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AI? ACCURACY STUDY OF CENTRAL FINITE DIFFERENCE METRODS 

IN SECOND ORDER BOUNDARY VALUE PROBLENS 

BY 

N a n c y  Jane Cy-rus 

ABSTRACT 

A n  accuracy study is made of cent ra l  f i n i t e  difference methods 

f o r  solving boundary value problems which a r e  governed by second 

order d i f f e r e n t i a l  equations with var iab le  coef f ic ien ts  leading t o  

odd order der ivat ives .  Three methods are studied through appl icat ions 

t o  selected problems. Definit ive expressions f o r  the e r ro r  i n  each 

method are obtained by using Taylor series t o  derive the  d i f f e r e n t i a l  . 
equations which exact ly  represent t h e  f inite difference approximstions. 

The resu l t ing  d i f f e r e n t i a l  equa,tions a r e  accurately solved by a 

perturbation technique which y i e lds  the  e r ro r  d i r ec t ly .  

s t a t ion  method, which corresponds t o  makiIig f i n i t e  difference 

A half 

approximations before expanding der ivat ives  of function products i n  the 

d i f f e r e n t i a  equations, was found superior t o  two whole s t a t i o n  methods 

which correspond t o  expanding such products first. 
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I V .  INTRODUCTTON 

I n  the  mathematical analysis  of m y  yhysical  bomdary w2ue  

problems, such as beans, p la tes  and s h e l l s  i n  s t ruc tu ra l  analysis ,  

the governing d i f f e r e n t i a l  equations are of ten solved by approximating 

the  der ivat ives  by f i n i t e  differences and solving the  resu l t ing  system 

of algebraic equations on a d i g i t a l  computer. I n  the analysis  of 

complicated s t ructures  t h e  number of simultaneous equations resu l t ing  

from f in i te  differences may be l a rge  enough t o  exceed the  capacity of 

the  computer o r  to  introduce round-off e r ro r  i n  obtaining a numerical 

solution. For such problems, it i s  important t o  keep the  number of 

algebraic equations a t  a a i n h u m  and the  accuracy of the difference 

procedure can be  a c r i t i c a l  i t e m  i n  obtaining meaningful results. 

reference 2, f o r  example, it was found tha t  accurate answers f o r  the 

stresses i n  a she l l  s t ruc ture  could not be obtained by using cer ta in  

f i n i t e  difference approximations u e s s  the mesh spacing was smaller 

t h a n  machine capacity permitted. 

I n  

"he most popular difference approximations used i n  boundary value 

problems are the  central  difference approximations which are given i n  

textbooks on numerical methods. There are alternate formulations of 

central  differences which can be used when odd order der ivat ives  occur 

i n  t h e  d i f f e ren t i a l  equation and these a l t e rna te  formulations give 

d i f fe ren t  answers. It was shown i n  reference 14 tha t  f o r  a c i rcu lar  

plate symmetrically loaded, approximating the d i f f e r e n t i a l  equation 

by central  differences led  t o  a nonsymmetric matrix instead of the  

expected symmetric matrix. Furthermore, t he  answers i n  no way 
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resenbled the known solutions t o  the  problem and the  cent ra l  difference 

equation w a s  s ingular  a t  the center of t he  p la te ,  a physically r e d  

point i n  the  problem. 

The purpose of this  paper is t o  inves t iga te  the  accuracy of the  

three  alternate fsms ef eeztral f i n i t e  Gifference approxilnations as 

applied t o  boundary value problems. 

accuracy of f i n i t e  difference methods i s  presented and u t i l i zed .  The 

study i s  confined t o  l i n e a r  second order boundary value problems of a 

cer ta in  type but the approach and conclusions are applicable t o  a wide 

c la s s  of boundary v d u e  problems. 

A n  approach f o r  studying the  
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V. General Discussion of Error 

Types of Error 

The use of f inite difference approximation formulas t o  obtain 

numerical solutions t o  d i f f e ren t i a l  equations leads t o  e r ro r s  which 

can be c lass i f ied  as three types: 

error ,  and ( 3 )  truncation or d i sc re t i za t ion  e r ro r .  Round-off e r ro r  

i s  a calculat ion e r ro r  resul t ing from using a f i n i t e  number specified 

by n correct d i g i t s  t o  approximate a number which requires  more than 

n d i g i t s  f o r  i t s  exact specif icat ion.  Round-off e r ro r  increases with 

the number of calculat ions required t o  ge t  an answer. 

e r ro r  i s  t h e  contribution t o  the e r ro r  due t o  the t o t a l  e r ro r  a t  a 

preceding s tep.  

i n  which each s tep  uses the  r e su l t  from the  previous s tep.  

(1) round-off error ,  (2) inheri ted 

The inheri ted 

This may resu l t  from using a step-by-step procedure 

Truncation error ,  o r  d i scre t iza t ion  e r ro r  as it is  sometimes 

called,  comes from approximating or replacing the  continuous problem 

by a d iscre te  model. 

smaller increments; but as increment s i ze  decreases, the number of 

steps taken increases, calculations increase, and the  danger t ha t  

round-off' e r ror  w i l l  bu i ld  up t o  subs tan t ia l  proportions grows. I n  

any problem that i s  short  enough t o  permit hand computation, it is  

usually possible t o  carry enough places so that round-off e r ro r  can 

be neglected. I n  extended computations using computing machines 

round- off  e r ro r  can be serious. 

