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SUMMARY 

Boundary-layer-transition and heat-transfer measurements were 
obtained from f l i g h t  t e s t s  of blunt and sharp cones having apex angles 
of 50'. The t e s t  Mach number range was from 1.7 t o  4.7, corresponding - 
t o  free-stream Reynolds numbers, based on cone base diameter, of 18. 3 x lo6 

6 and 32.1 x 10 , respectively. Transition on both models occurred at a 
6 6 loca l  Reynolds number of 1 x 10 t o  2 X 10 based on dqtance  from the 

stagnation point. Transition Reynolds numbers based on momentum thickness 
. were between 320 and 380 f o r  the blunt cone. The model surface roughness 

* was 25 rms microinches or greater. Turbulent heat t ransfer  t o  the coni- 
'real surface of the blunt cone a t  a Mach number of 4 was 30 percent l e s s  

than tha t  t o  the surface of the sharp cone. 
., 

Available theories predicted heat-transfer coefficients reasonably 
well  f o r  the f u l l y  laminar or  turbulent flow conditions. 

INTRODUCTION 

The National Advisory Committee f o r  Aeronautics i s  conducting inves- 
t iga t ions  t o  determine the aerodynamic-heating character is t ics  of blunt 
noses. Presented herein are the resul t s  of f l i g h t  t e s t s  made by the  
Langley Pi lo t less  Aircraft Research Division ( a t  i ts  t e s t ing  s ta t ion  a t  
Wallops Island, Va.) f o r  two noses: a sharp cone and a cone which was 
blunted t o  have a r a t i o  of nose radius t o  base radius of 0.5. Each cone 
had an apex angle of 50' and a diameter of approximately 1.5 fee t .  @at- 
t r ans fe r  and t rans i t ion  data are presented f o r  Mach numbers up t o  4 &d 

6 Reynolds numbers based on diameter up t o  28.3 x 10 f o r  the sharp c& 
and f o r  Mach numbers up t o  4.7 and Reynolds numbers based on diameter up 

6 t o  32.1 x 10 f o r  the blunt cone. 
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Preliminary r e s u l t s  from the  t e s t  of t he  blunt cone were reported 
i n  reference 1. 

SYMBOLS 

M Mach number 

V veloci ty ,  f t / s e c  

vc ve loc i ty  of sound, f t / s e c  

T 0 temperature, R 

P density,  slugs/cu f t  

H a l t i t ude ,  f t  

PI - Pm 
C~ pressure coeff ic ient ,  

0 .7pJL2 

7, recovery f ac to r  

R Reynolds number 

h Stanton number, - 
cppv 

heat-transfer coeff ic ient  , ~ t u / ( s e c  ) (sq f t  ) (% ) 

spec i f i c  heat, ~ t u / s l u ~ - %  

thickness, f t  

distance along surface of body from stagnation point  

t i m e ,  sec  

g r av i t a t i ona l  accelera t ion 

Reynolds number based on momentum thickness 

t r a n s i t i o n  Reynolds number based on momentum thickness 
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N ~ r  Prandtl number 
. 

C f loca l  skin-friction coefficient 

Subscripts: 

Q) f r e e  stream 

2 outside boundary layer 

w pertaining t o  w a l l  

aw adiabatic w a l l  

so stagnation 

MODELS, TNSTRUMENTATION, AND FLIGHT TESTS 

Models 

Model A.- The general configuration of the blunt cone (designated 
m o d e l m s h o w n  by the photograph of figure l ( a )  and the sketch of 
f igure l ( b  ) . The t e s t  nose w a s  mounted on the forward end of an 
M5 JATO rocket motor which was s tabi l ized by four  f i n s  equally spaced 
about the rearward end of the rocket motor. The t e s t  nose was con- 
s t ructed from Inconel approximately 0.031 inch thick. The exter ior  
surface was furnace oxidized t o  s tab i l ize  the emissivity. Surface 
roughness, as measured by a Physicists Research Co. Profilometer p r io r  
t o  the oxidizing process, was approximately 25 rms microinches. Oxida- 
t i o n  of the surface may have increased the roughness s t i l l  fur ther .  

