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RAREFTED GAS DYNAMICS

ANATYSIS OF COUETTE FLOW -AND HEAT TRANSFER BETIWEEN PARALLEL
PLATES ENCLOSING RAREFIED GAS BY MONTE CARLO

Morris Perlmubter

Lewis Research Center
National Aercnautics and Space Administration
Cleveland, Ohio

Abstract

Couette flow and heat transfer through a hard-sphere
rarefied gas enclosed between parasllel walls are analyzed
by a Monte Carlo procedure. In one case, both walls are
stationary and at different temperatures. 1In the other
case, the upper wall is moving, and both walls are at the
same temperature. The molecules are assumed 1o have hard
sphere collision and a wall accommodation factor of unity.
The wall temperature ratio and wall velocity are taken large
so that linearized solutions are not appliceble. Sample
molecule histories are followed across the channel, which
has been divided into zones. The target molecules in each
zone are assumed to have a different two-sided half-
Maxwellian velocity distribution. By scoring the properties
of the sample molecules as they pass scoring positions, the
macroscopic quantities of interest, such as temperature,

density, shear, and heat transfer, are obtained. Also, the

average thermal velocity and number density in each zone

are found and compared with the values assumed in the target
molecule distribution. The problem is iterated until these
values agree.
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average thermal velocity (ZRgT)l/2

channel width

probability distribution function
Knudsen nunber Ny/D, = m/+/Z ppDuc?
dimensionless veloeity u/Cylp ~

ng-u 1P
w.on

o

TMX-52218



onon

—~

D

~—
1l

[45] 2
& U)m'.:d =} '_Ig
trnonn

tn
1

oo

nn

nn

@x3 m=3 i;<:<:x S o
non

>
=4
1

(1

-
W

-

T T
"
=

S a0
il

RAREFIED GAS DYNAMICS
mass of moleciile

= nunber of sample molecules emitted from surface O

in Monte Carlo run, proportional to flux of mole-
cules leaving surface O

pressure; Pii/S

shear stress (-p(ViVi))

Zone or scoring—posi%ion number

last scoring-position number

property of sample molecule

averaged quentity '/‘Qf asv
averaged quantity f Qf + asv

= heat transfer

total energy transfer

random number between 0 and

gas constant

mutual collision cross section ﬁUz

= number of sample molecules through scoring position

in positive, negative xp direction

gbsolute temperature

dimensionless temperatures T/TW,O

mean velocity

coordinate

molecular veloelty

thermal velocity; v ~ u

velocity after collision

defined by equations (BS) and (B&)

defined by equations (B5) and (B6)

viscosity coefficient

thermal conductivity

collision rate of sample molecule with target mole-
cules

path length to collision

mean free path Llength through a Maxwellian gas with
density p and thermal velocity C

= mean free path length

dimensionless velocity, V'/C

= defined by equation (A11)

density
diameter of hard sphere molecule

angle between sample molecule and target molecule
velocities

Subscripts:

A =

averaged across channel
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M = Maxwellien

M=0 = refers to case with both walls stationary
P = increment number

Pr = last increment

R = relative velocity

r. = radial coordinste in cylindrical system
s = sample wmolecule

t = target molecule

w,0;w,1l = at wall O,1

0,1 = evaluated next to 0,1

1,2,3 = coordinate directions

+, -

-
il

positive or negative x, direction
Tntroduction

The present-analysis treats a rarefied gas enclosed be-
tween two walls. Two cases are treated: in one, both walls
are stationary and at different temperatures, while in the
other, both walls are at the same temperature but one wall
is moving., The molecule are assumed to have hard-sphere
colligions and a wall accommodation of 1. 'The problem is
analyzed by 2 Monte Carlo technique, that is, a model
sampling procedure. Sample molecule histories are gener-
ated by meking -choices ab points of decision from the appro-
priate probability distributions. These sample molecules
are followed through the model and, by averaging certain
molecular properties at various positions, the macroscopic
guantities of interest can he obtained. This method reduces
the complexity of the analysis since the relations for a
single sample molecule history are relatively simple. 'Thus,
simplifying assumptions made in the more ususl analytical
procedures are also avoided. However, the Monte Carlo
method requires extensive caleulations on a high-speed com-
puter. for the many sample histories needed.