Discretization e r ro r  i s  decreased by using 

All th ree  types of e r ror  can occur when a boundary value d i f f e r -  

e n t i a l  equation i s  solved by reducing it t o  an i n i t i a l  value problem 
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and then solving it by one of the step-by-step procedures f o r  i n i t i a l  

value problems (ref. 10). If  a boundary value problem i s  solved by 

replacing the d i f f e ren t i a l  equation by cent ra l  d i f fe rence  equations, 

taking i n t o  account t h e  boundary conditions at  both ends, and thus 

obtaining a set of Simultaneous slgehrtxir: fiquztiol?s --L , Lu1srited e r r o r  

does not exist as a separate en t i t y .  

truncation e r ro r  are the only separable e f f ec t s .  

while it can be important i n  a p rac t i ca l  problem u t i l i z i n g  l a rge  

numbers of simultaneous equations, is not considered here. 

For such problems round-off and 

Round-off error, 

L i t emtu re  S -mey  

Numerous s tudies  have been reported i n  the  literature dealing 

with e r ro r s  r e su l t i ng  from the use of numerical methods t o  approximate 

t h e  solutions t o  l i n e a r  and nonlinear ordinary and p a r t i a l  d i f f e r e n t i a l  

equations governing boundary value problems. A common way t o  solve a 

boundary value problem approximately i s  t o  reformulate the  problem as 

an i n i t i a l  value problem and solve it using numerical in tegra t ion .  

Consequently most of the  e r ror  s tud ies  i n  the literature dea l  wi th  

in i t ia l  value problems. However, some comments on a f e w  important 

papers and books which do treat e r r o r s  i n  boundary value problems are 

given here. 

Col la tz  ( ref .  3) gives methods f o r  solving boundary value 

problems d i r e c t l y  and f o r  obtaining estimates of t he  d i sc re t i za t ion  

e r ror .  This i s  accomplished by first expanding the  d i f fe rence  

equations i n  Taylor series, then deriving a system of equations f o r  
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. 

t he  e r rors ,  estimating higher order der iva t ives  i n  some way and then 

solving the system of e r r o r  equations t o  obtain e r r o r  bounds. 

I n  Modern Computational Methods, reference 13, a d i f fe rence  

correct ion i s  added to  the  central di f fe rence  approximations f o r  t he  

derivatives. A first qpror4hat ioc s ~ l u t i c c  t~ t h e  r e s a t k g  system is 

obtained by neglecting t h e  difference correct ion and solving the  

r e su l t i ng  algebraic  equations. 

correct ion a successive correction method i s  used t o  obtain correct ions 

t o  t h e  first approximation solution. The process i s  continued u n t i l  

there  i s  no change i n  the  numerical solut ion.  

Then considering the  d i f fe rence  

Many methods of e r r o r  analysis of boundary value problems i n  

p a r t i a l  d i f f e r e n t i a  equations are d s o  applicable t o  ordinary differ- 

e n t i a l  equations. I n  the  c lass ic  method developed by Gerschgorin 

(ref. 6), the  d i sc re t i za t ion  e r r o r  i s  estimated by the  use of a special  

method which he c a l l s  the majorant method. T h i s  method i s  also 

discussed by Collatz ( r e f .  3 )  and Forsythe and Wasow (ref. 5 ) .  

Roudebush ( ref .  15) uses an er ror  ana lys i s  of the Gerschgorin type t o  

show tha t  t h e  order of d i scre t iza t ion  e r r o r  i n  ordinary d i f f e r e n t i a l  

equations and parabolic and e l l i p t i c  p a r t i a l  d i f f e r e n t i a l  equations is  

unaffected by a f i n i t e  number o f  d i scont inui t ies  i n  t h e  coef f ic ien ts  

of t he  d i f f e r e n t i a l  equation. 

order f in i te  d i f fe rence  approximations and shows that when these  

approximations are used the order of t he  d i sc re t i za t ion  e r r o r  i s  

improved. 

I n  t h i s  paper he der ives  some higher 
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Bramble and Hubbard ( re f .  1) have included t h e  work of 

Gerschgorin (ref.  6) and Collatz (ref.  3 )  as spec ia l  cases i n  t h e i r  

theorem f o r  estimating e r ror  in t he  Dirchlet  problem f o r  e l l i p t i c  

equations. 

Iil many s tud ie s  of pnysical problems approximate methods are 

judged with t h e  knowledge of what the cor rec t  solut ion should be. 

Chuang and Veletsos (ref.  2),  f o r  example, two f i n i t e  d i f fe rence  

methods are used t o  obtain a9proximate so lu t ions  t o  the par t ia l .  

d i f f e r e n t i a l  equations governing the deformation of cy l indr ica l  s h e l l  

s t ruc tures .  One method gives r e s u l t s  which are unacceptable, even as 

design data,  w h i l e  t he  other  method gives  a sa t i s f ac to ry  solut ion.  

I n  

Round-off e r r o r  resulting from the solut ion of t r id iagonal  

matrices, which result f r o m  the use of  cen t r a l  difference methods 

i n  some boundary value problems, is not t h e  concern i n  the present 

paper but has been t rea ted  t o  some extent i n  the  l i terature.  Von 

Neumann and Goldstine (ref.  19) establish an e r r o r  bounds f o r  which 

solut ions by the elimination method is  val id .  

discusses d i f f e ren t  matrix methods and gives round-off e r r o r s  f o r  the  

Jordan, Gauss and Choleski methods. 

estimates of round-off e r r o r  in matrix solut ions,  while  Lowan (ref .  11) 

deals spec i f i ca l ly  wi th  t r idiagonal  matrices. 

Turing ( ref .  18) 

Wilkinson ( r e f .  20) a l s o  gives  
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V I .  DEVE;LO€'MENT OF F?XTE D I m E ; T j C E  OPERATORS 

Finite difference operators can be obtained by several methods; 

T h r e e  common procedures are given and used t o  derive the d i f fe rence  

approximations invest igated i n  t h e  study. 