Model B.- The general configuration of the sharp cone (designated 
m o d e 1 ~ ' s h m  by the photograph of f igure 2(a) and the sketch of 
f igure 2(b).  Except f o r  the nose shape, the model w a s  similar t o  
model A. The surface of t h i s  model was a l so  oxidized and had about the 
same surface roughness as  model A. Details of the nose t i p  a re  given 
i n  f igure  2(b). A photograph of model A i n  launching posit ion is  shown 
i n  f igure 3.  

Instnunentation 

Model A.- An NACA nine-channel telemeter w a s  carried i n  the nose 
portion of the model and transmitted wall  temperatures, pressures, and 
longitudinal accelerations t o  ground receiving s tat ions.  The 12 temper- 
a ture  pickups were commutated every 0.25 second. The no. 30 gage - 
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chromel-alumel thermocouples were welded i n  a ray t o  the  inner surface 
of the  skin a t  the s ta t ions  shown i n  f igure  l ( b ) .  Six of the channels 
transmitted continuous readings of pressure a t  the s t a t i ons  shown i n  
f igure  l ( b  ) . The pressure or i f  i c e s  were made by welding monel tubing 
(outer diameter, 0.060 inch; inner diameter, 0.040 inch) t o  the  skin.  
The instrumentation had a time-lag constant of about 0.007 second, which 
was suf f ic ien t ly  small t o  allow measurement of the  rapid pressure changes 
obtained during the  accelerating f l i g h t .  The pressure c e l l s  were con- 
nected t o  read d i f f e r e n t i a l  pressures referenced t o  pickup 5. The 
absolute pressure f o r  a l l  s t a t i ons  could be derived by summing the  pres- 
sure differences between s ta t ions  with respect  t o  s t a t i on  P5 or  by u t i -  

l i z i n g  ex is t ing  pressure measurements f o r  hemispheres t o  calculate  the  
absolute pressure f o r  s t a t i on  P1 located on the hemisphere and r e f e r -  

encing the  other measurements t o  it. 

Model B.- The instrumentation f o r  model B was the  same a s  t h a t  f o r  
model A, except t h a t  only one pressure measurement, which proved t o  be 
defective, w a s  made. The locations of the thermocouples are  shown i n  
f igure  2(b) .  

General. - Trajectory data  were obtained by using an NACA modified 
~ ~ ~ - 5 - t i o n  radar.  Atmospheric and wind conditions were measured 
by means of radiosondes launched near the  time of f l i g h t  and tracked by a 
Rawin se t  AN/GMD-1~. Model veloci ty  was obtained from (31 doppler radar 
and from the integrat ion of telemetered longi tudinal  accelerations.  
Atmospheric conditions a s  obtained from the  radiosonde measurements are  
presented i n  f igures  4 (a )  and (b)  f o r  models A and B, respectively.  * 

Figures 4 (a )  and (b)  a l so  present the  a l t i t ude  t i m e  h i s to ry  of the  model. 

Fl ight  Tests 

Models A and B u t i l i z e d  a two-stage propulsion system consist ing 
of an M6 JATO "Honest John" booster, which propelled the  model t o  a 
Mach number of 2.2, and an M5 JATO " ~ i k e "  susta iner  motor, which fu r the r  
accelerated the  model. A 2-second coast period occurred between booster 
burnout and susta iner  igni t ion.  Indications a re  t h a t  the s t ab i l i z ing  
f i n s  of both models f a i l e d  because of aerodynamic heating shor t ly  before 
burnout of the  second stage.  The f a i l u r e s  have since been studied by 
simulating the f l i g h t  heat input t o  the  outboard por t ion of a duplicate 
f i n  i n  a high-temperature, M = 2 f r e e  j e t .  Preliminary results of t h i s  
study are presented i n  reference 2. 

