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AN APPROXIMATE SOILVI_ON OF THE EQUATIONS OF MOTION

FOR ARBITRARY ROTATING SPACECRAFT

By Peter Ralph Kurzhals

A_T_

The determination of the motion of rotating spacecraft, such as

manned space stations and spinning satellites, requires the solution

of the spacecraft's equations of motion with varying disturbance torques

and mass distributions. The numerical integration of these equations

on high-speed computing equipment can give only limited information on

the effects of disturbance and spacecraft characteristics, and cannot

provide the physical insight needed for an analysis of the spacecraft

motion. An approximate solution of the governing equations which would

yield a direct assessment of the effects of applied disturbances and

would lead to a clear understanding of the motion mechanics could thus

be particularly use_Vh!.

This dissertation comprises the development and application of an

approximate analytical solution for the motion of arbitrary rotating

spacecraft with variable disturbance functions. The solution is based

on the assumptions of small changes in the spacecraft inertia character-

istics, body rates, and Euler angles. The rate and attitude errors,

resulting from the application of disturbance torques, are described by

complex pseudovectors and the governing spacecraft equations are reduced

to linear differential equations in terms of these error vectors. Solu-

tions are obtained for the steady spinning mode and for a spinup and

despin mode.
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ABSTRACT

The determination of the motion of rotating spacecraft, such as

mannedspace stations and spinning satellites, requires the solution

of the spacecraft's equations of motion with varying disturbance torques

and massdistributions. The numerical integration of these equations

on high-speed computing equipment can give only limited information on

the effects of disturbance and spacecraft characteristics, and cannot

provide the physical insight needed for an analysis of the spacecraft

motion. An approximate solution of the governing equations which would

yield a direct assessment of the effects of applied disturbances and

_ould lead to a clear understanding of the motion mechanics could thus

_ particularly useful.

This dissertation comprises the development and application of an

approximate analytical solution for the motion of arbitrary rotating

spacecraft with variable disturbance functions. The solution is based

on the assumptions of small changesin the spacecraft inertia character-

istics, body rates, and Euler angles. The rate and attitude errors,

resulting from the application of disturbance torques_ are described by

complex pseudovectors and the governing spacecraft equations are reduced

to linear differential equations in terms of these error vectors. Solu-

tions are obtained for the steady spinning modeand for a spinup and

despin mode.
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The solutions for the spinning modeconsider the effects of initial

errors, external torques, and instantaneous and periodic massmotions

within the spacecraft. The resultant errors are presented as error

componenttime histories and as traces of the complex error vectors.

Upper bounds of the error magnitudes are deduced from the error vectors.

Both the general case of nonsymmetric spacecraft and the special case

of spacecraft rotating about an axis of symmetryare examined.

Periodic massmotions within the spacecraft are shownto have

significant effects on the spacecraft motions and can produce errors

several times greater than the errors predicted for "worst-case"

instantaneous massmotions. Instability trends of the errors are also

found whenthe spin axis becomesan intermediate axis of inertia during

a massmotion and whenthe motions occur at the precession frequency _.

The effectiveness of several control techniques is investigated for

the approximate governing equations. Pure rate control and rate plus

rate integral control are found to be acceptable for damping of the

rate and attitude errors produced by massmotions and other internal

disturbances. Rate plus attitude control is, however, needed for the

elimination of possible residual attitude errors due to external

disturbances and for the reorientation of the spacecraft. The implemen-

tation of the control techniques is discussed for reaction wheel, control

momentgyro3 and reaction jet systems. Actuator commandsand the required

control system weights are developed.

A comparison of the analytical solution and the exact solution

obtained from numerical integration of the complete equations of motion



- iii-

is used to establish the adequacy of the approximate solution. The

applications of the analytical solution are illustrated for a manned

orbital research laboratory and a large spinning space station.

The solutions for the spinup and despin modeare employed in the

optimization of spinup and extension techniques for cable- or strut-

connected spacecraft modules. Fuel savings of about 22 lb per spinup

and despin cycle of the mannedorbital research laboratory can be

obtained by a continuous-thrust extension.

The analytical solution showsthat a simple and valid interpreta-

tion of the spacecraft motions is possible for a large numberof applied

disturbance s.
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system

time

time constant

unit step function, (B-4)

effective forcing function

weight

reference axes

scalar components of _ along the X, Y, Z axes

--9

nondimensional scalar components of r along the

X, Y, Z axes (A-30)

complex angular position error, q_ + is, figure 4

limiting gyro gimbal angle, (272)

complex inertial position error, (14)

argument of Bj

argument of Cj

impulse function, (B-_)



A

£

_'_k

P

(_

T

a_

_x,_y,_z

Subscripts:

a,b, c,d_ e

C

CM

CR

- 13 -

quantity denoting the magnitude order of mk, _, e_,

e2, _, pp, and the nondlmensional inertia terms

for the moving particles

nondimensional mnment or product of inertia, (A-29)

modified Euler angles, figure 2

precession rate parameters, (24), positive when Iz

is maximum inertia and negative when Iz is minimum

inertia

nondimensional mass, (A-29)

nondimensional force, (A-30)

constant positive spin rate, (15)

nondimensional time, (A-29)

angular coordinate used in total error traces

total angular rate vector of spacecraft axis system

scalar components of _ along the X_ Y, Z axes

complex rate error, Gx + iDy, figure 3
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synchronous wheel speed

nondimensional scalar components of G along the
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F
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G
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I

i

J
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M

m
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n

0

0

P

P,q

Pq

SU

S

R

r

extension with continuous thrust

disturbance

fixed coordinates

final value after spinup
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gyro gimbal
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intermediate value before extension
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component for X or Y axis with k / Z

upper bound

momentum
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maximum value

summed value for moving particles
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component for X, Y_ or Z axis
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spinup fuel

value for spacecraft mass center
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x,y,z component for X, Y_ or Z axis

xy,xz,yz component for XY, XZ_ or YZ plane

W reaction wheel

A dot over a symbol denotes the derivative with respect to time.

An arrow (-_) over a symbol denotes a vector.

A tilde (_) over a symbol denotes the general solution function

corresponding to initial rate and attitude errors.

A single (') and double (") apostrophe denotes particular elements

of a vector component along the spacecraft axis.

The quadrant for the angles corresponding to the inverse trigono-

metric functions tan-l( ) is determined by the sign of the numerator

and denominator of the term in the brackets. When both numerator and

denominator are positive, the angle is in the first quadrant; when the

numerator is positive and the denominator is negative, the angle falls

in the second quadrant; when both numerator and denominator are negative,

the angle falls in the third quadrant; and when the numerator is negative

and the denominator is positive, the angle falls in the fourth quadrant.

All square root terms in this analysis are principal, positive

values. These values may be positive real or positive imaginary numbers.

°
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V. SUMMARY

The assumption of small changes in the inertia parameters has been

used to derive approximate rotational equations of motion for arbitrary

spinning spacecraft in the small angle and rate regime, Complex repre-

sentations are introduced to define the rate and attitude errors produced

by applied disturbances, and analytic solutions are obtained for the

steady spinning mode and for the spinup and despin mode.

Solutions for the steady spinning mode consider both the uncontrolled

and the controlled spacecraft motion for characteristic disturbances.

These disturbances include initial errors, externally applied torques,

and instantaneous and periodic mass motions within the spacecraft. The

errors induced by the disturbances are described by the error component

time histories, and by vector traces of the complex error representations.

Upper bounds of the errors are developed for the uncontrolled case, and

the __a control tec_hniques and control sy_tem_ are examined f_ +_

controlled case.

Solutions for the spinup and despin mode consider extensible space-

craft modules connected by struts or cables. Fuel consumption relations

are derived for several extension techniques, and optimization of the

extension techniques is shown to yield appreciable fuel savings.

Comparisons of the analytical solutions and exact solutions obtained

by numerical integration of the complete equations of motion are found to

be in excellent agreement, and the applications of the approximate solu-

tion are illustrated for a manned orbital research laboratory and a large

spinning space station.
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VI. INTRODUCTION

Proposed spacecraft, such as the manned orbital laboratory (ref. i)

and manned interplanetary vehicles (ref. 2), may use rotation about a

maximum axis of inertia to provide spin stabilization and to produce

artificial gravity for the crew. These spacecraft will be subjected to

variable torques arising from both interna I and external sources (ref. 3)

and will undergo wobbling motions as a result of these torques. Since

the wobbling motions (ref. _) produce attitude errors (which may affect

the spacecraft's power system and experiments) and oscillatory rates

(which may lead to disccmfort and nausea of the crew), an analysis is

required to determine the magnitude of any such attitude errors and body

rates for the spacecraft under consideration.

In order to carry out this analysis, the spacecraft's equations of

motion with varying inertias and torques must be integrated to define

the spacecraft response for the anticipated applied disturbo_nces. In

the past, such a solution has required high-speed computing equipment

for the numerical integration of the equations of motion and has con-

sumed a large amount of computer time to assess the effects of a range

of disturbances for a particular vehicle configuration.

Because of the rather limited application of these results, an

approximate analytical solution of the spacecraft's equations of motion

would be of considerable value. The closed form solution could be used

to determine attitude errors and body rates introduced by "worst case"

type of disturbances and would define instability trends that might
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result from applied torques. In addition_ such a solution would allo_

a direct evaluation of the effects of changes in both the spacecraft's

configuration and the disturbances on the spacecraft's motion.

Approximate analytical solutions of the equations of motion for an

arbitrary rotating spacecraft maybe obtained for linearized governing

equations and Euler angle transformations. A number of such solutions

have been obtained for the simplified equations of motion corresponding

to symmetric or near-symmetric spacecraft. Leon (ref. _) and Thomson

(ref. 6) have developed attitude and rate relations for spinning near-

symmetrical bodies by considering a vectorial representation of the total

errors. Thomsonand Fung (ref. 7) have also investigated the stability

of near-symmetric spinning space stations and have defined regions of

instability for an example vehicle. In addition, Hackler (ref. 8),

Buglia (ref. 9), and Loebel (ref. lO) have derived expressions for the

attitude and rate histories of symmetrical spacecraft by linearizing the

equations of motion.

Several analytical solutions for a nonsymmetric spinning body with

constant inertias have also been obtained. Exact solutions for a torque-

free body were developed by Routh (ref. ll) and MacMillan (ref. 12) in

terms of Poinsot's construction and elliptic functions and by Whitbeck

(ref. 13) in terms of a phaseplane approach. An approximate method

which shows good agreementbetween the nonlinear and linearized results

for a vehicle under applied torques _as presented by Suddath (ref. 14).

Various other analytical approximations are discussed in the liter-

ature (refs. 15-20). Existing solutions, however, have considered either
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very special cases of nonsymmetrlc spacecraft or have been restricted t,

particular symmetric or near-symmetric spacecraft with Specified dist_, _-

bances, S_ch results cannot be applied to the general case of a nons._-

metric spacecraft with varying products of inertia and applied torques,

and offer little information on the properties of the motion of such

spacecraft. Furthermore, the form of these solutions has madethe

determination of upper limits, for the total attitude and rate errors

difficult since the amount of computational time required to define the

error boundaries is in general prohibitive.

The present analysis develops a solution technique for arbitrary

rotating spacecraft with variable disturbance functions. The complete

equatic_s of motion for nonsymmetric vehicles are linearized and solved

with time varying forcing functions and products of inertia. General

and particular solution functions are determined and are used to generate

rate and attitude expressions corresponding to the variable forcing

functions. A complex vector representation is introduced to define both

error time histories in componentform and the total angular and rate

errors.

A numberof disturbances are considered for both nonsymmetric and

sy_netric spacecraft; and the corresponding solutions are examined for

the uncontrolled and controlled cases. Upper bounds of the total errors

are defined and body-fixed and inertial traces of the total errors are

analyzed. A method of selecting control commandsis also presented.
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VII. PROBLEM FO/_ULATION

A. Spacecraft Motion

The rotating spacecraft will be related to the reference system

shown in figure 1. A set of X Y Z axes fixed to the spacecraft is used

to describe the rotational motion of the spacecraft with respect to a

set of intermediate XI YI ZI Coordinates. The intermediate coordinates

translate _ithout rotation in inertial spaee_ but always remain parallel

to a set of XF YF ZF axes fixed in inertial space.

Z

Ro

×F

Figure i.- Reference system for rotating spacecraft.

The inertial attitude of the spacecraft may be defined by means of

three modified Euler angles which determine the relative motion bet'_een
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the X Y Z and X I YI ZI axis systems. These modified Euler angles, as

illustrated in figure 2, results from three consecutive rotations. The

first rotation, about the ZI axis, carries the XI and YI axes through an

angle _ measured in a horizontal plane. The second rotation, about the

new YI axis, then takes the X I and Z I axes through an angle e measured

in a vertical plane• Finally, the third rotation, about the new X I axis,

carries the YI and ZI axes through the angle _ measured in an inclined

plane to give the X, Y, and Z axes.

×

XI

Z

Z
.......- Zi

Figure 2.- Vector transformation between spacecraft axes

and intermediate reference system.

The modified Euler angles can be determined by expressing the

rotations _, e_ and _ in terms of the angular rates _x, _,
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and _z _bout the vehicle axes, The vehicle angular rates then can be

found from a solution of the vehicle momentand force equations. The

resultant expressions for _, 2y, and _z are substituted into the

Euler angle transformations, which now reduce to differential equations

in @, 9, $2 and t. The solutions of these equations give the attitude

of the spacecraft relative to the intermediate axes and thus determine

the angular motion of the spacecraft.

B. Assumptions

To makethe general nonlinear equations of motion amenableto

analytical treatment, the assumptions

sin 8 = tan e = e

sin _ = tan $ =

cos 8 = 1

cos _ = 1

(i)

were introduced in the moment, force, and Euler angle relations developed

in appendix A. The further assumption that the nondimensional inertia

terms associated with any mass particles moving with respect to the

spacecraft were small was also made to linearize the equations. The

resultant method of reduction to linear form and the range and validity

of these assumptions are dismissed in appendix A.

C. Governing Equations

With the assumptions of the preceding section, the equations of

motion reduce to
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Et' (.", Z 1

".!x+ = _xx + _z(Ixz " IYZ_Z) + mj(zj_j - xj_.j)

LJ=I

j-:z

= ms(zs_s- ys_s_k

if

mj(zjyj - yjzj)

(2)

mj(zjyj _ YjZj_

mj(xj_j - ZjXj)n
- "s(z_gs- y_,_ % + '

j=l

( o' _)_" ms XsZs " ZS S (3)

-4+ i_ ..
I-_ _z : __IIz + mj(yjxj - x_yj) - ms(ysX s - Xsy s

J=l

(_)

The inertia terms are

n

I x = Ixo + V.. mj(Yjo 2 + Zjo 2) - ms(Yso 2 + Zso 2)
, i

j=l
n

Ty -__0 ÷ _ _j(Xjo 2 ÷ ZJo2) - m_(X_o2 ÷ %o 2)
j=l

n

Iz---I_. o+ _., _j(x S÷yj2).%(x2+ys 2)
'_.J

j=l

(._)
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n

\'-_ mjxjzj - msXsZ sIxz = ,,,
i .

J=l
n

Iy = _ mjyjzj- msYE ,' BZs

J=l

(9)

and, consistent with our assumptions_ the moments of inertia are taken

as constant in (2) and (3), but are allowed to vary in (4). The asso-

ciated inertia derivatives then become

+ yj_j)- ms(Xsls.+ ys_1

n

j=l

mj(xj_j + zj_j) - ms(Xs_ s + Zs_s)

n

iyz = /_ mj(yj&j + zj_j) . ms(Ys_ s + Zs_s)

j=l

(6)

where xj, yj, zj denote the position coordinates of the mass mj

moving with respect to the spacecraft, and

n

Xs = _ mJxj
m s

j=l

n

Ys = _-' _ YJ
L, ms
J=l

n

/_-' mJ zj

J=l

(7)



denote the position coordinates of the composite mass center for the

spacecraft and the moving masses.

The spin rate Qz is obtained by integrating (4) as

nz Tz zo%o + _ at+ mj(ya_a- xa_a)

n_

- ms(Ys_s - xs_s_l_t._ (8)

where the first term in the brackets represents the system's initial

angular msmentum and the remaining terms account for changes in the spin

rate due to the applied torque M z and to the accelerations of the moving

masses.

Solutions to the spacecraft equations of motion may be obtained by

first determining _z from (8) and then integrating (2) and (3) simul-

taneously to find Ox and _.

These solutions can be substituted into the linearized Euler angle

transformations

from which we have

= _x + _8 (9)

= _- %_ (io)

= &a (ii)

,f _IIzO_zo + J. dt + JIi/a=l mj(yjxj - xjyj)

-ms(ys_s"Xsg,_ dr) dt
(i2)
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The solution of (2), (3), (9), and (i0) then defines the motion of the

spacecraft in terms of the time histories of the body rates and h_uler

an gle s.

D. Total Errors

The body rates Ox and _ are the undesired rate components pro-

duced by the applied disturbances and will be referred to as the rate

error components. Similarlyp the Euler angles _ and 8 describe the

unwanted attitude deviations that result from the application of the

disturbances. These Euler angles will be referred to as the attitude

error components. The solutions for both rate and attitude error com-

ponents follow directly from the preceding section, and are found as

time dependent components along the body and inertial axes.

In practice, one is primarily concerned with the total errors. For

example, the time variation and maximum value of the total angular

velocity error in body-fixed coordinates must be Pmo_.m to assess possible

crew discomfort due to wobbling motions. The time variation and maximum

value of the total angular position error with respect to inertial space

is needed to determine possible effects on the spacecraft experiments

and power system. The effects of removal of a disturbance on the

residual spacecraft motion are also of interest.

Both the total angular position and the total body rate errors may

be developed by using a complex vector representaticn (ref. 5). The

total angular rate error _y can be obtained by vector addition of

the body rates 2x and 2y, as shown in figure 3.
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Y

Y

I

I

|

Y

Z
I

Figure 3.- Vectorial representation of total angular
rate error.

Mathematically, _xy may be written as

r_
itan'l I_-_

: _ + i_ = V_ 2 , _/e L_J (z3)

Similarly, the total attitude error _ in body-fixed coordinates can

be considered as the vector sum of the small Euler angles $ and e_

as illustrated in figure 4. To transform this pseudovector to the

intermediate coordinate system_ one must rotate the body coordinate

_X_:_cm _h]_ough the angle _. The total inertial error _I is then

_i = _ei_ = ($+ ie)ei_ = _$2 + e2eiI@+tan-!(_ 1
( ]I_)
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Physically, _I represents the trace of the Z axis projected on

the XI YI plane and _xy represents the trace of the total rate error

vector in the body-flxed XY plane.

Figure 4.- Pseudovectorial representation of total
attitude error•

Differentiation of (14) yields

• i
_I = (_ + iWci,)e _ (J._)

and noting that

A + lnz<_ = _x_ (:].6)
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f_'<_ (9) and (i0), one may use (ii) to develop the relation

= (& + i_z_)e i_zt

= Gxy ei2zt (l()

The ma_itude of the rate of change of the inertial attitude error is

thu_ equal to the magnitude of the rate error for the small angle

_'e {_:bue.

By integrating (17)_ one arrives at

jot% + T)e dT (18)

u_ the solution for the inertial attitude error vector. The attitude

e_'ror in body coordinates becomes

-i_zt
(Z ----_ie

-i2zt + e"i_zt Ft
moe . _''_y_Vjei_zt dT (19)

_0

and both the attitude errors _I and _ can be directly developed

from the rate error expression.

If only total error vectors are desired, the time solution of the

equations of motion for _xy may be followed by application of (18)

:_n.](19) to yield mI and e. If the rate and Euler angle components

are of interest, the direct solution of the linear differential equa-

i i_.l_(_"), (5), (9), and (10) is preferable.

l_ the present analysis, solutions were first developed in the

i':,_:_of time histories for the error components. The transition to the
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total error form was then madeby substitution of the vector expression

for the resultant rate error in (18) and (19_.

E. Solution Approach

The solutions of the equations of motion for arbitrary rotating

spacecraft can in general be divided into two types, namely those

associated with the spinup and despin modesand those associated with

the steady spinning mode.

