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ABSTRACT 32299

The difficulties existing in applying methods consistently used
for the measurements of dielectric constants and losses in lower micro—
wave frequencies at millemeter waves are presented. A method using a
Fabry-Perot interferometer as & resonant cavity for the measurements of
dielectric constants and losses in the millimeter region is discussed.
The advantages of using such a system are that its physical dimensions
are many times larger than the operating wavelength and a relative high
Q can be obtained thus providing a system of high sensitivity in the
measurements of dielectric constants and losses. Experimental data of
dielectric constants and losses for teflon, polystyrene and plexiglas
are presented at approximately 60 GHz. Samples of several thicknesses
and various surface finishes were used and the results compared. Also,
comparison with data at lower microwave frequencies was made. Values of
dielectric constants in a small frequency band were measured at constant
temperature. To determine the effect of temperature on the dielectric
properties at millimeter waves, the dielectric constant was measured at

different temperatures.



CHAPTER I
INTRODUCTION

The dielectric constants and loss tangents of dielectric materi-
als depend upon the frequency of the applied electric field. The cal-
culation of the permittivity of dielectrics is usually very difficult,
because it depends on the lattice structure of the medium. The dielec-
tric constant of a material is a function of its polarization. A plot
of the real part of the polarization as a function of frequencyl is
shown in Figure 1. The polarization is shown to be constant for
frequencies up to, but not including, the microwave region. In the
microwave region, a decrease in polarization occurs. This is due to
the damping of the dipolar polarization behind the applied electric
field which eventually reaches zero. Between microwave and infrared
frequencies, a region of constant polarization occurs and is equal to
the atomic and electronic polarization. Ancother transition in polariza-
tion occurs through the infrared region and is due to the change in the
atomic polarization. Between the infrared and ultraviolet region,
constant polarization exists and is equal to the electronic polariza-
tion. In the ultraviolet region another transition occurs, and this
is due to the varlation in the electronic polarization. The

permittivity of some dielectrics can be approximated by the simulation

1a.5. Decker, Solid State Physics (New York: Prentice Hall,

Inc., 1946), p. 157.



*fousnbaiy adueuosalr 9ruox1oara pue dtwole afburs e Yyitm asueisqns aejodrp
B JoJ Aouanbaiy jo uoriouny se g uorieziiejod [el101 Y3} Jo 11ed tesax oyJ --1 ainbry

Aouanbaaxy Al..\)

JTUO0I}I3Td

d

oTWole

-1

uwﬁon_um

ol L o [ |
awﬁoﬂ>m~awm\~ _mwuwuu=m4 __mw>m3=«4 d
031 J4HN




of the medium by artificial dielectrics.2 However, the dielectric
constant and loss tangent of many materials in the microwave region
are found experimentally using resonant cavity techniques.3

Langley Research Center (LRC) employs many dielectric materials
for antenna windows, radome covers, and other applications. With the
trend toward higher frequencies for space telemetry and commmnication,
it is very important that the properties of such materials be known in
the millimeter region.

In the millimeter and submillimeter wavelength regions conven-
tional microwave cavity resonators become increasingly difficult to
construct while maintaining reasonable tolerances and relative high
Q's, because their dimensions must be comparable to the operating
wavelength. Cylindrical waveguide cavities are normally used for the
measurements of dielectric constants and losses at low microwave
frequencies, but suchvdevices are limited in the milllimeter region
because a relative high Q can not be maintained due to side wall
losses and mechanical tolerances. Also, the samples used must have
dimensions which are the same as the cavity itself. To avoid such
intolerable dimensions, to ilncrease the value of Q, and to increase the
accuracy of the test data resonators must be constructed with dimensions

many times larger than the operating wavelength.

2John D. Kraus, Electromagnetics (New York: McGraw-Hill Book

Company, Inc., 1953), pp. 56-59.

3Carol G. Montgomery, Techniques of Microwave Measurements
(New York: McGraw-Hill Book Company, Inc., 1947), pp. 657—665.




One method that has received considerable attentionh’5’6 which
could act as a suitable resonator, especially in the millimeter and
submillimeter region, is the Fsbry-Perot interferometer, shown in
Figure 2. The advantage of such an interferometer in the millimeter

region is that its physical dimensions are large compared to the

operating wavelength and the maintainance of high Q is made much easier.

The use of such a device for the measurements of dielectric
constants and losses7 in the millimeter region is ideal, because a
sample of large dimensions can be used. The mathematical treatment of
the dielectric constants and losses using the interforemeter is based
upon the excitation of plane waves. To assure that plane waves are
excited, collimating lens are used to convert the spherical waves to
plane waves. Thin perforated membranes are used as reflectors,

and the holes are used to couple energy in and out of the resonator.

hW. Culshaw, "Resonators for Millimeter and Submillimeter Wave-

lengths,” IRE Transactions on Microwave Theory and Techniques,
9:135-144, March, 1961.

> , "High Resolution Millimeter Wave Fabry-Perot
Interferometer,” United States Department of Commerce, National Bureau
of Standards, NBS Report 6039:1-32.

6R. W. Zimmerer; M. V. Anderson; G. L. Strine; and Y. Beers,
"Millimeter Wavelength Resonant Structures," IEEE Transactions on
Microwave Theory and Techniques, 11:142-14G, March, 1963.