Despite the f i n  f a i l u r e ,  undisturbed heating da ta  were obtained 
f o r  a Mach number range from 2.5 t o  4.7 f o r  model A and from 1.67 t o  3.94 
f o r  model B. The var ia t ion of Mach number and free-stream Reynolds num- 
ber per foo t  i s  presented a s  a function of time i n  f i gu re s  5 (a )  and (b)  



. a. *.a .a. . a. .a . * * a  * *  
NACA RM ~57004 : : *: : a- m a .  m a .  * .  a *  . . a m . *  

v . . a m *  
* a m  * m a  a m a  em m - m 8 m  a m  m a *  a m  

f o r  models A and B, respectively. Both models f ollowed essent ia l ly  the 
same t ra jec tory  up t o  the time of fa i lure .  Both models were launched 
a t  an angle of 5 5 O .  

DATA REDUCTION 

From measured w a l l  temperatures, f l i g h t  conditions and measured 
(model A )  o r  estimated (model B)  pressures, Stanton numbers were obtained 
by using the following re la t ion  

Heat losses  due t o  conduction and radiation were found t o  be negligible 
when compared with the heat t ransfer  t o  the nose caused by convection. 
The skin thickness was measured and the density 43 of the Inconel 

w a s  known. The specif ic  heat of Inconel %,w is  given i n  reference 3 
as a function of temperature. The adiabatic w a l l  temperature Taw w a s  
computed from the r e l a t ion  

Taw = rlr(~,, - T ~ )  + TI 

where the  recovery fac tor  qr was determined from the usual turbulent 

r e l a t ion  qr = IIp:I3 with F'randtl number evaluated at the w a l l  tempera- 

tu re .  It is realized t h a t  a recovery fac tor  equal t o  N~,'/J i s  not 

accurate at the stagnation point and f o r  the regions of laminar flow. 
However, t h i s  approximation t o  the true recovery fac tor  r e su l t s  i n  an 
e r r o r  of l e s s  than 2 percent f o r  conditions of t h i s  test. A temperature 
gradient existed across the 0.032-inch Inconel skin. This gradient was 
neglected i n  determining the  Stanton numbers presented herein. The 
e f f e c t  of neglecting the gradient has been estimated f o r  model A. The 
maximum estimated e r ro r  i n  Stanton number w a s  from 10 t o  15 percent f o r  
s t a t ions  6 and 7 and 5 percent f o r  the other s ta t ions.  

The loca l  conditions f o r  model A were determined by using pressure 
measurements and normal shock relations ( re f .  4) . Local conditions f o r  
model B were determined from cone theory (ref .  5 ) .  



RESULTS AND DISCUSSION 

Model A 

Pressure measurements .- Pressures were measured on the  nose a t  the  
locat ions  shown i n  f igure  l ( b )  . The measurements expressed a s  pressure 
coef f i c ien t s  a re  shown i n  f igure  6 p lo t t ed  as a function of t h e  dis tance  
along the nose from the  stagnation point .  The experimental da ta  a r e  
compared wi th  pressure ca lcula ted by modified Newtonian theory.  The 
theory i s  seen t o  be i n  b e t t e r  agreement wi th  experimental da ta  a t  the  
higher Mach numbers. The experimental da ta  a l s o  show an adverse pres-  
sure gradient  i n  t he  region of the  hemisphere-cone juncture which i s  
not predicted by theory. 

Temperature measurements . - The var ia t ion  of measured w a l l  tempera- 
t u r e  with time i s  presented i n  f igure  7 f o r  a l l  s t a t i ons  except sta- 
t i o n  ll, f o r  which no data  were obtained because of thermocouple f a i l u r e .  
Temperature data  a re  presented t o  a f l i g h t  time of 9.5 seconds, a t  which 
time model f a i l u r e  occurred. Heat-transfer da t a  were reduced from these  
skin temperatures t o  9.30 seconds, at  which time the  Mach number w a s  4.7. 
Temperatures p lo t t ed  as a funct ion of d is tance  from the  s tagnat ion point  
t o  the  measuring s t a t i o n  a re  presented i n  f i gu re  8 f o r  various Mach num- 
bers .  Transi t ion i s  indicated by t he  rap id  increase i n  temperature a t  
about 1.5 inches (approximately 20°) from the  s tagnat ion po in t .  