The spinup and despin modesmay involve the extension an_ retrac-

tion of cable-connected counterweight modules and thus could have major

and rapid changes in the momentsof inertia for the spacecraft. During

these modesother disturbances_ such as crew motions and applied torques,

will necessarily be restricted and only the solution for the spin rate

and angle, as given by (8) and (12) need be considered. The efficiency

of various _pinup and despin methods using constant spin rate, constant

cable tension, or s_lar schemescan be readily evaluated from these

equations.

For the steady spinning mode, the variations of all total moments

of inertia due to the moving massesassociated with a particular crew

motion are small in comparison with the constant spacecraft inertias

IxO, Iy0, and Izo. The assumption that the total momentsof inertia

Ix, Iy, and I z retain their initial values throughout the crew

motion (see appendix A) will be madefor this mode.

In addition, disturbance momentsdue to crew motions and applied

torques will now act primarily about the spacecraft X and Y axes. Any
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t,_rques nbout the spacecraft Z axis can be neglected during a p_rf,_c,_:l_r

,I]_:t1_rbancesince the resultant change (refs. 8_ 14j 19) in the spin

r.,Icuill be small in comparison with the initial spin rate.

In accordance with these assumptions, one may approximate the spin

rate by its constant value at the initiation of a particular disturbance

az = -= (2o)
Zz

t'orthe evaluation of the effects of that disturbance on the spacecraft

motion in the steady spinning mode. The value _ can and will be

taken as positive without loss of generality.

Since the spinning mode occurs for the major portion of the space-

craft lifetime, this mode will first be analyzed in considerable detail

and several spinup and despin techniques will then be considered in a

later chapter.
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ANALYSIS OF SPINNING MODE

For the spinning mode, the moments of inertia take on their initial

values immediately after initiation of the disturbance and remain con-

stant for the duration of the disturbance. The inertlas may thus be

computed from (_) as

n

Ix = Ixo + _ mj(YJo 2 + Zjo 2) - ms(Yso 2 + Zso 2)

j=l

n

= Iy 0 + _ mj(XJo 2 + Zjo 2) - ms(Xso 2 + Zso 2)

J=l

n

Iz = IzO + _ mj(XJo 2 + Yjo 2) - ms(Xso 2 + Yso 2)

J=l

(21)

and the governing equations may now be developed directly from (2)

and (3).
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For simplicity of notation_ introduce the precession rate parameters

and

so that (22) and (23) becc_e

_x+ x2& =_ - x_y + _ z

and

+ ?,,2D.y

- &yz(_+ xy)- !xz_Xy]

+

n

J=l

+ xy)(zj_j,xj_j).,_(..j_-j - yj£j)

= + XxMx + _ yz + Ixz( _ + hx) - Iyz_k

n

+ /_ mj_e + kx)Czjy j - yjzj.)+ ¢_x(Zj_j - xj_j)

j=l

+ _(Zs_s- X_s)+ (Xs_'_+ _s_s- Zs_s- _s)_)

(24)



or

/x + _2nx --Fx

_+ A2_ = Fy

whe re

n

j=l

+ (zjyj + zjyj- yj'£'j- yjzj)_- ms[_(_ + _)(ZsXs - xszs)

- _C%_ - y_} + (zj_ + _._ - y__ - 9Js)_!

,ee

"=

-"_,'jyj_- ms[Z s <_S + (20"+ ky)X s - O'(C; + 2_)ys- _2hyXs)

(27)
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and

n

j=l

+ (xj'z'j+ XjZj- zj'x'j- zjxjl" ms_ _ _ kx)(zsys " YsZs)

.,3)+ aXx(Zs_- x_.s)+ (xs_.'s+ _s_s- Zs'_s- _.s_s

n

j=l

(28)

Adding (2_) and (26) in quadrature and referring to (13) yields

_+ _,2D..xy = F (29)

with °

F =Fx+ IFy (30)
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The solution of (29) is

_y = _o sin _t + Dxy o cos _t + _ (31)

where F is obtained by replacing functions of t in F by the ccr-

responding particular solution functions given in appendix B.

The initial conditions at t = 0 are

%-o= _o + l_O

47o=-(5_Z)_o + i(h-_)_o
(32)

The particular contributions of an applied disturbance to the initial

errors are inchded __u the T___place formulation of the solution terms.

Substitution of (32) into (31) then results in expressions for the

total error 2xy and its components Ox and gy. The spin rate _z

is found from

Izo2zo _
_Z - =

Iz

and all of the body rates have thus been defined.

The Euler angle differential equations can be written as

(33)

and after adding in quadrature

+_2 :;_. i_ (34)
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Substitution for the rate error yields

+ _2 = yo " A'-]sin _t + o - i_Dxy cos At + 9- i_F

(35)

which has the solution

_° sin fit + _o c°s _t + I <E_XY iOy°IIs= -_" _2 k2 o - in kt

-- =

- _ sin + yo " ia OS At - Cos + F - i_F

where _ and F are obtained by replacing functions of t

(36)

in F by

the corresponding particular solution functions of appendix B.

Initial conditions at t = 0 are

and the Euler angle

So = _o + ieo [

Jao = -

can be determined from the relation

(37)

_=_t (38)

This completes the development of the Euler angles.

Since the terms involving the initial errors will have the same

form for all disturbances, introduce

_ I_XY

~gxy = ~gx + ---_ 0 sin At + _xyo cos ktk
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:,II_]

~ ~ i__q_+ =i

L " _2 sin _t

O-h _2. X2 .jj,

_2 . _2 o - sin At

•I o-
or in component form

% : _o cos kt - _._--z jD.XO sin At

=_o0o__t÷(_x_ sin ht

-while

_ = [_ . Iy_YO1 Ie IxDx°-_sino OIzjC°S at + +

+ °_oo__t+ FIx_x°_ •

,'J lid_

8 = _ + Ix_olcos O't- Iq) IY_°]sino _izj o " _Iz3

L_Izj

o't

o't

(39)

(4o)



All coefficients in these equations may be evaluated from the initial

conditions _xo, _yo, s, _o, Co, and the initial moments of inertia.

The terms °involving the applied disturbances can be similarly put

into component form, so that the body rates and Euler angles can be

found by equating real and imaginary parts in

and (42)

e = $+ iS = _+F- i_F

where _, _ and _ are taken from appendix B.

B. Total Errors

The total rate and attitude errors may be put into a somewhat

simpler form by expressing all trigonometric terms occurring in these

errors in exponential form. Thus, one is able to obtain

_x_ = _, __ BJthi_jt (43)

j=l h=O

where j and h vary over a finite range of integers. The complex

constants Bj and the real constants _j must be evaluated for a

part icular disturbance.

The total angular error in inertial space, as defined by equa-

tion (14) can be similarly expressed as

u v

mI = (_ + is)el' = _ _ CjtheiTjt (44)

j=l h_0



- 42 -

where J and h again remain finite integers with Cj and 7j

determined for a specified disturbance.

In engineering applications, one is also interested in the maximum

magnitudes of these errors. Since the exact solution for the maximum

error magnitudes requires an iterative determination of the zeros of the

magnitude derivative - and this requires considerable _computing time -

an alternate method of defining upper bounds for the errors is preferable

from the practical standpoint. It is noted from (43) that

I_I __t_ei_jt
h=O

f g

A
j=l h=O

f g

j=l h=O

(_)

and similarly from (44) that

I_I:I_I:
u v

t
j=l h=O

U V

j=l h=0

U V

<ZZ
J=l h=0

(46)
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These upper bounds provide limiting values of the error magnitudes which

are adequate for assessing the effects of particular disturbances. More

accurate estimates of the absolute maximum errors and their directions

can be obtained from polar plots of the complex errors if desired.

C. Characteristic Disturbances for

Nonsymmetric Spacecraft

Most disturbances acting on rotating spacecraft may be approximated

by impulsive torques, step torques, step products of inertia, or variable

products of inertia. For example, docking impacts and attitude control

moments can be represented by impulsive or step torques, while crew or

cargo motions w_ald result in either step or variable products of

inert is. Other externally applied torques (such as the sinusoidal

_avity gradient moments) are dependent on the particular spacecraft

and orbital characteristics and cannot be defined without selecting a

specific vehicle and orientation.

The effects of characteristic disturbing functions on the spacecraft

motion are presented in this section. Time solutions for the Euler angle

and body rate errors are developed for arbitrary constant moments of

inertia, and upper bounds for these variables are given.

1. Impulsive Torques

a. Time Histories

Docking impulses caused by resupply and rendezvous vehicles or

micrometeorite hits may result in impulsive torques acting on the space-

craft. These torques can be written as

I_6
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M = Mx + IMy = (Tx + iTy)8(t)

and the corresponding forcing function is

F =_xITxS(t) - _T_(t)_ +-i---FT,_(t) + _xTxB(t) _
ly L J

For arbitrary initial conditions, the total rate error may be found

from (27), (42), and (48) by using the solution functions given in

table I. The results are

_.,_xETxi _t} _y[Tyi Txkx _t_
=_, cos_t _ sin *

- T cos _t +-W- sin

_here _ is given by (39) and (40).

The attitude error can be similarly determined as

_ = _+ 1-_-(ITy(COSXt-Iz_ cos _t)+ Tx( _ sin kt + sin _t)_

- i (cos ht - cos _t) Tv_ sin _t + sin _t

with _ determined from (39) and (41).

b. Total Errors

Conversion of the total angular and rate error to exponential

fo_n leads to the complex vector representation

i_t -iht

_-- = _ * _,-_=_-. • B3e * B4e

where

_= BI ei_t + B2 e-i_t

(47)

(48)

(49)

(5o)

(_l)

(_2)
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c. Initial Error Contribution

The total errors 2xy and _I which correspond to the initial

conditions _xo, Dyo, a, _o, and eo will be considered first. A

simple geometrical interpretation of these error traces is possible.

For _ this interpretation follows from the trace of the velocity

error in the XY body axis plane, as shown in figure 5.

¥

j

Figure 5.- Rate error trace for initial conditions.

The path described by the tip of the _xy vector is an ellipse in the

body-fixed plane.

The characteristics of this ellipse are derived from an examina-

tion of (52) and (53). The semlaxes a and b are determined as

a

Ix4-

b ____

(57)
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and the angular position of the rate error vector is given by

Ca tan'l i_y _ I_t + tan'l(ly_° __

The quadrant for the angles corresponding to the inverse trigonmnetric

functions tan-l( ) in (_8) and in all subsequent equations is deter-

mined by the sign of the numerator and denominator of the term in the

brackets. When both numerator and denominator are positive, the angle

is in the first quadrant; when the numerator is positive and the

denGninator is negative, the angle falls in the second quadrant; when

both numerator and denominator are negative, the angle falls in the

third quadrant; and _hen the numerator is negative and the denominator

is positive, the angle falls in the fourth quadrant.

The position of the major axis of the ellipse is determined by

the relative magnitude of Ix and Iy. If Iy > Ix, then the major

axis coincides with the Y body axis and the maximum angular rate occurs

about this axis. Conversely, if Ix > Iy, then the major axis and the

maximum angular rate lie along the X body axis. The period of revolu-

tion is I_I and the _ vector rotates in the direction of the

precession rate _. When Iz is a maximum inertia, this rotation is

in the direction of spin; when Iz is a minimum inertia, the rotation

is against the direction of spin.

The trace of the rate error vector can be directly compared with

the results of Poinsot's geometric construction (ref. 12), in which the

path of the instantaneous rate vector on the ellipsoid of inertia is
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called the polhode. For the present solution the rate vector is

restrained to move in a plane normal to the Z axis, which is a principal

axis of the inertia ellipsoid. The polhode projection onto this plane

has been developed by Thomson (ref. 6, page 124) and yields a curve

whose shape is defined by the relation

_x(!_x 12 * _(ly%) 2 --X_(I_o) 2 * _(I_o) 2 (_91

This relation describes an ellipse, with semlaxes given by (97). Since

the polhode projection is proportional to the rate vector trace derived

in this analysis, the approximate solution will exactly represent the

spacecraft rates when the variation in the spin rate is negligible.

The angular trace with respect to the X I and YI axes is illus-

trated in figure 6.

Attitude error trac_

/... I

tan-1 _o

Figure 6.- Attitude error trace for initial conditions.

X I
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The path described by the tip of the _ vector is generated by a point

moving on a displaced ellipse, which in turn is rotating at the spin

rate. From (55) and (56), the center of the moving ellipse is located

by the vector sum of the initial attitude error s o and of the initial
r_

angular mQmentum ratio term ilIx_xO + II_°l. The radius a shown

L _IZ 3
on the figure is thus

a _Iz Ix_°)2+ (Ir%°)2 (60)

while the semiaxes of the rotating ellipse becQme

_I z _-_

• J 'c = (Ix )2
_Iz _y

(61)

and the precession of the attitude error vector within the ellipse is

ape .... e_ by the

¢b = tan-iI_ tanI_t + tan'l(Iy_°_Yll\Ix_xo_ (62)

When 7_

has a period of 2kx, where k is the least common denominator of

and _.

The trace of the attitude error vector is in agreement with the

general properties predicted by MacMillan (ref. 12) for the torque-free

motion of a rigid body with respect to a unit reference sphere. This

sphere was drawn about the fixed point of the spinning body as a center_

is rational, the path of the attitude error trace is closed and
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and the motion of the body Z axis about the flxed-momentumaxis was then

described by the trace of the Z axis on the unit sphere. The vector

trace, introduced in the present analysis, can be considered as the pro-

jection of this Z axis trace onto a plane perpendicular to the ZI axis.

It should be apparent that the ZI axis which is arbitrarily

defined as the fixed space axis corresponding to the initial position

of the Z axis, %_lll not generally coincide with the fixed-momentumaxis.

By assumption, however, the angle between these two axes is small. Hence,

the shape of the traces about the fixed-momentumaxis should be approxi-

mately retained in the plane normal to the ZI axis. The fixed-momentum

axis will appear as a displaced point on this attitude error plane.

In figure 6, the fixed-momentumaxis projects as the center of

the rotating ellipse. The attitude error oscillates between two con-

centric circles drawn about the ellipse center. _ne radii of these

circles are given by the minor and major semiaxis of the ellipse. The

similarity of this motion with that depicted in figure 61 of MacMillan's

test is obvious.

Upper bounds of the values for the rate and attitude error

magnitudes, as developed from (4_) and (46), are

+  (I O=o + (ly o/ y)21(63)



and

N x

The rate limit (63) gives the major semiaxis of the rate error trace and

is equal to the maximum rate error. The attitude limit (64) corresponds

to the sum of the center radii and the major semiaxis of the attitude

ellipse, and will be greater than or equal to the maximum attitude

error.

Several interesting trends may be observed from the geometrical

development and the relations for the upper limits of the errors. When

the spacecraft inertia Ix (or Iy) approaches Iz while the second

inertia Iy (or Ix) remains different from Iz, then the rate and

attitude ellipses become very elongated. Small rate errors induced

about the second inertia axis by impulsive torques or other disturbances

can thus lead to large total attitude and rate errors. An example is a

cylindrical configuration spinning about an axis normal to the axis of

symmetry.

When the spacecraft inertia Ix (or Iy) is very much larger

than Iz, excessive attitude errors will be produced by small body rates

and tumbling may occur. This result, however, is not surprising since

the inplane angular momentum is now much larger than the spin momentum.

Examples here are slender cylindrical satellites and missiles spinning

about a minimum axis of inertia.
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One may note that the smallest errors will be produced when both

Ix and Iy are much smaller than Iz, and the spacecraft configuration

approaches that of a disk.

The contributions of the errors _ and _ to the limiting

errors l_xyllim and Imllim for a given disturbance will be omitted

i J

in the remainder of the analysis to avoid undue complications of the

limiting error relations. These error terms could_ however, be readily

included if this is desirable for a particular disturbance.

d. Impulsive Torque Contribution

If the initial error terms are taken as zero, the total errors

for the impulsive torques are equivalent to those for the initial rate

error terms. The geometrical representation and the maximum error values

for the vectors corresponding to the initial errors will thus hold for

the impulsive torques if

by Ty and _o and eo

figures _ and 6.

2. Step Torques

a. Time Histories

_x
_xo is replaced by _ _o is replacedIx '

are taken as zero in (57) - (64) and in

The spacecraft attitude control system and external sources,

such as gravity gradients, may also exert torques about the body axes.

For this example, consideration will be given to constant step torques

of the form

M ---Mx + : (wx+ i y)u(t) (65)
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and the associated forcing function

F = _l-FTvB(t)- _TyU(t)_ + _LFTyS(t) + _xTxU(t)_ZxU _ lyL
(66)

The body rate error is found from (21), @2), and (66) by sub-

stitution of the solution functions of table l, and is

+ sin kt + 1 -

Iy Y

The attitude error m is determined in a like manner as

1 1 Iz ) 1 _t1_ = _+-_zI_XE_(_y-cos_ At--_ cos

I_ sin_t - i sin _t_l+ _y

+ i y_--- - cos X - --_cos _t

+ x sin kt - - sin

(67)

(68)

The initial error contributions _y and _ are defined as before.

b. Total Errors

A transformation of these components to polar form yields

iAt - ikt

= B3+ +be (69)
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with

and

+

(_)21 "it an" CTxkxIx_
+ _ L_y_IyJ

"itan'lITX _@1

__i i_ - 1 ,._ITx2 + - 2_ itan'iFTx_l'i'y_e ITyJ

(70)

_I = _ + C5 + C6ei(_+%)t + C7 ei(_'%)t + C8ei_t (71)

with

and

C_ _---

J
itan L:_x j

i JTx2 + Ty e
_2I z

_ 1 _--l + 1 :_.ITx2 + Ty2_ itan-llPT_Y_le_xC6=

2'_q_L_ -7_JwT _xJ

_j( )2 i;_ itan-lrT_yIy ] ]_8-- _ +\Xx_x/J°

(72)
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The trace of the total rate vector due only to the step torques is shown

in figure 7.

Y

b

Ibl

X

Figure 7.- Rate error trace for step torques.

This trace is now an offset ellipse which intersects the origin at time

zero.

The elements of the rate ellipse can be determ_ued from (69)

and (70), The center of the ellipse is located by the radius

a = Tx + _Y (73)

and the angular coordinate

Ca= tan-I#Ty_yIy_

\ x Ix/
(74)
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The semiaxes of the ellipse are found from

b = +

(75)

and the angular location of the rate error vector is

Cb = tan-l_b tan_t- tan-l_Tx_-_l)\Ty (76)

The position of the major semiaxis of the ellipse is again dependent on

the relative magnitudes of Ix and Iy. If Iy > Ix, the maximum semi-

axis is parallel to the Y axis; if Iy < Ix, the maximum semiaxis is

parallel to the X axis. The motion of the _xy vector is in the direc-

tion of _ and has a period of I_I"

An extension of Poinsot's development (ref. 12) to the motion of a

rigid body under step torques appears possible. The fixed reference

point, with respect to which the polhode projection is generated, lies

along the maximum angular momentum vector possible for the body. The

angular accelerations vanish for steady spin about this axis of maximum

angular momentum. By referring to (2) and (3)_ one notes that the

associated coordinates for the fixed point are proportional to
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and (77)

Wx

for the constant step torques.

The shape of the polhode projection corresponding to this fixed

point is defined by (59). Substitution of (77) into (59) yields the curve

An inspection of figure 7 shows that the polhode projection is indeed

represented by the rate vector trace. The fixed point coincides with the

center of the trace ellipse and the equation of the ellipse becomes (78).

The inertial attitude error corresponding to the step torques

yields the trace shown in figure 8.

YI YI

a _ Xl X I

I "---------- .Attitude error trace "--'-/ I

Figure 8.- Attitude error trace for step torques.
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This trace results from a point moving along an ellipse, which remains

fixed with respect to the rotating radius of a stationary displaced

circle. The motion begins at the origin at time zero.

The center of the stationary circle is located by the radial

coordinate

ija :- Tx 2 + (79)
_2iz TY 2

corresponding to the ratio of the torque to the spin vis viva. The

radius of the stationary circle is

and the center of the moving ellipse has the angular position

(8o)

Cb = tan-lIT_Y_ tan-lITy_

o_+ V_x/- \_x/
(8]_)

The semiaxes of the ellipse are computed from the parameters

C --- + --

I_ T2
d= i +_y

and the semiaxis Icl makes the angle

=___ tan'l(T_Y_

% _" \_I

(82)

(83)
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with the radius b of the stationary circle. The angular coordinate of

the tip of the attitude error vector within the ellipse

Cd = tan'lI_ tan_t + tan'l{'TY J__l\_x_ (84)

completes the development of a point on the error trace curve.