Polynomial Approxima t i on 

One method of obtaining approximate values for  the der ivat ives  of 

a function which i s  'mown at a d i sc re t e  number of points  cons is t s  of 

f i t t i n g  t h e  given poin ts  wi th  an appropriate polynomial, whose 

der iva t ives  are then obtained. Referring t o  f igu re  1 the  problem i s  

t o  f ind  t h e  der iva t ives  of the function which passes through the  

given poin ts  (xo, Yo), (5, Yl) a * (Xn, Yn). Values of the 

function are known at  these points  o r  s t a t ions .  

Lagrange's interpolat ion formula can be special ized t o  f i t  a 

polynomial through a ce r t a in  number of po in ts .  Let there  be given 

* .  of  t he  function y = f ( x )  yo, yl yn values of the  ordinates 

a t  the  (n + 1) poin ts  xo, 5, * x . The polynomial of the 

nth degree through these points may be wr i t ten  i n  the  form 

n 

( x - x . J ( x - x 2 ) -  * ( x - x )  

f(Xg) - x2). - * - (xo - x ) 
y = P ( x )  = 

(Xo - xl)(xo n 

( x - x ) ( x - x 2 ) .  - * * ( X - X n )  

' f(v (5 - "0) (5  - x2) * * ( "1 - "n) 

0 + 

+ . . . . . . . . . . . . . .  
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. . . x - x ; ,  

n! ( "i) 
( x  - x 0 ). . *(x - X i - l ) ( x  - xi+l)+ 

- x  + / 

0 - xi-l)(xi i+l)* '(xi - xn) - ) '  TXi 

+ . . . . . . . . . . . . . .  

(x - xo) (x - 5).  . .(x - x 
n-1) f x ( n: 

+ 
("n - xo) ("n - 2) * * * ("n - Xn-l) 

(6.1) 

The equation for a polynomial passing through three points  

separated by e q d  increments h and with t h e  or ig in  at x = x i s  

obtained from equation (6.1) 
0 

2 
X X Y W  = Yo + (-3Yo + 4y1 - y2) + &2. (yo - 2% + y2) 

(6.2) 

The f irst  der ivat ive of the f'unction i s  

6 . 3 )  

The slope a t  each of the  points x 

x = x = 0, x = x = h, x = x 2h i n  equation (6.3).  The second 

der ivat ive of the curve y(x) i s  

i s  obtained by subs t i tu t ing  
i 

0 1 2 =  
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1 

y"(x) = z 
which i s  constant because y(x) 

Polynomials passing through 

i s  a second degree curve. 

four points  and f i v e  points  can be 

obtained i n  a similar fashion and t h e i r  der ivat ives  evaluated a t  each 

point t o  obtain various difference pat terns .  Thus, numerous choices 

are avai lable  when select ing a difference pat tern.  Which pa t te rn  i s  

best depends t o  a l a r g e  extent on the equation t o  be solved and i t s  

boundary conditions. 

i s  usually suggested i n  textbooks (refs. 4, 10, and 16) ,  widely used 

i n  the  literature ( r e f s .  2, 12, and 14) , and generally accepted as 

preferred because of simplicity, ease with which boundary conditions 

are handled, and consistency of order of e r ro r .  

However, one set of central  difference operators 

These are given i n  

( 6 . 5 )  
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l -  
~ 

I -  

~- I .  

The s implici ty  of the  selected operators equations (6.5) t o  (6.8) 

compared with wr i t ing  at each s t a t i o n  equations (6.3), (6.4), or  those 

obtained from polynomials through four or  f i v e  poin ts  (see ref. 16), 

to obtain t h e  various difference operators i s  obvious. The order of 

the t r m c a t i c ~  errar for each zlperator my Be obtained by expanding 

t h e  function yix.)  about the point xi i n  Taylor s e r i e s  as given 

below 
\ =  

n 

Y"(Xi) + - + (ah) ."(Xi) 
1 ah! 

n. 

(6.9) 
n=O 

where yn stands for t h e  derivative fi n, a is  any r ea l  number and 

h i s  t h e  increment of  t h e  interval .  

which i s  (6.3) evaluated a t  the  center, can be expaaded as fo l lows  

dx 
For example, equation (6.5) 

h5 v 
'i+l + -  

h2 iii h 4 v 

x 1 ( - Y i - l  + 

+ -  Y i + " '  



c 

- 15 - 

The t r m c a t i o n  error i s  o f  order h2 and i s  

For the  first difference,  equation (6 .3)  evaluated a t  the  l e f t  end 

point  leads  t o  

1 1 ( - 3 ~ ~  + + YM 

and t h e  truncation e r r o r  i s  

h2 iii h3 i v  7 4 v 
- 3 Y i  - 4 Y i  - a h  Y i + " '  (6 .ii) 

The second difference, equation (6.4) evaluated a t  t h e  center  point, 

i s  equation (6.6).  It yields  a truncation e r r o r  of 

4 
+ * * .  h2 i v  h v i  

E Y i  + 3 Y i  (6.12) 

The second difference, equation (6.4) evauated  at t h e  l e f t  end point  

gives  the  truncation e r r o r  

Note from equations (6.10) t o  (6.13) t h a t  while t h e  e r r o r  f o r  

h , the  e r ro r  f o r  the  2 both first difference operators i s  of order 

second difference operator about an end point  i s  of order h, and 
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2 about the  center point ,  of order h . Generally, difference pa t t e rns  

with the same order of e r ro r  are used for  more consis tent  results. 