Grogs and.Ziering (ref. 1) treated the covette flow
problem for the' case of low relative plate velocities with
both plates at the same temperature. They also treated the
case where both walls were stationary but at different tem-
peratures (ref. 2). Because small differences in relative
wall velocities and wall temperature were assumed in ‘these
analyses, the linearized form of the Boltzmann equation
was used. The loecal distribution function was approxi-
mated ‘by half-rahge polyhomials “in veloeity space. Theé space-
‘dependent- coefficients in this distribution were found by
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Torming half-range moment equations.

Tui and Iees (ref. 3) have analyzed the case of rar-
efied couette flow with heat transfer assuming Maxwellian
molecule coellision. They assumed a loecal two-sided half-
Maxwellian velociby distribution. This is substituted into
the moment equations, which are then solved for “the parame-
ters of the distribution. From this, the macroscopic flov
parameters can be found.

This same appreach was used by Lavin and Haviland
(ref. 4) for the case of stationary walls at different te
peratures assuming hard sphere molecule collisions.

The Monte Carlo method has been used previously in
rarefied gas problems by Perlmutter (ref. S5) to treat a
collisionless plasma flowing-through a channel with an im-
posed megnetic field. Haviland (ref. 8) used Monte Carlo
to treat a rarefied gas with hard-gphere collision con- |
bained between stationary parallel plates at different wal
temperatures., In that analysis, sample molecule historie:
are followed through cellisien with target molecules as
“they “travel through-the model. From the histories of the
sample molecules, tables of the distribution of the veloc-
ity components can be obtained in the various zones into
which the channel has been divided. These tables can then
be used for the target molecule velocity distribution in
the next iteration of the sample melecule histories. Afte.
the converged distribution of velocities are obtained, the
macroscopic quantities of interest, such as temperature,
dénsity, and heat transfer, can be obtained by finding the
moments of the distributien in each zone.

' Thé present analysis also follews a sample molecule
travellng through the medel. However, in the present-case,
the target molecule veleocities in each zone .are assumed %o
have a twe-gided half-Maxwellian distributien of the form -
assumed by Twi and Iees in reference 3. By scoring proper-
ties of the sample molecules at scoring position across the
channel, the parameters of the distribution as weéll as the
maeroscopie flow properties such as. temperature, velocity
profile, heat transfer, and shear stress can be found. This
method was used by Perlmutter (refs. 7 and 8) for heat
transfer between parallel plates with the walls stabtionary
but at different temperatures. In that solution, it was
assumed that the local distribution of target molecules was.
Maxwellian instead of two-sided half-Maxwellian.
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Sample History

The model analyzed is shown in figure 1. The wall at
Xp of O is stationary and at temperature T, 5. The
other wall at x, of 1 is moving at velocity’ u, ;3 and
is at temperature T, ;. The distance across the channel is
divided into zones. in each zone, the target molecule ther=
mal velocity distribubion is assumed to be a two-sided half-
Maxwellian disgtribution given by

20, v 20 vié
. = f + T = ejx‘_p - — 4 ex’p - ——
Pl =Pt ™ P 1L x57ch o2 3/203 o2
V2>O - - V2<O

(1)
where 4 refers to the molecules moving in the positive
Vo direction and f. refers to molecules moving in the
negative Vo direction.

It is assumed that the molecules reflected are per-
Tectly accommodated, that is, in a Mexwellian distribution
at the wall based on the wall temperature. The velocity of
the sample molecule leaving the wall as derived in refs. 6
gnd 8 is given by

V, = (-C2 1n Rv2)1/3 (2a)

. 1/2
Uy = (- 1 5y )/ cos 2nm + g (20)
Vs = (-C2 1n er)l/2 sin 2xRg (2¢)

where R is a random nunber between O and 1 chosen for
each’ sample molecule leaving the surface. .