T

W. Culshaw;and M. V. Anderson, "Measurements of Dielectric

Constants and Losses with a Millimeter Wave Fibry-Perot Interferometer,"

United States Department of Commerce, Boulder, Colo., NBS Report 6786,
July 19, 1961.
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6

To further verify the application of such a device, a modified
system was used for the measurements of dielectric constants and loss
tangents at higher millimeter frequencies. To verify the theory,
samples of different thicknesses were used and the results compared. To
determine data accuracy, samples of various surface finishes were
employed. This was undertaken to determine the surface finish necessary

to insure good data for practical applications.



CHAPTER II
INTERFEROMETER RESONANCE THEORY

The resonance of a Fabry-Perot resonant cavity is a function of
plate separation.8 Once & resonance is obtained, the insertion of a
dielectric slab between the plates will disturb its resonance, but a
shift in plate position will restore it. The equation defining inter-
ferometer resonance having a dlelectric material between its plates can

be derived using impedance transformations.

Impedance Transformation Method
The interferometer resonance equation is derived using trans-
mission line theory assuming that a lossless medium (e = 0) is present
between the plates. The resonant cavity with the dielectric slab
between its plates is shown in Figure 3(a). Assuming plane waves, the
fields in the various regions can be expressed as

o (wt-8x) I (wtsx) )

E = A
o 0

H - l/Zo [Ao o (Wt-BX) B e.j(wt—i-Bxa ) 0<xsx

+ Bo Region no. 1

~

(1)

J (w't-le) 3 (wt+le)

E1 = A1 e + Bl e Region no. 2
3( wt-le) 3( wt+le) > (2)
s dfn A e - B e n<xsn

,1

8See Appendix I.
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_ J(wt-8x) j(wt+Bx)
Ey=4y € +Bye Region no. 3

(3)

. . <x<x

_ j(wt-8x) J( wt+Bxﬂ X5 - %3
B = 1/20[:1\2 € -Bye

where Zo and Zl are the intrinsic impedances in their respective

reglons defined as
1
ZO =(U.o/€o) /2 (h')

1/2
% = /e) (5)
The standing wave equations for each region can be written as

E = {:(Ao + B°> cos Bx - ,j(Ao - BJ sin B;EF

Region no. 1
oxxsx (©
B =1 /zo [:(Ao - Bo) cos Bx - j(Ao + Bo) sin Bg}
)
El = [(Al + Bl) cos le - J(Al - Bl) sin le
- PRegion no. 2 1)
M o=1/7) [(Ai - Bl)cos ByX - .j(Al + Bl)sin 81: R

J
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\
E2 = {KAZ + BE) cos Bx - j(AE - Bg) sin Bx

Region po. 3
>x <xX< x3 (8)

=1/Zo[(A2—B2)cos Bx—j<A2+B sin e:] e

For resonance, an electric field node or a magnetic field antinode must

exist at x =0 and x = X, = nm. Therefore, B0 = -Ao and B2 = —A2.

Equations (6), (7), and (8) can then be expressed as

Eo = - j2Ab sin Bx Region no, 1

(9)
H = l/Z0 [%Ao cos B#] 0<x< x

E1 = - j2A1 sin Bl X Region no. 2
(10)

Hl=l/lei2Alcosle} xleSx2

E2 = - J2A2 sin 8x Region no. 3

l/Z [ cos Bf} X, <x< x3

These equations represent the fields in their respective regions during

(11)

resonance.
The impedance seen at point x5 looking towards reflector

No. 1, is given by



;L + jZ tan Bxl
Zy = 2o | 5T Tan (12)
o * J%, tan Bx)

Assuming an ideal short at reflector no. 1, equation (12) is expressed

as

Z2 = jZO tan Bxl (13)

Such an assumption is valid because plates with reflection coefficients

of 0.995 and better can be constructed. At x = Xos the impedance Z3

is given by

2.+ 3 tan B s—}
2, -7 |2 e 15 (1)
3 Zl + J22 tan Blsl

and at x = x§, Zh is expressed by

Z3 + jZO tan 382 (15)
o} ZO + JZ5 tan Bs2

Zh =2

For interferometer resonance, an electric fleld node must exist at
X = X5 i.e., Z& must be equal to zero. Equation (15) can then be

expressed as

Z, + JZ tan B8s
o}

5 =0 (16)

5 =

Substituting Equation (13) into equation (1k4) gives
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. L (éo tan Bx1 + Z1 tan Blsl (1 )
3 = 37 Z, - Z_ tan Bx, tan B s 7
L o

1 171

Equation (17) can now be inserted into equation (16), and the

equation defining resonance is given by

2
ZO ZO
7| cot Bys; |cot ps, + cot Bxi] + cot Bx, cot Bs, - | —=) =0 (18)

Defining ZO/Zl = k, equation (18) can be expressed as

0 (19)

2

k cot Blsl cot Bs2 + cot Bxl:] + cot Bxl cot Bs2 -k

By direct measurement of the relative distances between the slab

and the plates, and slab thickness, the value of k can be found using

equation (19). The expression defining k 1is given by

1/2 1/2
uo/eo uoel

k= (ZO/Zl) = ul/€l = uleo

(20)

Since for most nonferrous materials U zul,9eq_uation (20) can be

expressed as

k = (el/eo) = (€) / (21)

9Derived equations will not apply for highly conducting slabs.
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Knowing k, the dlelectric constant €, can be found. It should be
noted that equation (19) is a transcendental equation and many values
of k will satisfy it. Equation (19) can be derived in another way
by using equations (9), (10), and (11) and applying boundary conditions

at points of discontinuity.lo’l1

Dielectric Constant Determination

Once a resonance has been achieved, the insertion of a dielectric
will alter the resonant length of the cavity and a shift in position of
one of the refiectors must be made in order to restore resonance.
Referring to Figure B(b), the dashed plate represents the position of
plate no. 2 for resonance before the insertion of the dielectric, and
the solid its position for resonance after the insertion of the
dielectric.

