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-A.s'trahdt 

Couette flow and heat transfer through a hard-sphere
 
rarefied gas enclosed between parallel walls are analyzed
 
by a Monte Carlo procedure. In one case, both walls are
 
stationary and at different temperatures. In the other
 
case, the upper wall is moving, and both walls are at the
 
same temperature. The molecules are assumed to have hard
 
sphere collision and a wall accommodation factor of unity.
 
The wall temperature ratio and wall velocity are taken large
 
so that linearized solutions are not applicable. Sample
 
molecule histories are followed across the channel, which
 
has been divided into zones. The target molecules in each
 
zone are assumed to have a different two-sided half-

Maxwellian velocity distribution. By scoring the properties
 
of the sample molecules as they pass scoring positions, the
 
macroscopic quantities of interest, such as temperature,
 
density, shear, and heat transfer, are obtained. Also, the
 
average thermal velocity and number density in each zone
 
are found and compared with the values assumed in the target
 
molecule distribution. The problem is iterated until these 
values agree. 

Symbols 

C = average thermal velocity (2RfgT)l/2 
D = channel width 

f prdbability' distribution function 
Kn = Knudsen number M/D = m/-y pAth 22A 
M dimensionless velocity u/4-6 "
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m = mass of molecule
 
N = number of sample molecules emitted from surface 0
 

in Monte Carlo run, proportional to flux of mole­
cules leaving surface 0
 

P = pressure; Pii/3 
Pi~j = shear stress (-p(V!V')) 
p = zone or scoring-position number 
pf = last scoring-position number 
Q = property of sample molecule 

(Q) = averaged quantity fQf d3V 
(0+= averaged quantity fQf+ 3v 

q = heat transfer
 
qT = total energy transfer.
 
R = random number between 0 and
 
Rg = gas constant
 
S = mutual collision cross section g2
 

SS- -number of sample molecules through scoring position
 
in positive, negative direction
x2 

T = absolute temperature 
t dimensionless temperatures T/TwO 
u = mean velocity 
x = coordinate 
V = molecular velocity 
V = thermal velocity; v u 
V* = velocity after collision 
T = defined by equations (B5) and (Be) 
E = defined by equations (B5) and (B6) 
7 = viscosity coefficient 
K = thermal conductivity 
e = collision rate of sample molecule with target mole­

cules 
= path length to collision 

M = mean free path length through a Maxwellian gas with 
density p and thermal velocity C 

s = mean free path length 
i = dimensionless velocity, V'/C 

= defined by equation (All) 
p = density 
a = diameter of hard sphere molecule 
CP = angle between sample molecule and target molecule 

velocities 

Subscripts:
 
S= averaged across channel
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M = Maxwellian
 
M=O = refers to case with both walls stationary
 
p= increment number
 
Pf = last increment
 
R = relative velocity
 
r. = radial coordinate in cylindrical system 
s = sample molecule 
t = target molecule 
w,0;w,l = at wall 0,1 
Ol = evaluated next to 0,1 
1,2 3 = coordinate directions 

= positive or negative x2 direction
 

Introduction
 

The present-analysis treats a rarefied gas enclosed be­
tween two walls. Two cases are treated: in one, both walls
 
are stationary and at different temperatures, while in the
 
other, both walls are at the same temperature but one wall
 
is moving. The molecule are assumed to have hard-sphere
 
collisions and a wall accommodation of 1. The problem is
 
analyzed by:a Monte Carlo technique, that is, a model
 
sampling procedure. Sample molecule histories are gener­
ated by making -choices at points of decision from the appro­
priate probability distributions. These sample molecules
 
are followed through the model and, by averaging certain
 
molecular properties at various positions, the macroscopic
 
quantities of interest can be obtained. This method reduces
 
the complexity of the analysis since the relations for a
 
single sample molecule history are relatively simple. Thus,
 
simplifying assumptions made in the more usual analytical
 
procedures are also avoided. However, the Monte Carlo
 
method requires extensive calculations on a high-speed com­
puterfor the many sample histories needed.
 

Grogs and.Ziering (ref. 1) treated the couette flow
 
problem for the'case of low relative plate velocities with
 
both plates at the same temperature. They also treated the
 
case where both walls were stationary but at different tem­
peratures (ref. 2). Because small differences in relative
 
wall velocities and wall temperature were assumed in these
 
analyses, the linearized form of the Boltzmann equation
 
was used. The local distribution function was approxi­
mated-by halftrahge'polrhomials 'invelocity spabe.'T'space­
'dpendent-coefficients in this distribution were found by
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forming half-range moment equations.
 