) Path length to collision. - After tle sample molecule
leaves the wall, its path length to collision must be calcu-
lated to find if it has a collision before passing through
the first zone. 'The probability that a sample molecule will
collide in the incremental path length A to A + dA is
given (refs. 8 and 9) as

exp(-2/Aq)
£ = — (5)

where Ag 1is the mean free path to collision of the .sample
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molecule moving-at veloecity Vg in that .zone. A path
length to cellision for the sample molecule can be chosen
“from this distribution- by the same procedure of picking a

random number used earlier for the sample molecules lesving
the surface:

A= =Ag In Ry (4)

To pick from this distribution, the mean free path Ag for
the sample molecule in the zone mist be known. IT the un-
directed velocities of the target molecules are in a Max-
wellian distribution with an average thermal velocity €
and density p, the mean free path for the sample molecule
N, as shown in appendix A, is given by

‘}M ) ~/2n KnVS

P o P 'véE Vé V& C
EK exp-zgr 4+ «/xmlerf T\ T + EVE

vhere Kn is the usual definltlon of Knudsen number for a
gas in a Maxwellian distribution with hard-sphere molecule
collisions. ©Since the target molecule veloeity distribu-
tion has been assumed te be a two-sided half-Maxwellian
distribution (eq. (1))}, the mean free path is obtained by
assuming the dlstribution of target molecules to consiat of
two full Maxwellian distributions in each increment

Ty = Ty + Iy (8)

where fy, -and fy_ are Maxwellian distribubtions with den-
-8ities Zp; and Zp_ end thermal velocities of C, and
C., respectively, However, the molecules of fj. with -

Vo <0 and the molecules of iy~ . with Vo > 0 are con-
sidered nonexistent. This permits the celculation of the
mean free path using the Maxwellian distribution relations.
Thus, the mean free path for a-sample molecule moving

through two Maxwellian gases, as shown in appendix A, is
given by

(5)

i_ 1,1 (7)
As g My T
where Ny oOr M. is evaluated, as in equation (5).

After a path length to collision is picked for the
sample molecule from equation (4), it is compared with +the
-distance the sample molecule must travel to cross the zone.
If A 1is greater than this distance, the sample wolecule is
started at the beginning of “the next zone with its veloeity
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components unchanged and the procedure is as before. If it
is not, there is a collision in the zone-and new veloeity
components ‘mist be calculated for the sample molecule after
collision.

Sample Molecule Velocity After Collision

To find the new sample molecule velocity -components
after collision, the velecity components of the target

molecule collision partner must first be found. Since there
are two -distributions of target molecules loeally, Ty and
-, the distribution the target molecule collision partner
iz to be picked Ffrom must Tirst be decided. The fraction of
a2ll the collision partners that come from the I distri-
bution is given by Ag/Muyy. Then, for -a picked random num-
ber, if R < AS/KM+, the colligion partner velocity compo-
nents are picked from the fy, distribution. Otherwise,
they are picked from-the fy. distribution. The equations
for obtaining the velocity components of the target molecuie
collision partner are given in appendix B.

If Vo picked from the fiy, distribution is negative
or, if picked from fy., if Vo is positive, the collision
partner is considered nonexistent. This is because half the
molecules in the fiy and fy. distribution are nonexist-
ent, as discussed before. In this case, the sample moleciule
continues its history from the point of collision with its
original velocity.

After collision of the sample molecule with the chosen
collision partner, the new components of velocity V£ of
‘the sample molecule are given (ref. 8) by

1
Vi -3 (g + ) + U 002 (o)
1 : -
VE, =5 (Vpg + Vo) + Vp(1 - 2b2) (8b)
1 1/2 ..
v"gs =3 (Vag + V) + VR(1 - b2) / G (8c)

where VR "is given by equation (A2). The values of H and

= are obtained by picking two random nunbers which are used
in the following equabions:

H=2Rg -1, 5 =2 -1 and ¥ =2 +5 (9)

vhere B2 must be less than 1, or-a new set of random num-
bers must be chosen to find H and =.