For example, one of the  f i r s t  difference pa t t e rns  ( e r r o r  of order 

i s  not mixed with the second d i f fe rence  pa t t e rn  at the  end poin t  

(error nf order h) . 

t h e  answers tend toward t h e  more inaccurate terms (ref .  16) .  

h2) ,  

m e n  inczxsistent ordzr of eirm tei-ms are used, 

Difference Operations 

A second method f o r  obtaining t h e  'rrsrious f i n i t e  d i f fe rence  

operators i s  differencing differences.  

designates backward differences, t i e  normal delta, A, forward 

di f fe rences  and t he  lower case de l t a ,  6, cen t ra l  differences.  Suppose 

the values fi z f (xi) of a function f (  x) 

equidis tant  po in ts  x = a + ih where i = 0 ,  1, 2, --- n 

The inverted de l t a ,  V, 

are known a t  (n + 1) 

i 

(sometimes i i s  nonintegral). On t h e  i n t e r v a l  (a, b )  h is  t h e  
b-a increment n For any function f ( x )  

t h e  difference operators  A, V, 6 a r e  defined f o r  increment h as 

follows 

and i s  taken  t o  be pos i t ive .  

Mi = fi+l - fi 

Vf,  = f .  - f 
1 1 i-1 

1 i t  i-- 
2 2 

6f = f  l - f  i 

(6.14; 

(6.15) 

(6.16) 
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The differences i n  equations (6.14) t o  (6.13) may be extended t o  

higher order differences by taking the  d i f fe rence  o f t h e  difference;  

f o r  example 

I n  general 

p =1,2 - ' 

(6.18) 

f o r  p = 0 

Given i n  equations (6.20a) t o  (6.22e) are the  f i n i t e  d i f fe rence  

operators t h a t  approximate the various order der iva t ives  

zero order ) .  

t o  obtain truncation e r r o r  terms. 

(including 

Also included are the  operators expanded i n  Taylor series 
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Forward and backward differences give u n i l a t e r a l  expressions f o r  

the  der iva t ives  of a function y x , which i n  t h e i r  simplest form 

have e r r o r s  of order h. Central differences,  involving p ivota l  
( i) 

, 
points  o r  s t a t i o n s  symmetrically located with respect  t o  

pa r t i cu la r ly  useful i n  the  solution of boundary value problems, 

xi, are 

reference 3 .  Note t h a t  t h e  order of error f o r  the  cent ra l  d i f fe rence  

operators i s  h2. Generally, as h approaches zero the  cent ra l  

differences approach the exact value f a s t e r  than forward o r  backward 

differences.  

The cent ra l  difference operators (6.22a) t o  (6.22e) are defined 

a t  ha l f  s t a t i o n s  f o r  odd der ivat ives .  These operators a r e  regular 

and consis tent  and may be used successful ly  in boundary value 

problems. They w i l l  be referred t o  as "half s ta t ion"  operators.  

The l i n e a r  second order d i f f e r e n t i a l  equation i n  the  form 

cannot be approximated by the ha l f  s t a t i o n  operators because the  

yi-1, Y i '  approximation f o r  second der ivat ive introduces unknowns 

and the  approximatian fo r  first der iva t ive  introduces unknowns Y i + l  

Y 1 ' Y  1 '  T h i s  gives too many unknowns for the  number of 

equations. 

i _- i t  2 2 

However, equation (6.23) may be reduced t o  the  form 

(6.24) 
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Then 

T X  a : 1  - dx 
J x  

0 f = e  

I 
I -  

I -  

jx -epd” 
e o  

a (x) 
0 

rx ”1 
a e  o 4 0 

rx ?L ‘ - dx 
- d x  J x  a0 a 

b 2 e 
a P =  a g =  

0 0 

Equation (6.34) can be solved by using hal f  s t a t ion  operators.  

Averaging Procedure 

The central  d i f fe rence  operators (6 .5 )  t o  (6.8) which were 

obtained from Lagrange’s in te rpola t ion  formula, and which do not have 

half s t a t ions  i n  the approximations f o r  odd order der ivat ives ,  can be 

obtained by averaging difference operators.  

mean difference a t  i 

The first averaged o r  

is obtained by taking the  average of t he  first 

cent ra l  difference at i-5 1 and i t  1 . The operation i s  symbolized 
2 

by the  operator p cal led t h e  averager. The first averaged 

difference i s  

1 c15 yi = 5 

1 

i-- 2 

(6.25) 
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Similarly the  next averaged difference i s  

Since t h e  averaged cen t r a l  difference operators are defined only at 

in t eg ra l  points ,  that i s  at whole s t a t ions ,  they s h a l l  be r e fe r r ed  

t o  as "whole s ta t ion"  operators. 

Expanding the  whole s t a t ion  operators  i n  a Taylor series t o  

obtain t h e  first two truncation e r r o r  terms results i n  t h e  

following 

Derivative Nnite difference pa t t e rn  Taylor series expansion 

yi-2 yi-l y i  Yi+l yi+2 

==l ( 1 ) = y ,  + o  Y i  

'i 2h 
1 

z -  -1 ( -1 0 -1 ) =y; + b y : i i +  h2 . . 
11 I1 

= z -  1 (  1 -2 1 ) = Y i  + E Y i  h2 i v  + . . . .  2 
h 'i 

iii 1 iii h2 v 2 0 -2 l ) = y l  + T Y i +  * * - 
-4 6 -4 1) = Yi + - g - y i  * * . - .  

yi =2hJ ( 
i v  h2 v i  + i v  1 

h 
Yi "-4 ( 1  

(6.26) 

This study i s  concerned with determining and comparing the  

accuracy of t he  two cent ra l  difference methods both with order of 

e r r o r  h , t he  ha l f  and whole s t a t i o n  methods. Also a modified form 2 
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of the  whole s t a t i o n  method, i n  which all der iva t ives  occurring i n  

the  given equation L(y)  a r e  approximated, i s  considered. 