Before the insertion of the dielectric x =0 and x = x, are

electric field nodes; therefore

X t+sg=x = nn/g n=1,2, 3, c° * ¢ (22)

Substitution of equation (22) into equation (19) results in

- cot 852]-+ cot Bs, cot Bs. + K - 0 (23)

k cot Bls1 cot Bs 3 >

3

lOH. R. L. Lamont, "Theory of Resonance in Microwave Transmission
Lines with Discontinuous Dielectrie," Philosophicsl Msgaszine, Series
7, vol. 29, No. 197:521-531, June, 1940.

llw. Culshaw and M. V. Anderson, op.cit. pp. 5-9.




14

If A 1is the shift of plate no. 2 to restore resonance then

sy = 85 - (5 + A) (24)

Substitution of equation (24) into equation (23) yields

N
\
k cot B s ( cot Bs3 - cot [53 - (sl + Aﬂj
; + cot Bs cotBrs —(s +A)+k2.-_o (25)
3 LB 1

Using equation (25) a curve of A versus s, can be drawn. It has

3

been shown12 that the turning points of this curve are given by

tan Bs; = 1/k [tan E 18 l)] (26)

and

=-1/k [:cot (2 18 l)J (27)

and the corresponding values of A by

tan —12— B (sl +4) = 1/ ‘:ta.n (—é— elslﬂ (28)
1 B (s + A = [ta.n (.173 Blsl)il (29)

Which of equations (28) and (29) represents A .y &nd which A .

B8y
5 s i.e., upon the thickness s of the

slab. Since k > 1, it is evident that when the integral part of

depends on the sign of tan —F5—

12H. R. L. Lamont, op. cit. p. 525.
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2s
[%r%} is zero or even integer equation (28) gives A and equation
1

28
(29) A___; when the integral part of [?G%} is an odd integer
equation (28) gives A . ond equation (29) Ao

Another form of equation (25) is given by

cot Bs3 + k2 tan Bs

5 (30)
an 883 + cot 853) + (k - 1) tan Blsl

tan B(s + A): tan 8.s
1 171 k(t

When the thickness of the dielectric slab 1s an integral number of

hal f-wavelengths, or

B.S, = nx = n\/2 n=1, 2, 3, = + - = (31)

then equation (29) is equal to

tan B (sl +1«) tan Bls1 =0

B<Sl + A) = Blsl = nn

A= s (k - 1) (32)

Examining equation (19), which describes the interferometer resonance
when the dielectric slab is between the plates, it can be concluded

that there 1s a linear relation between xl and s when the

2
dielectric thickness is a multiple of a half-wavelength. Such a

relation is given by
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cot 382 = - cot Bxl

Bszz_Bxl+nﬂ n=0,%*1, %+ 2, .,,

x, +8s,=0A2 n=0,%t1,%2, ... (33)
Thus, when B.s. = nmn, the condition for resonance depends upon

11
the sum of the distances s, and x,, as given by equation (33). Once

resonance has been restored after the insertion of the slab, a change
in the position of the slab will not disturb resonance, as long as
equations (31) and (33) are satisfied. This can better be understood
by remembering, from impedance transformation techniques, that layers
of multiples of half-wavelengths thick produce no change in the
impedance seen before and after them. The A required to restore
resonance will be the same for any position of the dielectric, assuming
that equation (31) is satisfied.

Therefore, there is evidence that there are at least three
possible methods of determining the dielectric constant of a sla.b.l3
The first and most direct method would be to use equation (19). By

directly measuring distances xl, Sp» and 8., and knowing the

l’
operating wavelength, the value of k can be found. A computer

program would more accurately determine k.

lBW. Culshaw and M. V. Anderson, op. cit. pp. 11-12.
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A second method is to plot A versus s for each dielectric

3

slab. The values of A will oscillate between A and Amin as a

function of 33. Once Ahax and Ahin have been determined, k can
be found using equations (28) and (29). A computer program is also
recommended in accurately determining k wusing this method.

The third method would be to use slabs whose thicknesses are
multiples of half-wavelengths. By measuring A, the shift of position
of plate no. 2 to restore resonance, k can be determined using
equation (32). This probably would be the easiest method for deter-
mining k as long as slabs of multiples of half-wavelengths are
available or when the primary source oscillates at frequencies which
make the slabs multiples of half-wavelengths. At lower microwave

frequencies such a problem is not very difficult. However, at the

millimeter region the problem is somewhat more difficult.