The sample molecule history is then continued from the
point of collision with its new velocity components. The



RAREFTED GAS DYNAMICS

sample histories are completed when the sample molecule re-
turns to the surface from which it has been emitted.

Scoring -to Find Macroscopic Flow Properties

The wmacroscopic fluid characteristics needed are den-
gity, temperature, velocity, and heat transfer across the
channel. These properties are obtained at scoring positions
located at various distances acrdoss the. channel, as shown in

figure 1. The average quantity of Q ‘transported across
the scoring-cross-section p, a8 shown in ref., 8, is

p{Vol)p = (D+(V2Q)%)P + (p_(VaR) )y

Sy 7S

—

Py ch ] Zéi Zgi
Q- Q (10)
- /B

D
If Q is teken as 1/V,,

P i t )
8] +
= + '— (ll)
p"]‘,o -p+,0 p 1/2 C ,p

Thug, by summing the inverse Vs ‘velocity of the sample
molecules as they cross the scoring position the local
density-of ‘the.molecule' with.a positive, hegative compo-.
nent of Vg, py,p., cen be obtained as well as the ldeal density
p. The everage density -across the channel is then obtained
by averaging the density of all the scoring cross sections.
: If Q@ is teken as Vy Vz, eq. 10 becomes

o P, D +,p P-pZ -p (12)
°+,0%,0 P+,0%,0 p+ 0%,0 Nﬂl/z
Dividing by the appropriate densities obtained previously
‘gives the local mean velocity for the molecules with V,>0
uy, and Vs < 0, u., and also the local mean veloeilty, u.

The undlrected kinetic energy per unit mass of a wmon-

atomic gas is equal to the degrees of freedom times (lﬁﬁR T,
This can'be written as

(Brgr =% w2y =2 v - 52 (13)

Then from equation (10) is obtained

Il
g
et
%
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+ 5. 2
I PO S -
To0 mal2e, o Or,Q & ,Nz2/| " 5c2

The thermal velocity of the molecules with V, > 0 1is
given by-

. 8y
2 - 2
&k 2 (D-[-) 1 (vz) 2 "1, + (15)
T ‘ T 32
02 By oNxl/2 +,0 V2 ¢z o
and similarly for the molecules with V2 <0
2 - -1 3 2
= 172 \} V. /|~ 32
0‘2%0 . v, O / P40 2 04,0

The shear stress across the channel is given by
Py = p(ViVé). Thig can be shown o be equal t0

Pip = p(VqVp) = 2 z Vi (17}

The total energy being transferred across the channel
is given by

8

+
_ 1 P+,00%,0 5
o = 3 9(7,()) = 2ZmdS " (7). G2 (19)

The transfer of the undirected kinetie energy across the
channel is .g =(l/8)p(Vé(V‘2)), so that equation (18) be-
comes

By using these equations, the macroscoplc guantitied of
interest are found. The values of p,, p_, C are then
compared with the assumed wvealues used in the %arget molecule
distribution, and the problem is iterated until they are in
agreement. Also obtained at the same time from the &dbove™ ¥

equations~are the, local -temperature,- den31ty, shegr,- and -
energy transfer.
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Restii*bs arid Concludions

Stationary walls with .a temperature ratio tw,l of
0.25 was treated first. The local gas temperature divided
by the temperature of the hot wall is showm in figure 2.
The local density divided by the average density across the
channel is given in figure 3. In figure 4, the heat flux
transferred divided by the heat flux for the collisionless
case, as given in appendix C, are shown.

