, while ¢') does not.
Operators satisfying c¢') do have some properties which
are very similar to b') and 4').

Lemma 9. Let F:Dc Z2- W where W is a normal PTL space,

7 is a PTL space, F is twice uniformly differentiable in
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every segment in the convex subset D, and F''{z] 20 for
all z in D, Then
1) F'[ul £ F'[v] for usv in D.
2) F'l[u] (v=u) £ F'[v] (v-u) for u&v or v£u, u and v in D,
3) F'[u] (v-u) & F[u]l-F[v] for ugv or v4u, u and v in D.
Proof.
1) Let 2> 0 and use theorem 13 to write
F'iv]iz=F'[u]lz= joilF' '"[utt{v-u)lz {(v-u)dt > 0.
2) If u& v then 1) implies F'[u] (v~u) £ F'[v] (v-u).
If uzv then F'[v](u~v) £ F'[u]l {(u~v), so F'[v] (v-u) > F'[u] (v-u).
3} By part 2}, F'[ui{v-u)] (v-u) = T F'{utt (v-u) ] (utt (v-u) -
u)Z> £ F' [ul (utt (v-u)=u) = F'[u] (v=u). Hence by theorem 13,

Flv]-Flu] = {F'[utt (v-a)] (v-u)dt 3 F' [u] (v-a) .
&)



CHAPTER IT
NEWTON'S METHOD
onvex Operalors.
Let F:DCZ~W where Z and W are PTL spaces and F is

a nonlinear operator. If F is G-differentiable in DO and
if there is a sequence {zn} in DO which satisfies the
linear equations
1
E [Zn](zn+l

n=1,2,..., then F is said to have a Newton seguence EE.ZO'

-z) = ~Flz_],

We are interested in finding conditions on a convex operator
which will be sufficient to.guarantee that it has a Newton
sequence which converges to a zero of the operator. Because
of the similarities pointed out in chapter I (lemma 9), we
will also consider operators whose second derivative is
positive.

The theorems which will be proved differ from the Newton
method theorems of Kantorovich [13] in several ways. First,
we use only the G-derivative, whereas the resulis of
Kantorovich require the operator to be twice F~differentiable.
Secondly, instead of Banach spaces, we will use various
types of PTL spaces, and by using these spaces, we are able
to replace bounds on the norms of the first and second
derivatives by hypotheses of the form -F'[z]¢[ , where [
is a linear invertible operator. On the other hand,
Kantorovich's theorems imply that F'[zk} has a continuous
inverse, a fact which is not true in our case, as will be
shown later by an example. Some related results of Baluev
[2,3] and Slugin [24,25] will also be discussed. These
results, which pertain to Chaplygin methods, can also be

applied to Newton's method, however, it will easily be seen

35
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that they are weaker theorems than those which will now be
proven,

Before giving the main result, we will prove three
lemmas. The first two show that in order for a convex
operator, or an operator with positive second derivative,
to have a Newton sequence, it is necessary for there to be
a point at which the operator takes a positive value.

Lemma 1. Let F:D<Z- W where 2 and W Are PTL spaces,
F is convex and G-differentiable in DO, and zo,zl are
points in DO which satisfy
(1) Filz,1(z - 24) = -F[zo] .
Then F[zl]B-O.

Proof. Convexity implies F'{zo}(zl—z ) £ F[zl}—F[ZO].

Subtracting this from (1)} gives F{zl]3~0.o

A similar but slightly weaker result holds for operators
with positive second derivative.

Lemma 2. Let F:D<Z-?W, where Z and W are PTL spaces,
W is normal, F is twice uniformly differentiable on every
segment in D, and F''[z] > 0 for all ze&DO. If zo,zle D0
and either zoé z, or zlé 2y then equation (1) implies
‘[zl] 2 0.

Proof. By lemma 9, chapter I, the equation

F’[gO](zl— zo)é F[zl] - F[zO}

is valid. Hence, as in lemma 1, F[zl]3'0.

The next lemma is a fixed point theorem of Kantorovich
[12] which will be used extensively throughout this chapter.

Lemma 3., Let V:Z7 2 where Z is a regular PTL space,
and V satisfies

1) V is continuous;

2) v[ol=2o0

V[iz*] £ z* for some z* 2 0;

3) if az >0 then V[z+az] > V[z] for any z € Z.
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Then V has a fixed point in the interval [0,z¥*].

Proof. Let ZO=O, Z2 1= V[zn] . ‘'Then zl=V[zO] Z20 = 2
and zl= V[zO]é V[z*] £ z*, hence zle [zo,z*] . If 'zn is in
{zn_l,z*] . then zn+l= V[Zn] >,V[zn_l] = zn, and

Zn+l= V[zn] & V[z*] & z*,
hence Zn—i—le [zn,z*] . Therefore, bry induction, 0 % zoe zl’—
zz.é_ - &zné Zn+l$ ess £ 2%, Since 2 is regular, }_}I& z = z'
exists, z*' € [0,z*] and V is continuous so V[z'] = z'.

We are now ready to state the main result.

Theorem 1. Let F:DC Z*W where Z and W are PTL spaces,
Z is regular and normal, and [zg,z{] is an interval in D0
such that

1) F is continuous, G-differentiable, and convex in
[zg.z;‘] ; .

2} F[ZB] >0z F[zi] H

3} there is a linear operator I' :Z7 W which has a
continuous positive inverse; and -F'[z]% /" holds for all
z € Fzg,zi] .
Then, F has. a Newton sequence at ZS which is monotone
increasing and converges to z¥* € [zg,zi’f_] , Where F[z*] = 0.

Proof. Let z.= z¥ and V[z] = z + F-’(F[ZO]+F'[ZO]Z).

0 0
Then V:Z—*Z, V is continuous, and
V0] = PQ'F[Z’S] % 0, since I'" is positive,
-
% - = %k o 3 +F! * -
V[zl 203 zl z0 (F[ZO} F [zO] (zl zo))

L gk - gz +F—'F[z={] , by convexity,

1 0
3 zE’I‘_ - ZO since F[z'-i]i- 0 and "' is positive.

Furthermore, if Az 2 0 then
Viz +22] = v[z] +az + P_'F'[zo]z‘.\z x2v[z],
since I'7'F? [z 14z » —az. By lemma 3, V has a fixed point

L % . = ', ¢ s 2% d
z' € [O'Zl ZO] Let zl zo-l- z Then ZO Zl Zl an

1 - - - >
F [zo] (zl zo} F[zol . By lemma 2, F[zl] > 0, so we can

replace z% by =z

% and use induction to show that tzng exists,

1
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and z £ 2Z_% ...42 4= £ ee. & E2F, i i
0 1 a el I Since Z is regular,
; = ok i * * ok :
,;l;f;m zn z* exists, and z* ¢ [zo,zl] . Finally,

0 F[Zn] = -F [Zn] (Zn-f-lu Zn) P (Zn-l-l- Zn)

so 0¢ F"F[zn] < Z 1" zn. But % is normal, and Z 1" zn‘* 0,
hence P“'F[zn]——? 0. By continuity, Flz*] = 0.