Heat-transfer coef f i c ien t s  and t r an s i t i on . -  &at - t rans fe r  coe f f i -  - 
c ien t s  a r e  presented i n  f igure  9 f o r  various condit ions of Mach number 
and Reynolds number. The da ta  a re  presented i n  t he  form of l o c a l  Stanton 

varying with dis tance  from the  s tagnat ion point .  The 

l o c a l  Reynolds number based on dis tance  from the  s tagnat ion point  and 
conditions j u s t  outside the  boundary l aye r  and t h e  r a t i o  Tw/T2 a re  

a l s o  presented as a funct ion of d is tance  from the  s tagnat ion po in t .  

The da ta  f o r  the  stagnation point  which a r e  a l s o  presented i n  tk 
form of Stanton number a re  based on condit ions behind the  normal shock. 

In  general,  the  da ta  measured at t h e  s tagnat ion point  and at  po in t s  
i n  the  laminar region close t o  t he  s tagnat ion point  are i n  fair  agreement 
wi th  the theory of references 5 and 6, respec t ive ly .  The da ta  show a 
rap id  rise i n  heat  t r an s f e r  at  about 1.5 inches o r  20' from the  s tagnat ion 
point .  This r i s e  i s  a t t r i bu t ed  t o  t r a n s i t i o n  from laminar t o  tu rbu len t  

6 flow. Transi t ion occurs between l o c a l  Reynolds numbers of 1 x 10 and 
6 2 x 1 0 .  



The turbulent values of Stanton number on the conical section of 
the nose are seen t o  be i n  f a i r  agreement with the turbulent f l a t  plate  
theory of reference 7, with a Reynolds number based on length from the 
stagnation point and the assumption tha t  NSt = 0. 5cf. 

Figure 10 presents the Reynolds number of t rans i t ion  based on the 
calculated momentum thickness (ref .  8) as a function of distance from 
the stagnation point. For the f l ight  condition of model A, the t rans i -  
t i o n  point was fixed at  approximately 0.14 foot from the stagnation 
point o r  about 2z0. The two points represent the s m a l l  difference i n  
the momentum Reynolds number f o r  Mach numbers ranging from 2.5 t o  4.7. 
Shown a lso  i n  the figure are the measurements of t rans i t ion  obtained 
from a f l i g h t  t e s t  of another blunt cone (ref .  9)  where the f l i g h t  con- 
di t ions were similar t o  those of the present investigation except t h a t  
the model had a r a t i o  of nose radius t o  base radius of 0.74, and the 
surface was polished t o  a surface roughness of 3 t o  3 microinches. Fig- 
ure 10 shows tbt f o r  model A, fo r  which the roughness w a s  approximately 
25 rms microinches, t rans i t ion  occurred a t  a low t rans i t ion  Reynolds 
number Re - 330, while f o r  the reference model t rans i t ion  varied f ran 
Re = 800 t o  2,180. It is  conjectured t h a t  the surface roughness of 

25 microinches resulted i n  tripping the re la t ive ly  t h i n  boundary layer  
associated with the blunt nose a t  th is  low Reynolds number. 

Model B 

Temperature measurements. - The variation of measured wall tempera- 
tures  with time is presented i n  figure ll. No data are sham f o r  thermo- 
couples 6, 8, and 12, which fa i l ed  early i n  the f l i g h t .  Temperature data 
are presented t o  a f l i g h t  t ine  of 9.4 seconds, a t  which time model f a i l -  
ure occurred. Heat-transfer data were reduced from these measurements 
t o  9.4 seconds, at  which time the Mach number w a s  3.97. 

Figure 12  presents the skin temperatures as a function of distance 
from the  nose t i p  f o r  various Mach numbers. Transition is again indi- 
cated t o  have taken place near the nose t i p .  

Hkat-transfer coefficients and transition.- &at-transfer coeffi- 

c ients  NSt = (L) , along with local Reynolds number and r a t i o  % / T ~ ,  
c ~ ~ v  I 

are  presented i n  figure 13 as a function of distance from the stagnation 
point. Sufficient laminar  data were not acquired t o  warrant a conclusion 
as t o  the  adequacy of laminar theory. Transition, as indicated by the 
large increase i n  Stanton number, is  seen t o  occur between 1 and 2 inches 
from the  nose t i p .  The local  Reynolds numbers of t rans i t ion  are about 



6 6 1 x 10 t o  2 X 10 or  the  same a s  f o r  the  blunt cone. It i s  again 
pointed out t h a t  the  surface roughness of t h i s  model w a s  25 microinches 
o r  greater .  