Lui and Lees (ref. 3) have analyzed the case of rar­

efied couette flow with heat transfer assuming Maxwellian
 
molecule collision. They assumed a local'two-sided half-

Maxwellian velocity distribution. This is substituted into
 
the moment equations, which are then solved for the parame­
ters of the distribution. From this, the macroscopic flo
 
parameters can be found.
 

This same approach was used by Lavin and Haviland
 
(ref. 4) for the case of stationary walls at different te
 
peratures assuming hard sphere molecule collisions.
 

The Monte Carlo method has been used previously in
 
rarefied gas problems'by Perlmutter (ref. 5) to treat a
 
collisionless plasma flowing through a channel with an im­
posed magnetic field. Haviland (ref. 6) used Monte Carlo
 
to treat a rarefied gas with hard-sphere collision con­
.tained between stationary parallel plates at different wa:
 
temperatures. In that analysis, sample molecule historie
 
are followed through collision with target molecules as
 
t hey'travel through'the model. From the histories of the 
sample molecules, tables of the distribution of the veloc­
ity components can be obtained in the various zones into
 
which the channel has been divided. These tables can then
 
be used for the target molecule velocity distribution in
 
the next iteration of the sample molecule histories. Afte,
 
the converged distribution of velocities are obtained, the
 
macroscopic quantities of interest, such as temperature,
 
density, and heat transfer, can be obtained by finding the
 
moments of the distribution in each zone.
 

The present analysis also follows a sample molecule
 
traveling through the model. However, in the present-case,
 
the target molecule velocities in each zone are assumed to
 
have a two-sided half-Maxwellian distrihfution of the form ­
'assumed by -Lui and Lees in reference 3. By scoring proper­
ties of the sample molecules at scoring position across the
 
channel, the parameters of the distribution as well as the
 
macroscopic flow properties such 6s. temperature, velocity
 
profile, heat transfer, and shear stress can be found. This
 
method was used by Perlmutter '(refs. 7 and s)for heat
 
tfansfer between parallel plates with the walls stationary
 
but at different temperatures. In that solution, it was
 
assumed that the local distribution of target m6lecules was
 
Maxwellian instead of two-sided half-Maxweflian.
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Sample History
 

The model analyzed is shown in figure 1. The wall at 
xZ of 0 is stationary and at temperature TW 0" The 
other wall at x2 of 1 is moving at velocity' u. 1 and 
is at temperature Tw 1. The distance across the cannel is 
divided into zones. in each zone, the target molecule ther 
mal velocity distribution is assumed to be a two-sided half-
Maxwellian distribution given by 

(i)
 

where f+± refers to the molecules moving in the positive
V2 direction and f. refers to molecules moving in the
 
negative V direction.
7 

It is assumed that the molecules reflected are per­
fectly accommodated, that is, in a Maxwellian distribution
 
at the wall based on the wall temperature. The velocity of
 
the sample molecule leaving the wall as derived in refs. 6
 
and 8 is given by
 

V2 = (-C2 in RV2)1/2 (2a)
 

V1 = (-6. In RV) 1/2 cos 2(R + uSw (2b) 

V3 = (- In Rvr)l/2 sin 2Tb (2c)
 

where R is a random number between 0 and 1 chosen for
 
each'sample molecule leaving the surface.
 

Path length to collision. - After the sample molecule
 
leaves the wall, its path length to collision must be calcu­
lated to find if it has a collision before passing through
 
the first zone. -The probability that a sample molecule will
 
collide in the incremental path length 7' to ? + d\ is
 
given (refs. 8 and 9) as
 

exp(-,/%s )
 
(s )-e 


where A. is the mean free path to collision of the-sample
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molecule moving-at velocity V. in that.zone. A path
 
length to collision for-the sample molecule can be chosen
 
'from this distribution-by-the same procedure of picking a
 
random number used earlier-for the sample molecules leaving
 
the surface:
 

= -?s In R, ()
 
To pick from this distribution, the mean free path 2s for
 
the sample molecule in the zone must be known. If the un­
directed velocities of the target molecules are in a Max­
wellian distribution kith,an average thermal velocity C
 
and density p'the mean free path for the sample molecule
 
AM, as shown in appendix A, is given by


M - 2i nVs - nV (s) 