The present results can be seen to be in good agree-
ment with the results of another Monte Carlo solution by
Haviland (ref. 6). The linearized solution of Gross and
Ziering (ref. 2) gives very good agreement with the present
results except for the temperature profile., In the linear-
ized solution of ref, 2, the centerline temperature is
taken midway between the wall temperatures. The present
results have their  centerline temperature significantly be-
low this value for the Kaudsen number of 2; hence, the
large disagreement in the results.

The nonlinear results of Tdu and Lees (ref. 3) of the
temperature and density are of the correct magnitude but of
-e. somevhat different gradient., The nonlinear heat transfer
results fall somewhat gbove the other solutions.

Also shown in “the figures are the slip continuum re-
sults. These results are obtained by using the fluid tem-
perature in the continuum equations (appendix D). By using
+the slip wall temperatures that gave the best fit both to
the temperature and density results of the present solu-
tion, ‘the results shown were obtained. However, when the
heat transfer was calculated using these same slip wall tem-
peratures and the continuum thermal conductivity, the heat
transfer was found to be considersble asbove the other solu-
tions. Since the slip-solutions with the continuum conduc-
tivity are only expected to apply close to continuum condi-
tions, this result is to be-expected.

The heat transfer-at various positions across the chan-
nel is shown in figure 6. Theoretically, this should be
constant at each point across the chamnel (appendix D), al-
though the present method doesg not impose this condition in
its method of solution. This condition, however, is satis-
fied in the present results, as can be seen from this fig-.
ure.

To check the confidence limits of the present results,
the solution was carreid out 20 -times with 2500 sample
molecules each time for Kn = 0.5. The temperature and
density had a value of &, the 95 percent confidence inter-

10
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val, of close to 1 percent of their value, while the value
of 3 for the heat trsnsfer across the channel. was about
2 percent of its value, The derivations snd equation used
in obtaining & are given in appendix E.

The second case treated is when both walls are at the
same temperature, but one wall is moving at a wall Mach num-
ber M, = qu/Cwl of 4. The velocity profile is shown in
figure 6. The linearized solution (ref. 1) is in poor
agreement with the present result, as would be expected for
the nonlinear large wall Mach number case.

The temperature profile across the channel is shown in
figure 7. There is a substantial rise in temperature for
smaller Knudsen nunbers because, as the strongly -directed
stream of molecules leaves the moving wall, it-encounters
the undirected stream. This gives a lower -value for the
average directed motion of the fluid. This decrease in
directed kinetic energy is now included in the thermal mo-
tion which gives the higher temperature.

The shesr stress for the channel, shown in figure 8,
‘has been nondimensionalized by the shear stress for the
collisionless case (eq. (C5)). The results fall above the
linearized solution of reference 1. The total energy
transfer across the channel nondimensionalized by the total
energy transfer -for the collisionless case (eq. (C8)) gives
the same values as the dimensionless shear stress for the
cagses studied. This is also shown in figure 8, where shear
stress and total heat transfer across the channel are plot-
ted. Again, from the microscopic laws of conservation and
the moment equations, it can be shown that the shear stress
and total heat transfer at wvarious positions across the
channel should be constant. Although this condition is not
imposed by the present method of solution, the results in
figure 10 indicate that the shear stress and total energy.
transfer are nearly constant at different positions across
the channel.

In conclusion, the Monte Carlo method gives reason-,
able results for the present problem without the necessity
of extreme assumptions. The major drawback to the method
is the increasing amount of computer time necessary to carry
out the calculations as the Knudsen number became' smaller.

Some typical running times for 10,000 sample molecules
on’'an IBM 7094 were: Kn = 30, 8 minutes; Kn = 2; 10 min-
utes; Kn = 0.5, 15 minutes.- These running times would meke
results difficult to_obtain for-small Knudsen numbers with
the present.proceduré. Generally, three iterations of

11
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50,000 saniples were used.
The present method is very flexible and can readily be

used in other transport problems not readily solved by the
more usual precedures.