Before discussing the hypotheses and implications of
this theorem, we will consider a simple application. The
egquation u(x) = ‘S:T(x,y) [otzs:i.n u(y) - £({y)ldy arises in -
the study of the forced oscillations of finite amplitude of

a pendulum {27]. The function T is given by

_ x(l-y) , 0¢xs¢y
T(x,y) {y(l-x) L, VeéExRS1

and we assume that f is a continuous function, with 0% £ ¢ M.
The spaces we use here are Z2 = W = Ll[O,l] , with the usual
ordering and topology. Let

Flu] (x) = -u(x) + f:T(x,y) [ozzsin u(y) - £(y)ldy.

Then 5
F'[ulh(x) = -h(x} + o J;T(x,y)cos[u(y)]h(y)dy.

Thus, F is Q-differentiable and, for -T, ¢x& 0, sin(x) is
convex, so F is convex in the interval [-T%4,0]. Assume,
furthermore, that a2+ M<4%1, in which case

FEY] =%+ T, y) [~ £()1dy

> - @2 m) §'T(x,v)ays T - @+ M) 2 0,

FIO] = - {T(x,y)£(y)dy < O.
Finally, if h2 0 and ue¢ [-T,,0], then ~F' Iuih £¢h, hence
we can let ' = I, the identity operator. All the conditions
of the theorem are satisfied, so there must exist a Newton
sequence, starting at YUy (x) = —T}:.{, which converges, mono-
tonically, to a solution u* (x) which satisfies -7 ¢u*z 0.

Referring to the table in chapter I, we see that the

space Z in this theorem can be En, H, or LP[O,II.] , 04 p coo,

That the theorem does not hold in Cn[O,l] or LT[0,1], is
n
shown by the following example. Let F:DcC [0,1] = W, where
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= {x : 0¢x(t)¢ 1} w={y : (l-—-t)zy(t) ELl[o,l]} ’

Flxl(t) = (1 - x(t)fﬁt. If the topology in W is given by
the norm 1wyl = L}y(t)](l—t)zdt, then F is continuous,
twice G-differentiable, and

F'[x]h = -Y4(1 -x(t)) h(t)

F''[x]hh =gy (L - ()} n2 (t)
Hence, F''[x]hh > 0 for all h, so by a result in chapter I,
F is convex. Moreover, -F°' [x]~ —+ . and the operator
7 [yl (t) =% y(t) has a positive continuous inverse.
Finally, F{0] 2> 02 F[l], so F satisfies the conditions of
the theorem,. in the interwal [0,1]. But, the Newton
sequence for F at 0 is xn(t) = 1 - tn, which does not
converge in Cn[O,l]. The same example can be used in the
space L”[0,1].

From the proof of the theorem, we see that one method
for solving the sequence of linear equations is to apply
successive approximation to the operator V. That is, if
zn has been found, then let

v lz] =2z + F'(F[zn] + F'lz lz),

and compute the segquence x. = Vn[xk_l], where x = 0. Then,

k 0]
from the proof of the theorem, 0% xls xzé- eas z{- zn,
i = w* : = *
1im Xk x* exists, and Zn+l zn+ X*.

The proof also shows that hypothesis 3) can be replaced
by the slightly weaker hypothesis
3') -["'F'[z]& I, for z e[zg,z{], where I is the
identity operator, and ["is a positive continuous
linear operator.
This is weaker than 3) because we have assumed lﬂ“ao, but
not "2 0. In the case of a real function of a real
variable, condition 3) means that the derivative is bounded

in the interval.

Because of the monotonicity of the Newton sequence, the
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same proof holds if convexity is replaced by F''[z] >0

for = E[za,zi}, provided W is normal and ¥ is twice uniform-
ly differentiable, so that lemma 2 is applicable. In this
case, we also have -F'[z]% —F'[zgl for all =z E[zg,z*], hence
the result

Corollary. Let F:DcZ-W where Z is a regular PTL
space, W is a normal PTL space, F is twice uniformly differ-
entiable on every segment in an interval [z*,zI]C-DO, and

1) F''[z] 2 0 for all z in the interval;

2) F[z*] 0>'F[z*],

3) -F [ZS] has a continuous positive inverse..

Then, F has a Newton sequence at za which converges, mono-
tonically, to a solution z*eE[zS,zi] of F[z] = 0.

An example of a problem which can be solved using this
corollary, but cannot be handled by theorem 1, is the
Chandrasekhar H-equation, which arises in radiative transfer
(1,8]:

H(x) =1 + XH(x)f x."%") dt

where f(t) is a given function. If we assume that £(t) 2> 0
and let

Fizl(x) = 1 + xz(x)j‘i%%%inf- z (x)
then

F'[z]h(x) = xh(x{jiiﬂilﬂdt+-xz(x)J'HQb(“dt h(x).

Y hUc)
CSrE 4t 2o,

for all h such that z and z+h lie in some interval., This

Convexity of F would reguire that xh(x)

is not true, but we do have

F''{z]lhk(x) = =xh (x)j Hﬂkmdt + xk (X)_I:| F—(—.fz%’t—‘-{'-) dt
and hence F''[z] %0 for all z. Finally, F[0] = 130,
-F'{0]h = h and, if O&:f(t)&'@ , then F[2] £ 0. Hence, the
corollary shows that there is a solution to the equation in
the interval [0,2] which can be found by applying Newton's
method. The bound on f which guarantees that F[2]% O can be
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relaxed. For example, it is known [8] that if £(t) =4
then the equation has a positive solution, and we can use
this solution as the upper bound, instead of z(t) = 2.

The following table shows the results of some numerical
calulations’ for this equation. The iteration was stafted
at zo(t) = 0, and the linear equations were solved by
replacing the integral by a numerical guadrature formula,
using 24 subdivisions, and then solving the resulting

linear system by Gaussian elimination.

n zn(.25) zn(.50) zn(.75) zn(l.O)

£(t) = 0.25
1.0 1.0 1.0 1.0

2 1.1271957 1.1825743 1.2175054 1.2419763

3 1.1296431 1.1877202 1.2249139 1.2512373

4 1.1296444 1.1877242 1.2249208 1.2512471

5 1.1296445 1.1877242 1.2249208 1.2512471
£(t) = 0.50

1 1.0 1.0 1.0 1.0

2 1.3532370 1.5429468 1.6749577 1.7736915

3 1.4616778 1.7905519 2.0628780 2.2945761

4 1.5051736 1.9031322 2.2626224 2.5933702

9 1.5426216 2.0006399 2.4412844 2.8730492

10 1.5426290 2.0006590  2.4413195 2.8731045

11 1.5426288 2.0006585 2.4413185 2.8731029
£(t) = 0.25¢t

1 1.0 1.0 1.0 1.0

2 1.0413517 1.0637265 1.0783764 1.0888112

3 1.0414704 1.0640055 1.0787985 1.0893541

4 1.0640055 1.0787985 1.0893541

1.0414704

Table 2. Newton Sequence for Chandrasekhar Eqguation.
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The above corollary is similar to the following result
of Baluev [3].