C-eP-) + +rfwPJ+-


where Kn is the usual definition of Knudsen number for a
 
gas in a Maxwellian distribution with hard-sphere molecule
 
collisions. Since the target molecule velocity distribu­
tion has been assumed to be a two-sided half-Maxwellian
 
distribution (eq. (1)), the mean free path is obtained by
 
assuming the distribution of target molecules to consist of
 
two full Maxwellian distributions in each increment
 

ft = fM+ + fM- (6) 

where fM+ 'and fM- are Maxwellian.distributions with den­
*sities 2p.- and 2p_ and thermal velocities of C+ and 
Q, respectively. However, the molecules of fM+ with'--
V2 < 0 and the molecules of fM- with V2 > 0 are con­
sidered nonexistent. This permits the calculation of the 
mean free path using the Maxwellian distribution relations. 
Thus, the mean free path for a-sample molecule moving 
through two Maxwellian gases, as shown in appendix A, is 
given by 

-- - + (7)
 
T -M+ M_ 

where )\M+ or \M- is evaluated, 's in equation (5).
 
After a path length to collision is picked for the
 

sample molecule from equation (4), it is compared with the
 
-distance the sample molecule must travel to cross the zone. 
If ?\ is greater than this distance, the sample molecule is 
started at the beginning of-the next zone with its-velocity 



7 

RAREFIED GAS DYNAMICS
 

components unchanged and the procedure is as before. If it
 
is not, there is a collision in the zone-and new velocity
 
components-mfist be calculated for the sample molecule after
 
collision.
 

Sample Molecule Velocity After Collision
 

To find the new sample molecule velocity -components
 
after collision, the velocity components of the target
 
molecule collision partner -must first be found. Since there
 
are two 'distributions of target molecules locally, fM+ and
 
f'M-, the distribution the target molecule collision partner
 
is to be picked from must first be decided. The fraction of
 
all the collision partners that come from the fM+ distri­
bution is given by ?s/)\M+. Then, for -apicked random num­
ber, f R < ?\s/? M+, the collision partner velocity compo­
nents are picked from the fM+ distribution. Otherwise,
 
they are picked from-the fM- distribution. The equations
 
for obtaining the velocity components of the target molecule
 
collision partner are given in appendix B.
 

If V2t picked from the fM+ distribution is negative
 
or, if picked from fMA, if V2t is positive, the collision
 
partner is considered nonexistent. This is because half the
 
rdlecules in the fM+ and fM- distribution are nonexist­
ent, as discussed before. In this case, the sample molectle
 
continues its history from the point of-collision with,its
 
original velocity.
 

After collision of the sample molecule with the chosen
 
collision partner, the new components of velocity Vt of
 
the sample molecule are given (ref. 8) by
 

b2)1/2 H
s = (Vls + Vlt) + VR(1 - (8a) 

1 1 

s= (V2s + V2t) + VR(l - 2b2 ) (Sb) 

Vs = 1 (Vss + V3t) + VR(l - b2)1/2 V (8c) 

where VR -is given by equation (A2). The values of H and 
are,obtained by-picking-two random numbers which are used 

in the following equations: 

H = 2RH - 1, S = 2. - 1, and b?=H 2 +± (9) 

b2
where must be less than 1, or-a new set of random num­
bers must be chosen to find H and '.
 

The sample molecule history is then continued from the
 
point of collision with its new velocity components. The
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sample histories are completed when the sample molecule re­
turns to the surface from which it has been emitted.
 

Scoring-to Find Macroscopic Flow Properties
 

The macroscopic fluid characteristics needed are den­
sity, temperature, velocity, and heat transfer across the
 
channel. These properties are obtained at scoring positions
 
located at various distances across the-channel, as shown in
 
figure 1. The average quantity of Q transported across
 
the scoring-cross-section p, as shown in ref. 8, is
 

P(V2Q~p - (P+(V2Q)+)p + (p_(V2a)_) p 

+ oW ' 


t Q (lo) 
If Q is taken as l/V21
 

P P+ P_ C 0 
++2- -= (11)P+,0 *P+,o P+,L
 

Thus, by summing the inverse V2 'velocity of the sample
 
molecules as they-cross the-sabring position the local 
density--of the.moTecule,with-a pbsitiye, h!gative compo-.­
nent Of V2, p+,p-, can be Obtained as well as the ldcladensity 
p. The average density-across the channel is then obtained
 
by averaging the density of all the scoring cross sections.
 