Appendix A
Evaluation of Mean Free Path

The number of collisiens per unit time d@ of a sample
molecule moving at velocity Vg through target molecules in
velocity.volume space dV% ‘for hard sphere molecules is
given (ref. 8) as

40 = pfyVgS avi

where VR 1is the veloelty of the target molecules relative
to the sample molecule veloeity before collision and ean be
written as

Vg = [(V1g - V1g)? + (Vas ~Vas) 2+ (Vb - vss) 12 (ae)

If we subtract the local meen velocity wu; from both
the velocity of the sample molecules and the target mole-
‘cules we can .then write the collision rate for a Maxwellian
distribution of target molecules as

2
v,
S %
d = e - ——— av av av A3
By —‘§—m5 25\ "2 ['r 1 oy AVay (A3)

Then transforming-variables by a rotation using Eularian
angles (refs. 8 and 10) yields

T -l 71
Vi = 81375 (Ads)
where
T
Voo Vis ~VzeV1g
V. v V.. VI

re 8 re's
- 2 -
-1 Vis  Vas  VagVas (8b)
s = ? ]
1d Ves Vs VgV _
_v3s st\
H t -
Vs Vs

The inverse transformation is given by

Vi = A jvj_b (A5a)
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where
VZS "Vis
Vg Vpg
1
A Vis Vos Vzs
ij = Vg Vi V3 (A5D)
_VSSviS “VogVzg Vg
VesVs  VpsVs Vg

. 1
where V, = (vi2 + vg)l/z and " V' = (V% + V&) /2 Then,
equation (A3) becomes
A8y = S — [ Vi2 o (VB - VL) B VYR 1/2 avid  (aee)
M= e 203 15+ (V8y - Vg t
Transforming into spherlcal coordinates

14 =Vi cos 6 sin §, Vi =Vi cog @, Vg 5=V sin 6 sin ¢
(46b)

Cp3 .
a0y = —Grz [exw(-1f)|uug stn 9 dp a0y, (7)
ms

where p is the nondimensionslized velocity V’/C and
where

yields

lp = (u% + ug - 2p.u, cos ¢)L/2 (A8)

To obtain the total collision rate for the target mole-
‘cules over a&ll velocities, equation- (A7) must be integrated
over @, 6, and ;. Inbegrating over 6 from O %o =«
gives

a8ylug) = 22Erlemn(-2)]dug p duy (89)

by + 'u%/Sus i pg >y
- -{ (410)

2 .
TRETEY kTR & ST T

Integrating equation (A9) over p; from O to «, the

total collision frequemcy @6y is obtained for a sample
molecule moving at velocity p, +through a Maxwellian gas:

13
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2
_ pscfexp(-ug) 1
Oy = 7 [- Y + (erfug)(pg + EE; (411)

The nondimensional mean free path is then found, as
discussed in ref. 8, by dividing the sample molecule veloc-
ity by the total collision rate,  Wwhich gives

NM Vs 1/5 Khvs

2__5_ (A12)
D T ey e %{;&-EEEXP(%HZS)] + (erfus)(p,s + 2—3%—)}

If there were two different Maxwellian gases in the
increment £y, and £y, the total collision rate would be
given by © = éyy + G-, -where Oy and 8y. are given as
in equation (Al2) but with different densities and mean
thermal velocities. Since Ag/D is given by Vg/6,

. p 1
o w1, 1

KR
Vs Vs Mg M-

. A (A13)

Appendix B
The Target-Molecule Collision Partner

The veloecity digtribution of target-molecule collision
partners for a sample molecule passing through target mole-
cules in a Maxwellian distribubtion (ref. 8) is

d®MH [ex;p("'u%)]l-l-%u:a gin @ 49 d'u,b
M ﬂ[ﬁxp(-ug)]¥=n5/3(érfﬁé)<es _};)

(B1)
2g

The distribution in 6 for the target-molecule collision
partners is

fa =88 or 6 = 2R (B2)