Theorem (Baluev). Let F:DCZ->W where Z is a normal,

regular PTL space, W is a normal PTL space, and DO contains
an jinterval [xo,yol such that

1) FEXO] %203 F{yO] :

2) F is continuous and twice uniformly differentiable
on every segment in [xo,yo];

3) the operator -F'[x] has a positive inverse for
every x € [xo,yo} ;

4) P''{x]> 0 for all x ¢ [xo,yo];

5) (' [xO] Y is continuous.
Then, the equation F[x] = 0 has a unique solution x* in
[xo,yol . The elements Xn and yn, determined by the formulae

, -
x=x .= (F [xn_l]) Flx 1.

. -1
- n-1_ (F [Xn-ll) F[yn-l}

- < * ¢ 2 02> :
satisfy x_ . ¢ x & x*<¢y ¢y .. Fix 120 Fly 1. and

p

i~ 8

lim x = lim Y, x*,

(The statement of this theorem has been altered
slightly to allow a direct comparison with the corollary.
Baluev's proof remains unchanged.)

The important difference between these two results
is Baluev's assumption that F'[x] has an inverse. To
illustrate the implications of this, consider the operatoxr
F:Ez——)E2 defined by F(x,y) = (£(x,y),9(x,y)) where

4
(1+32) x¢-=-1

2
and g(x,y) =y . Then for (-2,-1) ¢ (x,v) £ (0,0}, F''(x,¥)2 0
and F(~2,-1)> 02F(0,0). We use here the usual ordering
in Ez, given by the cone Kl as defined in chapter 1. Further-

more, F' (X,};’) is defined by the matrix

("¢ o)
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where

-
L
W
(I
R

0

-

" 3
h(x) = { 4 (1+x)

Hence,

P (~2,-1) = (‘é 2)

which has a positive inverse, and so the hypotheses of the
corollary are satisfied. But, if x% -1, then F'{x,y) is
singular, so Baluev's theorem cannot be applied.

The above example also shows that the hypotheses of
theorem 1 are not suffiéient to insure that F'[zn} has an
inverse.

The rate of convergence for the Newton sequence in
theorem 1, and its corollary, is similar to the convergence
rate for the real case. That is, convergence is super-
linear if F is continuously G-differentiable, and is quad-
ratic if F is twice uniformly differentiable. More precisely,
we have _

Theorem 2. Let F:D<c Z—->W where Z and W are PNL spaces,
F is continuously G-differentiable and convex in some
interval [zS,zi]CZDO. Suppose F has a monotone increasing
Newton sequence {zn} C:[ZE'ZI] which converges to z¥
where F[z*] = 0. Furthermore, suppose —F'[zn]> [, where
[ :Z22W is a linear operator with a positive continuous

inverse. Then

Nz*-z & | L7 ) e (2% z ) Hz¥-z Il
where lim r(z*-z } = 0.
Zgrzt n
Proof. [, (z*- Zq+l)é mF'[zn](z*— zn+l)
= —F'[zn](z*— Zn) - F'[zn}(zn— Zn+l)
= -F! [zn] (2% zn) - F[zn] .

But, by convexity,
~F! * * o Lo - %} o=
B'[z*] (= z )& [z 1 Flz#*] Flz ]

so
[} (z*- Zn+1)$ =F'lz ] (2%~ zn) + F'[z*] (z*~ zn)
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Therefore,
0 &(z%- z )& [T (F'lz] + F'[z%]) (2%~ z),
and
Nz*=z W& I TN R L2 ] = P L2¥])l 1) 2% 2 1l
Letting r(zn— z*) = lIF'[zn} - F'[z*]|| gives the result.

Theorem 3. In addition to the hypotheses of theeorem

2, assume that F is twice uniformly differentiable on every

. 0 .
segment in D, and I F''[z]l| £ M for all z e[zg,zi]. Then

P A

| z%- =z S S N B TE AT N T

n+ d
Proof. In the previous proof, we have shown that

-
& gHo ¢ T (~F! *_ tfok *
0¢z R (~F [zn](z zn) + F'lz*] (2 _ zn)).
But, by the integral theorem of chapter I,

P iz | (2%- 2 ) + F'[z%] (z%- 2z ) =

!
= j‘F"[z*— t(z*=-2 )] (2*= z )} (z*-z )dt.
o n n n
So we have,
Hzt-z_ fle |7 £!IF' ‘lz*- t(z¥- z )1l dt llz#- z |

£M T neE- 2 0.

n+1

These two theorems also hold if convexity is replaced
by F''[z] ¥ 0. In this case, we can set [ = -F' (23],
provided this operator has a positive continuous inverse,
The problem of finding the endpoints zg, ZI of the
interval can be difficult at times. If the equation is
known to have a solution, then this solution may often
be used for zi. For exampl%, the equation of Bratu [8]:
y(x) = ﬂJ;T(X,t) ey(t)dt,

whexre
{t(1-x) , 0¢tsexsl

Tlx, t) = [ x(1-t) , 0¢xstel

is known to have two continuous positive solutions, if
OLT]<Tb, where ﬂo is a positive constant, approximately
equal to 3.497. If we let
Fly] = ﬂ_f&(xnt) ey(t)dt - v(x),
o
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and Z2 = W = L2[0,l], then for any bounded y, F is continuous,
G-differentiable, convex, and
' lylh(x) = h@) N TEee n(oat
< hix) ?
for all h2 0, hence we can let " [h] = h. Furthermore,
F[0O] = ﬂ\ET(x,t)dt = T¥%x(l-x) > 0, so we can set zg= 0
and zi= z¥*, where 2z* is either of the solutions.

It was observed earlier that  theorem 1 does not
guarantee the existence of F'[zn]-l. However, by strength-
ening the hypotheses slightly, we can prove that F'[zn}
is invertible, and hence the Newton sequence can be written
in the more usual form

z .=z~ Flz ] Flz_].
This is the content of the next theorem.

Theorem 4. Let F:D<€ Z->W where Z is regular and
normal, and W is scolid. Let [zg,zi}CZDO be an interval
such that

1) F is continuous, G-differentiable, and convex
in [zg,zi];

2) Flztl2 02F[z}];

3 =F'[z]& [ , for all =z &[z*,zi], where " is a

linear operxrator with a continuousopositive inverse;
4) either
i) Z=wW=E"
or
ii) F'[z] is one-to-one, for all z E[zg,zf];
5) either
i) F[z{]<<O ( i.e., —F[zf] is an interior point
of the positive cone.)
or

ii) ~P'[z] > &, where Az is a linear operator

with a continuous positive inverse.