If Q is taken as V1/V2, e'q. 10 becomes
 
--P---0+'1+'p ---P - 1 +()"s' (12) 

P+,0C+,0 P+,0C+ 0 P,0 +,0-N2!/ (12) 

Dividing by the appropriate densities obtained previously
 
gives the local mean velocity for the molecules with V25O
 
u+, and V2 < 0, u-, and also the local mean velocity, u.
 

The undirected kinetic energy per unit mass of a mon­
atomic gas is equal to the degrees of freedom times (1/2)RgT.
 
This can'be written as
 

(V,2) 
. g= = (V2) - u4 (13) 

Then from equation (10) is obtained
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S_ 2 

T 2C p V72 {!'T ° (14)
W 0
0 N 


The thermal velocity of the molecules with V2 > 0 is 
given by­

- 5+ 
2
C2 (P+ -1 v u2
± = 2 + ~' 7 2 -+ (is) 

Co 30w,6Nffl/2 Y±,0) L (Sk2 3b$,O 

and similarly for the molecules with V2 <10
 

2
C2 --
Q. 2 (P- V[ rtw2 21u- (s 

2 /
7 - WoV - 3o '0oO
 

The shear stress across the channel is given by
 

This can be shown to be equal to
P12 = p(ViV2). 

P+'0C+'o 
 17
 

N9 1 7 V1
Pl2 = P(VlV2) = 1- - (17) 

The total energy being transferred across the channel
 
is given by
 

S_ 

1 V) P+o~woT 
21)qy=-p(V I(V (-V2 (18) 

The transfer of the undirected kinetic energy across the
 
channel is q =(l/2)p(Vk(V'2 )), so that equation (18) be­
comes
 

q = qT - U1P1 2  (19) 

By using these equations, the macroscopic quantitied of 
interest are found. The values of p+, p_'C , C_ are then 
compared with the assumed values used in the target molecule 
distribution, and the problem is iterated until they are in 
agreement. Also obtained at the same time from the bov6"&
 
equationstare the, local temperatre,- density, shear,- and' 
energy transfer.
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Resflts drid Conclfusions 

Stationary walls with .atemperature ratio tw 1 -of 
0.25 was treated first. The local gas temperature divided
 
by the temperature of the hot wall is shown in figure 2.
 
The local density divided by the average density across the
 
channel is given in figure 3. In figure 4, the heat flux
 
transferred divided by-the heat flux for the collisionless
 
case, as given in appendix C, are shown.
 

The present results can be seen to be in good agree­
ment with the results of another Monte Carlo solution by
 
Haviland (ref. 6). The linearized solution of Gross and
 
Ziering (ref. 2) gives very good agreement with the present
 
results except for the temperature profile. in the linear­
ized solution of ref. 2, the centerline temperature is
 
taken midway between the wall temperatures. The present
 
results have theircenterline temperature significantly be­
low this value for the Knudsen-number of 2; hence, the
 
large disagreement in the results.
 

The nonlinear results of Liu and Lees (ref. 3) of the
 
temperature and density are of the correct magnitude but of
 
-asomewhat different gradient. The nonlinear heat transfer
 
results fall somewhat above the other solutions.
 

Also shown in'the figures are the slip continuum-re­
sults: These results are obtained by using the fluid tem­
perature in the continuum equations (appendix D). By using
 
-the slip wall temperatures that gave the best.fit both to
 
the temperature and density results of the present solu­
tion, the results shown were obtained. However, when the
 
heat transfer was calculated using these same slip wall tem­
peratures and the continuum thermal conductivity, the heat
 
transfer was found to be considerable above the other solu­
tions, Since the slip-solutions with the continuum conduc­
tivity are only expected to apply close to continuum condi­
tions., this result is to be-expected.
 

The heat transfer-at various positions across the chan­
nel is shown in figure 6. Theoretically, this should be
 
constant at each point across the channel (appendix D), al­
though the present method does not impose this condition in
 
its method of solution. This condition, however, is satis­
fied in the present results, as can be seen from this fig­
ure.
 