. 
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VII. A Method for  Determining the  Accuracy of the 

Central F in i te  Difference Equations 

To study the  accuracy of the  ha l f  s t a t i o n  and whole s t a t ion  

methods i n  second order boundary value problems, t h e  simple problem 

with boundary conditions 

on the in t e rva l  !a,b) i s  considered. 

b- a and x a + i h  t he  f i n i t e  difference method, With h = - n i =  

applying operator equation (6.16) t o  equation (7.1), and noting that 

i-- i+- 2 

yields  

1. Half S ta t ion  Method 
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Using t h e  expanded form o f  equation (7.1)y 

L(y) = - f'y" - fy '  + gy = p(x) (7.3) 

and t h e  operators i n  equations (6.51, (6.61, t h e  difference equation 

f o r  (7.1) takes  t h e  form 

2a. Whole Sta t ion  Method 

The der iva t ive  fi 

t h e  appropriate s t a t ions .  

t o  approximate fi by equation (6.26b). The result i s  

i n  equation (7.4) can be  evaluated e m c t l y  a t  

Another method which can be considered i s  
1 

2b. Modified Whole Stat ion Method 
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Note t h a t  the three sets  of f i n i t e  difference equations, (7 .2 ) ,  

(7.4), and ( 7 . 5 ) ,  lead t o  d i f fe ren t  coef f ic ien ts  f o r  the simultaneous 

equations i n  terms of t h e  same displacements y at the iYn sta t ion .  

With a f e w  assumptions t h e  existence and uniqueness of the  solut ion of 

each of the sets of s imltaneous equat.ions i s  established frm 3. 

theorem proved by Collatz and s ta ted  i n  appendix A. 

i 

If it is assumed that f (x )  > 0 and g(x) 2 0, the systems of 

equations (7.2) and (7.5) satisf'y the  conditions of Theorem Al ( i n  

addition t o  the  sign dis t r ibut ion,  the weak row sum cr i t e r ion  i s  

s a t i s f i e d  and the  matrix of coef f ic ien ts  i s  i r reducible) ;  hence, a 

uniquely determined solut ion e x i s t s  for each system for arbitrary 

boundary conditions and a rb i t r a ry  values of 

equations (7.4) the  additional assumption that for 

p For t he  set of 1' 

satisfies the  conditions. 

The usual approach i n  a f ini te  difference accuracy study 

(ref. 12) i s  t o  carry out the numerical solut ion t o  a number of 

problems f o r  which the  exact solut ions can be obtained and compare 

the  resu l t ing  numerical answers with the exact answers. 

procedure w a s  carr ied out for a number of problems of the  type of 

equation (7.1) and a t ab le  of r e l a t i v e  e r ro r  f o r  a typ ica l  r e s u l t  i s  

given i n  appendix B. Such a procedure has the l i a b i l i t y  t h a t  cal- 

culations must be redone each time the  increment s ize ,  h, changes. 

This 
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The root  mean square of r e l a t i v e  e r ro r  f o r  three d i f f e r e n t  values of 

t he  increment h f o r  problems solved i s  given i n  appendix B. 

Conventional m e a n s  f o r  estimating t h e  e r r o r  bounds do not g ive  a 

sa t i s f ac to ry  m e a n s  of comparison o f  the d i f f e r e n t  methods s ince the  

e r r o r  lid+,& exceed the 1.ctm2 er rs r  ir, a g - i t u d e .  

To obtain de f in i t i ve  expressions f o r  e r ro r  i n  each method, 

independent of increment h, first expand t h e  f i n i t e  difference 

recursion equations ( 7 . 2 ) ,  (7.4), and (7 .5 )  i n  a Taylor series 

expansion about the ith point.  

d i f f e r e n t i a l  equation of t h e  form 

For each method th i s  l eads  t o  a 

subject t o  the  boundary conditions 

x = a  Yi = Ya a t  

Y i  = Yb a t  x = b  

LG, L1, and L are l i n e a r  d i f f e r e n t i a l  operators given 
2 

The symbols 

by 

Lo (Yi) = - ( f iY i l ) (  + g i  Y i  

and 

1. Half Sta t ion  Method 

(7.7) 
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i v  iii 

6 + 6  24 

2a. Whole Stat ion Method 

2b. Modified Whole Stat ion Method 

Eqmtion (7.6) and (7-7) together  with (7.8a), (7.8b), o r  ( 7 . 8 ~ )  

are c lear ly  t h e  d i f f e ren t i a l  equation which represent exactly the 

f i n i t e  difference equations. A s  h approaches zero, equation (7.6) 

approaches equation (7.1).  The solution t o  equation (7.6), sat isfying 
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t he  appropriate bomdary conditions, gives an ana ly t ica l  representation 

of t he  numerical f i n i t e  difference answers. 

equation (7.6) does not appear f eas ib l e  s ince it contains an i n f i n i t e  

number of terms. For a p r a c t i c d  problem, however, i f  t he  length of 

the i i i t e r g ~  (a,b) i s  "lie u n i t ,  h 

smaller. 

A closed form solut ion t o  

i s  perimps 6.1 or  O.Oi  o r  even 

This suggests t h a t  equation (7.6) can be solved with the  

use of  perturbations with the parameter taken t o  be h 2 . 
t o  equation (7.6) be taken i n  the  form Y i  L e t  the  solution 

yi = Yo + h%, L i- - . . (7.9) 

Subst i tut ing equation (7.9) in to  equation (7.6) leads t o  

subject t o  

If each order of e r ro r  term i s  solved i n  sequence, the following 

series of problems r e su l t .  

(1) L o p o )  - Pi = 0 Y 0 (a) = 0, Yo(b) = 0 (7.11) 
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Note t h a t  s ince  equation (7.1) i s  l i n e a r  Yo given by 

equation (7.11) i s  i n  f a c t  the exact solut ion.  From the  form of 

it i s  seen t h a t  Y can be in te rpre ted  as t h e  f i rs t  order e r r o r  
Y i  1 

term i n  t h e  f ini te  difference results. The magnitude of' Y is, 

therefore, a measure of the e r ro r  i n  the  f i n i t e  difference results as 
1 

compared t o  t h e  exmt mswer t o  t h e  problem. A z o q a r i s o n  of t h e  . 
e r r o r  terms Y1 r e su l t i ng  from t he  d i f f e ren t  f ini te  d i f fe rence  

approximations ind ica tes  t h e  r e l a t i v e  accuracy of t he  d i f f e r e n t  

approximations. 