The motion is a closed curve when _ and _ are both rational.

The corresponding period is given by 2k_ where k is the least common

denominator of _ and _.

The general properties of the motion can be readily interpreted

from figure 8, if one recalls that this figure represents the projection

of the Z axis trace onto a plane normal to the Z I axis. The fixed space

axis corresponding to the axis of maximum angular momentum projects as

the center of the stationary circle. The motion of the body is bounded

by two circles, concentric with the stationary circle and tangent to the

moving ellipse in the figure. The outer circle represents the maximum

Z axis excursion relative to the fixed momentum vector and can only be

approached from the inside. The inner circle represents the minimum

Z axis excursion and is approached from the outside when the ellipse does

not contain the fixed momentum reference point. _nen the ellipse con-

tains the momentum reference point_ then the inner circle is crossed by

the Z axis trace and is approached from the inside.

Upper bounds of the error magnitudes are found from (45) and

(46), with the result
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and

+ +_ Ix Iy

These upper bounds consist of the sums of the radial vector magnitudes

and the semimajor axis of the error ellipse, and will obviously be

gr_eAter than or equal to the maxlmum error values.

For cylindrical spacecraft spinning about an axis normal to the

cylinder axis, large rate and attitude errors will be produced by torques

applied about the cylinder axis. Conversely, torques applied about the

normal inertia axis in the spin plane will have little effect on the

spacecraft motion.

Near-cylindrical spacecraft spinning about a minimum inertia axis,

so that Iz is much less than Ix (or Iy), will now be stable if the

applied torques do not approach the spin vis viva term Iz _2.

3. Step Products of Inertia

a. Time Histories

Crew or cargo movements within the spacecraft may be represented

by equivalent masses mj with variable position coordinates xj, yj,
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and zj. The movements of the equivalent masses fall into two categories.

The first of these includes arbitrary nonperlodlc motions along linear

paths to some final position. From previous results for symmetrical

spacecraft, it appears that the largest rate and attitude errors for

such a motion are less than or equal to those for instantaneous motion

to the final position. The introduction of step products of inertia

corresponding to the final position coordinates of the moving masses

gives a limiting case for this type of motion.

The coordinates of the Jth mass may thus be written as

xj = Xjo I

Yj = Yjo

zj = ZjoU_j j

(87)

and the corresponding forcing function is

F - ix yz (t) + _25(t + _Ixz (t) + o2U(t

+ i_x _5(t)+_(t)_Iyz " _xIyzIS(t) + _2U(t)__

where the products of inertia now take on the constant values

n

Ixz = ___ mjXjoZjo- msXsoZso

j=l

n j_z = -_ mjYjoZjo" msYsoZso

j=l

(89)
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The solution for the rate error becomes

a

+ i rIYz {COS _t _2 2,) Ixz sin _t

- _ sin '

_" (_X " iIxzlS(t)Iy/

(9o)

and the attitude relation yields

be Total Errors

The vectorial representation of the total errors reduces to

i_t -i_t

=_ * _. :_4e . _e ¢92)

where

(IIi_) 2 "I '2]XZ "itan-l_xzlx_zI
-IYZ + /_)_e ' LIy YJ 5(t)

(93)
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_ = _ )_x--_÷

2 IVx_

and

where

÷ eltan'l_J

_N/ [NJJ Lr'z#"J

_I _I + C4ei(e+A)t
i(a-&)t i_t

= + Cse + C6e

C4 _-A 1 //iyz_2 (ixz _2_-itan'#__

= 1 e By,.X_xJ
C_ i( _+ _( 1 Ix--_x') /(_Y_'_2 + (Ixz_2_ itan'l_xz_q

C6 = - <_/<LyiylY_ ) 2 + \_--_)(Ixz12_"Itan'l_Xz_Iy_JeJYZ_XI@

(93)

(9_)

!(9_)

The trace of the rate error vector is illustrated in figure 9.

Y

t l#vzXxlx\

_ X

Figure 9-- Rate error trace for step inertia products.



Once more one obtains a displaced ellipse.

does not intersect the origin.

The radius to the center of this ellipse is

and the ellipse characteristics are found from

C _---

x,rr; iV \

and

_ = tan-llb tau t +_ tan'lfIyz_x_ti-_z_yUj

However, the ellipse now

(®)

(97)

(98)

The major semiaxis of the trace ellipse is parallel to the X axis when

Ix > Iy and is parallel to the Y axis when Iy > Ix . However, the body

axis with the largest rate error is determined primarily by the location

of the center of the trace ellipse. The period of the counterclockwise

motion is again the precession period I_I' and the direction of motion

is in the direction of the precession rate _.

To correlate figure 9 with Poinsot's development, note that the

coordinates of the fixed reference point for the polhode are propor-

tional to
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a2Ixz

(99)

yo Aye. ¸

from (2) and (3). This shift of the reference point from the coordinate

origin to the principal body axis indicates that the maximum possible

angular momentum vector lies along the new extreme inertia axis. Steady

spin, for which the polhode reduces to a point I is thus possible only

about the new maximum or minimnm principal axis of inertia. In figure 9,

this principal axis passes through the center of the rate ellipse, as

specified by (96).

The interpretation of the polhode projection about the fixed

reference point becomes somewhat more difficult. Two terms now con-

tribute to the polhode, namely the rotation of the extreme principal

axis a.__dthe effective acceleration torque produced by introduction of

the step product of inertia. The rotation of the extreme principal axis

yields the initial rates given in (99). The step introduction of the

product of inertia yields the additic_al rate terms

Ix

and (i00)
,, AxIyz

_o = ly

The polhode projection (59) corresponds to the rate vector trace in

figure 9, if the reference body rates 2xo and _o include both (99)

and (lO0).



The angular position trace for the step products of inertia is

presented in figure lO.

¥I

Figure lO.- Attitude error trace for step inertia products.

The trace is produced by a point on an ellipse, which remains fixed with

respect to the rotating radius of a stationary circle centered at the

origin of the inertial axis system.

The radius of the stationary circle is

( =zVa : _ + _-_7 (lO1)

and the ellipse center is defined by the angle

¢a = _t- tan'l(Ixz_IY_ (102)

\ly_Xxlx/



The ellipse semiaxes are found from

"r_ _1\,lXy/ \ ',1_1

,,  'Txz?
(2o3)

and Bile ari::(lebetween the stationary circle radius a and the ellipse

_ -1/_x_Xyly\
\Iyz^x_x/

The position angle of the attitude error vector tip is now

with respect to the ellipse semiaxis I bl.

The period of the precessional motion is 2kx, with k taken

as the least common denominator of _ and h for rational _ and h.

The general properties of motion for the step inertia p_'oduct

are similar to those for the step torques. However, the fixed space

axis corresponding to the maximum angular momentum vector projects as

the origin of the XIY I plane_ and the direction of the total angular

momentum vector for the spacecraft is not changed in inertial space

during the step crew motion. The spacecraft motion is bounded by two

circles, drawn with center at the origin and tangent to the moving
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ellipse.

torque analysis.

Upper bounds of the errors are

The nature of these boundaries has been discucsed in the st<.t_

for the rate vector and

IIyz 2 IIxz +

+

--+ Ix

i ix z 2 + yz

for the attitude error vector.

(lO6)

(i07)

As before, cylindrical spacecraft spinning about a normal axis

lead to large errors for small products of inertia in the plane cor-

responding to the two large inertias. Some differences in the response

for the step inertia products and that for step torques can, however,

arise after the removal of the disturbance. For the step torques this

removal can occur when the rate error vector passes through the origin

of the body axis system, so that the only residual error is a c cnstant

attitude error corresponding to the attitude at the time of disturbance
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removal. This fact maybe of use in the design of pure attitude control

system for spacecraft which use constant torque pulses to reorient the

spacecraft.

For step products of inertia, removal of the disturbance could

also null the rate errors if done when the rate error vector passes

through its initial position. In practice, the determination of this

position does not appear feasible without very exact values for the

spacecraft and disturbance characteristics. The elimination of the body

rate errors by the timely removal of the product of inertia is a very

complex task, and in general will lead to both residual rate and attitude

errors.

4. Variable Products of Inertia

A second category of mass movements within the spacecraft involves

periodic motions, such as mass transfer along a circumferential path.

The uncontrolled motion of the spacecraft is now similar to that of a

spring-mass system with a periodic forcing function. The amplitudes

of the rate and attitude error are correspondingly multiplied by a

magnification factor and resonance may occur for particular mass transfer

rates. The determination of the effects of periodic mass motions within

the spacecraft is thus an essential prerequisite to the analysis and

selection of the spacecraft control system.

There are, unfortunately_ an infinite number of possible periodic

crew motions. The best approach to a study of these motions may be the

formulation of a general forcing function, which permits the development
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of stability criteria and rate and attitude errors for a number of

representative periodic motions. Particular time histories can then

be developed for special cases of the general forcing function.

To arrive at such a general forcing function, assumethat the

periodic massmotions involve transfer of a single mass and take place

in a spin plane perpendicular to the Z axis or along a line parallel to

the Z axis. If one adopts a sinusoidal variation of the associated

massposition coordinates, the complex forcing function takes the form

F = E0 cos pt + E1 sin pt + E28(t) + E35(t ) + E45(t ) (108)

The coefficients Ej are complex constants which must be determined

for particular mass motions, and p is the period of the motions.

A number of characteristic motions included in equation (108) are

listed in table 4 along _th the corresponding coefficients Ej. As

seen from the table, the forcing function equation (108) comprises linear

periodic motions parallel to each spacecraft axis in the spacecraft

reference planes XZ and YZ and circumferential motion in a plane per-

pendicular to the spacecraft Z axis, Other massmotions can be con-

structed by combining the forcing functions in the table and by adding

the forcing function equation (88) for the static products of inertia

with appropriate values of Ixz and Iy z to the result. Any linear

oscillation in a spin plane perpendicular to the Z axis or along a line

parallel to the Z axis can be developed by this method.

0nly the motions described in table 4 will be considered as examples

for the present analysis_ the results obtained for these motions can be
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readily applied to more complexmotions obtained by linear combinations

of the forcing functions given by the table.

a. Stabillt_ Trends

An assessment of the stability trends for the variable products

of inertia can be obtained by examining the forcing function terms in

equation (108) together with the solution functions of tables 1 and 3.

The uncontrolled spacecraft motion will be unstable when the roots of

the governing equations (29) and (34 ) contain real, positive, nonzero

terms or when the forcing functions produce resonance conditions. From

table l, it is apparent that the solution functions for 8(t), _(t),

and _(t) contain only constant and periodic terms. These terms thus

cs_ot cause divergence of the rate and attitude errors.

The solution functions for cos pt and sin pt can, however,

contain divergent terms and may lead to continuously increasing errors

for special frequencies of the periodic motions. These special fre-

quencies are IPJ = la_ and IPl = JhI- In the first case, the rate

errors remain bounded for all finite values of E0 and El, but

precession of the spacecraft may result unless

E0 + iE 1 = 0

when p = _ and

E 0 - iE1 = 0

when p =-0.

(109)

Since equation (109) holds for all the values of E 0 and

E 1 in table 4, this precession will not occur for the examples considered

here.
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In the second case, when IPl = lh_, both the rate and attitude

errors will tend to diverge for nonzero values of E0 and E 1 . Mass

motions with this period thus exhibit definite trends toward instability

and should be avoided.

There is_ of course, one other instability that may occur for

the present solution. Frem the governing equation (29) for the body

rates, one notes that the rate error will diverge when h 2 < O, so that

Ix > Iz > Iy or ly > Iz > Ix . This condition results when the Z axis

is an intermediate axis of inertia and agrees with the well-known fact

that the undamped spacecraft spin is stable only if the spin axis is an

axis of maximum or minimum inertia. In terms of the moving mass param-

eters, one may thus write

3,___.lmj(Yjo2 - Zjo 2) - ms(Yso 2 - Zso2_ < (!y 0 - Izo) 1

7
(!i0)

or

I/_n mj(Yjo2-Zjo2)- ms(Yso 2 - Zso2_ > (ly0- Izo )
LJ=l

mj(XJo 2 - Zjo 2) - ms(Xso 2 - Zso2)I < (Ixo - Izo)D

(ill)

as the alternative conditions for instability corresponding to the

assumptions of this analysis.



The cc_nditions in this section will ser_e tr, indicate poszible

instabilities for the rotating Spacecraft. Since the rate and attitude

errors for these instabilities will rapidly exceed the small angle and

rate assumptions, time histories for these motions will not be discussed.

If the unstable motions do occur, exact computer solutions should be

used to assess their effects.

b. Time Histories

From equation (108) and the solution functions of tables 1 and 3,

the rate error becomes

= _ + _U p2cospt
+ sin pt

_2 _ p

+ E45(t) + _ cos )_ + E6 sin ht (If2)

where

E5 =E3 " 2 _ p2/

E6 =_ E2 - X2E4) - P 2 _ P

while the attitude error is

7 /_2 _ p2 - A i sin p

+ (_2 I 2) IkE6-i_Es) cos _t - (_E5 + i_E6)sin _t1

(1i3 )

+ E7(cos ot - i sin or) (114)
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where

el

_<ith

E 7 --E 4 -

-q

(_2_ p2)(_$ _ p2U
Total Errors

The vectorial representation of these errors yields

Dxy = _ + _ + B4eiAt -ikt " -ipt+ _e + B6 elpt + B7e

= E45(t )

1

1
= _ (E5 + _6)

and, from (18)

IC C5ei(q+x)t C6ei(g-X) t= _ + i 4 + + + C7 ei(_+p)t

(i15)

(l!6)

(117)

+ C8ei(C'P)t_

(!is)
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wh_re

B4 _) B6 _7
C4 = _]4 + -- + -- _ _ +

_+k _-_ _+p _-p

C5 =
_+_

c6=

B6
c7 -

_+p

c 8 -
_- p

(ll9)

The total error relations given by equations (112)-(i19) may now be

evaluated for particular motions by substitution of the corresponding

coefficients EO, El, E2, E3, and E 4 from table 4. r"OLty the

vectorial representations and the upper bounds of the errors wi__l

usually have to be considered in an assessment of the effects of mass

motion on the spacecraft motion.

To determine the vectorial traces one needs values for E4_ B4,

_; B6, and B7. These expressions have been developed and are sho_n

in tables 4 and 5 for the motions described in table 4. The polar plots

of the rate errors now follow directly from equation (ll6) and are

graphed in figure I! for a number of typical motions.
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(a) Circumferential mass motion. (b) X-axis mass oscillation in

XZ plane.

/I1
I

/
(c) Z-axis mass oscillation in XZ plane.

Figure ii.- Rate error traces for periodic inertia products.
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All of these traces are generated by a point on an ellipse, whose center

moves along a second ellipse centered at the origin of the body axis

system. Figure 12 shows this development of the rate vector trace.

Ratee

Figure 12.- Rate error trace development for

periodic inertia products.

The direction of the ellipse semiaxes

by the relation

tal _ Icl

Ca = 0 a 2 > 0 }
Ca = _ a2 < 0

2

is first located

(12o)

The position angles for the fixed and moving ellipses then become

and

¢b = tan'l@ tan ptD

¢c : tan-lld tan ht_

(z2l)
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The fixed ellipse has semiaxes JaJ and JbJ, and the moving ellipse

has semiaxes Jc J and JdJ. The constants a, b, c, and d are

determined from (116) and (117) as

a-B6+

(122)

c:B4+ _

where the values of the Bj terms are taken from table 5.

The direction of motion is determined by the signs of p and

_ and the rate vector describes a closed curve when p and k are

both rational. The period of motion is 2k_, where k is the least

common denominator of p and _.

The rate error trace results fram the oscillation of the mass

with respect to the geometric body axes (p-ellipse), added to the pre-

cession of the gecmetric body axes about the principal body axes

(R-ellipse). The fixed reference point for the trace falls on the

origin of the gec_etric body axis system since the mass oscillation

takes place about the origin.

Characteristic traces of the attitude errors for the periodic

motions are illustrated in figure 13.
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¥I

×i

(a) Circumferential mass motion. (b) X-axis mass oscillation in

XZplane.

(c) Z-axis mass oscillation in XZ plane.

Figure 13.- Attitude error traces for periodic inertia products.
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These traces are produced by two ellipses which rotate at the spin rate,

as sketched in figure 14.

¥I

Figare 14.- Attitude error trace development for

periodic inertia products.

The center of rotation is defined by the coordinates

B4 B5 B6 B7 :_ _ ,_
a = -iE 4 + _ + _ + _ + k±_/

_+Z _-Z _+p _-p

and

Ca = 0 a2 > O_ a > 0

2
Ca =_ a <0, a>O

¢ a = = a 2 > Oj a < 0

Ca = 3__ a2 < O, a < 0
2

(z24)
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The direction of the ellipse semiaxes ibl and Idl is located by the

angle _t, measured from the positive YI axis when Ca = 0 or _ and

measured from the negative X I axis when Ca = _ or . The angular

coordinates within the ellipses now become

¢b = tan'llb tan pt_ 1

and (!25)

Cd = tan'lI_tan _t_

while the ellipse semimajor axes Ibl, Icl, Idl, and lel are derived

from

and

- p P J

o : _ +p "-p

f B4 _._ )
d : -l_-g-_ + ---X

e=- k+

(126)

The motion is a closed curve when

precession period is 2kz where

of _, p_ and _.

q, p, and k are all rational. The

k is the least common denominator

The attitude trace for the spacecraft with periodic inertia

products exhibits a change in the direction of the angular momentum

vector in inertial space. This rotation of the momentum vector to the
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center of the p ellipse results from the initial mass acceleration

terms, which exert a torque on the spacecraft. The motion, in body

coordinates referred to the fixed momentum reference point, can be

visualized as the sum of the mass oscillation with respect to the body

axes (p-ellipse) and the precession of the body axes about the principal

axes (Z-ellipse). In the intermediate inertial coordinates, this motion

is rotated through the angle _t.

Values for the upper bounds of the rate and attitude errors may

be calculated from

l_llm = iB41+ IBI + I_I+ i_i (127)

and

I B4 B5 B6 B7l_llim = -_4 +_+ _+ _+
_+_ _-_ _+p _-p

I I iBTi* _-_--X+xl * I_--_-_ * Y-_-_pl* 1_--3-_pl (128)

by using the coefficient equations for E 4 and Bj from tables 4 and _.

From an examination of these coefficient equations, one notes

that the maximum error relations for small disturbance frequencies p

yield the error limit terms corresponding to the introduction of step

products of inertia. Both principal-axis-rotation and acceleration

terms result for the circumferential motions; only principal-axis-

rotation terms appear for the radial and vertical oscillations. A first

estimate of the limiting errors for the periodic inertia products can
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accordingly be obtained from the appropriate step inertia product terms,

when the disturbance frequency IPl is much less than the precession

frequency Ikl.

As the disturbance frequency increases, the error limits also

increase. As expected, divergence of the errors is predicted when

iPl = Ikl. For a further increase in the disturbance frequencies, the

error limits continue to increase.

When the disturbance frequency iPl is much greater than the

spin rate _, the error relations for the periodic inertia products

become directly proportional to IP I. Doubling of the disturbance

frequency _ill thus double the resultant error limits, and large errors

can be introduced by small, rapidly oscillating n_sses which may occur

in onboard motors, generators, or other equipment.

Several additional trends are indicated by tables 4 and _. Fo!_

circumferential motion, maximum errors result _en the sign of the

angular velocity p of the motion coincides with the sign of the pre-

cession rate k. Motion at a negative spin rate (p = -g) _ill eliminate

all but the initial acceleration effects. Motion at a negative or posi-

tive spin rate (p = +_) also nulls the errors caused by vertical m_ss

oscillations, but does not significantly affect the errors caused by

the radial mass oscillations.

D. Characteristic Disturbances for Symmetric Spacecraft

A large number of spinning spacecraft will be symmetric about their

spin axis, so that I = Ix = Iy. These spacecraft include rockets and
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ballistic missiles which are spin-stabilized to maintain their flight

path angle under initial body rates; unmanned satellites which are spin-

stabilized to maintain a fixed inertial position for communication and

observation purposes; and large manned space stations which provide an

artificial gravity field for their crew. A reduction of the general

solutions developed in the previous chapter to the special case of

symmetric spacecraft would accordingly have many applications.