Loss Tangent Evaluation
Most resonators are usually Jjudged by their quallty factor, or

Q, which is defined as

- W Energy stored (3h)
~ " Mean dissipation of power

Q

The average power loss or the dissipated power in the cavity is given

by

R
p =2 rr H, o+ HE S (35)
8 “j\jcavity walls o
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where RS is the real part of the surface impedance of the plates,
and Htan is the magnetic field tangential to the plate surfaces.
The maximum stored energy W 1n a cavity resonator of any arbitrary

shape for a sinusoidally time-varying field is given by

ws=§JffE~E*dV=%fffH-H*dv (36)
v v

where V denotes the volume of the cavity. Thus, if the field
distribution inside the cavity is known, the Q can be evaluated
regardless of its shape or size. Also knowing the field distribution,
the resonant frequency can be determined. The field distribtuion for
many shapes of cavities are difficult to determine. However, for
some simple geometrical shapes of a cavity, it is possible to estimate
the field distribution, and hence determine the Q and the resonant
frequency fairly accurately. The dimensions of the inner and outer
conductors must be assumed to be such that higher order modes, other
than the TEM mode, do not exist inside the cavity. The equations
derived previously in each region can now be used to derive the Q

of the cavity with and without the dielectric. Assuming that there

is a loesless medium between the plates, the energy stored is given by

€
W=—Ef/fE . E* av
8 2 4 o] o]
v
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QQJ[JF ly Ai sin2 Bx 4V (37)

eo
Wsz-.-é—.

Remembering that for resonance 4 = nm, equation (37) can be written as
2 I
W= € d A ;f as (38)

The average power loss or the dissipated power in the cavity per plate

is given by

R
s
Pe =72 Jf Ban - Hzan s
A

i Rs 2

P = JC]Fcos 8x dS (39)

s 2

Z
o} A

Since the surfaces of the reflector plates at resonance are at distances

equal to x = o0 and x = nn, equation (39) can be written as

2A§ Rs f
(o} A

The above equation represents losses per plate. Assuming that the
losses in both plates are equal, the equation representing the total

dissipated power by the plates is given by
M‘A.ER r Ial
P=~£—f-j]ds (k1)
8 A2
o A
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The @ of the cavity without any dielectric between the plates is
obtained by using the basic definition given by equation (34) and
substituting equations (38) and (41), as represented by
weod

Q = —2
° iR /z2
s

(k2)
o

Equation (42) represents the Q of the cavity when there are no
diffraction losses from the sides of the interferometer. The
evaluation of the Q is simplifiedlh by assuming that the diffraction
losses with and without the dielectric are the same, and that slabs
whose thicknesses are multiples of half-wavelengths are used.

To account for diffraction losses, an additional term Pd is

added in equation (kE), thus expressing the Q of the cavity without

the dielectric as

we d

Q

= ——— (43)
° ARslzi + By

The radiation resistance of the cavity due to transmission through the
end plates is also included in.iPd. Once the dielectric is inserted
between the plates the q of the cavity will be reduced and is given

by

Ibid., pp. 13-15.
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CHAPTER IIT

SYSTEM DESCRIPTION

The photograph of the system used for the measurements of the
dielectric constant and loss tangent is shown in Figure 4. A block
diagram of this system is shown in Figure 5.

The basic frame of the interferometer is about 36 inches long.
Two upright frames are used to support the reflector plates. Each
frame has various tilt adjustments, and it can be moved forwards or
backwards. The middle upright frame is used to support the dielectric
slabs. It also has various tilt adjustments and can be moved in any
direction. The aperture of the middle frame is 10 x 10 inches, and
dielectric slabs much larger than the size of the reflector plates can
be used. This is to insure that the basic structure would not interfere
with the propagation of the waves.

The horn antennas have an aperture of 2-1/8 x 2-1/8 inches. The
dielectric lenses were used to convert spherical waves to plane waves.
The profile of lenses necessary for such conversion should be hyper-
bolic. However, because of the difficulty in comstructing such a
profile, a spherical approximation was used. The equation defining

such an approximation is given by

1 k-1
I~ R ()47)

25
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Where: L - focal length

R - radius of curvature of lens

k ~ index of refraction of the dielectric lens

The lenses were made out of rexolite which has an index of
refraction of about 1.57. A focal length of 5.9 inches was assumed,
thus giving a radius of curvature of about 3.36 inches.

15

For reflector plates, thin perforated membranes ™ were used. |
The thickness of the membranes was about 0.001 inches. The membranes
were made of nickel coated with a thin film of gold to increase the
conductivity of the surface. A photoetching process was adoptedl6 for
the construction of the membranes. The membranes are circular in shape
with a diameter of about five inches.

A photograph of the membrane with its hole pattern used in the
tests is shown in Figure 6. The hole pattern of the perforated
membranes is better shown in Figure 7. Since it was necessary not only
to obtain a relative high Q but also good transmission, a compromise in
the design of the reflector plates was made. The relative dimensions of
the perforated plates are given by a = b = 0.1 inches and r = 0.02

1
inches. A transmission loss of 23.36 dB per plate was calculated. 7

15R. W. Zimmerer; M. V. Anderson; G. L. Strine; and Y. Beers,
op. cit. p. 1k2.

l6Custom Microwaves, longwood, Florida.