To check the confidence limits ot the present results,
 
the solution was carreid out -20times with 2500 sample
 
molecules each time for Kn = 0.5. The temperature and
 
density had a value of 3, the 95 percent confidence inter­



RAREFIED GAS DYNAMICS
 
val, of close to 1 percent of their value, while the value
 
of 8 for the heat transfer across the channel was about
 
2 percent of its value. The derivations and equation used
 
in obtaining 8 are given in appendix E.
 

The second case treated is when both walls are at the
 
same temperature, but one wall is moving at a wall Mach num­
ber Mw = Uwl/Cwl of 4. The velocity profile is shown in
 
figure 6. The linearized solution (ref. 1) is in poor
 
agreement with the present result, as would be expected for
 
the nonlinear large'wall Mach number case.
 

The temperature profile across the channel is shown in
 
figure 7. There is a substantial rise in temperature for
 
smaller Knudsen numbers because, as the strongly directed
 
stream of molecules leaves the moving wall, it-encounters
 
the undirected stream. This gives a lower-value f6r the
 
average directed motion of the fluid. This decrease in
 
directed kinetic energy is now included in the thermal mo­
tion which 'givesthe higher temperature.
 

The shear stress for the channel, shown in figure 8,
 
has been nondimensionalized by the shear stress for the
 
collisionless case (eq. (C5)). The results fall above the
 
linearized solution of reference 1. The total energy
 
transfer across the channel nondimensionalized by the total
 
energy transfer-for the collisionless case (eq. (C6)) gives
 
the same values as the dimensionless shear stress for the
 
cases studied. This is also shown in figure 8, where shear
 
stress and total heat transfer across the channel are plot­
ted. Again, from the microscopic laws of conservation and
 
the moment equations, it can be shown that the shear stress
 
ahd total heat transfer at various positions across the
 
channel should be constant. Although this condition is not
 
imposed by the present method of solution, the results in
 
figure 10 indicate that the shear stress and total energy..
 
transfer are nearly constant at different positions across
 
the channel.
 

In conclusion, the Monte Carlo method gives reason­
able results for the present problem without the necessity
 
of extreme assumptions. The major drawback to the method
 
is the increasing amount of computer time necessary to carry
 
out the calculations as the Knudsen number became'smaller.
 

Some typical running times for 10,000 sample molecules
 
6n an'IBM 7094 were: Kn = 30, 8 minutes; Kn = 2; 10 min­
utes; Kn = 0.5, 15 minutes.- These running times would make
 
results difficult to obtain for-small Knudsen numbers with
 
the present -procedure. Generally, three iterations of­
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50,000 samples were used. 

The present method is very flexible and can readily be 
used in other transport problems not readily solved by the 
more usual procedures. 

Appendix A
 

Evaluation of Mean ree Path
 

The number of collisions per unit time dO of a sample
 
molecule moving at velocity Vs through target molecules in
 
velocity volume space dV for hard sphere molecules is
 
given (ref. 8) as
 

dG = pftV s dV 
where VR is the velocity of the target molecules relative
 
to the sample molecule velocity before collision and can be
 
written as
 

vR = [(Vlt- vls) 2 +(V2t -V2s) 2 + (V3t Vss) 2]1/2 (A2) 

If we subtract the local mean velocity from both
u! 

the velocity of the sample molecules and the target mole­
cules we can .thenwrite the collision rate for a Maxwellian
 
distribution of target molecules as
 

m S (exp - dVdjt dV2t dVst (A3) 

Then transforming-variables by a rotation using Eularian
 
angles (refs. 8 and 10) yields
 

vit- .-A-IV ".ij jt (A4a) 

where 

V2s Vls -V3sVls 
-sVs 

• J= s vB 1rsVs A 

V3s Vrs
 
V' V1
 

a S 

The inverse transformation is given by 

= A.jVt (A5a)Vii ijjt
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where 

V2s -Vis 

Vrs Vrs 0 

Vis V2s V3s 

Aij V s V s V s (A5b) 

-V3sVs -V2sV3s Vrs
 

Vrss VrsVs Vs
v 


where Vr = (Vi 2 + V ) 1/2 and 'V' = (V2 + V )l/2 Then, 

equation (A3) becomes
 

= - w (exp- [vt 2 + (Vt _7,)2+V t1/2 dV; 3 (A6a) 

dGM=
 

Transforming into spherical coordinates
 

Cos e si 3t=Vt' sin 

(Ab) 

t= V2, =V; cot CP e sin P 

yields 

dGM = _ ExP(-i-VGi-pR sin (p dcp de (A7)
M71i
 

where p. is the nondimensionalized velocity VI/C and 
where
 

= 2 - 24tt cos (p)1/2 
 (As)
 