Most of the resultant solutions have been previously obtained by

various approximation and numerical integration techniques and are

scattered through the literature (refs. 4-20). The results in this

chapter thus make no claim to originality, but do accomplish two _mpor-

tant objectives.

The first objective involves the determination of the form of the

geometric error traces and of the maximum error limits for the various

disturbances. These important properties of the motion have been o_n_!y

par_iaily treated in the literature, and tend to be obscured by the

component form in which past solutions are primarily expressed. The

simple trace geometry_ that results from the complex vector representa-

tion of the present analysis should be of considerable value.

The second objective is the comparison of the approximate solution

with applicable previous results. This comparison will point out the

principal differences between the present and past solutions and _ili

summarize the trends of the motion with variations in the disturbance

and spacecraft characteristics.
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The discussions of the polhode projections and of the motion

representation by means of the unit sphere will not be repeated here.

If desired, these relations can be readily deduced from the analysis

for the nonsymmetric case and the equations of this chapter.

1. Impulsive Torques

For impulsive torque disturbances of the form

M-M x + _y : TS(t) - (Tx

the forcing function (48) becomes

F = T_(t) + i_5(t)_

The total rate and attitude error equations (49)

and

+ i_y)_(t)

and (_0) yield

cos Zt + i sin ht)

(!29)

(130)

: _ + _J--_-l(sinht - i cos kt) + (sin o% + i cos o%)]
_lZ

Initial error contributions in (130) and (131) are

,%s

_y : _xyo(C°S ht + i sin kt)

and

= ¢_o(COS _t - i sin O't) + i[_[(cos _t -

- (cos_t + i sin_t)]

from (40) and (41).

i sin ot)

(i31)

(132)

(133)
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and

The total error vectors for the impulsive torques reduce to

where the initial condition vectors are

(134)

and

ei(_+x)_ (135)

= _xyoeixt (136)

\ _Iz! (i37)

The rate vector trace for symmetrical spacecraft with initial _r_oe

and attitude errors is shown in figure 15.

Rateerror trace

Figure 15.- Rate error trace for initial conditions

and symmetric spacecraft.
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The curve traced out by the _y vector is a circle whose radius is the

magnitude of the initial rate error vector _xyo" The rate vector _xy

rotates with the precession rate _ to generate the error envelope.

The attitude error trace_ shown in figure 16,

a =

YI

ol
Z

_itude

error

trace

×1

Fi_are 16.- Attitude error trace for initial conditions

and symmetric spacecraft.

is also a circle. The center of this circle is determined by the

vector s o + i _yo and the radius of the circle is the ratio of the
qI z

inp!ane and spin momentum. The period of motion is 2_
+ h_ and the

attitude error vector moves in the direction of spin.

Maximum error values can be derived from figures 15 and 16. The

result is
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and

l_xylmax = _xo 2 + _o 2 (138)

l_Imax = _(_o - nyo + cos _)2 + (e° + nx° + a sin _)2 (139)

where

a = I_xo 2 + _o 2

OIz

and (140)

= tan'l( eO _+ DX_o)

From (139), it can be seen that the spacecraft inertia ratio
Iz

does not affect the maximum rate error. The inertia ratio does, ho_ever_

enter into the relation for the maximum attitude error Vnich decreases

with a decrease in the inertia ratio. Spacecraft, whose inertia ratio

approaches that of a flat disk, will thus yield the ntinimum total atti-

tude error for a given set of initial error values.

The error relations developed here have been partially described by

Leon (ref. _) for the case of a spinning symmetric rocket, and the

applicable present results agree with his conclusions. His work does

not, however, develop the detailed trace representation or the maximum

error relations. Thomson (ref. 6) includes the orace representations

for the initial errors, but his geometrical interpretation is incorrect

(see page 201). The initial error vector so and the initial body rate

_xyo are not generally orthogonal, as depicted in Thomson's work.
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The error traces and maximum error values for the impulsive torques

can be again found by setting Tx Ty
_- = Dx°' I = _o, and $o = eo = 0 in

equations (].36) - (140) and figures ].5 and 16.

2. Step Torques

For constant step torques described by

M = Mx + iMy = _J(t) = (Tx + iTy)U(t)

the forcing function (66) yields

F = T_(t) - i_U(t)D (141)

for the symmetrical spacecraft.

From (67) and (68), the error time histories are

_xy = _ + _---[sin _t + i(1- cos _t)D (142)

and

2_ _z
cc = _+ _Iz_I - _c°s _t + i sin _t) - l(cos ot - i sin o_j (143)

The total error vectors are

and

_xy = _ + i(_il(l - eiZt)

I T_Iz_ i_t i i(_+X)te - -

(144)

(14 )
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Curves for the rate error trace are given in figure 17.

error trace

Figure 17.- Rate error trace for step torques and

symmetric spacecraft.

The rate error trace is a displaced circle whose center is located by

T
iT The radius of the circle is _, and the period of thethe vector _.

motion is 12_-rl"precessional

Curves for the attitude error trace are depicted in figure 18.

This trace is generated by a point on a circle of radius 1_Tx2 + Ty2

_hl z

whose center moves along the circumference of a displaced circle _ith

radius i_Tx2 + _r2. The center of this displaced circle is located

T

by the vector __--_Tz and the period of motion is 2/ox, where k is

the least common denominator of _ and k for rational _ and k.
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YI YI

0 17
Cev X_ .

OAt 7

Attit or trace_ _'.

Figure 18.- Attitude error trace for step torques and

symmetric spacecraft.

and

The maximum values of the errors become

I_I_ _J_ +_y_
-- I%- II_ (146)

+ Ty2 (147)

The error vector relations for the step torques and symmetric space-

craft agree with Thomson's results (ref. 6, pages 198 and 207). Maximum

attitude error limits for this disturbance have also been developed by

Suddath and include the residual errors after removal of the disturbance

(ref. 14, page 8). His limits, which are smaller than or equal to the

limits obtainable during the torque application, do not represent the

worst case and are thus somewbmt misleading.

m
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Note that the error limits are inversely proportional to the inertia

difference IIz- I I and predict minimum errors for a disklike config-

uration. When applied to a sphere the limits predict divergence,

confirming the statement that a sphere cannot be spin-stabilized.

3. Step Products of Inertia

When step products of inertia of the form

n

j=l

n

Iyz= I

J=l

mjXjoZjo - msXsoZso

mjyjoZjo - msYsoZso

occur in symmetrical spacecraft, one may introduce

Irz _ Ixz + iIy z (l_8)

to get the forcing ikmction

F - IrzIA_(t)+I _2U(t_ - liB(t)+ _2B(t)__

fr_ (88).

(149)

and

The error solutions (90) and (91) give

_, = D_, + - (cos At + i sin At) - -- + iS(t (190)
_j x

C_ = _+ iCIrz_I_- (_ - A)(cos At + i sin At 1kx_/
(l_l)

for the symmetric spacecraft.
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In vector form_ one has

(_) I(_2 . _. ei_t o.2 i_(t_

and

The polar graph of the rate error is illustrated in figure 19.

(z 3)

2V_xz2 2o +1
a = yz

Xl

(o2- _2)_/Ixz2 +,,lyz2
b z.-

_X

Rate error trace

Figure 19.- Rate error trace for step inertia products

and symmetric spacecraft.

The error trace is a displaced circle with center determined by the

vector _2Irz The radius of the circle is Ixz 2 + Iy z
hl

and the precession period of the motion is I-_["
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The graph of the attitude error for the step product of inertia is

given in figure 20.

YI YI

I _ U---Att,tude error trace----/

Figure 20.- Attitude error trace for step inertia products

and symmetric spacecraft.

The error trace now is produced by a point on a rotating circle with

radius (_-_)_Ixz2 + _z 2 whichmoves around the circumference of

j xza circle with center at the origin and radius + Iy z The

period of motion is 2k_, where k is the least common denominator

of _ and _, and the trace curve does not close unless

rational.

Maximum error values become

IDly i max = 12_2-_ _21 _Ixz2 + _z 2 (15 4)

for the rate vector and

I_llim= "_ _=2+ Iy,,

for the attitude vector.

and k are

(155)
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The errors predicted by (152) to (155) do not agree with previous

results (refs. 4, 5, 6) for product of inertia disturbances. This might

be expected, however, since the previous analyses have neglected the

energy associated with the introduction of the product of inertia.

The limiting errors (154) and (155) diverge for a spherical con-

figuration. Attitude error bounds for a long slender cylinder (h-+-a)

are three times as large as the attitude error bounds for a flat disk

(h -_ _). Rate error bounds for these limiting configurations are_

ho_,Tever, equal.

4. Variable Products of Inertia

Forcing functions, stability criteria, and solutions for variable

periodic products of inertia and symmetrical spacecraft retain the

form (108) to (119). The symmetric spacecraft does, however, permit a

sLmpler combination of the inertia products and yields a better under-

standing of the effects of the spacecraft parameters on the error traces.

Consider a product of inertia of the form

irz = Ixz + ily z

= QZo(X o + iy o) (156)

as produced by the motion of a single mass. Circumferential, radial,

and vertical oscillations which yield this inertia product can now be

examined.

a. Circumferential Mass Motion

The circumferential mass motion begins at the point

xo = r o cos Pto, Yo = ro sin Pto, zo and continues at a constant

angular rate p around the perimeter of the spacecraft.
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The associated position coordinates may be written as

where

x = ro cos p(t + to)

y = ro sin p(t + to )

z = zoU(to)

ro= 7Xo 2+ yo 2

The solution coefficients are taken from table 5, with the result

. _ 2)+p]irz_ _ + p)2 (k2 P
B4: TE x p

Irzp

B5 = 2I

B6 = .

irz(_ + p)2

(x- p)i

B7 = O

(:L:::,'I)

(158)

and

C4=" I [_2 .....

_+p)2- (x2. p +
C5 = " (g + k)(?_ - p)

PIrz

c6- 2(_- _)T

(_ + P)Irz

c7 = (x - p)z

(159)
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to

and

The rate and attitude error vector equations (116) and (118)

~ IrzII(a+ p)2. (A2-p 2) + _eikt P e-i_t

. (k(_+p)2.P) eipt + isCt)}

ilrz[FP(2_-_) _ _ + P)2 - (k2)p2) + P )_z \L"2- x2j + (_+x)(x- ; 2(_+ x

- I_(°P x_._(°'_)_-

reduce

(160)

ei(_+Z)t

(161)

The rate vector trace t illustrated in figure 21,

Y

_ial i error trace _ X

Figure 21.- Rate error trace for circumferentlalmass motion

and symmetric spacecraft,
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is produced by an ellipse, whose center travels along the circumference

of a circle.

The radius of this circle is

a-- ) ÷ lyz (162)
-- I

and the ellipse center is determined by the angle pt, measured from the

axis corresponding to the radial inertia product. The ellipse semiaxis

Ibl also lles along the radial inertia product axis, and the precession

angle of the rate vector tip within the ellipse is

¢b = tan-l(_ tan-l_t) (Z63)

whe re

b = p)2 (_ + !x z + ly z

p I

and (164)

p I

define the ellipse semiaxes.

The attitude error trace in inertial space, shown in figure 22, is

derived by a rotating ellipse whose center translates along the cir-

cumference of a displaced circle.
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Yt Vl

\

Figure 22.- Attitude error trace for circumferential mass motion

and sy_metrlc spacecraft.

The center of the displaced circle is located by

) 2
{p(2s- h) JIxz 2 + Iyz [71_

k -L_-'J /

and the circle radius becomes

b
d=xz=+ =

k-p/ I

(166)

The center of the moving ellipse is specified by the angle (_ + p)t

and the semiaxis i cl rotates at the spin rate.

The angle to the attitude vector tip and the semiaxes of the ellipse

are found from

¢c = tan'l@ tan kt]
(167)
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1
e = ,+ p)2 (x2. ]2) _Txz2+ yz

"x- p " (_ + _,)z

JIxz 2 + yz,1-- " + )2. (x2. p2) +
' " p..... _-x_j (,; + x)r

(168)

re spect ively.

Limiting error values can be computed from theupper bound relations

x p.... 7

t " •

J lxz "'2
+ l(a+ p) + Iyz

Ix _. i
(L69)

and

i( d + p)2 . (?2 . p2) o t
I 1 + !_(2"..-:"Pi

0"2 ,,, k 2 I

' %:, - x)
4-

These results indicate that the rate and attitude errors for the cir-

cumferential motion will be larger than those for the static products

of inertia_ for which p vanishes. The limiting errors increase _ith

an increase in p and tend to diverge as p approaches h. For values

of p _eater than h, the error continues to increase _,_th an increase

in p.
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For very small disturbance frequencies (Ipl << IXI), the upper error

bounds are given by

1202 _2.1 + iy z2
- V/Ixz2 (171)

,

and

Il_llim 2o. _ + Zyz
I

(172)

As might be expected, the maximum errors now resemble the error

bounds for the step products of inertia. The resultant bounds are

essentially independent of the disturbance frequency.

For very large disturbance frequencies ( p >> _), one has

llim 41Pl + Iyz
I

and

I o.2 - 7,,2

(175)

Jlxz 2
+ IYz (174)

I

so that both error bounds increase linearly _th IP] for this case.

The relations (171) to (174) can be used to determine error limits

and their variation with the disturbance characteristics_ when the

absolute disturbance frequency is much less than the absolute precession

rate or when the absolute disturbance frequency is much greater than

the spin rate.
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b. Radial Mass Oscillation

The radial mass motion begins at the point O, O, zo and is

defined by the coordinates

x = x o sin pt

Y = Yo sin pt

z = ZoU(t)

(17_5)

The solution coefficients, taken from table 5, now become

iplrz__l

B4 =--y--_-

ipIrz

2I

i(_ + P)21rz

B6 = 2(_- p)I

-i(g - p)21rz

B7 : 2(_+ p)I

-]

d2 + 2dh + p21

j

(176)

and

ip(2q - Z)Irz

c4 = (_2. _2)I

iplrz
C6 -

i(_+ P)Irz
C7 =- 2(_.p)I

i(_-p)Irz

-7

o"2 + 2o'_ + _2 1

_2. p2 -j
(r77)

c8=
2(_ + p)l
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Rate and attitude vectors are

iplrz {_ 2(a 2 + 2_ + p2)lei_tr__-_+ _ . . .,x2.p2._. j

F(_+_)_lo_t F(o,,')__lo-_,_
+Lp-(x- _u -L_(x+pU J

(178)

and

PlrzfE2(2_ " k)__ (.__._0[1. 2(0"2 + 2d_k÷ P2_

[ i _ i(a-X)t m _ + p _ei(a+p)t F_- P _ i(_-P)t 1

J

ei(q+_)t

(179)

as determined from substitution of (176) and (177) into (116) and (118).

The rate error trace is shown in figure 23.

Figure 23.- Rate error trace for radial mass oscillation

and s_mmetric spacecraft.
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This trace is generated by two ellipse envelopes, whose semiaxes Ja I

and I c l lie along a line normal to the radial product of inertia axis.

The characteristics of these ellipse envelopes are developed from

a = p _p._ ' I

b = a2 + p2)_ + 2ap JIxz 2 + Iyz

- _ip _ - I

j r2 + 2q% + p2 Ixz 2 + yz

c = p _2 . p2 " I

2+ 2gk + p Ixz 2 + Iyz

d = p Z2. p2 I

(180)

and the precession angles within the ellipses become

'a = tan'_btanpt_ 1
¢c = tan'l[ d tan %t_

(181)

The attitude error trace is also derived from two ellipses and

takes the form illustrated in figure 24.
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--Attitude error trace-_--._

= X 1

I°o 

n \lxz; _ Xl

)

Figure 24.- Attitude error trace for radial mass motion oscillation

and s_mmetric spacecraft.

The ellipse semiaxes I b I and I d I initially coincide with the radial-

inertia-product axis and precess at the spin rate. The center of the

imner ellipse is given by

a _--
_(_o-- ;0]JI_z_+_yz_
c_- _2J i

(182)

and the semiaxes for the two rotating ellipses become

--LV-.-;vD
_h + p2 _Ixz 2 + Iyz

C --_ u

I
( _.83)
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d

e ---

2

p ._[_2 + 2_k + p2 c Jlxz2 + Iy z

Ix2 + 2_k + p2 h _ z2 + IF z

. 2 + --k 2 p _ I

from (179).

and

The precession angles within the ellipses are

_b = tan'iI_ tan-lpt]

The upper bounds of the error magnitudes become

i_l_--[_+_ _(_÷___÷__ ÷I(_÷p(___)_1_),
(e - p)2 I Pl _Ixz2 + Iyz

+ p(X + p) 2z

and

(184)

(18_)

I_l!im + 1 1- 2(d2 + 2dh + p2) +
+ _ _2 _ p2 _ - h

1_2(2o"- _)

_+P 1+ p(X - p)
+

2

_,- p Ipl _Ixz 2 + Iyz (186)
p(;_+ p) 2:[

These error limits again increase as I pl increases and diverge as I pl

approaches Ihl-

When the disturbance frequency is very small (Ip l << IZl), one

may use

I_1_ = z_+_z (_87)
I
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and

2

~ I_I Ixz2+ !yz (188)

as the approximate upper bounds for the rate and attitude errors. These

upper bounds correspond to the maximum principal-axis rotation for the

inertia product and do not contain the disturbance frequency.

When the disturbance frequency is very large (Ipl >> q), one has

I_yl_ _ 21pl JIxz 2 + Z_z2
i (189)

and

2I_lnm=t "_- x2 _ . (190)

The upper bounds (189) and (190) increase linearly with IPI"

A comparison of (171) to (3_74) with (187) to (190) shows that

the errors for the radial mass oscillation will be smaller than those

predicted for the circumferential mass motion, when the disturbance

(p, Irz ) and spacecraft (_, _, I) characteristics are equal.

c. Vertical Mass Oscillation

The vertical mass oscillation comprises a periodic mass motion,

which starts at the point Xo, Yo, 0 and is described by

X =X O 1

Y =Yo

Z = Zo sin pt

(Z9l)
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and

The solution coefficients for this motion are

B4 =-

Bs=O

B6 _-

i(_2 . p2)irz

2(_- p)i

i(_2_ p2)Irz
B7 :" 2(_+ p)I

-ipIrz
C4=

Ip(_ - p2)Irz

C_ : (,+ _)(_ _ p )i

C6 = 0

i(_ - P)Irz

C7:- 2(_-p)I

i(_ + P)Irz
C8=

2(_ + p)I

The error vectors, as developed from (116)

(192)

(!93)

and (118), yield

i(_2 - p2)Irz[2p " t_
_xy = _ " 2(k2 . p2)l ei_t - (k + p)e ipt + (_ - p)e -Ip (19 4 )
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and

_I = ml + Irz _2 . p2\ i(_-_)t
T . " 2 p2 e

+ j - (IM)

The rate error trace for the vertical periodic motions is given

in figure 25.

Y

X

Figure 25.- Rate error trace for vertical mass oscillation

and symmetric spacecraft.

This trace is generated by a point on a circle, whose center traces out

an ellipse in the XYplane. At time zero_ both the ellipse semiaxis

la I and the circle radius vector lie along an axis, which is perpendic-

ular to the mass position radius. The ellipse semiaxes are computed

from
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a _-

b ___

(196)

and the circle radius is

C

_2 I

The location of the center of the circle along the ellipse is

(197)

Ca = tan-l_ tan pt_
(19s)

and the rate vector tip precesses at the rate _ within the circle.

The attitude error trace is sketched in figure 26.

Y Y

al I v""-- Attitude error trace -_

i°ll

X I

Figure 26.- Attitude error trace for vertical mass oscillation

and symmetric spacecraft.
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The trace curve is produced by a circle which travels along the p

ellipse. Both circle and ellipse rotate at the spin rate _, and are

initially alined with the radial product of inertia axis. The center

of the ellipse is determined from

a

J 2

____) Ixz2 + Iy zI
(199)

and the ellipse semiaxes are given by

b =

and

C

(200)

_ne center of the precessing circle is at

t 201)

and the radius of the circle becomes

d

1_(_-_*) _--},/IxJ+_z_ (202)

This radius moves with the precession rate h within the circular

envelope.