Then, F has a Newton sequence {zn} at ZE which is monotone
increasing and converges to a solution of Fiz] = 0. More-
over, —F'[zn]_l exists and is positive.

Proof. Conditions 1},2),3) ensure the existence of
the Newton sequence. We will use condition 5) to show
that F'[zn] maps Z onto W and then, by 4) , ]5"[zn]-—l is
defined. 8Since W is solid, it is also reproducing. Hence
it suffices to show that -F‘[zn] maps Z onto the positive
cone of W. Let'woz 0, and let

viz] = 2 +r'-l(w0+ Pt [zn]z).
If 5i) holds, let z'= G(ZI- zn) where o> 0 is such that

~ oF[2%]> w . If 5ii) holds, let z's £y w . In the first

0
case, we have

F'[zn]z'z aF'[zn}(zI- zn)

In

aF[zI] - aF[zn]

I~

Q * _é -
F[zl] L
and in the second case,
|
FT Zl= 1
[Zn] F [Zn]"/‘I\zr.WO

£ - —_ -

£ J;Ln(,{x?_hwo) L
hence, in either case, z'% 0 and F'[zn]z' 4+ w_2 0. Now,

V is continuous, and °

1) viol =1""w, > 0,

2) v[z'] = z'+fr%w0+ F'[zn]z‘)é z',

3) if A=z 20 then V[z+az] = V[z] + Az + pe [zn]az 2Viz].
Thus, by lemma 3, V has a fixed point, V[z*] = z¥*, and
Ot z%c¢ z', But then —F'[zn]z* = wo. Hence, wF’[zn} maps
7 onto the positive cone of W, and this, together with
condition 4) implies that —F'[zn]-l exists and is positive.

In practice, it is often very difficult to find even

an approximate solution to the set of linear equations
which determines the Newton sequence. This fact leads to

two interesting guestions; will a sequence of approximate

46
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solutions converge to a solution of the nonlinear prcblem,
and, is it possible to replace the set of linear eguations
by another set which can be solved more easily and such
that the solutions to these new equations still converge
to a solution of the nonlinear problem? One simple answer
to the first question is given by the observation that, if
{'zn} is a monotone Newton sequence for F which converges
to z¥*, where F[z¥*] = 0, and {zﬁ} is an approximate sedquence

which satisfies zns z z¥, then 0¢ z¥%- z£+lé z¥— 7

n+1S
so, by the normality of Z, lim z£ = z¥, This means that if
we solve the linear equations by successive approximations,
as suggested earlier, it is only necessary to carry out a
few steps of this process, since any of the successive
approximations will give a Z£+l which satisfies the above
inequality.

To answer the second question, we consider equations

of the form E:(z - zn) = —F[zn], and look for conditions

on the operatorsiZlWhich will guarantee the existence and
convergence of the sedquence {zn} to a solution of F[z]=0.
Theorems of this kind have been proven by Slugin [24,25]

and Baluev [2,3]. Their theorems are concerned with two-
sided approximations. However, using the same type of proof,
the following result is easily proven.

Theorem (Slugin). Let F:DC Z->W, where Z is a normal

. 0
regular PTL space, W is a normal PTL space, and [zg,zi]C-D

is an interval such that

1) F is continuocus, G-differentiable, and convex in
the interval;

2) F[zg] >0 P.*.F[zf];

3} for every 2z in the interval there exists a linear
invertible operator I; such that I} 'is positive and

~F'[z]¢ [ & [



48

where [' is also linear with a positive continuous inverse;
Then, there is a sequence {zn} C:[zg,zi] which is defined
by

-1
z.= 2%, = = z + Flz
0 0’ “n+l n l;h I n]'
and satisfies zoé zls ees £ Z &£ 2 4 ... & 2%, Moreover,

n- ntl 1
z 0.

1im zn= z% exists and Flz¥*]

Using the methods of Slugin and Baluev, the hypothesis
that [ exists is certainly needed. However, with the ideas
of theorem 1, we can remove this condition. The resulting
theorem is;

Theorem 5. Let F:D< Z W where Z is a regular normal
PTL space, W is a PTL space, and [ZS,ZI]C-DO is an interval
such that

1) F is continuous, G-differentiable, and convex in
the interval;

2) F[ZS] 20 3~F[z§*‘] :

3) for every z in the interval, there exists a.f; which
ig continucus, linear, and satisfies

-F'lzij& [, ¢F
where [M is a linear operator which has a continuous positive
inverse.
Then, there is a sequence {zn} C:[ZS'Zi] which satisfies
r;ﬂ(zn+l- Zn) - F[Zn]

and zgﬂ zoé,zl& ....szn& Zn+l$ con &zi , lim zn: z* where
Flz*] = 0.

Proof. The proof is identical to that of theorem 1,
with -F'[z ] replaced by f, -

An illustration of this result is the Liebmann iteration
as described by Greenspan and Parter [10]. When the mildly
nonlinear elliptic partial differential equation

Au = g(u,x,y)

is discretized, in the usual way, the resulting system of
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equations has the form AX = f£({X), where X = (xl,xz,...,xn)
and A is an n by n matrix with a positive inverse and non-
positive off- diagonal elements. If g(u,x,v) is convex as
a Ffunction of u, then f£(x) = (fl(xl),...,fn(xn)) where
fi(x) is convex. Newton's method applied to this system of
equations gives

Ax (k+1) (k)

(k1) _ k), . (k)

- px'Fhx = o ®)x M e x(,
where D(X) is a diagonal matrix with elements fi(xi). Thus,
. . k+ . . . .
finding X( D requires the inverting of the matrix AHD(X(k)).

The process can be simplified considerably if we assume
-fi(x)é-m, and write A =D - L - U, where D is a diagonai
matrix, L is lower triangular, and U is upper triangular.
If F(X) = £(X) - AX, then
“F'(X) = A - fF'(X})4 A + mI

=D+ mI -L ~-T

D+ mI-"L
since U>» 0. Thus, lettingl; ="= D + mI « L, theorem 5
gives the sequence of equations

(k1) _ _ (k) (k)

[82.4 + £(X ) + mX(k)

(D + mI - L)X
which is easily solvable since the matrix on the left is

©)ys o5 rxl,

lower triangular. Theorem 5 says that if F(X
then the sequence { X(k{} is monotone increasing and

converges to a solution of AX = £(X).