While e r ro r s  i n  t h e  yi are important, e r r o r s  i n  numerically 

obtained der iva t ives  should a l so  be considered fo r  2 thorough e r ro r  

analysis .  

dif ference answers f o r  approximate second der ivat ives .  The second 

difference operator w a s  applied t o  the difference results followed 

by Taylor and perturbation series expansions t o  y i e ld  

Therefore, results were obtained by using the f ini te  

o r  
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VIII. Application of t h e  Method t o  P a r t i c d a r  Problems 

Problems Studied 

U s i n g  the  method described i n  the  previous section, the  e r r o r  

tern Y i n  equation (7.9) and the  second der iva t ive  e r r o r  t e r m  1 
+V 
0 ';1 + - i n  equation (7.13) have been obtained f o r  a series of 

problems f o r  t he  half s t a t ion  and whole s t a t i o n  approximations. 

Equation (7.1) has been solved with 

following values of f(x) 

12 

g = 0 ,  p = - 1 f o r  t h e  

1 (1) f (x )  = - n 
X 

fo r  

subject t o  the  boundary condition6 

Y ( 1 )  = 0 

Y(2) = 0 

and 

(2)  f ( x )  = 1 + x n f o r  

subject t o  the  boundary conditions 

Y(0) = 0 

Y O )  = 0 
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Physically these problems might correspond t o  the  problem of l a t e r a l  

def lec t ion  of a string having a uniformly d i s t r ibu ted  lateral  load 

and a variable tension force f (x)  . 
For the  case where f ( x )  is l i n e a r  (corresponding t o  f(x) = I, 

x ,  o r  1 + x) t he  r e s u l t s  for the half s t a t i o n  and two whole s t a t i o n  

f i n i t e  difference approximations are exactly the same. I n  f a c t  f o r  

f ( x )  = 1, all three difference answers a r e  t h e  exact answer. 

other  cases, however, t he  three difference methods lead  t o  d i f f e ren t  

results. 

For all 

It i s  useful  t o  compare t h e  results f o r  t he  case 

f ( x )  = - 3 i n  d e t a i l  as a typical  example. 
X 

1 For f ( x )  = - and y(1) = y(2) E 0 3 X 

16 
0 5 75 75 

5 
y = - L + 2 , 4  - -  

and 

1. Half Sta t ion  Method 

86 41 4 x3 p- x2 + - 
1 1125 -t 7 - 150 1125 y = - -  

2a. Whole S ta t ion  Method 

2b. Modified Whole Stat ion Method 

(8.3) 

(8.4) 



A p lo t  of the three error  terms Y1 over the  u n i t  in te rva l  i s  

given i n  f igure  2(b). 

The f ini te  difference solution (7.9) can be obtained t o  t h e  first two 

The exact solution, Yo i s  given i n  f igure  2 ( a ) .  

terms fo r  any desired increment from figures 2(a) and 2(b).  

Solutions were also obtained for the  error t , e m  for d l  ef' t he  

h 

remaining functions f (x) noted previously; additional p l o t s  of 

results and the exact solution f o r  the  case 

shown i n  figures 3(a) and 3(b) .  

solutions are not shown because figures 2(b) and 3(b) serve t o  

f (x )  = 1 + x 3 , are 

Detailed p lo t s  of the remaining 

i l l u s t r a t e  t h e  character of the  results; and overal l  measure of the  

r e l a t i v e  e r ro r s  i n  t he  two methods w i l l  be shown f o r  all the  

solutions obtained. 

The e r ro r  terms f o r  t he  second der ivat ives  corresponding t o  the  

d i f fe ren t  methods and f o r  the case f ( x )  = - are as follows 3 
X 

1. H a l f  Stat ion Method 

y ; I + - - - -  0 164 2 31 
Y 

1 2 -  375x - x + z  

2a. Whole S ta t ion  Method 

- -  -2 
25 

374 x2 + 6x - Y ; I + - -  0 
1 2  - 75 

2b. Modified Whole Stat ion Method 

J v  
713 

1 12 15 75 

1 

206 x2 + 2 6 ~  - - y" + - = - -  0 

(8.7) 
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~ 

, -  

A p lo t  of the  e r ro r  i n  the  second der ivat ive f o r  each of t h e  methods 

i s  given i n  figure 2(d) for this case and i n  f igure  3 ( d )  for the  case 

f(x) = 1 + x J . m e  exact solutions Y: a r e  given i n  f igures  2 ( c )  

and 3 ( c ) .  

solut ion (7.13) can be  obtained from these p l o t s  fo r  t h e  desired 

increment h.  R e s u l t s  f o r  the remaining functions w i l l  be shown 

l a t e r .  

Again the first two terms of the f i n i t e  difference 

Numerical calculat ions were a lso  carr ied out for t h e  def lect ions 

and the second der ivat ives  for the  problems c i ted  t o  determine i f  the 

ana ly t ica l  e r ro r s  adequately represented the numerical e r rors .  

data a r e  not included here; however, f o r  h l e s s  than about 0.1 a l l  

numerical e r rors  agree with ana ly t ica l  e r ro r s  t o  within one percent. 