_±u_s for the upper limits of the rate and attitude error mag-

nitudes may be calculated by using

0.2 . p2

I%,t_ --[_ p2

ixz +
(203)
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The upper bounds of the errors increase as p increases. The instabil-

ity trend at

and

Ip I: ixI is obviousfroz(203)and(204).

If I pl is small (IPl << IhI), these equations yield

( 2o5 )

(206)

so that both error bounds are approximately independent of {p{ and

contain only the terms associated with the principal-axis rotation.

If I P{ is large (IPl >> _), the upper bounds reduce to

J

_l_lJ_,z_+I_z_
(2O7)

and

i

i_i_=2{_IJIxz2+lyz2
Iz

(208)

as a first approximation. Both these error bounds are directly propor-

tional to IPI"

From (171)-(174), (187)-(190), and (205)-(208) it can be seen

that the error bounds predicted for the vertical mass oscillation closely

resemble those developed for the radial mass oscillation. The attitude
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errors for the periodic vertical motions will, however, be somewhat

lo_er than the attitude errors for the periodic radial motions, when

the disturbance and spacecraft characteristics are equal.

In concluding this discussion of the variable products of inertia

for s_nmetric spacecraft, one observes that the variation of the limiting

errors with inertia distribution is similar to that described for the

step products of inertia. Flat disk configurations yield the minimum

errors, and spherical configurations are unstable. However_the magni-

tudes of the rate and attitude errors are now considerably larger than

the errors produced by the step products of inertia.

E. Controlled Spacecraft Characteristics

!. Governin$ Equations

The motion of the controlled spacecraft can be defined by a method

si_!ar to that for the uncontrolled case. The torques produced by the

control system are now particular functions of the measured vehicle

an_mlar position and rate. These torques can thus be considered as

__orcmng _nctlons applied to the uncontrolled vehicle equations. The

solutions of the resultant differential equations yield the spacecraft's

ano_lar position and rate errors_ as before.

The anslysis begins with the selection of a control torque command

end the development of the corresponding equations of motion. As an

ex_pie, _ linear control torque g will be introduced as
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jt .]g = gxIx + igyIy = IX_X + K2x _ dt + K3X8 + • •

+ 4 lyD-y + K2y - @ dt + K3y_P + • • (209)

where the Kjk are the physical control gains that must be provided by

the stabilization system. The error signals are amplified by these

gains, and a control moment, whose value is equal to the sum of the

amplified error terms given by (209), is then applied to the spacecraft.

Particular nonlinear control torques, which lead to governing

equations of the form discussed in the literature (refs. 21-24) could

also be considered. The present application will, however, be restricted

to a discussion of the linear control functions in (209). These linear

control laws can be readily mechanized and allow a simple interpretation

of the mechanics of motion for various types of sensor inputs (such as

those derived directly from rate gyros, stable platforms, or Euler

angle computers).

In an analysis of the spacecraft's stability, it is easier to

deal with nondimensional control gains. One may define such gains by

and

Klx K2x
klx =_ k2x =

XZx x Iy

kly Kly k2y K2y
kIy kkxI x

K3x

=

(21o)

K3y
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and
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gx and gy become

gx = klklx_x + k2x(_IY_ J t "_\ Ix_ Dy dt + _k3xe + . .

Ik (_yIX) Ft ij--x iy_ +k_ nxat + _k3y_+ . .

(211)

and

where

The equations of motion can now be written in the form

_x+\ ixj = gx+ fx

-\ ly/ =_+ fy

(212)

• • tfx _x + a(ixz - Iyz_) + mj(zjxj - xjzj) - ms(ZsX s - XsZ s

n+ _, mj(zj:$j - yjzj) - ms(Zs_ s - Ys_s

j=l

n_ 1 \; mj ( - + y j) +
-i_ - / J

j=l

+ mslZs(a2y s - 20_ s
(213)
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and

fy-
Iy mj(zjyj - yj_j) . ms(Zs_ s . Ys_s

n ))+ V mj -Zs_ s/__ (xjzj - zjxj) - ms(Xs_ s

j=l

_y{My n Iz Jl
= i + V mj j(_2xj + 2_j - xj) + zjx

j=l

-mslZs(_2Xs + 2_s- Xs)+ ZsXs_}
(214)

with the spin rate _ taken as constant and positive.

The Euler angle relations may be expressed as

(21.5)

and the simultaneous solution of (212) and (215) wlll specify the

spacecraft' s motion.

2. Control Requirements

In practice, the spacecraft's rate and inertial position errors must

be kept within specified deadbands which are determined by the spacecraft

mission requirements. Control of the spacecraft to these accuracies may

be provided by a reaction Jet system and a momentum storage system, and

the torques that must be produced by the system actuators can be readily
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determined if the required control torques about the body axes are

specified. With a reaction Jet system_ these torques are generated by

variable-mass-flow or pulse-modulated Jets_ and for a momentumstorage

system composedof control momentgyros or reaction wheels the corre-

sponding torque componentsalong the gyro gimbal or reaction wheel axis

are computedand applied. Concernwill be given to the actual mechaniza-

tion of such systems later; for the time being only the body axis torques

necessary to stabilize the spacecraft will be developed.

Since the magnitude of the angular error in inertial space is equal

to the magnitude of the body-referred angular error, the damping of

and _xy _.zlll assure the adequate stabilization of the spacecra_ with

respect to both body-fixed and inertial frames. The problem is thus

reduced to the determination of control torques that will damp _ and

D_y to zero or to small steady state values.

3. Control Law Formulation

To investigate particular control laws_ the corresponding control

torque l_nctions gx and gy must first be specified. The associated

governing equations follow from (212) and (215). _he stability regions

for the governing equations can then be defined by making use of the

conditions developed by Routh (ref. ll) and Hurwitz (ref. 25). If the

selected control torques allow stable solutions for the Euler angles or

body rates, time histories and complex error solutions can be found by

the Laplace transform technique or by numerical integration of the

linearized equations. If no stable solutions _are possible, the control

torques can be rejected immediately.
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To illustrate the applications of this technique, a number of example

control laws will be analyzed.

a. Pure Rate Control Law

For a pure rate control law, consider

Klx
gx- _x

Ix

Kly

(216)

so that the moment equations yield

ax - x_ + : fx

and (217)

The Laplace formulation of the corresponding complex rate error is

2 - h(kl x + kly)S + _2(i + klxkly _ _xy(S ) = V(s)
(218)

}_here the transform of the effective forcing function is given by
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The time solution of (218) consists of the sumof a general

solution_ for which fx(S) and fy(S) are set equal to zero in (219)_

and a particular solution of the complete equation (218), for which

fx(S) and fy(S) are specified for the applied disturbances. The

functions fx(t) and fy(t) are the explicit, continuous functions of

time defined by (213) and (214), and do not contain the rate or attitude

error s•

The particular solution of (218) is directly dependent on the

disturbance under consideration_ but characteristic trends for this

solution can be indicated whenthe general solution is a dampedvibration.

Step functions in (213) and (214) will lead to constant residual rate and

attitude errors; impulse functions and their derivatives will lead to

dampedtransient rate and attitude errors which approach zero as t_me

increases_ and sinusoidal forcing functions will produce residual sinu-

soidal rate and attitude errors. The amplitude of these residual errors

is reduced with an increase in the damping ratio.

The actual development of time histories for the various applied

disturbances will not be attempted here. The primary tasks of the control

system are the minimization of errors during a disturbance and the

elimination of residual errors after removal of the disturbance. Both

these tasks can be accomplished by the selection of stable gains that

yield large damping ratios consistent with realistic control systems, and

do not require the development of time solutions.
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Stable gains are gains for which all roots in the general solu-

tion have negative real parts. The characteristic equation for this

general solution is

s2 . X(k.].x + kly)S + _ (1 + klxkly) = 0 (220)

and stability of the complex rate error requires that

kk >kkl x 1

- ly

and (221)

kzxkly > -i

One should note that (220) has the form

s2 + 2rD_NS + U_N2 = 0 (222)

The damped natural frequency _N may be expressed as

= I xl_z + kzxkZy (223)

while the damping ratio rD and time constant tD

r_=[ _ +_ ]s_
b

and

are

(224)

1 -2
m

t°--r_ _(klx+kly )
(225)

respectively.
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Selection of the control gains is generally based on a desired

time constant and damping ratio. For the present case, this yields the

relations

and

where

kl x 1 + (_tD) 2 1- . + I- (226)
It D

kly-_. ( tD)2+ (i - --_12)IrD (227)

-!-i < Ii+ (htD)_rD2_ (228)

for the specified real values of klx and kly. The stability condi-

tions (221) are automatically satisfied by (226) and (227) for positive

real values of the damping ratio and time constant. Control gains for

particular damping characteristics can thus be determined directly from

the above equations.

The resulting regions of stability for the control gain functions

klx sgn _ and kly sgn _ are illustrated in figure 27(a). The gain

functions must be in the area bounded above by the rectangular hyperbolas

klxkly = -1 and the straight line klx = - kly. Of particular interest

is the fact that either of the two gains can be zero. This means that

damping of the spacecraft's rates is possible with torques applied about

a single spacecraft axis and derived from a single rate gyro for that
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Figure 27.- Stability characteristics for the controlled spacecraft.
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axis. Hence, a control systemproviding rate control torques about two

axes has inherent redundancy in case of failure of one of the system

torquers.

An indication of the dampingcharacteristics obtained for the

pure rate control is given in figure 27(b). This figure showsthe over-

dmmped,critically damped, and dampedvibration regions corresponding

Critical damping occurs whento the stable control gains.

yields the conditions

rD = i, and

klx = kly - 2

from (224). Stable gains that fall outside of the straight lines

defined by these conditions will yield overdampedspacecraft motion;

gains that fall between the straight lines will yield vibrational,

dampedspacecraft motion.

From (224) and (225), it is apparent that the time constant is

smallest whenthe two rate gains have the samesign. To optimize both

the time constant and the dampingratio_ one of the two gains can be

selected as zero. Single-axis rate control for the spacecraft should

thus be quite efficient.

The transformed complexposition equation is

(s + i_)Is2- _(klx + kly)S + _2(i + klxkly)_(s)

= V(s) + Is2- _(klx + kly) + _2(i + klxkly_ o (230)

klx = kly + 2 1

and _ (229)
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Since this equation contains a purely imaginary root_ the solutions for

the complex position error will be neutrally stable. The pure rate

command is thus limited in its usefulness to those applications where

only rate damping is needed. An example of such an application would

be a manned space station, where the functions of rate damping and

attitude control are often provided by different subsystems and where

the rate control law is used to command onboard momentum storage system.

_xy

From (218), the rate error may be written as

e2_Sl+S2)t {II ( _ o_
sinh(s I s2)t(_- kly)_o- _ -

sI - s2 Ix •

(-_- Sl)(S- s2)
Zy/fx(s_

(251) -

whe re

sI = _ klx + kly) +

s2 = + kly) -

_(klx- kly) 2 - 4]

(232)
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The response of the spacecraft is analogous to that of a spring-mass

system with forced vibration and damping. The free vibration term

corresponding to the initial conditions approaches zero as time increases,

and the forced vibration term corresponding to the applied torque and

mass motion effects is multiplied by a magnification factor or is damped

to zero. The magnification factor is a function of the control gains

and decreases as the terms klx and kly take on larger stable values.

The attitude error for the pure rate control becomes

= _0 e-iGt _
(Sl+ i_)(s2+ i_,) m_o

e +

\ Ix _jo]

i I<_Sl- hy)%_osI s2

I I lo )\ ix/_ +i sI - - _ e -

+ %r + i s2 - kly)_ 0 - \ Iy / _ aS2

k-K-x/ Y +i klx)fy(s)+ fx(S

(_- Sl)(S- s2)(s+ i_)

(235)

where sI and s2 are given by (232).

From inspection of (233), it is apparent that the initial errors ok)

and _xyo contribute both free and damped vibration terms to the
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spacecraft's motion. Since the dampedterms will vanish for large time,

only the purely oscillatory terms need be considered. The amplitude of

the motion due to the initial position error so is not affected by the

pure rate control law, as one would expect from the results of the sta-

bility analysis. The amplitude of the motion resulting from initial

rate errors can, however, be reduced by proper choice of the control

gains for the particular spacecraft under investigation.

In summary,one maythus conclude that the pure rate control law

is adequate for the damping of the spacecraft's angular velocities. If

no initial attitude errors Or reorientation requirements exist for the

spacecraft, it should also be possible to select control gains which

will hold the spacecraft to small oscillations about its initial position

in the presence of crew motions and other internal disturbances. The

latter function is particularly important in spacecraft with solar cell

panels or similar equipment, which must be approximately maintained in

a given inertial direction. The effectiveness of the attitude hold mode

for the rate control law should, however, be checked by substitution of

"worst case" forcing functions for the spacecraft into (233).

b. Rate Plus Rate Integral Control Law

When the control torque is derived from both rate gyros and

integTating rate gyros, one may take

1 / t ) _ /_yiy\ ft digx :_x[Klx_x + K2x J Dy dt =_ lxgx + k2xi-_-x _ _ _y

and

= Dx dt = X _D x + kgy|_--- l Dx d
zy , \ Iy I

(234)
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t,_th the governing equations

- - __, _d. :fx

and (235)

_s XklyS-- + _ _. fy

The characteristic equation for the general solution for the rate error

is given by

- x(klx + x2(i + klxkly)S2 + X3(k_ _ k_)ss kly)S3 + - _4k2xk2y = 0

(236)

and the stability conditions are

and

-kkly > kkix

Zixkly > -i

-kS_2y > o

kkty > kk2x

(kix + kiy)k_k2y > (k2Z - k2x)_(k2y - k2x)

+ (kix+ kly)(l+ ki_ly)_

Here_ the nondimensional gains kjz are defined as in (212).

(237)

The governing equation for the general solution for the position

error yields the relation
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_+ i_l_s_" _(klx + kly)s3 + _2(1 + klxkly)S2

--%

+ _3(k_- k_)s- _4k_J_(s) : 0 (238)

Once again, the attitude equation contains a purely imaginary root,

leading to neutral stability of the position error. The trends of the

spacecraft's motion for the rate plus rate integral control law are

thus similar to those for the pure rate control law.

The stability regime for this control law is shown graphically

in figures 27(a) and 27(c). The nondimensional gains klx , kly , k2x ,

and k2y must now be selected to satisfy the conditions (237). The

first two of these conditions are identical to those for the pure rate

control law and are given by figare 27(a). The next two conditions lead

to stable motion in the second quadrant of figure 27(c), subject to the

last restriction which represents a compatibility relation between the

rate and rate integral gains. This compatibility condition yields a

hyperbola with the equation

k2y + (k_ + kly) k_ + k_ 2

+ (_- k_)[(k_ + _ly)(1+ k_kly)_ 0 (239)

as sketched in figure 27(c). The stable region in this figure is then

the area between the upper segment of the hyperbola and the k2x sgn k

and k2y sgn k axes.
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If the nondimensional rate gains are small in comparison with

unity, as would be the case for most practical control systems, then

(239) can be approximated by

(klx+ kly) : (k2x- k_y) (24o)

and the resultant stability characteristics are given in figure 27(d).

The spacecraft's motion is stable if the rate integral gains are

selected from a triangular area of the fourth quadrant for a set of

stable rate gains.

By examining (235) and (236), one notes that the modified char-

acteristic equation for the rate error reduces to a cubic equation when

either of the two rate integral gains vanishes. This special case would

occur during single-axis control of the spacecraft and is thus of

particular interest.

Stability restrictions are given by the standard rate gain

restrictions and the relation

0 > k2x sgn _ > (klx + kly)(l.+ klxkly)sgn

or

0 > -k2y sgn_ > (klx + kly)(1 + klxkly)sgn

(241)

The resultant gains will fall on the boundary of the stable region in

fi_ires 27(c) and 27(d). Accordingly, stable control of the spacecraft

is possible with single-axis rate plus rate integral commands.
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Returning to the governing equations (255), one observes that

numerical integration will be necessary to determine the rate time

histories for particular values of the control gains. Somegeneral

conclusions can, however, be drawn for the case where the nondimensional

rate gains are chosen to be considerably larger than the nondimensional

rate integral gains. Inspection of (236) showsthat the last two terms

in this equation are now small during an initial transient period after

a disturbance, when the rates are large and their integrals are small.

The rate equation is thus approximately equal to (217) and the rate

gains can be selected from (226) and (227) to yield the desired damping

characteristics during the transient period. As steady state conditions

are approached, the rate integral terms will predominate and the result-

ant control torques will tend to eliminate any residual rate errors.

The net effect of this law will be a reduction in the gain magnitudes

since the high rate error gains will no longer be needed to reduce

standoff errors in the steady state condition. Dampingand attitude

hold characteristics for the rate plus rate integral law should thus be

quite efficient.

c. Rate Plus Attitude Control Law

Next, consider control torques developed from both rate and

attitude errors and given by

gx : _i (Klx_x + KSxe) : h(klx_ + _k3xe)
lx

(292)
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The resultant equations of motion are

_x - _ +

and

_- xk_- (_)_-

_3x e --fx

_k<3# = fy
J

( 243)

leading to the general characteristic equation for the complex rate

error

s4 - X(kL x + k!y)S 3 + 2 + X2(1 + klxkly b Iy

The associated Hurwitz stability criteria yield the conditions

(244)

and

-hkly > kklx

k3y2hxlx k3x2__ly_

Iy Ix /

i  yhx x1
Tx 7

2_,2(1 + klxkly + g_2"_2(1 + kly

(245)

for stability of the rate errors.
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After substit_tion of (2.15) into (242), the characteristic equa-

tion associsted with the general solution for the attitude error becomes

s4 - _(klx + kly)S' + [_2 + _2(i + klxkly)_S 2

+ _2_2[1 + (k_ - k3x)(kly

Corresponding stability conditions are

+ k3y _ : 0 (246)

-_kly > kklx

\zy Zx / Iy - Zz/

(k]x - k3x)(kly + k3y ) >-i

and

_,2(klx + kly)2(k3xk3y - klxk3y -

k3x.__2( Ix +

kl_3x)> (Ix+_y-Iz)#_-z
\T_

+(klx + kly)[(_2-_2(1 + klxklyl)

(247)

fqr the nttitude errors.
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Both (f45) and (247) must hold for stable error histories. In

most cases the nondimenslonal rate and attitude gains are small in com-

p_rison with unity, and the stability conditions given by these equations

can be approximately represented by

-kkly > _klx

klxkly > -i
(2_8)

and

The rate gain restrictions are now identical to those for the pure rate

law and are thus shown in figure 27(a). The attitude gain restrictions,

illustrated in figure 27(e), yield a stable region falling between the

i ine s

and

k_ + kly/\rz/ \k:m + _ly/\rz]

('.ix+_lyJ\_J_km+klyJ_ "1

(249)

It i_ worthwhile to note that either of the two attitude gains may be

zero, and attitude and rate damping of the spacecraft is thus possible

with to_.ques applied about a single spacecraft axis. The error signals

needed in the calculation of these required torques can be taken from
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:i siny[]le i'u_c {]yro ;_lid:i single sun sensor mounted on that axis, and

the mech_,nization of such a control system appears to be very simple.

As seen from (244) and (246), the determination of the damped

rate and attitude errors again requires the numerical integration of (243).

One observes, however, that both damping and reorientation control can be

provided by the rate plus attitude control law, and that this law can

correspondingly be used to maneuver the Epacecraft. In comparison, the

rate and the rate plus rate integral control laws were restricted to

holding an already established inertial position.

In addition, it may be noted that pure attitude control, for

which klx = kly = O, will result in several zero coefficients in (244)

and (246). The associated spacecraft motion is, at best, neutrally

damped and may diverge for certain forcing functions. Pure attitude

control then provides no damping of the spacecraft rate and attitude

This conclusion is, of course, in agreement with previouserrors •

re sult s.

d. General Considerations

Other control laws may be investigated in an identical manner by

selecting the control torques, developing the complex governing equations,

and defining the resulting stability regions for the spacecraft's motion.

