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ABSTRACT 255 § 0‘

A visco-plastic flow theory for the solution of hyper-
velocity perforation of thin plates has been investigated. A
short time analytical solution including the effects of target
material yield strength on perforation radii and ballistic
limits was obtained. Expressions were derived for the veloc-
ities, displacements, stralns, and strain rates present in the
target material during hypervelocity impact. Pertinent param-
eters were varied and a comparison was made with the solution
in which the yleld strength was taken to be zero. The effect
of target material yleld strength was not found to be signif-
icant and resulted in little variation in the computed perfora-
tion radii.

Ballistic 1limit studies were also performed in which
minimum plate thicknesses necessary to prevent perforation were
-establishgd for projectiles of various masseé; radii, and
impacting velocities. Yield strength considerations were
found to be of secondary importance; the more critical effect

being produced by the projectile aspect ratio at impact.
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INTRODUCTION

An analytical solution to the problem of a rigid circular
cylindrical projectile of finite mass impacting upon an
infinite plate is presented in which yileld strength considera-
tions have been included in the governing equations. The
results of reference 1 have been extended and, in addition,
ballistic limits of thin plates have been determined. For the
saeke of completeness, the solution which was presented in ref-
erence 1 has been repeated in the appendix.

In references 2 and 3 an analytical solution was obtalned
for a problem similar to that of reference 1 except that the
yield strength of the target plate was taken to be zero in the
governing equations. A nonzero yleld strength of the target
material was introduced subsequently only to establish a sep-
aration criterion for perforation. An approximate two-
dimensional analysis of the plate perforation problem (as
stated in ref. 2) is presented in reference 4. This solution
indicates that the radial velocitles are about one order of
magnitude less than the axial velocities and thus helps to
Justify the use of a one-dimensional approach.

An extension of the work presented in references 2 and 3
is given in reference 5, in which an attempt was made to
include the effects of target material yield strength 1in the
governing differential equation and associated boundary con-

ditions. The results of the analysls are given in finite



series form and a parametric study 1s presented in which the
effects of variations in the pertinent parameters on the
radius of perforation are determined. Certain objections can
be raised, however, to the results of reference 5. The
expressions for veloclty, displacement, strain, and strain
rate presented in reference 5 do not correspond to the results
presented earlier in references 2 and 3 as expected when the
yield strength 1s taken to be zero. Furthermore, the solution
of reference 5 yields the erroneous result that for the lim-
iting case of an infinite mass projectile the velocity of the
projectile decreases after impact. These considerations have
provided the motivation for the present analysis.

The present solution agrees with the solution presented
in references 2 and 3, in the limiting case when the yield
strength is set equal to zero. In addition, the expression
for velocity limits properly, for the case of the infinite
mass projectile, to the condition that the velocity of the
projectile remains constant after impact. The solution of
reference 5, when compared with the present solution, is shown
to contain additional mass ratio terms not found in the pres-
ent solution.

The present report compares results obtained by including
yield strength in the analysis with the results obtained for
the same conditions when yield strength is taken to be zero.
Some pertinent parameters such as initial velocity, mass, and

radius of the lmpacting projectile as well as the target plate




thickness, yleld strength, and viscoslity are varied in order to
study their effects on the radius of perforation. The ballis-
tic limits of thin target plates are investigated as well and
the importance of yleld strength considerations is ascertained.
The ballistic limit studies determine the minimum target
plate thicknesses necessary to prevent perforation. Ballistic
limits are obtained for various values of target plate thick-

ness and projectile mass, velocity, and radius.
SYMBOLS

The units used for the physical quantities defined in this
paper are given both in the International System of Units (SI)
and in the U.S. Customary Units. Factors relating the two sys-

tems are given in reference 1k4.

a radius of projectile

Cq dynamic ultimate yield strain in shear
8o initial projectile velocity

h plate thickness

¢ 2xcah /M

H 2xtahp /M

iBerfc x nth integral of erfc x (See appendix, eq. (A38))
In modified Bessel function of first kind of order n
dn Bessel function of first kind of order n

dynamic yield stress in shear
K ka/Vou, Bingham number

Kn modified Bessel function of second kind of order n

My mass of projectile



mass of projectile and plug of plate material of
radius a, M} + nazhp

radial distance

nondimensional radial distance, r/a

transform parameter

Struve function of order n

time

nondimensional time, j% t

axial velocity

transform of V

initial velocity of projectile and target plug of

My
radius a, Vg = go'ﬁ'

nondimensional velocity
nondimensional shear strain rate

axial displacement

nondimensional displacement

nondimensional shear strain

Bessel function of second kind of order n
shear strain, v

or
coefficient of dynamic viscosity
coefficient of kinematic viscosity, %
mass density of plate material

transverse shear stress

axial coordinate




Subscripts:
cr critical
P perforation
A dot over a symbol denotes differentiation with respect

to time t.