The 

Relative Errors  of the HaLf and Whole Stat ions Methods 

While r e s u l t s  such as those given i n  f igures  2 and 3 are usually 

suf f ic ien t  t o  ident i fy  which of the methods i s  superior f o r  a given 

problem, iden t i f i ca t ion  of the superior method f o r  spec i f ic  results is 

sometimes d i f f i c u l t .  

of t h e  methods can be made by examining the root  mean square values of 

the e r ro r s  f o r  the en t i r e  solution, that i s  

A quantitative measure of the  r e l a t i v e  accuracy 

, .  fo r  the  error i n  deflection and 
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-11 Y =  dx 12 
0 

1 

f o r  the e r ro r  i n  second derivative,  where t h e  in tegra t ion  i s  over the  

un i t  length from a t o  b. Thus, t o  assess quant i ta t ively t h e  r e l a t i v e  

merits of t he  half  s t a t ion  and whole s t a t ion  methods f o r  t he  various 

problems solved, the r a t i o s  

- 
'1,half 
- 
'1, whole 

7 1  

'1, half 

'1 , whole 
7 1  

have been calculated f o r  each problem. 

figure 4. 

compared with the ha l f  s ta t ion  method are given i n  f igure 5 .  

The results are shown i n  

Ratios f o r  t h e  modified form of the  whole s t a t i o n  method 

Discussion of  Results 

The results given i n  figures 4 and 5 show t h a t  f o r  the problems 

studied t h e  e r ro r  i n  the  deflection resulting from use of t he  half 

s t a t ion  method i s  less than the e r ro r  resu l t ing  from the  use of the 

whole s t a t ion  method. 

second der ivat ive approximtions gives the same result i n  general. 

The investigation of t h e  accuracy of the  
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The difference between the  two methods i s  generally l e s s  i n  

calculat ing the  second derivatives of def lect ions than i n  calculat ing 

t h e  def lect ions themselves; moreover, differences i n  the comparative 

e r ro r  from problem t o  problem are noticeably l e s s  with t h e  second 

d p r i V g f ; i V p E  V?%h the  dP-flPCtiQQE a 

It should be noted t h a t  the ana ly t ica l  representation of e r rors  

shows c lear ly  the  danger of using numerical data a t  a s ingle  s t a t ion  

o r  a few points  t o  characterize the  e r ro r  i n  a problem. 

case i s  shown i n  f igure  2(d)  f o r  

of the  second der ivat ives  near t he  end x = 1, the whole s t a t i o n  

A typ ica l  

1 f ( x )  = - . I f  comparisons a r e  made 3 X 

method appears much more accurate than the  half  s t a t i o n  method; 

however, figure 4(b) shows clear ly  t h a t  the  average e r ro r  with the  

whole s t a t ion  method i s  more than twice a s  great. 

Reasons f o r  the  superior i ty  of the half s t a t i o n  method a r e  not 

a l together  clear,  but may include t h e  symmetry of t he  matrix of 

coef f ic ien ts  i n  t h i s  method. By contrast ,  the  matrix of coef f ic ien ts  

associated wi th  whole s ta t ions  i s  not symmetric. Matrix symmetry can 

be of grea t  value f o r  many numerical procedures associated w i t h  

eigenvalue rout ines  and simultaneous equation solving rout ines  and, 

i n  some cases, i s  required f o r  an e f f i c i e n t  numerical solut ion of a 

l a rge  order system. 
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IX . CONCLUSION 

. 

A procedure w a s  developed to  determine an ana ly t ica l  expression 

f o r  the d i sc re t i za t ion  e r ror  i n  a f ini te  difference solut ion t o  allow 

a d i r e c t  comparison of methods which w a s  independent of the increment, 

or  mesh s ize .  

accuracy of two d i f fe ren t  f i n i t e  difference methods f o r  solving 

l i n e a r  second order boundary value problems. 

Using t h i s  procedure, a comparison was made of the 

The methods investigated were a "half  s ta t ion" method which 

corresponds t o  making the f i n i t e  difference approximation before 

expanding the derivstFves c?f fbnction products and a "whole s ta t ion" 

method which corresponds t o  expanding such products before making the  

approximations. Both of these methods a r e  current ly  i n  use. Also 

investigated w a s  an a l te rna te  form of the  whole s t a t ion  method i n  

which known derivat ives  a r e  approximated r a the r  than evaluated 

exactly.  It w a s  found t h a t ,  f o r  the same number of s ta t ions ,  the 

average e r ro r  i n  calculated def lect ion resu l t ing  from use of half  

s t a t i o n  difference approximations w a s  always l e s s  than the  e r ror  

which resul ted f r o m  the use of t he  whole s t a t ion  difference 

approximations. 

magnitude. 

s t a t ion  method gave the  same or  b e t t e r  r e s u l t s  than  the  usual whole 

s t a t ion  approximation. The invest igat ion of the accuracy of second 

der ivat ives  gave similar r e s u l t s  i n  general. 

I n  some cases this e r ro r  i s  reduced by an order of 

It w a s  also found that the  a l t e r n a t e  form of t he  whole 
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d i f fe ren t  areas of numerical analysis.  
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X I V .  APPEXDIX A 

The following theorem i s  proved by Collatz  ( r e f .  3 ,  page 44). 