If the control system gains are chosen to satisfy these criteria, the

motion of the spacecraft will be damped. The determination of time

histories of the controlled spacecraft motion becomes a rather tedious

t_sk, however, and is perhaps easiest if the governing equations (212)

and (215) are programed on a digital or analog computer. Having assured
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t.l_;_tth_ :_eleeted eor_t_'_l gain:_ lead to stable motion of the space-

craft_ cases with particular disturbance functions can then be run on

th_ computer to determine the spacecraft time histories.

Extension of the method to include nonlinear control commands

is possible, but nonlinear techniques (refs. 21-27) must then be used

to define the stability of the governing equations. A preliminary

selection of the type of on-off control commands_ as represented by

step torques, may be made by noting that the spacecraft response for

an _mplitude-limited control system with high gains approaches that

for an on-off control system. Sensor inputs and the signs of the

control torques may thus be chosen from the proportional analysis.

Time histories for the on-off commands can then be obtained by substitu-

tion of the corresponding step functions in (42). The solutions for

th_ body rates and Euler angles now are found by a piecemeal process,

and the forcing and solutions functions change whenever the deadbands

for the on-off system are crossed T

Linear control optimization (ref. 28)_ as represented by a

minLmum mean square error criterion_ may also be considered. Maximum

torque or error limitations can be included as restraints in such an

analysis.
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4. _'!_$J!_:_Lgy:_tem Selection

flaying determined a control law which leads to acceptable dmmped

motion of the spacecraft, one must next select physical systems that can

develop the actuator-torque histories required by the control law. The

choice of such control systems is generally made on a minimum-launch-

weight basis; and relations between the control system weight and its

impulse or momentum storage capacity are needed to evaluate the compara-

tive merits of various control hardware. Preferably, these relations

should not necessitate the detailed design and optimization of competitive

systems for a particular spacecraft.

An empirical representation of the total control-system launch-weight

in terms of the angular momentum or impulse provided by the system will

be used in this analysis. Such a representation gives reasonable

approximate values for the control system launch weight, and allows the

rapid comparison of different control actuation schemes. Furthermore,

the empirical results are completely independent of the spacecraft

inertia characteristics or dynamics.

There remain then two tasks, namely sizing and implementation of

the control system. To size the system, one first determines the space-

craft's angular momentum envelope by integration of the torques cor-

responding to simultaneous application of all "worst-case" disturbances.

The launch weight for the control system can then be developed from the

empiric_l dsta, and a preferred system concept can be selected. The

implementation of this concept requires the solution of the control



- 138 -

system equations tc_ define the actual torques the system must generate

in order to provide the desired control law and eliminate cross coupling

momentscausedby any angular momentumstored in the control system.

Control system componentsmaybe divided into the general classes of

momentumstorage units and reaction control units. Mcmentumstorage units

comprise reaction wheels, slngle-gimbaled control momentgyroscopes, and

double-gimbaled control momentgyroscopes. Reaction control units consist

of reaction jets with variable mass flow or pulse modulation.

The angular momentumenvelopes for these two classes of control

componentsare then given by

HM- HMx+ iHMy

fix ftd dt_ I l ftddt]_.]0, fy= fx + i y
_" 0

for the momentum storage units_ and

: + iHRy

= X
_ 0

,., Ifyl 
o

for the reaction control units. The integration is carried on over td,

the time interval of application of the "worst-case" disturbances.

a. Reaction Wheels

For sizing purposes the reaction wheel will be taken as a flywheel

which is accelerated by means of a torque motor to produce reaction
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torques on the spacecraft. A sketch of a control system using two such

wheels is shownin figure 28.

Z

Figure 28.- Spacecraft control with reaction wheels.

From manufacturer's data*_ the basic weight of a reaction wheel

(ref. 29) with a minimum alternating-current motor configuration is

WW = 6.3 + 170 HW (252)
_s

where WW is the total reaction wheel and motor weight in pounds, HW

is the angular momentum capacity in ft ib sec, and _S is the synchronous

_heel speed in rad/sec.

Similar!y_ the reaction wheel power may be derived from empirical

data (ref. 30) as

PW = 2.77 GS_ S (25})

i

*Reproduced and used by courtesy of the Bendix Corporation.
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where GS is the stall torque in ft lb. If one introduces a power

weight conversion factor of a lb/watt, then the equivalent power system

weight for the reaction wheel is

= 2.77 aC,

and the total weight chargeable to one reaction wheel becomes

WWT = WW + Wp = 6.3 + 170 HW + 2.77 aGs_

(29 )

(255)

To optimize the total weight for a given angular momentum and stall

torque, one differentiates the total weight with respect to wheel speed

and equates the result to zero.

wheel speed into (255) gives

Substitution of the corresponding

WWT = 6.3 + 21.7 _--_

The control torques may be assumed to be sinusoidal with ampli-

tude GS and frequency _, so that one can take

iAt

g = -Gse

as a good approximation to the control moments. Since these control

moments are equal to the total rate of change of the angular momentum

components for the reaction wheels, it follows that

GS cos _t = _i - dHW2

GS sinAt = _2 + oHwI

(258)
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or introducing

one obtains

Hxy = HWI + iHw2

GS eikt = Hxy + i_Hxy

This expression can be integrated to give

H_

for no initial wheel momentum.

value

I Gs leiht

(259)

(260)

t_ol)

Maximization of (261) further yields the

GS (262)

for each of the two reaction wheels.

Substitution of (262) into (256) leads to the expression

w_r -- 6.3 + 1'7 Ja(_,, x N

which is plotted in figure 29.

(263)

Figure 29.- Variation of total reaction wheel weight with

required angular momentum.
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The weight of the reaction wheel control system is now given by

w_ : %_(%x) + Www(_y) (264)

where WwT(HM_ ) and WwT(HMy ) are taken from the figure, using the

values of HMX and HM_ previously determined from (250).

One should note that the spin rate _ must be very small if

reaction wheels are to be efficient. As an example, a power conversion

factor of 1 lb/watt and a spin rate of 0.25 rad/sec for a flat disk con-

figuration would yield W T = 3,074 Ib for an angular momentum requirement

of i00 ft Ib sec along each axis. Since such exorbitant weight penalties

are impractical, reaction wheels generally are inacceptable for the

damping control of spinning spacecraft.

If such wheels are used for spacecraft with very low spin rates,

the governing torque relations become

and

g : -G : -Hxy- i_Hxy (265)

_z : _x- _y (266)

where G is the complex torque applied to the reaction wheels, and T z

is the cross coupling torque applied to the spacecraz_ by the control

system. Since the body rates are small, this sinusoidal cross coupling

torque is relatively small and its effect on the spin rate _ will be

neglected.
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The desired control torques are then obtained by directly applying

the reaction wheel torques

o:%1 +i%2:-g (267)

by means of the wheel actuators.

b. Control Moment Gyroscopes

A control moment gyroscope consists of a flywheel which spins at

a constant speed and is mounted on a single or double gimbal arrangement.

Control torques are now developed by precessing the fl_heel. Torque

actuators mounted on the gimbals provide the necessary precession torques.

Sketches of control systems using single- and double-gimbaled gyros are

given in figures 30(a) and 30(b), respectively.

z

8

flGL

(a) Single-gimbaled gyros. (b) Double-gimbaledgyro.

Figure 30.- Spacecraft control with control moment gyros.
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Since the weights of single- and double-gimbaled gyros do not

differ appreciably, launch weights for both these units will be assumed

to be identical. The basic weight of a control moment gyroscope can

again be developed from manufacturer's data (ref. 31) and becomes

WG = 1.37 HG0"68 (268)

Power requirements now are derived primarily from the windage and

friction.losses for the flywheel, and can be approximated by empirical

data derived from computer analyses (ref. 32) as

Wp = 1.47 aHG 0"362 (269)

The power required by the gimba! actuators is small and will be neglected.

The total weight of the gyro is then

WGT = W G + Wp = 1.37 HG 0"68 + 1.47 aHG 0"362 (270)

Launch weights of the gyro are plotted against angular momentum in

figure 31_ and a comparison with figure 29 shows that the total weight

for a system using gyros is much less than that for a system using

reaction wheels.
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Gyroangular momentum, ft-lt_sec

Figure 31.- Variation of total gyro weight with required

angular momentum.

In co_arim_ single- and double-gimbaled control moment gyros_

one obse_es that the weight for the single-gir_baled gyro system is

derived from

w_ = w_(_) + w_(._) (271)

while the weight for the double-gimbaled gyro system becomes

WT

WGT\ cos C_g

(272)

where _g is the limiting gimbal angle and HMx and _. are again

found fr_ (250). Since _g is generally 60°_ the double-gimbaled gyro
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system is somewhat lighter than a control system using two single-

gimbaled gyros.

To derive the gimbal actuator commands for the implementation of

the desired control laws, one notes that these torques are again derived

frDm the total rate of change of the angular momentum vector for the

_vro system. Thus, the complex control torque is

and the cross coupling moment becomes

( 273 )

Tz =-Hz + - (274)

The minor changes in the spin rate _ due to T z will be neglected in

this linear formulation, and the necessary control commands are now

found by expressing Hxy and Hz in terms of the gimbal angles.

For the single-glmbaled gyros this gives

Hxy =Hx+ iHy :HGI sin eg - iHG2 sin Sgl

and I (275)H z = HGI cos 8g + HG2 cos _g

and

The governing torque equations now reduce to

g =-Gxy =-IIHGI(eg+ _)cos 8g+ HG2(_ sin _g + _ cos _gl

+ iIHG2(_g- _x)COS q0g+ HGI(_ sin eg- _x cos 8g)_)

(276)

T z : HGI(Sg + _)sin 8 + HG2(_g - 2x)sin $ (277)
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where the small gimbal accelerations have been neglected. Gimbal torques

maybe commandeddirectly from

Gxy = Gx + iGy = -g (278)

in an open-loop system.

For the double-gimbaled gyro the angular momentumcomponents

along the spacecraft's axes become

Hxy = HG(sin 8g - i sin _g cos eg) (279)

and

H z =H G cos _g cos 8g

The torque relations thus are

g =-Gry : -(ax + iay cos _g)

: -HG(LOg + c sin _g+ _ cos _g_COS eg-

- (c + eg sin qOg)sin 85

and

i[_(%g+  )coseg

Tz = -Gy sin qOg = HG _$g + Dx)sin q0g cos 8g

+ (_y + @g cos qOg)sin 8g)

where the gimbal acceleration terms are again neglected,

cos _g

(28o)

(281)
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Necessary gimbal torques are developed from

Gx = -Ixgx

(282)

where Zx_ Zy, and

axes.

*Reproduced and used by courtesy of the Minneapolis-Honeywell

Regulator Company.

Gy = -lygy sec 9g

and require the measurement of the gimbal angle 9g.

c. Reaction Jets

The reaction jet system comprises the propellant_ oxidizer,

engines, and tankage weight necessary for the spacecraft's control. To

arrive at weight estimates for such a system it was assumed that the

usable specific impulse considering engine efficiency, expulsion

efficiency_ and ullage would be 290 ibfsec/ibm and that the propellants

would be storable hypergolics housed in tanks with positive feed expul-

sion diaphragms. Manufacturer's data* can then be extrapolated (ref. 33)

to yield the idealized total system weight

WT = O.OlO1 IT 0"912 (283)

which is presented in figure 32. Here IT is the total impulse in lb sec.

This impulse may be written in terms of the total momentum envelope for

the spacecraft_ giving

:T)= + + (284)
_Y T

_z are the moment arms about the X_ Y_ and Z body
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Figure 32.- Variation of total reaction jet system weight

with required total impulse.

An assessment of the weight of the reaction jet system thus

requires the development of total momentum envelopes for the spacecraft

mission. The momentum for particular disturbances must be determined

from (251) and the resulting momentum components along the spacecraft's

axes must then be multiplied by the probable frequency of occurrence of

each disturbance. By repeating this process for all disturbances and

summing the individual momenta along each axis, a total momentum envelope

per sampling period is obtained. The weight crossover time between
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momentumstorage and reaction control system can nowbe established from

figure 32, since the total momentumenvelope per unit time has been

developed. If the mission time exceeds this crossover time, momentum

storage systems should be selected for damping of the spacecraft's

motion.

If reaction-jet systems are chosen, they can be combinedwith a

mass-balancing system which compensatesfor any constant products of

inel_ia resulting from crew motion or cargo transfer and eliminates limit

cycling of the jets about the newprincipal momentsof inertia. Such a

system could, for example, pumpthe propellant to different positions

within the spacecraft to obtain its control torques. Since the design

of this mass-balancing system is very muchdependent on the spacecraft

geometry, it will not be considered here.

In most cases, however, the control system will consist of both

reaction jets and momentumstorage systems. The jets then provide for

attitude control and orbit keeping and the momentumstorage system is

used to dampany oscillatory motion of the spacecraft. Attitude control

commandsare nowused to actuate the reaction jets while rate and rate

integral commandsprovide control laws for the momentumstorage system.

The development of such combinedsystems is again dependent on specific

spacecraft and disturbances and will not be attempted in this analysis.

F. Comparisonof Exact and Approximate Solution

Twopossible mannedspacecraft were considered for a comparison of

the results of the numerical integration of the exact equations of motion



and t h e  results of the  present ana ly t i ca l  solution. 

w e r e  a cy l indr ica l  manned o r b i t a l  research laboratory and a la rge  

hexagonal space s ta t ion .  

These spacecraft  

1. Manned Orbi ta l  Research Laboratory - MORL 
The MORL i s  proposed a s  an ear th-orb i ta l  laboratory i n  which scien- 

t i f i c  and engineering experiments could be conducted over extended time 

periods. 

astronauts i n  a 200-nautical-mile orb i t  fo r  up t o  5 years. 

spinning operation, the  laboratory module and t h e  l a s t  stage of i t s  

The bas i c  laboratory i s  designed t o  support a crew of six 

During 

Saturn booster would remain attached by a system of cables and would 

ro t a t e  about a common mass center. 

would produce an e f fec t ive  gravity f i e l d  i n  the  manned module. 

of t h e  corresponding MORL configuration i s  shown i n  figure 33. 

The resu l tan t  cen t r i fuga l  force  

A sketch 

Figure 33.- A r t i s t ' s  sketch of possible manned o r b i t a l  
re search l ab  oratory. 
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Ass_nuedinertia and mass characteristics (ref. 34) for this configuration

are given in table 6. The inertia distribution is near-cylindrical, and

the mannedmodule and booster counterweight rotate about the Z axis at

0.4 rad/sec. A gravitational acceleration, equal to one-fourth that at

the earth's surface, acts on the mannedmodule due to this rotational

rate.

The effects of various disturbances on MORLare summarizedin table 7.

The disturbances include residual rate and attitude errors after spinup,

momentsapplied by an attitude control system valve failure in the open

position, and several "worst-case" crew motions. Thesemotions comprise

step translation to an extreme position within the laboratory and linear

oscillations which could result from trampoline exercise, ladder climbing,

or floor pacing. A linear velocity of 4 ft/sec is selected for all

oscillatory motions, and the entire crew of six is taken as a single

equivalent masswith a mass factor Q of 36 slugs.

Equations defining these disturbances are listed in the second

column of the table. The resulting error limits have been found by hand

calculations of the analytical upper bounds and by extrapolation of the

error time histories obtained from numerical integration of the exact

equations of motion on an I_M 7094 computer.

Both rate and attitude error limits are given in the table° The

rate error limits range from about 0.004 rad/sec for the step inertia

product to about 0.025 rad/sec for the step torques, and the attitude

error limits vary from approximately 0.01 rad/sec for the step inertia
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product to approximately 0.18 rad/sec for the residual errors after

spinup. Significantly, the errors caused by the periodic mass motions

are several times greater than those produced by instantaneous motion

to a final position. Predictions of maximum spacecraft errors due to

crew motion must thus consider any periodic crew motions that may occur.

Onboard experiments, which require high-accuracy control of the space-

craft, may be adversely affected by the oscillatory crew motions and may

require restriction of these motions.

The approximate error limits developed from the analytical solutions

show reasonable agreement with the maximum errors determined from the

exact solutions. The deviations of the approximate error limits from

the exact error limits are generally less than 20 percent of the exact

error limits. These upper bounds of the spacecraft errors will thus

give a conservative estimate of the effects of various disturbances

and should be sufficient for initial engineering design applications.

About 3 hours of hand calculations were required for the determina-

tion of the approximate error limits, as compared with about 6 hours of

data processing and computing for the calculation of the exact error

limits. When one further considers the complexities associated with the

programing and numerical integration of the exact equations of motion and

the nonavailabi!ity of an IBM 7094 computer to many scientists, the

advantages of the analytical results are apparent.

Two of the solutions described in table 7 have been selected for a

comparison of the actual error histories and the error histories given

by the analytical solution. The disturbances are the step product of
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inertia and the vertical massoscillation. Both the uncontrolled and

the controlled spacecraft motions were considered. Solutions for the

uncontrolled case were obtained from numerical integration of the exact

equations of motion and from evaluation of the error relations developed

in this analysis. Solutions for the controlled case were obtained from

numerical integration of both the linearized and the exact equations of

motion. All calculations were carried out on an I_M 7094 computer.

Single-axis control commands,which apply torques about the X or

minimum-inertia axis of MORL_will be most efficient. Onemay accord-

ingly set the nondimensional rate damping gain kly in (227) equal to

zero. This yields

2
klx ..... 2rD ( 285)

ZtD

as the nondimensional rate dampinggain for the X axis. The corresponding

rate integral gain, whenused, is arbitrarily selected as

klx
k2x- 4

to fall in the stable region of figure 27(d).

For MORL, the time constant tD will be equated to one spin cycle

or 20 sec. Values of the control constants are then

Klx = -13,300

and

K2x = -2,040

The rate damping ratio becomes

rD = O.1
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and state-of-the-art gyros (ref. 35) in the )00 to !000 ft-!b-sec class

(see fig. 3!) and jet hardware can provide the necessary control torques.

The MORL response to the step product of inertia is illustrated in

figures 34 and 35- The uncontrolled rate and attitude errors are given

in figure 34 .
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Figure 34.- Uncontrolled laboratory error histories for

step inertia products.

It is apparent that the exact and approximate solutions are virtually

identical. Both the rate and the attitude errors are biased sinusoids.

As expected from the trace analysis, the largest rate error occurs about

the Y axis and the largest attitude error corresponds to rotation about
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the X axis (see figs. 9 and lO). To the crew, the rate error appears

as a minute rolling motion of the laboratory floor with a maximum

amplitude of O.6°.

The controlled response of the laboratory to this disturbance is

shownin figure 35.
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Figure 35.- Laboratory error histories for step inertia products

and pure rate control.

This figure, which corresponds to pure rate control about the minimum

inertia axis_ again gives the same results for both the exact and the

approximate solution. The laboratory oscillation is reduced to steady

coning in about three spin cycles. The constant residual rate errors
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produce constant control torques which counteract the mass unbalance

torques produced by the products of inertia. The effective disturbance

torque is thus less than it was for the uncontrolled case, and the

residual rate errors are correspondingly somewhat smaller than the con-

stant components of the uncontrolled rate errors. The oscillatory terms

in the uncontrolled rate errors are due to the acceleration terms asso-

ciated with the introduction of the inertia products and tend to zero

in the controlled error histories.

The attitude errors for the damped rate errors become

GT = _r + ier = _o e'i_t - i2xyr (286)

from (215).

from changes in the body rates which do not affect the total spacecraft

momentum. The contribution ao of the transient oscillatory terms in

the body rates to the attitude errors will tend to zero_ and residual

attitude errors are given by

_°r _yr 1

and (287)

er = _xro

where Dxr and _yr denote the residual body rates. Both the rate and

attitude errors approach constant values for the theoretical solution.

As predicted by the analysis of the controlled spacecraft character-

istics, single-axis rate control is acceptable for normal operation and

experiments which do not require high-accuracy stabilization of the

spacecraft.

For the step products of inertia, the attitude errors result
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The MORL response to a vertical periodic motion of the entire crew

is depicted in figures 36 and 37. Figure 36 illustrates the uncontrolled

re sult s.
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Figure 36.- Uncontrolled laboratory error histories for

vertical mass oscillation.