17R. W. Zimmerer; M. V. Anderson; G. L. Strine; and Y. Beers,
op. cit. pp. 1431k,
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The measured loss per plate was about 18.5 dB and of the entire system
about 8.5 dB. The design was centered around 60 GHz.

Conventional methods employed for the measurements of Q at lower
microwave frequencies can not be used in the millimeter region since
accurate wavemeters are not presently available. A system using a
different technique has been used to measure the § and is shown in
Figure 5. The 60 GHz klystron is linearly varied through a frequency
range, and the response of the Fabry-Perot resonant cavity is displayed
on the oscilloscope. Such a response curve is shown in Figure 8(a). A
portion of the output of the 60 GHz klystron is mixed with the sixth
harmonic of a phase-locked X-band source. The X-band source is varied
until a zero beat is detected from the harmonic mixer. The zero besat
is displayed simultaneously on a dual beam oscilloscope with the
response of the cavity, and it is used as a variable marker which is
tuned to the center frequency and then to each of the half-power band-
width points of the response curve. The zero beat used as a frequency
marker is shown in Figure 8(b). The marker is determined for each case
by measuring the frequency of the 15-15.125 MHz R F reference crystal
oscillator with a 50 MHz counter thus permitting accurate determination
of the center frequency and the half-power bandwidth points of the
cavity response. The Q of the cavity is then determined by

f

Q= (48)

Where: fo - center frequency of the cavity response

AF - half-power bandwidth of cavity response



(a) Cavity response curve with air. Q = 10,960.

: (b) Cavity response curve and zero beat used as a variable frequency
; marker. Q = 10,960.

Figure 8.~ Cavity response curve and variable frequency marker.




CHAPTER IV

SYSTEM PERFORMANCE AND EXPERIMENTAL RESULTS

The purpose of this chapter is to discuss the tests performed,
the methods used for the calculation of the dielectric constant and
loss tangent, the experimental procedure for each method, problems
encountered and the solutions employed. Included will be disgrams of
experimental data, comparison of results with data at lower frequencies,
and comparison of experimental diagrams with theoretically predicted
curves. The theoretical prediction of the dielectric constants and
loss tangents as function of frequency and temperature is very difficult
if not impossible. However, factors which directly contribute to these
parameters have been predicted theoretically and diagrams are available.
It is the purpose to try to compare the results and previous existing
data at lower frequencies with the theoretical predictions and comment

on the shape of the experimental diagrams.

Dielectric Constant Measurements
Two methods were used for determining the dielectric constants.
The first method was to use equation (32) assuming that equation (31)
is satisfied, and the second to use equations (28) and (29). Since
there are many values of k which will satisfy equations (28) and (29),
it is recommended that the range of k be first determined by the use
of equation (32); i.e., the first method should be used to determine

the range of k for the different materials, and then the second

31
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method can be used to verify the results. The experimental procedure
and results for each method will be discussed.

¥First Method. To use this method for the measurement of

dielectric constants, slabs whose thicknesses are multiples of half-
wavelengths must be available. As will be shown later, the measurement
of the loss tangent is based on the assumption that the slab thickness
is a multiple of a half-wavelength; therefore, it will be advantageous
to utilize such slabs, because they can be used for the measurements

of the dielectric constant and loss tangent.

The experimental procedure for this method is as follows:
First cause the cavity to resonate at the desired frequency. Display
the response curve of the cavity on the oscilloscope. As the dielectric
slab is inserted between the plates, the resonance will be disturbed,
and the response curve will move or completely disappear from the
oscilloscope. Move plate no. 2 toward plate no. 1 until resonance is
restored (appearance of the response curve on the oscilloscope at the
same position as previously). Record the A necessary to restore

resonance, and by using equation (32) determine k. To make sure that

the effective slab thickness is a multiple of & half-wavelength, move

the dielectric slab in any direction and observe the response curve on
the oscilloscope. There should be no movement of the response curve as
the slab changes position. This can better be understood by remember-

ing that the impedance seen looking toward plate no. 1 before and after
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the slab is the same. Therefore, the position of the slab will have
no effect as to the A required to restore resonance using this method.

As the slab thickness varies, A will also vary. If the slab
thickness is more than one wavelength, the A which is used with
equation (32) to determine k must carefully be selected.

When the response curve reappears on the oscilloscope after a
shift of plate no. 2, the movement of plate no. 2 in the same direction
will meke the response curve reappear at succeeding intervals spaced
one-~half wavelength apart. Therefore, there are many A's which will
restore resonance, and after the first they are spaced half-wavelengths
apart.

It then becomes uncertain as to which A can safely be used with
equation (32). This can be very confusing and could lead to erroneous
results. To avoid possible errors, slabs of several thicknesses
should be used and for each slab determine successive A's and their
corresponding k's. By comparing the k's of different thickness slabs
of the same material, it will be seen that there is only one value of
k which is the same for each thickness. If however the slab thickness
is equal to or less than one wavelength, the first A will be the one
which gives the correct results.

The results obtained using this method are tabulated in Table T.
The surface finish 1s represented by the symbol used by N A S A and
S A E. It represents the average root-mean square height of surface

irregularities in microinches.