66 oot

The distribution of for the target-molecule colli-
sion partners is obtained from the marginal distribution

e

14
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1o 2
£ a4 = 4[exp-( ”t)] BEHpadiy
by (B3)
[ex'p(u-)p,g)} + n.i/g(erf us) (ps + -.:."_)
Zus
Then it can be picked from this distribution, using
v(ugu) + elug,ng) -
R% = (B4)

[exp( p.z)] + :n:l/z(erf Mg ) (p + ..1_>

Zp,s
where, when pg > g, € =0 and

i) = -2ugitg [exp(-u))+ g R (erf uy) - %E”’E[expmg)]

- ﬁt [exp( uz)] + %JC: (erf ) (BS)

S

and, vhen pg <ug, vleg,u) = vlng,ug) and

- -z[ex;;(ut)](“g 14 L@G) + [2 exa-2)] ( ‘f + 1) (36)

To find ¢ for the target molecule, the distribution of
target molecules can be written as a produet of a marginal
+times a conditional distribution

de(uy,P)
5 < 2, (el ny) (87)

Then 1t is necessary to pick @ Zfrom the conditional dis-
Tribution:

f(@‘ut) = (BB)

Picking ¢ for a given Ry is found as before from
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'ug- 1ut-u|3

R = . 8

¢ (u2+u2+2uu)3/2-[u -u]s =2
+ 8 t s H

s
After picking o, U and 6, it is necessary to find the
veloclty components V;t, using equation (ABb). Then, from
equation (A4),

v ATl v, V!
v =" 2s + 7 __l_S_ - V" Zg'ls L (BiOa)
1t 1t v‘“‘“rs 2t v S\ T VL 1

v Vo VogVizg

= - 7" == n [2e8 ) g [ 2B 98
Voi, 1\T | * Vo v st\ gV s ) (B10b)

v V.
Vs = O + Vo[ <S2 | + V| 2 (B10c)
8 2]
APPENDIX C

Collisionless Solution

For negligible molecular collisions, the local distri;
bution in the channel is given by

2Py .0 20 2p.1 (V2
pfoo = W exp - _W,_. + - exp- L hd fodi]
3203 2 3723 2 (c1)
w,0 w,0 w,1 W,
' V>0 -
2 2

The local density is then given by p{l) =p = p,g + p_7-
Since there is no net flow across ithe channel, one can write

1
D<V2> = _T7§[é+,00w,0 “p-ch,z]'= 0. Conbining gives
7t

+,0 1
p’ = 12’ =1-_%0 c2)
o 1+ % P P
w, 1

The flow parallel to the channel wall is given by

16
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O+,0 p_1
n, = (V9 = —2~ to—
1 ( l) 8] ul:ﬂ}o o} u1,w,1 (¢3)
The loecal temperature is given by
T . 2
T =5 (Vg + VZ + Vz) - MB vhich, when integrated
w,0 3Cy. 0 :
0
gives

_2[{P+,0 p- 2\, . P+ 1/2
% —3(——2—M§,0+.—_M§’1 -M) 14tk (ca)

P b
The shear stress given by P, = p(Vin) cen be integrated
to give
o
SZRT. = 5 0 - ¥, 1) (c5)

The total energy transferred given by qp = D(v'zvz) + Uy Py
is

1/2 2 2
t/ Aep Pio P ,GS/2 2P0 Y0 Palys (c8)
= - 1 2
p(BRgWO)S/Z P p ¥ 0 5 L1/
Wyl
APFENDIX D

Continuum Solutions

laxwell's equatioh of transfer, which describes the rates
of change of & quantity Q in a volume element of space, is
given by

s (p(75)) = 5 9 (p1)

where A3 denotes the rate change in some molecular guantity
‘@ due to molecular collisions. This term i1s zero where Q

is conserved during collision. This is the case for Q equal
to 1,V, or V2 because of conservation of wmass, momentum,
and energy, respectively:

a—?{;— (pug) =0 (D2)
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c oD iy _ O D