Theorem A 1. If the  coeff ic ients  a of an n x n matrix A 

satisfy the  conditions 
Sk 

> ~ , a  5 0  f o r  j f / k  “J J Jk 
1. Sign d i s t r ibu t ion  

2a. The weak row-sum c r i t e r ion  

k=l > 0 f o r  a t  least one j = jo 

and 2b. Matrix A i s  i r reducible  o r  instead of 2a and b the  

stronger condition 

2c. Ordinary row sum c r i t e r ion  

f &jk” 
k=l 

f o r  j = 1 , .  . n, 

then A i s  monotonic and det A f 0. Thus a unique so lu t ion  t o  

A ex i s t s .  
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The problems named i n  equations (8.1) and (8.2) were solved 

exactly and numerically by the  half' s ta t ion ,  whole s ta t ion ,  and 

modified whole s t a t i o n  methods with the  increment h 

0.125, and 0.0623. The r e l a t ive  e r ro r  R was calculated for each 

method. 

and the  r e l a t i v e  e r rors  a t  several points  is given in t ab le  I for 

the  problem -((1 + x3>y')' = 1. 

f o r  each problem, the  root mean square of the  r e l a t i v e  e r ro r  given by 

equal t o  0.25, 

A n  example of the table  of exact and approximate solut ions 

Rather than include similar t ab l e s  

2 - + Rn € f + R 2 + .  2 

was found for  each method. 

method for each increment 

tab les  1 and I1 i t  i s  seen that it is sometimes d i f f i c u l t  t o  

determine which method i s  best f o r  t h e  desired increment h. 

The root  mean square errors for each 

h a r e  given i n  t a b l e  11. After examining 
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3 e r ro r  using whole s t a t ion  method 
;% e r ro r  using modified whole s t a t ion  method 

1 f (x )  = - 
X 

1.69 65 .24 
1.29 .46 .16 

- 62 - 

Size  of increment, h - 

k e r ro r  using ha l f  s t a t ion  method 

$ e r ro r  using modified whole s t a t ion  method 

$ error using whole s t a t i o n  method 

TABU I1 

1/4 1/8 1/16 
31 .12 .04 

3.82 1.43 .52 
.74 .74 .28 

Size of increment, h 1 114 I i/a I i/iG f 

Size of increment, h 

,% e r ro r  using half  s t a t ion  method 

I $ er ror  using ha l f  s t a t ion  method I .42 I .16 I .06 1 

i / 4  1/8 1/16 
.39 .16 .06 

% e r ro r  using whole s t a t i o n  method 

er ror  using modified whole s t a t ion  method 

1 f ( x )  = - 2 
X 

5.91 2.13 9 77 
3.93 1.93 .78 

Size of increment, h 

$ e r ro r  using h a l f  s t a t i o n  method 

$ e r ro r  using whole s t a t ion  method 

$ er ror  using modified whole s t a t ion  method 

1 f (x)  = - 3 X 

1/4 1/8 1/16 
1.62 .64 .24 
7.43 2.57 -92 

12.00 5.52 2.17 . 
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I 
j Size of increment, h 1/4 I 1/8 1 1/16 
9 er ror  using half  s ta t ion  method 

% e r ro r  using whole s t a t ion  method 

% er ror  using modified whole s t a t ion  method 

1 f(x) = 7 
0 

X 

.50 I 3.40 1.34 

8.15 2-79 1 .oo 
28.22 12.10 4.69 

1 Size of increment, h 1/4 1/8 
1 $ e r ro r  using ha l f  s t a t ion  method 5.67 2.24 

1/16 
.83 

f (x )  = 1 + x 

Size of increment, h I i/4 I 1/8 I 1/16] 

5 e r ro r  using whole s t a t ion  method 
$ e r ro r  using modified whole s t a t ion  method 

9x1 3.38 1.28 
52.40 22.11 8.55 

$ er ror  using modified whole statim method I *90 I .35 1 .14 1 
$ er ror  using ha3f s t a t ion  method 

$ e r ro r  using whole s t a t ion  method 
-90 -35 .14 
0 9 0  935 .14 

' Size  of increment, h 1/4 1 1/8 
$ e r ro r  using half  s ta t ion  method 1.16 .45 
j% e r ro r  using whole s t a t ion  method 3.25 1.23 
$ e r ro r  using modified whole s t a t i o n  method 3.25 1.23 

* 

TABLE I1 .- Continued 

1/16 

.45 
*45 

17 

Size of increment, h 1/4 1/8 1/16 
;% e r ro r  using ha l f  s t a t ion  method 1.69 54 .22 
$ e r ro r  using whole s t a t ion  method 4.58 1.64 0 5 8  

s e r ro r  using modified whole s t a t i o n  method 4.54 1.62 * 59 

I 



. 

t 
Size of increment, h 1/4 
$ e r ro r  using half s t a t i o n  method 

4% e r ro r  using whole station method 

$ error using modified whole s t a t i o n  method 

2.18 

5.79 
4.14 

- 64- 

1/8 1/16 
78 .28 

2-08 9 75 
1.35 47 

$ e r ro r  using half s t a t i o n  method 

5 error using whole s t a t i o n  method 

$ er ror  using modified whole station method 

2.72 97 .34 
7.12 2.56 *92 
3.05 .88 31 

~~ 

TABLE 11.- Concluded 

. 
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y1 

1.0 1.2 1.4 1.6 1.8 2.0 
X 

(a) Exact solut ion.  

.i6 

0 

-. 08 

-. 16 

Error 

Whole station m e t h o d  
.16 - 

Modified whole station m e t h o d  

- 
-.A6 I I I I I I I I a I 

1.0 1.2 1.4 1.6 1.8 2.0 

X 

Error term i n  approximation so lu t ion  independent of increment, h. 

Figure 2.- f(x) = 1/2. 

1.0 1.2 1.4 1.6 1.8 2.0 

X 

term i n  approximation so lu t ion  independent of increment, h. 

Figure 2.- f(x) = 1/2. 

m e t h o d  
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(d) Error term i n  approximate so lu t ion  of second der iva t ive  independent 
of increment, h. 

Figure 2.- Concluded. 
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(a) Exact solution. 

I- /Whole station method  

Modified whole station method 

Ealf station method  

0 
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X 

(b)  Error term in approximate .solution independent of increment, h. 

Figure 3 . -  f (x)  = 1 + x 3 . 
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( d )  Error term i n  approximate so lu t ion  of second der iva t ive  independent 
of increment, h. 

Figure 3 . -  Concluded. 
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