TABLE I

DIELECTRIC CONSTANTS FOR VARIOUS MATERIALS OF SEVERAL THICKNESSES AND
VARIOUS SURFACE FINISHES AT CONSTANT TEMPERATURE USING 15L METHOD

TEFLON-25°9C

Thickness 11.0221+.005 _~11.0922F. 001 _A'1.6370+.001 .~ 2 0877+,
|
urface .3;7 ,l§7 .157 ' ,3;7
Finish
Dielectric 2.049 2.057 2061 | .-
Constant
Frequenc
m‘}:. y ﬂ 60,539,235 60,319.345 60,449.572 | @ ————-
POLYSTYRENE - 25 °C
Thickness .9852+.001 ~11.0123+.002,~1 1.4734+.00L~, 0100+. 002
g e | W
Finish %
Dielectric 2.534 2.530 2.535 |  =em———-
Constant {|
Frequency 1 60,246.897 | 56,677.897 | 60,418.072 | T
Z.
PLEXTIGLAS -2509C
Thickness 0.1235+.002 0.1831+.002 0.3718+.003
Surface ,87 ,87 87
Finish |
Dielectric 2.578 2594 | cceee-
Constant
Freduency 59,562,875 60,065.323 | = ----m-
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Second Method. Before this method can be used conveniently, it

will be necessary that the range of the values of k be known. This
can be done by the use of the first method. It must be pointed out
that this is not necessary but convenient. As in the first method,
there are many values which will satisfy equations (28) and (29), but
there is only one value which will be the same for the different
thickness slabs. However, the range of k can be determined much faster
and more conveniently using the first method.

To use equations (28) and (29) for determining the dielectric
constant, a plot of the shift of plate no. 2 necessary to restore

resonance (A) versus dielectric position (53) must be drawn. This is

done as follows: Display on the oscilloscope the response of the
resonant cavity before the insertion of the dielectric. Upon the
insertion of the dieléctric, the resonance of the cavity is disturbed,
and the response curve will move or completely disappear from the
oscilloscope. Move plate no. 2 toward the dielectric slab until the

response curve of the cavity reappears in its original position. As

you begin to move the position of the slab in one direction, the
response curve on the oscilloscope will also move. In order to keep
the response curve always in the same position on the oscilloscope as
the dielectric position is varied, the position of plate no. 2 must
also be changed. Start moving the slab in one direction and observe

the direction of movement of the response curve, left or right.
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Simultaneously, move plate no. 2 in a direction such that the response
curve will maintain its position. For each position of the dielectric
slab record the position of plate no. 2. A plot of 55 versus A for
polystyrene is shown in Figure 9.

Once A and Amin were determined, an iterative procedure
ideally suited for use with a computer was applied for determining k
using equations (28) and (29)18. It must be remembered that whether
you use equation (28) or equation (29) for A or A . depends upon the
integral part of 251/?\l as was stated previously. To avoid any
possible errors, equations (28), (29) and 251/11 were evaluated for each
value of A and Ahin' The correct value of k was then determined by

checking each value of A or A in against its corresponding value of
max m

251/%1 to see that the integral part satisfies the conclusions drawn
previously.
The values of A and A . will not differ very much if the
max min

thickness of the slab is close to being an integral number of half-
wavelengths. Again, when the slab thickness is equal to n%1/2, then
A = A . , or the shift necessary to restore resonance will be the
max min

same regardless of the position of the slab. Also, when the slab
thickness 1s close to being equal to n%l/Q, the ratio 2sl/7\1 will very
closely be equal to an integer. Using thils method, the operating

frequency should always be selected such that the effective thickness

of the slab is not close to being an integral number of

18See Appendix IT.
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half-wavelengths. The results obtained using this method for the
various materials with different thicknesses and surface finishes are
tabulated in Table II.

In order to determine the variation of € as a function of
frequency, measurements were made within the range of 59.0 to
62.2 GHz. The results obtained are shown in Table III. Plots of
dielectric constant versus frequency for the different materials are
shown in Figure 10. It is seen that the dielectric constant for
polystyrene and plexiglas remains approximately the same in that
frequency range. However the dielectric constant for teflon seems to
be somewhat lower at higher frequencies. Since the variations in the
dielectric constant in this freguency range are very gradual, the
frequency range should be extended much higher to actually verify the
changes in dielectric constant.
Using data available at lower frequencies,lg’zo’21
plots of dielectric constant and loss tangent versus frequency
were drawn and are shown in Figures 11, 12, and 13. There
seems to be a transition in the microwave region which continues

into the millimeter region. Before forming any conclusions,

1
9Arthur R. Von Hippel, Dielectric Materials and Applications,

(The Technology Press of M. I. T., 1954), pp. 332-335.
20
B. W. Hakki; and P. D. Coleman, "A Dielectric Resonator
Method of Measuring Inductive Capacities in the Millimeter Range."
IRE Transactions on Microwave Theory and Techniques, 8"408, July 1960.

2
lW. Culshaw; and M. V. Anderson, op. cit. p. 29.
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DIELECTRIC CONSTANTS FOR VARIOUS MATERIALS OF SEVERAL THICKNESSES AND
VARIOUS SURFACE FINISHES AT CONSTANT TEMPERATURE USING 2Rd METHOD

TEFLON-259%%

Thickness

urface
Finish

1.0221%. 00,

4

1.0922%.001

7

1.63707.

*.