Mildly Nonlinear Eguations

Because the spaces Cn[O,l] are not regular, we cannot
use theorem 1 directly to solve nonlinear differential
equations. However, if the equation is a boundary value
problem, of the form L[u] = £(u), with appropriate boundary
conditions, where L is a linear differential operator which
has a positive Green's function, then the differential

equation can be replaced by the equivalent integral equation
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u (x) =fc(x,t)f(u(t))at.
R
We can now investigate this equation in the regular space

2 .
L7 [D]. This method can be applied, for example, to the

problem

u''({x) = _eu(x) , x €[0,1]
u(0) = u(l) = 0.

which is equivalent to the equation of Bratu
]
u(x) = J—T(X,t)eu(t)dt
(1]

which we solved in the preceeding section. Consider,

however, the equation

a''{x) = -e—u(X) , X el0,1}
u{0) = u(l) = 0.

Proceeding as before, we have the equivalent equation
I
u(x) = J‘T(x,t)e u(t)dt.

We let 2 = W = LZ[O,l], D = { u : u{0} = u(l) = 0} , and
i
Flul (x) = j T(x,t)e_u(t)dt - u(x).

[<]
But then

-F'[u]lh(x) = h(x) + jJT(X,t)e
and if u(t) > 0, then T

_F' [ulh(x) € B(x) + | T(x,£)h(t)dt.
Lettiﬁg {"[h] = h{x) + i'T(x,t)h(t)dt, then " has an
inverse given by ‘

MK () = k() - [ RGyk()dt

where R(x,t) is the resolvent kernel for T. But T is

~a () (v at,

positive, so R is also positive, and hence fp' is not
positive. Returning to the differential equation, and
ignoring for a moment the problems of convergence, let

-1
Flul] = e + u''.

Then formally, we have



-F'[ulh = -h'" + e "h<-h'' + ch,

for all u such that e_u(t)

£ . But, it is kﬁown [5] that
the operator G[h] = -(h''- o¢h) has a positive Green's
function provided o 2 0. Furthermore, F is convex and

F[0] = 1202F[X%x(l—=x)1. Thus, it appears that this
operator satisfies all the conditions of theorem 1, except
that the domain spacé, 02[0,1], is not regular, and F is
not continuous. Note that F'[u]l as defined above is not a
continuous operator, hence is not a G-derivative. In the
remainder of this chapter, we will study operators which
can be written in the form F = £ - I.,, where L is linear,
but not continucus, and f is G-differentiable. Then F’ [ul
will denote the (dis-continuous) linear operator f£'(u) - L,

where f£'(u) is the G-derivative of f at u.

In the next theorem, we prove a result similar to
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theorem 1, in which the space Z does not have to be regular.

Theorem 6. Let F:Dc Z-rW where Z2 is normal, W is

regular and normal, and F = £ - L where £ and L are operators

which satisfy the following conditions.

1) L is linear and has a completely continuous positive

inverse on W;

2) £ is continuous, G-differentiable, and convex in
some interval [zS,zilC:Do
3) Llzkl< £(zf)

Lizi]a-f(zi);

4) there is a continuous linear operator g:Z—=W such
that, for every z in the interval, f'(z)2 g, and moreover,
the operator "= L - g has a positive continuous inverse.
Then, F has a Newton sedquence {zn} at ZS which is monotone
increasing and converges to a solution of L[z] = £(z).

Proof. Even though F = £ -~ L is not G-differentiable,
if we let F'[ulh = £f'(u)h ~ L[h], then
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F'iulh & £(uth) -~ f(u) = Liuth] + L{u]l = Fl[u+h] - Fiu], hence
F formally satisfies the convexity condition. Now, let
Viwl = w + Flz ] + F'lz] m'w
where Z 5= zg. Then V:W—*W, continuously, and
vi0] = F{zo]>/ 0, (by 3),

vl (ZT.— zo)]= r (zf— zO) + F[ZO] + F° [zol (z’]'f_- zo)
¢ (z’:’{-— zo) + F[zi]

s T (23 z4),
and [ (z‘i-— zo) 7 -5 [ZO] (za"_- zo) > F[ZO] - F[zi] > 0.
Finally, if aw? 0, then
V[wtaw] = Viw] + Aw + F' [zO]P"AWaV[W] .
since, by 4},
B! [zo]i"_'zlwk - " Maw.
Thus, V satisfies the conditions of lemma3 except it is
not continuous. Nevertheless, we still have a sequence

{wn} defined by

which satisfies 0 = w,.¢ Wi g ee W AW 8 el g I (z%- 2) .
Hence, by regularity, w* = lim W exists, and
L * L *
0% wré r'(zl ZO)'

To show that w* = V[w#*], note that
Viwl = w + Flzg] + £' (zo)r"'w - LMW

so,

-1 -1 -1 -1, -t _
Lw g = L w o+ L F[zo] + L f (zo)l" W {’wn.

Now, taking limits, as n-c , we have

-1 1

L “w¥ = L_'lw* + L-lF[zo] + L f! (zo)r‘"lw*-l"‘h'w*,

hence, w*¥ = V[w*]. But, if we set z,= zo+r’—'w*, then

4 L g%k ! - = - . B h f of
zo‘ zl, Zl and F [zo] (Zl zo) F[zo] v the proof o



lemma 1, we have F[zl}z 0, and so proceeding by induction,
we get a monotone increasing bounded sequence { Zn} . But

this sedgquence satisfies

Llz g1 = £ (2) (2,

or, equivalently,

1 zn) + f(zn)

7, = L IEN(z) (2, - 5 ) * £(z)]
Let
Yo fl(zn)(zn+

1- zn) + f(zn).

2 - 2 ’ i ’ £
Then, wn, g(zn+l n) + f(zn) and, by convex1ty*_wn f(zn+

But, also by convexity,

£'(z +l)(zi— z ) € f(zi) - f(=z )

n n+l ntl
S0
< *#) - F1 %o
f(Zn+3_)“' f(Zl) £ (zn+l)(zl zn+l)
£ *) o *—
£(z}) - g(z3- 2,,4)
and
L g - %) L - %
£ (zo)(zn Zo)‘ f(zn) f(zo)
o)
p) ! +* -k -
f(zn), £ (zo)(zn zo) + f(zo)
> - =k &
Z g(Zn ZO) + f(zo) .
Hence
- o% . % %) — *_
g(zn+l Zo) + f(zo)s wo € f(zl) g(zl Zn+l)
or

~g(z¥) + £(z8)¢ w - g(z IS £(z%) - g(Zi).

1

Thus, the set {wn— gz )} is order bounded. But W is

nt+l
normal, so this set is, in fact , bounded. Now, {zn} is

53

).

order bounded, hence bounded, and g is linear and continuous,

S0 {g(zn)} is bounded. Therefore, {lwn} is bounded,

since

{-Wn}c {wn_ g(zn+l{} + {g(zn)}
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27t . -1 :
is completely continuous, so {Zn+l} = L {Wn} is

totally bounded. Thus, there is a convergent subsequence

{ 2y } , with lim z, = z¥*, But since this sequence is mono-
R Rax R
tone, and Z is normal, z* = &&y zn.  Finally, Flz*] = 0,
because
-7 _5 ! — £ _—
g(Zn+l n) £ (Zn)(zn+l Zn) f(Zn-i-l) f(Zn)

so clearly, &$§ [f'(zn)(zn

+1” zn)] = Q. Applying this

to the formula

— -1 1
z =L [£ (zn)(zn+l— Zn) + f(Zn)]

gives z* = L-l[f{z*)], or
L[z*] = f£(z*).