Szz(puig§)+ S%;(u.P.,) IS (p( rv|2>)%_ Is) (Zu«P ) 0 (D4)

Introducing the gas conduct1v1ty, v1sc051ty and P d&s the
static pressure gives the well known Navier-Stokes equations:

1 QT
z p(VJf-V.’Z) = Q3 = 5__ (D5)
du, du 'Bu
1-71,19% 1 K
P. s = P - 2 = — ol D6

Since, in the present model, there is no xq or Xz
dependence, these results simplify to glve Uy = g xz
¥ = constant across the channel and -p{ou jéx
(e constant), end also qp + ulP12 qT(a constant)

For hard-sphere molecules, assuming a small perturba-
tion from equilibrium of the local distribution, the con-
ductivity and viscosity can be written (ref. 8) as

‘ R C
K = Kotl/Z Ky = 75”; g g/z (D7)
840 (2x)
SmC
b= uo'bl/ 2 Mo = 0 (p8)
1602(231)1/2
With both walls stationary, q = -K(BT/Bx ). This can be

féadily s0lved to give t, ~ =11 - tS/E 2/3.
M=0 w,1
Since the pressure across the channel is counstant using
the ideal gas law,

Y
b _ »1 21
("A)M—o T (09)

The heat transfer across the channel can be found equa’ to

a _ 25 /2 5/2 .
(-OACS) =L " / (l - 1 /K0 (Dac
M=0

18
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When the upper wall is moving, the energy equation
can be written as

3 ug Cy
g%cpT+T=-TqT (D11)

This can be rewritten using (pcp/;c) = 2/3; cp = (5/2)Rg, as
4 o 8 %

[t +5= M - =%
i5 5P C
9%, 120
When the upper wall is moving at a velocity u -1 and both

walls are at the same temperature, inbegration dan be per-
formed to obtain

M| =0 (Dr2)

_4 -
t = = M(Mw’l M) + 1 (D13)
The équation fori- P, - cahl'be rewritten as
du
P, = -k gi/2 71 (D14)
0 axz

This can be integreted to give

-l . ()"

4 4

+15 - 2M
_C—'f.:.l..]:_#) gin-1 B?W:Jl - Sil’l—l Mw’l
2
(15+M 1)

1/2

1/2 My,1 ‘(ng,l +15) 1 My, 1
_I_
(15+ M%-,l)l/z

Thig gives an implicit form of the velocity profile
across the channel., This result can be uged in conjunction
with equation (D13) to obtain the temperature distribution
across the channel.

Similarly integrating equation (Di4) from x =0 to 1,
the following can be obtained:

(D15)

1/2 - .
-1/ °P M
_.___éE: S M1 (Mfr,ﬁ il J W, 1 (D16)
4 -
DCO 2=-/15 (M ,lq- 15)1/2

To obtain the total heat transfer equation (D11l) is integrated:
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1/25. \M
, w/°P
DCO pco
Appéndix B

Contidence Limits of Results

For some nunber of sample molecules, a resulting quan-
“tity Q@ 1is obtained. . Repeating this process k +times
will give -2 sample set of Q. The average of the Kk -—val-
ues would give Q, which is the average value of the.sample
set. TIf-an infinite number of values of @Q were obtgined,
this would give a population of Q with some average value
(@). The problem is finding the value of & -such that the
gbsolute difference between (Q) and § is less then B
with.a 95 percent probability. The central limit theorem
states that the distribution of sample means f(§) approaches
‘8 normal. distribution with a mean value egual to the popu-
lation mean and with a variance-equal to the population vari
ance divided by k, the size of the sample averaged to ob-
tain the sample mean. Since the 95 percent -confidence inter-

val is defined as twice the standard devietion, & = ZS/(K)l/z,
where 82 is the approximation to the variance of the popu-
lation obtained by finding the-veriance of the sample set

- A
Q% -3k
K -1
This gives the 95 percent confidence interval & as

g2 (E1)
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