To obtain the total collision rate for the target mole­
cules over all velocities, equation-(A7) must be integrated
 
over p, 0, and- pt. Integrating over e from 0 to iv 
gives 

dOM(Kt) =- 4: CS ( 

Ps2/3 s if 4s > 

= ti-It + p.2/z3 if 't> (Ale) 

Integrating-equation (AS) over pt from 0 to w, the 
total collision frequency OM is obtained for a sample 
molecule moving at velocity p.s through a Maxellian gas: 
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O= pSC[exp(- + (erfs)s + 	 (All) 

The nondimensional mean free path is then found, as
 
discussed in ref. 6, by dividing the sample molecule veloc­
ity by the total collision rate,'-Thich gives
 

M Vs _ KnVs (A1) 
Dc-B - +xpds21/ +(erfs) 	 (A 

If there were two different Maxwellian gases in the
 
increment fM+ and fM-' the total collision rate would be
 
given by 8 = M+ + M_4 -where 6M+ and 9M- are given as
 
in equation (A12) but with different densities and mean
 
thermal velocities. Since ?\s/D is given by V8/8,
 

D 1 	 (A13) 

M+47- ;M+ + m-
V 3
 

Appendix B
 

The Target-Molecule Collision Partner
 

The velocity distribution of target-molecule collision
 
partners for a sample molecule passing through target mole­
cules in a Maxrellian distribution (ref. 6) is
 

dSG 	 exp-4)]P. rR sin p dcp db l 

The distribution in 6 for the target-molecule collision 
partners is
 

fed6 	 d or e =2cRe (B2) 

2ir 

The distribution of pt for the target-molecule colli­
sion partners is obtained from the marginal distribution
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Pt	d[ePfit)1LtRdIt 
1%~ [etxp(oP)] + 3zi/2(erf yLS (L 2 s 

fa 	 (B3) 

+ 


Then Pt can be picked from this distribution, using
 

R P - TG±5It' t) +eG141't) _ (A4y 
g s ) [exp(-)] + rl/2(erf is) + 

where, when Ls > pt, E = 0 and 

3 

rU'5,wt) =21stexp(i-P)]+ 	 t -q4(erf pt) - ~ x( 2 

PtMexp-i2)] + -f' (erf pt) (BS)
2k's 

and, when ps < 't, ('4 5 pt) = -(4s, Ls) and 

e 	~ P Ps 2) + [2 exp(.p12)] (4 2.. [e1+~)( 	 + i) (B6) 

To find p for the target molecule, the distribution of
 
target molecules can be written as a product of a marginal
 
-times a conditional distribution
 

E) = f( )f( .Tt) 	 (B7) 

Then it is necessary to pick cp from the conditional dis­
tribution:
 

f[it(( = R sin cp dp 	 (BB) 

Picking cp for a given pt is found as before from 
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.4- - t1 
2( )3/2 _ 3 (Bg) 

,t s t s I't s1 

After picking cp pt, and e, it is necessary to find the
 
velocity components V!, using equation (Ab). Then, from

equation (A4),
 

Vy' N(V<\
= V1 V~ N 

-+ 3tvv +V (Bi0a)Vit ltv v24 -V V- I
vis s ,,,V~sV~s',
,,T v,, (BlOb)
 

V0t= ( + V"V + V1 tVrs 

O =+ 3t (BlOc) 

APPENDlC C
 

Collisionless Solution
 

For negligible molecular collisions, the local distri­
bution in the channel is given by
 

L"'"FoLo , w,l.i. 2 <o1 

e,O )I ;5.,r V <0
 

The local density is then givenby p(l) = p = p+0 + P-1 .
 