Comparing this theorem to theorem 1, the only assump-
tion that has been added, aside from the special form of
the equation, is the condition that the operator "> ~F'[z]
can be written as "= L - g, where g< £'(z).

We have already observed that the equation u" = -e -,

with boundary conditions u(0) = u(l) = 0, satisfies the

2 2
hypotheses of this theorem, with 2 = ¢ [0,1], W= L [0,1],

D={z:2(0) =2z(@1) =0}, Llu] = -u", £(u) = e 7, z% = 0,
zi =) 2 (l-x} and g(h) = —e-% h, where % = max zi(x). Since
we know that the operator H{h] = -(h" - c¢h) has a positive

continuous inverse, provided o % 0, clearly the operator
L - g has a positive continuous inverse.
As another application, consider the Ricatti equation

u'(x) = u2+ a(x)u + b(x}) , u(0) = c.

The spaces we use here arxe Z = Cl[O,l], W= L2[0,1],

D= {us: u(0) = c} , with the usual topology and order-

ing. Letting L[u] = u', £(u) = u2+ a(x)u + b(x), we have

I~ is positive and completely continuous. If b(x)2 0

then L[0] = 04 £f(0) = b(x), and if u* is a positive solution,

then in the interval [0,u*] we have

£ (u)h = 2uh + a(x)h>a(x)h = g(x)
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and (I - g)h = h' = a(x)h has the inverse
x
(L - 9)—lk(x) = fxe ia(t)dtk(s)ds.

Hence ['= (L - g)-l is contiguous and positive, provided
a(x) is integrable on [0,1]. Summarizing this, we have

Corollary. If b(x) > 0, a(x) is integrable, and the
equation

u'{x) = u2+ a(x)u + b(x), u(0)

has a positive solution, then this equation has a monotone
Newton sequence which converges to a positive solution,

Kalaba [11] has computed a Newton sequence for this
equation in the special case a(x) s 0, b(x) = 1, and his
results clearly show the monotone character of the sequence,

As with many of our previous theorems, the hypothesis
that £ is convex can be replaced by £''> 0, provided £ is
twice uniformly differentiable. The resulting theorem
is

Theorem 7. Let F:Dc Z-W where Z is normal, W is
regular and normal, F = £ - L, and [zg,zi]chO where

1) L is linear and has a completely continuous
positive inverse; ‘

2) f is continuous, twice uniformly differentiable
and £''(z2) > 0 for all z in the interval:;

3) F[ZS]%, OzF[z*l]; o

4) L - f'(zg)é I, - g where (L - g) is positive and
continuous.
Then, the conclusions of theorem 6 hold.

An interesting application of this theorem is the
following 1ntegro—d1fferent1al equatlon of Volterral8];

y'(t) = ay(t) + by (t) + y(t)J K(t,s)y(s)ds,

where a2> 0, b>»0, K>0, and v(0) = y_ > 0. Let Lly] =

0
and

2 t
E({y) = ay + by + yJ‘K(t,s)y(s)ds.
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Then
t t
£f'(y)h = ah + 2byh + y (K(t,s)h(s)ds‘+ hhrK(t,s)y(s)ds
and i ;
t
£'' (yv)hk = 2bkh + kJAK(t,s)h(s)ds + hj K(t,s)k(s)ds.
[+) (o]
Hence £''(y) > 0 for all y. Using the spaces Z = Cl[O,l],
2 - x
W= 1L [0,1], D = { z 3+ z{0) = yo} , we have L lh=th(t)dt,
so Lf is positive and completely continuous, and if
% = - (%) & -
zo(t) Yo then L - £ (ZO)'“ (L, - a) and

x
@ -a) = [ ey (g)as v 0.
(0]

Finally, it is known that the equation has a positive
solﬁtion v*, and if K(t,s) % 0 then y*> zg, hence we can use
the interval [zg,y*].

To estimate the rate of convergence, we can use
theorems 2 and 3, however, because of the special form of
these equations, a slightly better result can be proven.

Theorem 8. Let F:D< Z W where Z and W are PNL spaces,
F = f - I, where I has a continuous inverse, f is continuous,
convex, and continuously G-differentiable. If F has a
Newton sedquence {jzn} which is monotone increasing and
converges to a solution z* of F[z] = 0, and if

e e el <
then

- z¥|| ¢ }L-lH . r(zn— z*)-”zn— z* |
l—”L'H‘Hf'(Zn)”

”zn+l

where rTzn- z*¥}—20 as znféz*.
If £ is twice uniformly differentiable, and

m=max[l £ (z W NE"'(z )l 1<_1 ,
n n =
Wi
then
— 2
Wz .- z%j¢ HL dm jjz_- 2]
n+l 11T m n
Proof.

—F'[zn](Z*— zZ_..) = —F‘{zn](Z*— zn) + F'[zn](zn+l~ zn),

n+l
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hence,
—F'[zn](z*~ Zn+l) = HF'[zn](z*— zn) - F[zn]
£ —F'[zn](z*— zn) + F'[z*] (z* - zn)
since
-F'[z*] (2%~ zn)é F[zn] - F[z*] = F[zn].
But
"Rz 1(z%- 2 ) = LleF- oz ) - £ () (2R 2 )
=Te)
L{z*- Zn+1)$ f'(zn)(z*- Zn+l) + f'(zn)(zn— z*) - f’(z*)(zn— zZ¥) -

and hence

0 2%~ z_ . & e (2 ) (z%-z_, )+[£' (2 )~E" (z%) ) (z_~ 2%)].

Since the norm is monotone, this gives
-1 ; ' ‘
tzx= 2 UL {NE (2 ) ez ) + £ (z) - (29l iz -2#||]

Setting r(zn— z%) = l]f'(zn) - £'(z*)]] , the first estimate
follows easily. If £'' is continuous, then by the integral
theorem of chapter I,

¥ % - kY o t - =%} =
£ (z )(zn z%)- £ (zn)(zn z%) _

]

ng"(zn+t(zn~z*))(zn~ z*)(zn- z*¥)dt,
so

i
I} £' (2%) - f’(znﬂl&.£”f"(zn+t(zn—z*)nrnzn- z*||dt

¢mljz - z*H

and the last estimate follows easily .