The exact and approximate solutions check very closely. The rate and

attitude errors now comprise a low-frequency, large-amplitude sinusoidal

oscillation due to precession within the outer (_) ellipses and high-

frequency, small-amplitude oscillations due to precession within the

inner (p) ellipses (see figs. 12 and -13). The maximum errors are two

to three times as high as the corresponding errors for the step inertia
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product. The laboratory floor also undergoes irregular rolling motions

with maximum amplitudes of about 2°. Since the distance (ref. 34) from

the center of rotation to the laboratory floor is approxinmtely _0 feet,

this roll can produce a 2-foot total translation of the station floor

and could present some difficulties to a moving astronaut within the

Iab orat ory.

The controlled laboratory motion is presented in figure 37.
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Figure 37.- Laboratory error histories for vertical mass oscillation

and rate plus rate integral control.

Control torques are applied about a single axis_ but a combined rate and

rate integral control law is used. The laboratory motion is quite similar
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to the uncontrolled motion, but exhibits damping of the free vibrations,

as is apparent from the gradual decrease in the corresponding error terms.

Since the periodic forcing function terms predominate, this type of

response is to be expected. Agreementbetween the approximate and exact

solutions is very good, and the small differences in the error histories

can only be detected for the angle _.

The uncontrolled and controlled error histories developed from the

approximate solution for the nonsymmetric MORLare practically coincident

with the exact error histories for all the disturbances that have been

examined. The analytical solution is thus a useful tool for the study

of the nonsymmetric laboratory motion.

2. Large Manned Space Station

A second possible type of manned rotating spacecraft is the large

spinning space station, such as the 150-foot station which will be

considered here. This station (ref. 1), shown in figure 38, has six

cylindrical outer modules arranged in the shape of a hexagon. The outer

modules are connected to a central hub and docking port by three spokes.

Rotation about the maximum inertia axis provides artificial gravity for

the living modules. The crew of this space station would vary from

6 to 21 astronauts.

Assumed characteristics for the 150-foot space station are listed

in table 8. The inertia distribution approaches that of a flat disk

and the spin rate is 3 rpm. The crew is taken as six astronauts with

an effective mass factor Q of about 36 slugs.
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Figure 38.- A r t i s t ' s  sketch of possible  13O-foot manned 
space s ta t ion .  

Disturbance e f f ec t s  on t h i s  s t a t i o n  a r e  summarized i n  t a b l e  9. The 

distui-bances a re  s imilar  t o  the MORL disturbances, and per iodic  crew 

motions a re  simulated by motion of a s ingle  equivalent mass with a 

l i n e a r  ve loc i ty  of 4 f t / sec .  

mately 0.006 rad/sec f o r  the  s tep i n e r t i a  products t o  approximately 

0.013 rad/sec f o r  t he  circumferential  mass motion. 

limits vary f r o m  about 0.017 rad/sec f o r  t he  s tep i n e r t i a  products t o  

about 0.18 rad/sec f o r  t he  residual e r rors .  

motions are considerably greater than those introduced by the  s tep  

products of i n e r t i a .  

The r a t e  e r r o r  limits range from approxi- 

The a t t i t u d e  e r r o r  

The e r ro r s  due t o  per iodic  
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Circumferential crew motions and the residual errors were chosen for

a _irther comparison of the approximate and exact solutions. Both

uncontrolled and controlled solutions were developed.

Control torques were now applied about both station axes and the

corresponding control gains were assumedto be equal.

and (227), one notes that this yields

Referring to (226)

-- z--
_tD

as the nondimensional damping gains.

and attitude gains, when used, are selected as

klx

k2x = -k2y :

and

The corresponding rate integral

k3x = -k3y = klx

from the stable regions of figure 27(d) and 27(e).

gains become

The physical control

Klx = K2x = -222,817

and

K2x = -K2y = -75,000

K3x = -K3y = -70,000

from (210). A time constant of about three spin cycles or 54 sec was

selected to give the damping ratio

rD = 0.02
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Higher values of dampingwould require exorbitant control momentgyro

and reaction jet control systems. Even the selected value will require

gyros in the 7,000 to lO,O00 ft-lb-sec class and will exceed the present

state-of-the-art in gyro hardware (see fig. 31). Rapid jet damping,

although feasible, will result in large fuel consumption.

The advantages of single-axis control for nonsymmetric vehicles

becomeobvious when one notes that the MORL,with about one-half the

spin momentumof the 150-foot station_ requires a control system that is

an order of magnitude smaller. In addition, the MORLis able to achieve

lower time constants and considerably better damping ratios. These

results lead to the conclusion that nonsymmetric spacecraft 3 spinning

about a maximuminertia axis, are preferable from the control standpoint

and that single-axis stabilization about the minimuminertia axis can

result in major control systemweight savings for these spacecraft.

The 150-foot station motion for the circumferential mass transfer

is given in figure 39. The approximate and exact solutions are in good

agreement, and the time histories exhibit slow oscillations. These

oscillations (see figs. 21 and 22) consist of a large-amplitude sinusoid

with the massmotion frequency p and small-amplitude sinusoids with,

approximately, the precession frequency _. The angular deviation of

the gravity vector has an amplitude of about 3° and appears as a cor-

responding slow rolling motion to the crew. For the 150-foot space

station this rolling motion produces a 4-foot oscillation of the station

floor.
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Figure 39.- Uncontrolled station error histories for

circumferential mass motion.

The controlled station response is illustrated in figure 40. Control

is derived from rate plus rate integral commands, and the station rates

are damped to a purely sinusoidal trace in approximately nine spin cycles.

The constant rate term in the damped trace will eventually disappear

under the action of the rate integral commands. Residual rate errors

may then be expressed as

_xyr = "_r eipt (289)
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where _r denotes the half-amplitude of the residual rate.

this residual rate amplitude term is

so that

From(160),

irz( _ + p)2

z(_- p)

L I(%-- )]elPt

The corresponding residual rate error beeches

(o';I_'_l L T(X " eipt

and

_r = (--_+p)_ -FTrz(G + P)_sin pt

The residual terms correspond to the coefficients of eipt in the uncon-

trolled solution functions. The control system thus has to have little

effect on the magnitude of the errors directly due to the constant

circumferential mass motion as would be expected for the selected low

value of the damping ratio. The approximate solution compares favorably

with the exact solution for this example.
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Figure 40.- Station error histories for circumferential

mass motion and rate plus rate integral control.

Figure 41 presents the station response for residual rate and atti-

tude errors. As anticipated from figure 15, the rate errors are simple

sine and cosine curves. The attitude errors, following (133)_ are

somewhat more complex sinusoids. The exact and approximate solutions

checked to within three significant figures.
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Figure 41.- Uncontrolled station error histories for

residual errors.

The controlled station motion with the residual errors is shown in

figure 42. Rate plus attitude control commands are now employed, and

the spacecraft completes the required lO ° reorientation about two axes

in approximately 16 spin cycles. The analytical and exact solutions

again were identical.
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Figure 42.- Station error histories for residual errors

and rate plus attitude control.

In summarizing the comparison, one may conclude that the analytical

solution was in excellent agreement with the exact solution for all cases

considered. Since the spacecraft used in the comparison are typical

examples of future rotating manned spacecraft, the analytical solution

should be valid for the determinat ion of the dynamics and control of most

such spacecraft. Analytical results for unmanned spacecraft, which may

have larger torque disturbances and residual errors but have few or no

inertia changes, should also be acceptable. The time history data
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obtained for the step torques and residual errors were accurate to three

places and an increase in these disturbances should not appreciably

degrade the results in the linear range. The analytical solution thus

offers a simpler, more economical, and more direct meansof assessing

the effects of various disturbances and spacecraft characteristics on

the spacecraft motion than the computer runs. The insight into the

mechanics of motion, that is gained from the error formulation developed

in this analysis, should be of major value to future work on the dynamics

of arbitrary rotating spacecraft.
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IX. ANALYSISOFSPINUPANDDESPINMODE

A. Governing Equations

For the present application of the governing equations for the

spinup and despin mode, the spacecraft disturbances are assumedto be

restricted so that no internal massmovementsoccur and no momentsare

exerted about the spacecraft X and Y axes. This yields

 zE O ZO+s=z (290)

and

Idt ll[l dt ]

from (8) and (12).

Spinup and despin moments about the Z axis will be assumed to be

provided by constant-thrust, pulse-modulated jets (refs. l, 34, 36).

Since the control of the spacecraft during this mode is quite straight-

fo_Jard, the main problem is the selection of a spinup and despin

technique which minimizes the associated fuel consumption for rigid

and extensible spacecraft.

B. Rigid Spacecraft

For the rigid spacecraft configurations, such as the large hexagonal

space station, the jet moment arms remain constant.

fuel is thus given by

Mztf Izf_zf

WSU = ZzfiSp ZzfISp

Spinup and despin

(292)
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where the subscript f denotes conditions after completion of the spinup

maneuver. The simplest spinup technique would apply continuous thrust or

constant-wldth thrust pulses until the desired spin rate _zf is reached.

C. Extensible Spacecraft

1. Mathematical Model

For extensible spacecraft configurations, such as the MORL, the fuel

calculation becomes somewhat more difficult. As an example, consider

the sketch below.

Pm/ _ mm'lm - ;_ Ic t_ m c Pc

mcl. mm[

+m
m m + m c - I- mm c

Manned module Counterweight module-

Figure 43.- Mathematical model for spinup fuel calculations.

Here the spacecraft consists of a manned module with mass mm and a

counterweight module with mass "m c. The two modules are connected by

a flexible cable or strut arrangement, which is extended to produce a

large rotational radius. The distance between the module mass centers

is designated Z; the offset distance between the thrust Pm and the

manned module mass center is Zm% and the offset distance between the

t_n_st Pc and the counterweight module mass center is Zc. These
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offset distances yield a larger momentarm and maybe required to main-

tain the spinup thrust line normal to the line connecting the mass

centers. To minimize oscillations of the mannedmodule about its Z axis,

sometype of rate damping should also be provided. Rate dampingmoments

can be supplied by a small reaction wheel or passive dampers. The

individual module oscillations about their respective mass centers wlll,

however, be neglected for the spinup fuel calculations.

Spinup thrusts maybe produced by Jets on the mannedmodule, by jets

on the counterweight module, or by jets on both modules. The first method

is preferable whenthe counterweight module massexceeds the mannedmodule

mass, and the second method is preferable whenthe mannedmodule mass

exceeds the counterweight module mass. The third method maybe used if

jets are mountedon both the mannedand counterweight module; a pure

couple about the spacecraft mass center can nowbe produced by selecting

and (293)

Spinup thrusts would be simultaneously applied to both modules for this

method.

All three of the thrusting methods lead to effective momentand

momentarm relations of the form
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Zz = DlZ + D2

MZ =_Z z

(294)

where

and

Pmmc+ Pcmm
D1 = (Pm+ Pc)(mm+ mc)

PmZm + PcZc
D2 _

Pm +. Pc

= Pm+ Pc

(29)

for the spacecraft model.

The spin inertia Iz can be written as

Iz :I o- D_Zz + D_Zz2

where

and Im,

(297)

I c denote the respective module inertias referred to the

module mass centers.
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The above equations now allow the simple formulaticm of the total

fuel consumptions for different spinup techniques.

2. Spinup and Despin Techniques

Spinup _rill be assumed to occur in the following manner. While

rigidly coupled, the two modules are brought to an angular rate _zi"

The modules are then separated by extending the flexible module connector

under action of the centrifugal force. During this extension process

the spacecraft momentum, spin-rate, or spinup thrust may be held constant.

After the full cable extension is reached, the two modules are spun up

to the final spacecraft spin speed. Despin will require this sequence

in reverse order.

The fuel required for spinup or despin can be expressed as

- dt
ISp

- 1 _-Izi'i + Lte IIz_z +- Iz_z_dt + Izf(_zf - "eIISPl_-_--i- ti Zz / Z--zf -

_Jhere the subscript i denotes conditions after the initial spinup to

_zi; the subscript e denotes conditions after the extension; and the

subscript f again denotes final conditions.

Three characteristic spinup techniques will be considered here.

These involve extension with constant momentum Izi_zi, constant spin

rate _zl, and continuous thrust.
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a. Constant-Momentum Extension

Perhaps the simplest spinup technique is one where no spinup

thrust is applied during the extension. The modules are allowed to

separate as desired while the spin speed aut_natically decreases to

maintain the angular momentum constant. After achievement of the

desired extension the spinup jets are again actuated.

The fuel consumption now becomes

: ,.

from (298).

(299)

The rate of cable (or strut) extension does not effect this

fuel consumption and may be varied arbitrarily to maintain the cables

in tension during the extension. The fuel consumption is minimized by

selecting the smallest value of _zi which _ill yield sufficient cable

tension at the completion of the extension.

b. Constant-Rate Extension

For this spinup technique, the spacecraft spin speed is maintained

at its initial value Gzi throughout the extension. The modules are

again allowed to separate until the final extension is reached, and the

spacecraft is then brought to its final spin speed _zf"

The fuel consumptions relation (298) reduces to

(3oo)
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for this case. Fuel consumption now is minimized by selecting the

smallest value of _zi _hich will yield sufficient cable tension at

the beginning of the extension.

The spinup thrust for the constant-rate extension is established

by the requirement that the rate of change of angular velocity due to

operation of the thruster must be greater than that due to the rate of

extension or retraction. When the extension rate is maintained at a

@

constant value Zz, this condition can be expressed as

The minimum thrust is thus directly dependent on the product of the

extension rate and the initial spin rate. Corresponding conditions for

variable extension rates may be developed from (290), if the time varia-

tion of Zz is known.

c. Continuous-Thrust Extension

Another possible spinup technique would involve continuous

thrusting during the spinup. This brute-force technique will require

rapid extension of the cable modules to be efficient, but will be simpler

to implement than the constant-rate extension.

The associated fuel consumption is given by

WSU = D3tf _ Izf_zf

Isp _zflsp

+ I zzfD3 l(t e - )_ (302)

\_} tiJ
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To evaluate (302), a time history for either _z or Zz during the

extension mnst be selected. Values of flze and te can then be

developed from this time history and (290), if one recalls that

Zz = Zzf and

and

_z = _ze when t = te.

If the extension rate [z is constant, then

_ze- _l Fiziazi + D3Zzi(te. ti) + _ (te- ti)21
lzf L

te . ti _ _zf-
Zzi

Zz

Substitution of (303) into (302) now yields

\Izf zf/
IzfZzf

WSU -
Zzflsp

+
D3(Zzf - Zzi) I_

jj

(303)

(3o4)

and fuel consumption is optimized by selecting the smallest value of

_zi and the largest value of _z which will avoid cable slacking

during the extension.

d. Comparison of Extension Techniques

To compare the different extension techniques, note that the fuel

consumption for each technique is expressed as the ideal fuel consumption

at full extension plus an incremental fuel consumption for the extension

process. From the ratio of these incremental fuel consumptions for (299)

and (300), it follows that
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_zi)cR,C_ ]\%Zzi2/ Vzi / Vzi!
_ _Zzf/J

is the condition corresponding to equality of the constant-rate and

constant-mQmentum fuel consumption. Similarly the relation

(306)

must hold for equality of the constant-rate and constant-momentum fuel

consumption.

The initial spin rates (_zi)cT and (_zi)c R for the constant-

thrust and constant-rate extensions should produce equal centrifugal

forces to start the extension and are both assumed to be equal to the

value (_zi)CR, CT" The spin rate (_zi)CM for the constant-momentum

extension is greater than or equal to (_zi)cR, CT"

The equamions (305) and (306) are represented graphically in

figure 44. This figure allows the direct selection of the most economical

spinup technique for a particular spacecraft as a function of an extension

Zzi
length ratio -- a moment arm ratio

Zzf'

I _ 1 and a mOmentum ratiO_z(nzi)cR, c '

D2
:---, a thrust ratio
b_4Zl

_Z("zi) CM /_Izi ._. To

make use of the figure, one first selects the extension parameters

D2, _ _z_ (flzi)cR, CT _ and (_zi)c M. The selected parameters and

the initial spacecraft characteristics determine values for the moment

arm ratio, the thrust ratio, and the momentum ratio.
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Figure 44.- Fuel criteria for extension technique selection.

For a particular value of the extension length ratio, the moment

_rm ratio locates a fuel criteria point corresponding to the constant-

r_e extension and the thrust ratio locates a fuel criteria point cor-

;e_;ponding to the continuous-thrust extension. The momentum ratio gives

a third fuel criteria point for the constant-moment_n_ extension on the

ordinate. The lowest of the three fuel criteria Values indicates the

technique which will yield the lowest fuel consumption.
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The special case_ where the minimum centrifugal force for all

three techniques is equal, is of interest since the minimum cable tension

_ill usually determine the extension parameters. For this case, one has

P

_zi D2

_zf Zzf

D2

Zzf

(3o7)

for the constant-momentum extension and

D3 _

m m

_zi D2

Zzf Zzf

zf D2 Izi1 -
Zzf

(308)

for the continuous-thrust extension.

From (307) and (308), one may write

Constant-momentum fuel criteria : 1 + zzf (309)
Continuous-thrust fuel criteria Zzi

and the continuous-thrust extension is now al_ays more economical than

the constant-momentum extension. Only the constant-rate extension and

the continuous-thrust extension need to be compared for this case.

As an example, consider the Manned Orbital Research Laboratory

described in table 6. The ass_med extension parameters for this

spacecraft are
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_i : 37.5 ft

Zf : 137.5 ft

(_zi)cR, CT = 0.I rad/sec

_zf = 0.4 rad/sec

D3 : Pm = lO0 ib

D2 = Zm = 4 ft

and a spinup technique which will yield the lo_est fuel consumption is

desired. The cable tension must be greater than or equal to its initial

value during the extension and the spinup time is immaterial.

Since the minimum centrifugal force must be equal for all three

techniques_ the constant-momentum extension may be disregarded. From

the given extension parameters and (301) and (308), one has

(Zz)CT : 0.252 ft/sec

and

(_z)CR = 0.172 ft/sec

as the respective maximum extension rates for the continuous-thrust and

constant-rate spinups.

The extension ratios now are

Zzi _ 0.334

_zf

D2 - 0.25_

Zzi
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and

= 1.02

By referring to figure 44, one notes that

(Fuel criterla)c T = 1.O

(Fuel criteria)c R = 1.6

Since the fuel criterion for the continuous-thrust extension is con-

siderably lower than that for the constant-rate extension, it follows

that the continuous-thrust spinup technique will require the least

spinup fuel for this example.

The actual fuel consumption values for the example, as computed

from (299), (500), and (304) for a specific impulse of 290 lbf sec/lbm,

are

WCT : 245 lb

WCR = 256 lb

WCM = 276 lb

The continuous-thrust spinup requires approximately 12 percent more fuel

than the ideal spinup at full extension and the constant-momentum and

constant-rate spinups require approximately 26 percent and 17 percent

more fuel than the ideal value of 219 pounds. A saving of about 22 pounds

of fuel can thus be realized for each splnup and despin cycle by selection

of an optimum spinup technique for this example.
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If desired, the response of the spacecraft to internal mass

movements and external disturbance torques may be included in the

analysis of the spinup and despin mode by using (8) and (12) as the

governing equations of motion. Supplementary linearized equations of

motions for the relative module oscillations can be incorporated in such

an analysis.
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X. CONCLUSIONS

An approximate solution of the equations of motion of arbitrary

rotating spacecraft with variable disturbance functions has been developed

on the basis of small changes in the spacecraft body rates, Euler angles,

and inertia terms. Complexrepresentations have been used to define

spacecraft and rate errors induced by the disturbance functions, and the

solutions for the time history componentsand total error vectors have

been examinedfor both uncontrolled and controlled spacecraft.

The results of this analysis have led to the following conclusions:

A. A comparison of the present analytical solution and solutions

obtained by numerical integration of the exact equations of motion for

t_o typical mannedspacecraft has shownthat the analytical solution is

in excellent agreementwith the exact solution for the small angle and

rate regime. The analytical solution provides a simpler, more economical,

and more direct method of assessing the effects of various disturbances

and spacecraft characteristics on the spacecraft motion and allows an

insight into the mechanics of motion which cannot be derived from the

numerical solution.

B. Analytical upper limits of the rate and attitude errors induced

by various disturbances are in reasonable agreement with the maximum

errors found by interpolation of the numerical data. These upper limits

should suffice for first estimates of the effect of the disturbances

on the spacecraft motion.