Dielectric
Constant 2.055 2.048 2.060 2.057
F
et 61,452.551 | 61,452.551 | 61,452.551 | 61,452.551
POLYSTYRENE-256C
Thickness 0.9852+.00 1.0123+.00 1.4734+.001 2.0100+.00
urface 327' 637 3;7 l§§7
Finish
Dielectric
Constant 2.534 2.530 2.528 2.532
Frequency
MHz 61,452.551 61,452.551 61,452.551 61,452.551
PLEXTGLAS -25°9C
Thickness 0.1235+.002 0.1831+.002 0.3718+.003
Surface \8; \87 \87
Finish
Dielectric ||  __________ 2.586 2.605
Constant
Frequency || . ___ 61,452.551 61,452.551
MHz




TABLE III

DIELECTRIC CONSTANTS FOR VARIOUS MATERTALS AT DIFFERENT FREQUENCIES
AND CONSTANT TEMPERATURE ( 25 °C )

Dielectric Constant}Dielectric Constant | Dielectric Constant
Frequency
MHz - Teflon Polystyrene Plexiglas
(1.0922 in.) (1.0123 in.) (0.1235 in.)
+ —— == ==
62,139.843 2.005 2.533 2.9576
61,539.994 2.020 2.535 2.569
60,943.657 2.055 2.534 2.586
60,278.047 2.058 2.530 2.576
59,562.875 2.060 2.334 2.576
59,315.299 2.062 2.537 2.582
59,023,320 2.056 2,533 2.571




Dielectric constant (€)

b1

11
T

2.58 2
T+ Plexiglas (s = 0.1235 in.)
2.56
4 Polystyrene (sy; = 1.0123 in.)

2.54 A A

ams ‘ #EERIE = St

b
2.52
2.06 SEEEsRss
2.04
Teflon (sl = 1.0922 in.) N

" N
2.02
.00 S=RoRRERRSRS £
=% 59 60 61 62 63 x 10°

Frequency, MHz

Figure 10.- Dielectric constant vs. frequency at 250 c.
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L5
it must be pointed out that the data available at lower microwave
frequencies were obtained by different experimenters using slightly
different homogenuities in the same type of material. There could be
enough difference in the homogenuity of the same materials used by the
different authors to affect, to some extent, the shape of the curves.
The only way to form any positive conclusions would be to use the same
slabs throughout the frequency range of comparison. However, there is
enough similarity between these curves and the one in Figure 1, to
suspect such a transition.

A theoretical prediction of the transition period is the
relaxation timegg. The real and imaginary parts of the dielectric

constant using Debye's equations are given by

€ =€

s es
,E'(V)=€ea+-—2-2- (h9)
1T
" (w) = €_-c¢€ — ~ (50)
s ea l+w272
Where: €* = e€'~je" » complex dielectric constant
es - static dielectric constant
eea ~ instantaneous dielectric constant

T - relaxation time
The plots of €' and €" as a function of wt using the above equations
are shown in Figure 14. It is observed that the dielectric loss, which

is proportional to €", is maximum when w = 1/7.

22
A. J. Decker, op. cit. pp. 150-152.
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When the operating angular frequency is less than 1/T, the real part of
the dielectric constant €' is equal to the static dielectric constant
es. For angular frequencies appreciably greater than 1/t, €' approaches

the instantaneous dielectric constant ee

The relaxation times calculated using the experimental results
with equations (49) and (50) for the different materials are |
~ 2,34 x 10—10 sec. for teflon, = 2.k2 x lO-lO sec. for polystyrene and
~ 1.10 x lO-lo sec. for plexiglas. The experimental operating angular
frequency was larger than 1/T for each one of the above values. This is
an indication that the region of maximum dielectric loss has been
passed which in another way verifies the plots of Figures 11, 12, and
possibly 13.

The dielectric constant for dipolar substances is a function of
temperatureea. As the temperature is increased the dielectric constant
decreases because of the incressed thermal motion and the change of the
density of the material. The results obtained from the test are shown
in Table IV, and plots of dielectric constant versus temperature for
each material are shown in Figure 15. The reduction of dielectric
constant at higher temperaturesis indicated. Extension of the

temperature range for much higher and lower values would better verify

these conclusions.

230harles P. Smyth, Dielectric Behavior and Structure (New York:
McGraw-Hill Book Company, Inc., 1955), pp. 132-201.
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TABLE IV

DIELECTRIC CONSTANTS OF DIFFERENT MATERIALS FOR VARIOUS TEMPERATURES
AND CONSTANT FREQUENCY

Dielectric Constant
| Temperature Frequency
oc MHz Teflon Polystyrene Plexiglas
1.0922 in. 1.0123 in. 0.1238 in.
r——————— “i:::;:::l' VJ#===========f — - — ]
-8 61,242.103 2.048 2.545 2.626
8 61,242.103 2.047 2.545 2.607
24 61,242,103 2.036 2.538 2.596
32 61,242.103 2.027 2.531 2.574
46 61,242.103 2.020 2.3527 2.578
65 61,242.103 2.014 2.520 2.569
17 61,242.103 2.010 2.515 2.554
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Loss Tangent Measurements

Before any measurements of 16ss tangent were made, experimental
curves of Q versus plate separation were plotted, and they are shown
in Figure 16. These curves closely resemble the predicted shapes.2
No data could be taken for plate separations less than about five inches
due to the presence of the middle frame.