Since there is no net flow across the channel, one can write
 

P(V2) = 77(P+,o;,o - P-i%,']-= 0. Combining gives 
it 

The flow parallei to the channel wali is given by
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Ul = (Vl) = " + P- lwjl (C3)
 

The local temperature is given by
 
2
T 2, (V2 + + V) - M which, when integrated 

gives
 
21.P+- °M2 +2_ M M2' .E+l 1l2x 

- M2~+t 1) (C4) 

The shear stress given by P12 = P(V1V2 ) can be integrated 
'to give 

(1/2P12- P+ 

P (m ,o - m 1) (C5):2RJ ", 

flhe total energy transferred given by qT = k(VI 2 V2 ) + 
is 

-l2 3/2 P+, pl w I
 
P.gP)3/2 P p w,l p 2 p 2t1/2
 

1 0 1; 0 


APPENDIX D 

Continuum Solutions
 

-%"ell's equatioh of transfer, which describes the rates 
of change of a quantity Q in a volume element of space, is 
given by 

(V=i1 / (Dl) 

where LQ denotes the rate change in some molecular quantity
 
-Q due to molecular collisions. This term is zero where Q
 
is conserved during collision. This is the case for Q equal
 

V2
to 1,V, or because of conservation of mass, momentum,
 
and energy, respectively:
 

) (pui) = 0 (D2)
 
xi
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I i aiu uxi -u -" x--p(v!V') P.. (Ms) 

(p u?1)+ ) 2i(uiPjj.(V!V12 i(2u Pij) = 0 (D4)-L( 3) + 

Introducing the gas conductivity, viscosity and P as the
 
static pressure gives the well known Navier-Stokes equations:
 

T= = - K. (D5) 

P.. = - 2 u-ii +L x K (D6)ijP 1.. 

Since, in the present model, there is no x, or x,
 
dependence, these results simplify to give u1 =

1 g(x2),
 
= constant across the channel' and P12 i -:[(u 2)
1 


(a constant), and also q2 + ulP1 2 = qT
(a constant).
 

For hard-sphere molecules, assuming a small perturba­
tion from equilibrium of the local distribution, the con­
ductivity and viscosity can be written (ref. 6) as
 

(7)K = Kot1/2 Ko 75m RgC0 

64a (21/) 

t=10t l /2  PO =- MO / (DB) 

16a2 (2)1/2
 

With both walls stationary, q = -K( Tpxi). This can be 

readily :lved to give tMO= [1 - (i-w 

Since the pressure across the channel is constant using
 
the ideal gas law, 
 1/2
 

0 =_ 1 + twPi + twPl (D9) 
The- h anM=o 

The heat transfer across the channel can be found aqua' to 

<PM= 5 Icl/2 ( 1 3/2 K i 
CO 6'4 twi 1)n(]l
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When the upper wall is moving, the energy equation
 
can be written as
 

CPT + - %q (Dll) 

This can be rewritten using (gO / K) = 2/5; a= (s/2)Rg as 

jt + - P M)0 

When the upiper wall is moving at a velocity u- 1 and both 
walls are at the same temperature, integration can be per­
formed to obtain
 

t 1M(- M) + 1 (D13) 

The equationforn- "P1 2 ' nah'l e rewritten as 
P12 = - 0tl/2 u Cr14) 

x2
 

This can be integrated to give
 

M212 2M- 1 +(1
- ( + s\ i N2 w,1ll 

This gives an implidit form of the velocity p~rofile
 

across the channel. This result can be used in conjunction
 
with equation (D15) to obtain the temperature distribution
 
across the channel.
1 62 2w 4 +i)a-, L YM4, )/i D]5Similarly integrating equation (D4) from x = 0 to 1, 

the following can be obtained: acros the ,channel.
 
i t +o ) 

To obtain the total heat transfer equation (Dll) is integrated: 
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= Q---p--Mwl (D17) 

A0pdidlx " 

Confidence Limits of Results
 

For some number of sample molecules, a resuiting quan­
-tity Q is obtained. Repeating-this process K times
 
will give-a sample set of Q. The average of the K val­
ues would give Q, which is the average value of the-sample
 
set. Ifan infinite number of values of Q were obtained,
 
this would give a population of Q with some average value
 
(W. The problem is finding the value of 6 -such that the
 
absolute difference between (Q) and 7 is less than 5
 
witha 95 percent probability. The central limit theorem
 
states that the distribution of sample means f(Q) approaches
 
-anormal distribution with a mean value equal to the popu­
lation mean and with a variance-equal to the population vari
 
ance divided by K, the size of the sample averaged to ob­
tain the sample mean. Since the 95 percent-confidence inter­
val is defined as twice the standard deviation, 8 = 2S/(K)l/2,
 
where S2 is the approximation to the variance of the popu­
lation obtained by finding the-variance of the sample set
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K-l
 

This gives the 95 percent confidence interval 5 as
 

- = 2~'q ) (E2) 
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