C. The spacecraft inertia distribution was found to have a

significant effect on the spacecraft motion for equal disturbance
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characteristics. Spacecraft, whose inertia distribution approached that

of a flat disk, exhibit considerably more inherent stability than slender,

near-cylindrical spacecraft spinning about a maximum or minimum axis of

inertia. However_ for most practical cases the disturbance characteristics

are directly related to the inertia distribution, so that the error bounds

for spacecraft with different inertia distributions will tend to be

similar.

D. Periodic mass motions within the spacecraft may result in rate

and attitude errors, which are several times greater than those predicted

for worst-case step products of inertia. For equal disturbance charac-

teristics, the largest errors resulted from circumferential mass motion

in the direction of spin. Respectively, smaller errors were produced

by radial mass oscillations in an offset spin plane and vertical mass

oscillations parallel to the spin axis. Motions of the crew such as

trampoline exercise, ladder climbing, or periodic translations along

the spacecraft floor should be carefully examined to determine their

impact on the spacecraft motion.

E. The spacecraft errors indicated instability trends, when the

spin axis became an intermediate axis of inertia during a mass motion

and when the periodic motions took place _ith the precession frequency h.

Mass motions falling in these two categories should be avoided.

F. An investigation of possible control techniques revealed that

pure rate control and rate plus rate integral control would provide

adequate damping of the spacecraft errors induced by internal disturb-

ances. Initial attitude errors and attitude errors induced by external
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disturbances cannot be eliminated by these control techniques and will

require rate plus attitude control.

G. Single-axis control was found to be acceptable for all control

techniques and allows major reductions in the control gains and control

system weight for near-cylindrical configurations spinning about a

maximum axis of inertia.

H. Optimization of the spinup and extension technique for cable-

or strut-connected spacecraft modules can lead to appreciable fuel

savings for the extension and retraction process. Comparison of con-

tinuous thrust, constant rate_ and constant-momentum extensions for an

example spacecraft indicated that 22 lbs or 5 percent of the ideal spinup

and despin fuel could be saved by use of a continuous-thrust extension

technique.
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XIV. APPENDIX A

DEVELOPMENT OF THE LINEARIZED EQUATIONS OF MOTION

The rotating spacecraft will be considered as the system of parti-

cles shown in figure 1. A set of X Y Z axes fixed to the spacecraft is

used to describe the rotational motion of the spacecraft with respect

to a set of X I YI ZI axes which translate without rotation in inertial

space and which remain parallel to a set of XF YF ZF axes fixed in

inertial space. The general moment equation (ref. 6) about the origin

of the X Y Z coordinate system is then

mjRj)
-'* "_ d
M = rj × _ ( (A-l)

It wiii be assumed that the system mass does not change during the time

periods of interest so that

M : L rj × mjRj (A-2)

The absolute vector acceleration Rj is given by

Rj = _ + rj + _ × rj + 2_ X rj + _ X (n X rj) (A-3)

and substitution of (A-3) in (A-2) yields

M _ /

/__ rj "_" _, -+ "-+-+ I -+ mj(_ _j)X m jR0 + rj x mj(_ x rj) + rj x x "

x mj X (£ X rj _+ -+ .-++ rj × mj(n x rj) +
V _+ ._.
, rj )<mjrj

i_J

(A-4)
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or

ZM = msr s X R0 + Xmj(_ x rj) + rj X mj X rj)

+ L rj X mj X ) + D, X j X mj(,O,X rj

__ __ _j _ _+ £ X mj(rj X ) + rj x mjrj (A-5)

The acceleration of the origin R0 is found from the general force

(ref. 6) equation

°. °° --_

P = ms 0 + rs + £ x rs + 2£ x rs + _x x r s (A-6)

and the first term of (AIS) may now be written as

msr s x R0 = rs X P - r s X ms X rs) - rs x ms(D x rs)

- r s x m s x x rs - rs x ms(£ s x ) - rs X msr s

( ) m_(_ -_)-_ -_ "-_ _ x rs - rs X x rs= r s X P - r s x m s

I rs X ms(£ X rs) - _ X s X ms(_ X rs - Q X ms(r s X rs)

- rs X msr s (A-7)
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The equation of motion becomes

M = r s x P + rj X mj x rj) - r s X ms(n X r s

+ rj X mj(_ × rj) - r s X ms(_ × r s + rj X mj(2 × _j)

- r s X ms(Q X r s + Q X rj X mj(_ X rj) - rs X ms(Q X r s

-e _ -,

+ X mjrj X rj - msr s x + [Zrj X - r s X msr

where the vector from the center of mass to the origin is

(A-8)

rs = m-_ (A-9)

To reduce (A-8) to a more useful form, the particle system will be

represented as a large mass associated with the spacecraft and fixed

with respect to the X Y Z axes and n smaller masses which move rela-

tive to the X Y Z axes. The rigid-body angular momentum vectors of the

spacecraft_ the n moving masses 2 and the spacecraft mass center will

be designated as HO_ Hn_ and Hs_ respectively. The rigid-body angular

-e
momentum of the system H referred to the system center of mass is then

H =H 0 + Hn - H s (A-iO)
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where

(A-8)

with

Hn =

-@ -9 -9

r s × ms(_ s × rs)

n

Z
j=l

rj × mj(_j × _j)

7Ho--

j =n+l

rj × mj(_j × rj)

can be rewritten as

-9

-9 -9 -9 dH+
M=r s XP+ d-_ X mjrj × rj - msr s ×

rj X mjrj - r s × m s

n

-_ V mj rj
rs= /, m-_

j=l

(A-If)

(A-12)

(A-13)

In component form, one obtains

+ <lj___nl mj(xjYj" yjXj_- Ims(XsYs - YsXs_)_

+ <I___nl mj(xjzj-zj'j_- Ims(XsT.s- Zs's)__ z

+ <I_=_ mj(YJ'J'ZJ'J_" Ims(Ys's - ZsYs_)
(A-14)
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and

- _x(I_z- :zx%.- :zy_)÷ %(Zx_x-:xy_- :x_nz)

+ II___=l mj(YJ_'J - zJYJ_ " Ims(Ys_'s - ZsYs_) _z

+ _I_n mj(zjxj - xjzj_ - Ims(ZsXs - XsZs_l

(A-:9)

- _(:_%:-:xy_ :x_._z)+ _x(:y:_-:yz_z-:r_x)

+ mj(zjxj - xj_.j - s(ZsXs - XsZ s Dx

+ mj(zjyj - yj_.j - sCzsYs - ys_.s Dy

,.  ms:xs: -(A-:6)
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wh_"re

and

Ix = Ixo + 1.1_nlmj(yj2

ly = Iy 0 + I_l mj(xj 2

Iz = Izo + I_I_I1mj(xj 2

+ zj 2) - ms(Ys 2 + Zs21

+ zj 2) - ms(Xs2 + Zs21

+ yj2) _ ms(Xs 2 + ys2_

= lj_ mj(xjzj) - ms(XsZs_Ixz

=l

Iy z = I___nlmj(yjzj) - ms(YsZs_

Ixy = I.___nlmj(xjyj) - ms(XsYs_

Ix = 21_= 1

iy =

Iz

mj(yjyj + zjzj) - ms(ysy s + Zs_.s

mj(xj_j + zj_j) - ms(Xs_ s + Zs_sl

: 21_= lmj(xjxj + YJYj)- ms(XsXs + YsYs I

(A-17)

(_-]_)
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Ixz = lj_=lmj(xj_'j + zjxj)- ms(Xs_s + ZsXs_

_z = lj_n_lmj(YJ_j + zJYj ) -ms(Ys_'s + ZsYs_

ixy = I_n=l mjCxjyj + yjxj) - msCxsY s + YsXs_

The coordinates of the jth moving mass are

coordinates of the mass center are

n

Xs = _ mj xjms
j=l

xj, yj, zj, and the

n

_ mjyjYs = __ ms

J=l

n

Zs : )_ mj zj
m s

j=l

(A-18)

(A-19)

For the special case when only one mass m with coordinates x,

y, z is moving with respect to the spacecraft, the equations of motion

yield

+ Q_-_)_ + (_. _)_ + (y_- zg)_
(A-20)
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- _(Zz_z- Zzx_- Zzy_) + %(Zx_- Ixy_- Zxz_z)

+ Q _ - _)_x + (y_- z_)az+ (_- x_ (A-2z)

and

with

M z m: (XPy- YPx) + Iz_z- IZX4- Izy 4 + IzSz - IzxDx-

- %(Zx_x- Zxy_- Zxz_) + _(zr%- zy_,_z- lyx_x)

+ Q_z_- x_.),+ (z__,_)_+(_y_ _)3

IzyDy

(A-22)

and

ix = Ix 0 + Q(y2 + z2)

"y = _o + Q(x2 + z2)

iz = iz 0 + Q(x 2 + y2)

Zxz = Q(xz)

Iy z = Q(yz)

(A-23)

iz = 2Q(x_ + _) (A-24)
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Ixz = Q(x_ + zx)

iyz --Q(y +

(A-2J_)

m(m s - m)

Q = ms (A-25)

The spacecraft equations of motion (A-14) to (A-16) can be solved

for the body rates _x, gy_ and _z- The motion of the rotating space-

craft is then defined in terms of the modified Euler angles _, e_

and _. These angles, as shown in figure 22 relate the moving body

axes X Y Z to the intermediate reference axes X I YI ZI" From the figure

one notes that the time derivatives of the Euler angles are

+ = 2x + _y tan e sin _ + _z tan 8 cos qD "

= gy cos _- _z sin q_ (A-26)

: _z cos $ sec e + Dy sin q_ sec e

The Euler angles found from (A-26) and the body rates found from (A-14)

to (A-16) completely define the rotational motion of the spinning

_pacecraft.

For a large number of practical applications, one is concerned with

motions involving small oscillations of the spacecraft spin axis from an

equilibrium reference position. If it is assumed that the spacecraft
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spins about its Z axis, that the Z axis is initially an axis of maximum

or minimum inertia, and that the ZI axis is selected as the inertial

reference, then

sin _ = tan _ =

sin e = tan e = @

cos _ =I

cos @ = i

(A-27)

and

nx<<n z

_<< 2z

(A-28)

nondimensional time

mass _j by

Ipq :mj (A-29)
= =_. _jT _zo t Cpq Izo ms

where p and q range over

tenns are then

T, an inertia term epq, and a nondimensional

x, y, and z. The remaining nondimensional

for the small oscillation regime. Consistent with these assumptions,

one can consider the variable inertia terms to be sufficiently small in

comparison with the spacecraft moments of inertia so that they may be

neglected when multiplied by the oscillatory body rates or any angular

accelerations.

The reduction of the nonlinear governing equations to linear approxi-

mations can best be accomplished by first converting (A-14) through (A-16)

to nondimensional form. As was done in reference 4, one may introduce a
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2zo 2zo

_ % % =__. 1½ _-zo_o2 _zo2 z_,
11

mE Jm:uj = xj _J =nzo 0

m_zO m_zS 0
vj = yj wj = zj

• Ipq

epq - izO_zo

and the nondimensional equations of motion become

-%(_y- _y_z - _yx_x)+ _y(C_z- _gx- _zy_y)

+ IIj _=l _j(ujvj- vjujl - (UsVs - VsUs)__y

u Iu0w}z
(A-31)
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-_(_z - _z_x- _z_) + _z(_>x- _x_- _xz_z)

and

LN :1

(J3z

(A-32)

.Lz = u_y - v_ox + %&z - _z_Ax- _z:_ + _z_z- _zx_x- _._

+ IIj_nl #j(wj{tj" ujwj_- (Wst_s - Us_s_

+ /,

+ (A-33)



- 205 -

where

EX = gXO +

_J(Vj 2 + wj2) - (Vs 2 + Ws2 1

+ +
U=l

_z = Czo + _j(uj 2 + vj2) - + Vs

LJ=l

gXZ =

_xy =lj_n__l_j(ujvj) - (UsVs_

(A-34)

In accordance with the small oscillation assumptions, take _k, e_,

_, e2 _2, L_, pp, and the variable inertia terms

n n n n n n

_juj , J-_ , /__ _jwj , _jujvj, _ _jujwj __,
/ ,

j=l j:i j=l j=l j=l j=l

_jvjwj,
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and their derivatives to be of order &. Here _ is restricted to be

sufficiently small so that terms of higher order than A may be

neglected in the governing equations.

Thus, it follows that

o[_] o[_3 o[_]o[_]o[_ o[_ o[_] o[_]

o[_]o[_ o[_
+

+
0_

+

v

II_l _'j(VjWj - WjVjl -
(VsWs - Ws:_s)1

J

,J

(A-35)
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o_

_Z

Y

o_

(A-36)
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and

+_Lt_-_- _
o[_ oE__] oF_]

I+ I_j(wjvj - vjwj - (Ws_ s - v s COy

+
o_

÷

I_1_(ujvj -_'Jua_- (%V_ - _s_l
ii,_ i

oG]

(A-37)
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or neglecting terms of higher order

_x = _x&x+ (_z- _y)_z -_,,(_xz- _yz_z)

mz

(A-38)

= _aZ_-- (_,. - Cx)_z -_z(_y,. + Cx_z)

+ _j(wj_j - ujwj - (Ws{_s - Us_ s

LkJ_

G_z

(A-39)
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For the samerange of disturbances, the Euler angles are given by

d_ :k_._J +_k___ +

dO

_ -_,_._-,__b
oE_3oB_J_3

- COz +dT

003 oE_I_3

(A-41)

and again neglecting terms of order higher than

d_ =
d--_ _x + _z e

de _
dv Y - _z_

d_ - _z
dT

(._-42)

If the spacecraft dynamics are well conditioned, the above equations

should give reasonable results in the small angle and rate regime, for

which

or

-i5° <_$ ! i5°

-i5° ! e < i5°

-0.0685 __ Z_ <_ O. 0685



- 211 -

Solutions for higher values of A will lead to correspondingly less

accurate solutions.

Since the form of the physical and nondimensional differential

equations is identical, only the more convenient physical equations of

motion will be used.

z)_÷ Ix a

These equations can then be written as

- ms(Zsy s - YsZs)_
(A-43)

(izx z)( zzxzzI mj(zjyj - yjzj)

- ms(ZsYs - YsZs__z + I./__
LJ:l

mj(xjzj - zjxjl

and

P

_z + L nz = l__IM
I_ Iz Lz +

- ms(XsZ s - ZsXs) _

:/-_lmj(yjxj - xjyj
- ms(YsX s - XsYs)_

(A-44)

(A-45)

!
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where the moments of inertia Ix and Iy, in general, may be approxi-

mated by their initial values in (A-43) and (A-44), so that

]

Ix _ Ixo + _j_-_--1mj(Yj°2 + zJ°2_ - ms(Ys°2 + Zs°2)

Iy 0 + lj_nl mj(Xjo 2 + Zjo2_ - ms(Xso 2 + Zso 2)
ly (A-46)

since the retention of variable inertia coefficients does not appear to

add appreciably to the accuracy of the solutions. The other pertinent

inertia terms are

: mj(xjzj - ms(XsZs)Ixz / I

Iy z = I___Iimj(YJZJ 1 - ms(YsZs)

(A-47)

and the required time derivatives of the inertia terms become

•Ixz : mj(xjzj + zj_j - ms(Xs_ s + Zs_s)

li_=l mj(yjzj + zjyj_ - ms(YsZ s + ZsYs)

Iz = 2 mj(xjxj + yjyj) - ms(XsX s + YsYs

(A-48)



- 213 -

The Euler angle relations are given by

¢-

(A-49)

If results should be required in nondimensional form, one need only

apply the transformations (A-29) and (A-30) to the solutions.
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XV. APPENDIX B

PARTICULAR SOLUTION FUNCTIONS FOR THE

UNCONTROLLk?D SPACECRAFT

The forcing function for the differential equation with the con-

stant moments of inertia approximation can be written as

f

F = _, AjFj(t)

j=l

(B-l)

and thus the particular solutions are

f

: _ Aj_D(t)

j=l

f

= /_ Aj_j(t)

j:l

f

F = ! AjYj(t)__
L_,
j=l

(:B.-2)

where the functions

Laplace transforms

Fj(t) =_._-I fFj(s)
b2 +  ,2j

- k_ 2 + h2

Fj(t), Fj(t), and Fj(t) are given by the inverse

sFj(s)

s2 + _2J
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A numberof particular solution functions have been evaluated and are

presented in tables 1 - 3. Other functions maybe determined from

(B-3) if needed.

The unit step function and the unit impulse function, that occur

in these tables, are defined as

U(t) = _0 for t < 0 (B-4)
for t > 0

and

for t _ 0

with (B-5)
5(t) = 5(t) dt = 1

where t = 0 is the initial time of application of the step or impulse

disturbance.



O
H

5_

£-_
H

0

0

0

!

I---I

r----1

I

.,_ ,_

_o

Ol

•,0 I

b

!

v

_1%
!

.e- a
Ilk

!

OJ

|--,_

v ",3

l_"_-_ ,

v

- 216-

c-7

o

!

m
O

uZJ
(W

AI ,<
!

.,4

!

m

ut'__
('4

.-. ,<

:m e4
D

4_
,<

-,4

11

v
-:m

C'D

_Q

,<

!

.r4

uZJ
OJ
,<

4-) !
v

o

!

u_

=!%

o
A

+_
v

v
._O

II

A

v

40
,<

o
('4
,<

!

m
0

4 _ I

_%

4._

,.<

!

"_%

,r4

4_
v

!

4._
v

ii

v

-o
v



- 217-

_ ,

+,

,2

- w

i

u

|

_o _°
i I

, , __ _, _,

_,t_, _1__-_--_.,_, °_'o _'_,

s

aJ
t

+

o : o

_ + a

,--I



- 218 -

Y_

u

U

8

o
I

.u2

,2

2

|

%
v

!

%

+

u F<

k_..._# i ,

I

c_

!

c_t3

+

1oJ cJ

I

_ +

m

Cql_<

i

o I

m

+

I I

_%

-o !

%

+

_ u

I

o

4_

|

q

,&

Z
H

"5" -_

+

_1%
u I

4-' I

%

Z

+

=_<

'_I,<

I

&

w

I

la

l

4-

,

&%

_ +

%
I

I

%

4-

, ,--_,

_ e) i

_ +

o

I

A _
-_ "Nk

o

-O

S

!

|

I='_<

÷

_o!?<

n

m

&

o --

o

I

!

I
I

+

_,<

8'

n

u

i

o

4_ II



_D

i

o

o_

o

H

+

!

+

b

_ 1
H

C,I

_ +

+

I

+

A_
+

!

o ii ii ii

o_ _

- 219-

! . 1

+

A

+

%

!

+ _

4-

%

o

01
%,

!

_ o •
ii ii u

0_,_

I

I
+i_

+

÷

÷

I

_ "5"

o _

o_
+_._ _

!

%

o

o o o



- 220 -

+

÷

('_ I H

v
+

x

x

4-
e..

_J

×

c'-VR

?

L_.__J

d ×

i

,&

c_

H _

I

+

%

v

+ _

,<
v

+ _

"7 i

o_x

,IH

_H

,<
v

%1 _'_

-,4

_t_

,I,<

i-i

Kic_

c4 i ,

_<1H

,< ioJ

e,_ t i

%1_

i

+

7"

+

°,%

e_

I +

i

+

% %

i

c_
v

+
i

v
i

o_

%1 TM

vl

i

v_

'% I_"

H

KIc,_

o,_ i I

_< :_

o_ i,<

_ c

I

I

o

P,

t_



- 221 -

TABLE 6.- ASSUMED CHARACTERISTICS FOR MANNED ORBITAL

RESEARCH lABORATORY

Parameter

Ixo, slug-ft 2

lyO, slug-ft 2

Izo, slug-ft 2

Module values

Manned

103,000

Counterweight

30,000

90,500

173,000

73,000

73,000

Total

values

ms, slugs

Q, slugs

o, rad/sec

1,220

36

1,777

36

0.4

133,000

7,393,412

7,475,912
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TABLE 8.- ASSUMED CHARACTERISTICS FOR 150-F00T SPACE STATION

Parameter Total value

2

Ixo , slug-ft

Iyo, slug-ft 2

Izo, slug-ft 2

10,500,000

I0,500,000

19,000,000

ms_ slugs

Q, slugs

_ rad/sec

2,270

36

0.314
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