It is seen that a linear relation exists between Q and plate
separation with air for separations up to about seven inches. This is
an indication of the small effect of the diffraction losses in that
region. As the plate separation is increased further, the diffraction
losses become noticeable and the experimental curve is flattened. The
curves with the different dielectrics between the plates begin to
flatten at smaller plate separations. This indicates that diffraction
losses become noticeable at shorter plate separations possibly due to
the surface imperfections of the dielectrics. The Q's measured at
closer spacings should represent more dependable results. The cavity
response with each material between its plates 1s shown in Figure 17.

To make loss tangent measurements, slabs whose thicknesses are
multiples of half-wavelengths were used. This was done to simplify the
calculations. The maximum Q with the dielectric between the plates
must be determined for each slab. This can be done by plotting Q as a
function of plate position using equation (45). An experimental curve

is shown in Figure 18. Once Qip,, 1sdetermined, the Q without the slab

2)J'See Appendix I.
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Figure 16.- Q factor vs plate separation for air and other dielectric
sheets.
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(a) Teflon. (1.0922 in.). Q = 7,042.

(v) Polystyrene. - (1.0123). @ = 4,0k9.

(c) Plexiglas. (0.1235 in.). Q = L, k40T,

Figure 17.- Cavity response for different materials at 61,398.163 MHz.
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must be measured with the same position and spacing between the plates.
These two values along with the slab thickness and plate separations
can be used with equation (46) to determine tand. The assumption made
in these measurements is that the diffraction losses with and without
the slab are the same. This is not true, but the difference at close
platé separations may be small and can be neglected.

The tand values vary as a function of plate separation because
of the increase of diffraction losses for separations greater than
approximately the diameter of the plates. Therefore, the most accurate
data will be for plate separations up to approximately the diameter of
the plates.

The results obtained from the measurements are shown in Table V.
It is seen that the values of teflon for larger plate spacings are
somewhat greater. This can be attributed to the increase of diffraction

losses with increasing plate separation.
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CHAPTER V
CONCLUSIONS

The results of the investigation verified the use of the Fabry-
Perot interferometer as an effective instrument for the measurements of
dielectric constants and loss tangents at millimeter wave frequencies.
Increasing the frequency range will not 1limit its application.

The two methods used for the measurements of dielectric constants
must be carefully examined for accurate prediction of the results. The
use of the first method suggested that there are many A's which will
restore resonance and each can be used with equation (32) as discussed
in Chapter III. It was concluded from the use of slabs of several
thicknesses, there will be found only one value of k which will be the
same for each thickness. Otherwise, it seems impossible to determine
the correct value of k unless its approximate value is previously known.

To use the second method, an iterative process must be applied
in determining the correct value of k. Again, there are many values of
k which will satisfy equations (28) and (29). The only way to determine
the correct values of k would be to use different thickness slabs of
the same material, find the different roots and compare the k's. As in
the first method, there should be only one value of k which will be the
same for each thickness. It is suggested that the range of k be
determined, if possible, by the use of the first method before the
second method is used. A computer program was used with the second

method and is highly recommended for convenience and accuracy.
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For frequency stabilities of 1 part in th

or better and for
dimension measurements within 0.001 inches, the values of the dielectric
constants obtained using both methods are within one per cent or better.
As the slab thickness is increased, the accuracy of the results is
increased. Therefore, the values of € for teflon and polystyrene
should be much more accurate. Frequency stabilities stated above are
compatible with the dimension measurements accuracy. The variable
surface finishes and tolerances which were used in our measurements

seem to have no effect on the values of €, at least within the accuracy
stated above.

The dielectric constant is a function of frequency and tempera-
ture. Existing data at lower frequencies and our results seem to
indicate a transition in the microwave region. As the temperature is
increased, the dielectric constant seems to decrease. Extension of the
frequency range to much higher frequencies and the change of tempera-
ture to much higher and lower values should more accurately validate
these conclusions.

The accuracy of the loss tangent measurements is based upon the
accuracy of the Q's. In general, it was possible to measure the half-
power bandwidth points repeatly to about * 2 per cent. For such
accuracy in frequency measurements, the values of tand are within about
% 15 per cent for teflon and about * 6 per cent for polystyrene and
plexiglas. The effect of the diffraction losses are noticeable at the
lower loss materials such as teflon. With increasing plate separation,

the tand values for teflon are a little higher which is an indication




58

of the effect of diffraction losses. The surface finishes and
tolerances should affect the § measurements. However, for the surface
finishes, tolerances, frequency accuracy measurements and plate separa-
tions used in the tests, no noticeable differences in the results could

be detected. The more dependable values should be for closer spacings.
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APPENDIX T

Fabry-Perot Resonant Cavity

The photograph of the basic structure of a flat-plate Fabry-Perot
resonant cavity is shown in Figure 19. The inside fa~es of the
reflector plates are coated with a thin film of gold which has a high
reflection coefficient.

The Q (quality factor) of the cavity is a function of plate
separation, diffraction losses, and reflection losses. The side wall
losses which are present in cavities of lower microwave frequencies
have been eliminated by the absence of any side walls. However,
diffraction losses have been introduced which