Mozt of the results of Kalaba [11l] are included in
the above theorems. (When applied to differential equations,
Newton's method is often called "quasi-linearization.")
Kalaba has shown that this method can be an effective
technique for solving certain types of ordinary and partial
differential equations. (See also [5].) It should be noted,

however, that several types of equations, which Kalaba



considers, cannot be solved using this technique, except in
very special circumstances. For example, suppose a Newton
sequence for the Dirichlet prcblem

u= flu,x,v) , x,vy)eD

u(x,y) = 0 , (x,y) € 3D

is monotone and bounded. Then the sequence will converge
in L2[O,l]. But, without further information, it cannot
be concluded that this limit function is a solution to the
differential equation. In fact, the limit function for
such a problem may not even be continuous. Another type of
equation which presents a prcblem is

u''(x) = £(u,u',x)

u(0) = u(b) = 0.
The Newton equations for this problem are

LI S 1 3_~F 1
u f(un’un)+3%(un'un)(u

il -un)+§$(un,u£)(u' u')

ntl n+l n

un+l(0) = un+l(b) = 0.

Hence, even if it can be shown that the sequence { un}
exists, is monotone and bounded, the presence of the
derivatives u£+land uﬁ in these equations prevents us
from concluding that the sequence converges to a solution.
In the context we.have been using, if we write the equation
as
Llu}l = g(u),

where g(u) = £(u,u’,x), then, in the topology given by the
maximum norm, g is neither continuous nor differentiable.

The remarks made in the previous section concerning
the convergence of an approximate sequence apply also to
these equations. The modification of theorem 6 which
corresponds to theorem 5 is;

Theorem 9. In addition to the hypotheses of theorem 6,

for every 2z e[zB,zi} let g, be a continuous linear operator
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which satisfies

£' (@)% g,>9
If[,=1L - gZ then there exists a monotone increasing

sequence {Zn} CZ[ZE,ZI] which satisfies

2, (2

h n+l- Zn) . FIZn]

and which converges to a solution of F[z] 0.

Proof. In the proof of theorem 6, rep.uce —F'[zn]

by [} .

2]
When solving, for example, the equation u'' = -f(u),

the Newton sequence is given by the equations

z'!. = f'(zn)(zn+

n+1 - Zn) + f(zn)°

1
If f is convex, then we can replace f’(zn) by the divided

difference
: f(zn) - f(zn—l)
n zn— Zn—l

and, by -convexity, £'(z )% € . Hence, if we set ELh = h"—Enh
then the Newton equations have the form

z" = &n(z - Zn) + f(zn).

n+l
If £{u) has a complicated derivative, it may be much

easier to compute ﬁn then to find f'(zn), however, theorem

9 still ensures the convergence of the sequence to a solution

of the equation.

Equations in Spaces with Partially Ordered Norm

As a final application of the preceeding results, we
will prove a convergence theorem for Newton's method applied
to operators on spaces which are normed by a PTL space. The
theorem is an extension of a theorem of Kantorovich ([141},
see also [1]). 1In the following, if F:X—?Y and Q:Z W,

where X and Y are normed by 2 and W, respectively, then we
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write }F)I4¢Q if {IF[x]H¢ Qlz] for all x€éX, zeZ, such that
Hxn ¢ z.

The Kantorovich theorem is:

Theorem. Let Z be a regular, solid PN space, W a
solid PB space, and let X and Y be normed by Z and W
respectively. Assume that X is complete in the Z-norm
topology. Let F:DCX—?Y satisfy the following;

la) F is twice continuously G-differentiable in a

_ . 0
sphere S(xo,ro) = {:x -!IX—XOHS ro} < D .

1b) 7 = F'[xo] maps X onto Y, and ™' is continuous.

Assume there exists an cperator Q:Z =W which is twice
continuously G-differentiable on [zo,zi] where roa zi— ZO'
and
2a) o= -Q‘[zo].has a continuous iﬁverse, and 1177 e A
2b) 7" Flx il & 4G alz);
2e) 77 FUIxIM & z&i Q"[z] for all x,z with
|Iwa0nﬁ z-zoé zi— zo; o
3) the seguence {zn} defined by z_, .= Zn—Q'[zn] Qlz |

exists, remains in [z ,zi], and converges to a solution

0
z* E[ZO’ZI] of Q[z] = 0.
Then, there exists a sequence %.Xn} in S(xo,ro),_defined by

_ i -1
Xn+l— Xn ¥ [xn] F{xn]
which converges +o a solution x* of F[x] = 0. Furthermore,

hx = X%t & 2%~ 2 .
n n

In stating the differentiability conditions on F and
0, we have used the fact that theorem 12 of chapter I also
holds for these spaces.

condition 3), in most cases, is very difficult to
verify. The theorem which follows modifies conditions 2b),

and 2c¢) slightly, and replaces 3) by a much simpler hypothesis.
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The conclusion remains unchanged. Before doing this
however, we need some preliminary results. In particular,
we must prove a generalization of the well-known Banach

theorem:

If F:X—2X, where X is a Banach space, and
NFij &€ g<1, then ZE - F has an inverse, with
I - BN ¢ (1-q)”

Lemma 4., Let X be normed by a regular and normal PTL
space ‘Z, and assume the Z-norm topology is complete. If
F:X-X and Q:Z2— Z- are continuocus linear o'pe:r:ators with
HFN4¢Q, and 1f I - Q has a positive inverse, then I - F
has an inverse, and (I - F)_ll\ 4 (1 - Q)_l.

Proof. Let xe¢ X be arbitrary. For any z¢ 2 with
Xil £z, we have [IF[xl}l £ Q[z], and by induction, also,
NE[x1H ¢ Q" [z]. Let

Snx = x + F[x] + Fz[x} oot Fn[x],

n

Tnz z + Qlz] + Qz[z} A Qn[z].

Then 04T z4£T £ (I - Q)—lz because
n n+

lZ

+2
(T - Q)Tm_ =z - 0" %[z]4 z,

lz
hence,
-1
< -
Tn+1z &£ (I Q) “=z.

. . ~L
But % is regular, so z* = lim ‘I‘nz exists and z*¥ £ (L - Q) "=z.
Purthermore,

Ot x -5 xl|&T z -T2
n m n m
and the sedquence Tnz - Tmz->0, so by normality, Snx—smx —= 0.

By completeness, xX* = lim Snx exists. In fact,
x* = (I - F)_lx
because,

1

+
Iz - P8 _x - xll =IF" xli & Q° Liz1 0,

so lim (I - F)Snx = x. Since F is continuous, this gives
h=>c0



(I - F)x* = x, and, if (I - ¥)x** = x, then letting x' =

x** - x%*, we have {ix'l] = |F[x']]l ¢ ¢} %'t} ], hence
(T -0)[u=x'n1lso
so jjx"{]l ¢ 0. Thus x' = 0 and x*% = x*%, Therefore,

(1 - F)-l is defined on all of X, and
-1
s * & (1 -
s xlj ¢ T ze2*< (T -0Q) "z
so

lim |} S8 x| £ (T - Q) iz,
-y oo n

hence
HA{(T - F)_lxlli (I - Q)-lz.