The turbulent  heat- t ransfer  coef f ic ien t s  a r e  seen t o  be generally 
i n  good agreement with the  cone theory of Van Driest  ( r e f .  10)  wi th  a 
Reynolds number based on length  from the  stagnation point and the  assump- 
t i o n  that  NSt = 0 . 5 ~ ~ .  Heat-transfer measurement from nose t i p  was not 

presented inasmuch a s  some uncertainty ex i s ted  as t o  the  exact  depth of 
the  thermocouple i n s t a l l a t i on .  

Comparison of turbulent  heat- t ransfer  coef f ic ien t s  f o r  blunt and 
sharp cones.- Figure 14  presents a comparison of t he  turbulent  heat- 
t r ans fe r  coef f ic ien t s  measured on the  blunt and sharp cones. It i s  seen 
t h a t ,  fo r  about t he  same values of free-stream Reynolds nuinber per f oo t  
and fo r  cases i n  which t r a n s i t i o n  occurred close t o  the  stagnation point  
f o r  both models, the  heating t o  both noses on the  conical  p?urface is  
about the same a t  a Mach number of 2.5; at  a Mach number of 4,' however, 
the  heating t o  t he  blunt cone i s  approximately 30 percent l e s s  than t h a t  
t o  t he  sharp cone. The average heat- t ransfer  coef f ic ien t  obtained by 
in tegrat ing the  l o c a l  heat - transf e r  coef f ic ien t  was approximately 20 per- 
cent lower f o r  the  blunt cone a t  a Mach number of 4 and about the  same 
f o r  both cones a t  a Mach number of 2.5. 

CONCLUDING REMARKS 

Flight t e s t s  have been made of b lunt  and sharp cones having apex 
angles of 50' a t  Mach numbers up t o  4.7 and 4, respect ively .  Boundary- 

l ayer  t r ans i t i on  occurred a t  a l o c a l  Reynolds number of 1 x lo6 t o  2 X 10 6 
based on length from the  stagnation point  on both nose shapes. This 
Reynolds number corresponds t o  a value of about 350 based on calcula ted 
momentum thickness f o r  the  blunt cone. A t  a Mach number of 4, t he  turbu- 
l e n t  heat-transfer coef f ic ien t  t o  t h e  conical  surface w a s  30 percent l e s s  
on the  blunted cone. Heat - t rans fe r  coef f ic ien t s  f o r  both models could 
be predicted reasonably wel l  by avai lable  theory f o r  t he  f u l l y  laminar 
o r  turbulent flow conditions. 

Langley Aeronautical Laboratory, 
National Advisory Committee f o r  Aeronautics, 

Langley Field,  Va . ,  March 20, 1957. 
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(b) Sketch of configuration. 

Figure 1. - Concluded. 
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(b) Sketch of configuration. 

Figure 2.- Concluded. 
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Figure 9. - Continued. 
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Figure 11.- Wall-temperature time histories for model B. 
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ratios of wall temperature to local static temperature along nose 
for several Mach numbers. Model B. 
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Figure 13.- Continued. 
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Figure 13. - Continued. 
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Figure 13.- Continued. 

35 



NS t 

0 2 4 6 8 

mtal 

10 
Stat ion ,  In. 

(f) t = 9.0 seconds; M, = 3.50. 

Figure 13.- Continued. 

20 

. 



iA . . . ... 
0 .  ... . . ... 0 .  ... 0 .  NACA RM L57DO4 

40 

30 

RZ 

20 

10 

0 

2 

T . 4  

1 

0 

N S t l  

-- Lnmlnar 

0 2 6 8 10 12 14 16 18 20 4 
Station,  ln. 

(g) t = 9.4 seconds; M, = 3.97. 

Figure 13. - Concluded. 

37 



38 NACA RM L37D04 

0 cu 
e 

a0 
0 . 

d 

N.4CA - Langley Fleld, vp. 

~- 