The integral theorem of chapter I will be used in the
following form;

Lemma 5. Let u:[0,1]1-2 Y where Y is normed by a PB
space W. If u is uniform}y differentiable on [0,1], then

{iar ) at |
exists, and i i
Hu() - u©n & [ @I ac.

Proof. Using the proof of thégrem 13, chapter I, we

can show that j:u'(t)dt exists, ang
u(l) - u{(0) =~Lu'(t)dt.
Furthermore, the function v(t) = iju'(t)ll is continuous
and maps [0,1] into W, where W is a Banach space. Henge
v is integrable. That is, hglnu'(t)n dt exists, and thus
Hu@ -a@©i =1 fu' @®ati
e S”iu'(t)n at.
o

Finally, we note that if F:Z-W is a positive linear
operator from a solid PN space Z to a PN gpace W, then
F is continuous because, if zﬂ~9z* then, by theorems 5

and 7 of chaptér I,
— 4 — *
nnu’ Zn” % 5'nnu
for some u3» 0, and T]n—-> 0. Hence,

-1 F [ul £ F{zn] - Flz*] £ T F [u]
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so, by normality, F[zn]—>F[z*].

We can now state and prove the main result of this

gsection.

Theorem 10. Let 2 be a regular, solid PN space, W

a solid PB space, and let X and Y be normed by Z and W,

respectively. Assume that X is complete in the Z-norm

topology. Let F:Dc XY satisfy the following conditions.
la) F is twice continuously G-differentiable in a

0
= : - £ [l :
Sphere s (Xo,ro) { X ” p.4 p.4 n L& r } D

1b) e = F'[xol maps X onto Y, and [} is continuous.

Assume there exists an operator Q: Z—* W which is twice

continuously G~differentiable on [zo,zi] where v _ 2 zi- Z_,

0 ¢

and
2a) H R7'N& AT where &= ~Q' ENE
£ -
2b) HF[XO]H & Q[ZOJ,
2¢) N FP"[x]i) ¢ Q"[z] for all x,z with

X — X 1 &£ 2 = 2 & 2%« 2 3
0 0 1 “of

2d) @' [z] is one=-to-one, for all = e[zo,zi]:
2e) Q[z{]<<0.

Then, there exists Newton sequences {xn} . {znﬁ where

. -1
Xat1 Fa” F [Xn] F[xn]

: -1
o= - !
Z 1= Zn 0 [zn] Q[zn]
which converge to x*,z* respectively, where x¥* € S(xo,ro)
z¥E [zo,zi], Fix*] = 0, Qlz*] = 0, and

il x%= % & z%- 2 .
n n

Proof. Q is twice uniformly differentiable, Q"> 0,
-Q'[{z] is inverse positive, —Q'[zo] has a positive inverse
which is therefore continuous, and Q[zO]a-0>>Q[zI]. Hence,
by an obvious corollary to theorem 4, Q has a Newton

sequence at z, which converges monotonically to a solution

0
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z*ez[zo,zi] of Qfz] = 0. Furthermore, Q'[zn] has a positive
(hence continuous) inverse. Now,

X,= X- f';PIF[xo]

exists, and

hx = %ol = I [TFIx I € Aj0lz] = 2.- 2.¢ 25- 2.
So xle S(xo,ro). We will show that all of the hypotheses
of the theorem are satisfied if e and z, are replaced by
X1 and Zl' First we prove

2b') W Fix 11 & Qfz)
Let

u(t) = FIXO+ t(xl- xo)] + (l—t)F'[x0+ t(xl— XO)](Xl" xo).
Then

(t) = F‘[x0+ t(xl- xo)](xl~ xo) +

+ (l—t)F“[x0+ t(xl— xo)](x - xo)(x - XO) -

1 1

- F'[x0+ t(xl~ XO)}(Xl— xo)

I

(l—t)F"[x0+ t(xl— XO)](xl- xo)(xl- xo).

By lemma 5, |
Hu(l) - u(o)ll & j;ﬂu'(t)ll at,
so
NWFix 1 - Flx,] - ?I[XO](XlH xO)H <
4 ‘L\[(l—t)F" [xg+ b= x0)] (- %) (x)= %) dEdL.
But F'[x,] (x,~ x.) = -Flx ], so
IR0 I & ) BT gt €= x0)] )= ) G- K
¢ g(l—t)Q"[zO+ tlz,~ 2g)] (2~ 2,) (2~ z,)dt
= Q[zl] - Q[ZO] ~ Q'lz 1 (z,- z,)
= Q[zl]-

Next we show that F'[xl] has a continuous inverse, and



2a') N 7' ¢ Ay

Let u(t) = -F'[x0+ t(xl- XO)]h, where h € X is arbitrary.

Then u:[0,1]= ¥, u is continuously differentiable, and

lemma 5 holds. Hence, if [hil ¢ %k,
\‘
, ] - t ‘é 1 — -
PR Ixg] = B Bx DRI & N g €0 - %) Thie = x )l 4t
. I
'S i) - -
.iQ [zo+ t(zl zo)]k(zl zo)dt
= Q [Zl]k,_ Q'[ZO]k
= (D= A)K,
where A, = —Q'[zl]. Thus, by 2a)
NRTUG - E ANJ (A~ 4
where I} F'[xl]. Now, Q"[z]> 0, so & ¢ 4A,, and

so A A 7 0. Let G = 27T '), P = AJ(A,~A). Then
G:X—X, P:Z-Z, HGI £ P, and (I - P) "= AT'A%0. So by

n

lemma 4, (I - G:)-1 exists and is continuous. Also

(2) Hiz-o™e@-n A a,

But,

1 1

(T-6) = ('m™= 07N

so I'" exists and is continuous. We still have to show
N0 ¢ Ay
or, equivalently, ‘
W7y & AL w
for all y,w with yyn ¢ w. Let v =[; x. Then if uwyu ¢ w,
2a) implies || N7'yil ¢ AT w. That is %< &, w. Thus, by

(2) HET'Rx € A AL w)

or hETY S ATV w

By induction then, we have proven that {:Xn} exists and
]|Xn+l_ X & 200" 2y

therefore,
i x -xX & =z -z .

n+p n n+p n

65
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As n—eo , Z - zﬂﬁ G, so |ix

- X_||—» 0. Since the
ntp n

n+p

topology in X is complete, x* = lim X exists. Finally,

Fi{x*] = 0 because, O-&IlF[xn]H & Q[zn} and Q[znyﬁ 0 so
F[xn}ﬁ 0. Since F is continuocus, 0 = lim F[xn] = P[x*]
n

Note that in the important case where Z = W= E~,
condition 2d) can be eliminated. In this case, the only
najor addition to the Kantorovich hypotheses is 2e).
However, implicit in condition 3) of the Kantorovich theorem
is the existence of a point z*¢ {zo,zi] such that Q[z*]=0,

and 2e) is only a strengthening of this.
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