ANALYSIS

Governing Equations

In the present analysis, a rigid circular cylindrical
projectile is considered to impact upon a thin infinite plate.
The resulting perforation of the plate by the projectile is
assumed to be a simple shear plugging perforation, in which
only the transverse shear stresses act to resist the inertia
of the impacting projectile. The perforation is also con-
sidered to be axially symmetric and the shear stress is taken
to be constant through the thickness of the plate. The
resulting deformations w of the plate are then represented
as functions only of the radial coordinate r and the time ¢
being independent of both the axial coordinate 2z and the cir-
cumferential coordinate 0. (See fig. 1(a).) Hence, by
sunming the forces in the axial direction on a circular ring
element of plate material (see fig. 1(b)) the basic equation
of motion for this simple shear perforation model can be

written as

aTrz Trz
+.——
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S = S;E (1)




This approach and the following discussion on plate mate-
rial and governing equations is similar to that presented in
references 1, 2, 3, and 6.

The plate material considered herein is assumed to behave
like an incompressible, visco-plastic Bingham solid in which
the deformation accompanying transverse shearing commences only
after the dynamic yield strength of the material has been
reached. (See ref. 7.) When the value of the transverse
shear stress falls below the yield strength of the materilal
(or when the local rate of deformation becomes equal to zero),
visco-plastic flow ceases and the materisl is assumed to be
rigid in that region. The relation between the shear strain
rate and shearing stress for the case of simple shear perfora-

tion can be written as (see ref. T):
T = sﬂ + (Sign %-)k (28‘)
T

or, since the sign Bﬁ/ér is always negative 1n this case

T (20)
where
v dynamic viscosity of target material
k dynamic yield strength in shear of target material
%% = %% shear strain rate

and the relations between the velocity V, axial displace-

ment w, and shear strain vy are




V=W
_ oW

7 or

Substitution of equation (2b) into equation (1) yields the

governing linear partial differential equation

3V 1 1w 1k
ST+zgl-2ol =2 (3)
3r2 Tor vot rup

where

V= % coefficient of kinematic viscosity

The initial conditions are taken to be

V=0 (t =0, r>a) (&)

VeV, (t=0, r<a) (5)

fl

where Vg 1s the initial velocity of the combined mass of the
projectile and plug of target material of radius a. In this

study Vy is determined from the conservation of momentum at
the instant of impact in which the projectile-plug combina-

tion is assumed to be rigid and to act as a unit. Thus

My
Vo = 8o T (6)
where
g6 initial velocity of free projectile
M mass of projectile

M=M + nazhp combined mass of projectile and plug
The boundary conditions are as follows: at t> 0, r =a

from Newton's second law

w _k-'-“——-———‘o i



where

¢ = 2eh
M
and at t20, ro o

V-0 (8)

Method of Solution

An analytical solution to the governing equations is
obtained in reference 1 by Laplace transform techniques in a
manner similar to the approach used in reference 5. The homo-
geneous solution can be written directly in terms of modified
Bessel functions. The particular solution, however, is obtained
by utilizing Struve functions of order zero rather than by the
method of variation of parameters used in reference 5. The
solution to the governing differential equation, equation (3),
and its assoclated boundary conditiomns (egs. (4), (5), (7),
and (8)) is discussed in detail in the appendix. The solutions
obtained are "short time" solutions in t corresponding to
values of the transform parameter s >> j% or t K Eg (see
appendix) resulting from the use of asymptotic expansions
in the transformed state. It is shown in the appendix that
the velocity (A34), displacement (A37), shear strain (A36),
and shear strain rate (A35) can be expressed in dimensionless
form in terms of a dimensionless radius r and a dimensionless
time t.

When the yield strength k 1s taken to be zero in the
equations glven in the appendix they reduce to the identical

expressions given in reference 3. Also in the case of the




infinite mass projectile in which H =0 (M)} = ») the expres-
sion given in equation (A34) for velocity reduced to V = Vo
at T =1 for all values of t 2 O.

Separation Criterion

In order to determine the radius of the plug of plate
material which is sheared (or perforated) from the plate upon
impact a separation criterion (identical to that discussed in
refs. 1, 2, 3, and 5) consisting of two conditions is estab-
lished. The first condition for separatlon is based on the
assumption that detachment of the projectile and a portion of
the plate material occurs when the plate material can no
longer transmit a given shear stress. If the plate behaves in
a highly viscous manner it is capable of transmitting a shear
stress of any magnitude. In this analysis it is assumed that
the material is highly viscous when the strain rate is above
some limiting value, here assumed to be k/p. Below this
value only a limited shear stress can be transmitted and con-
sequently separstion may take place. This condition of high
shear stress and visco-plastic flow will exist immediately
after impact when the strain rate 1s at a maximum and the

viscous stress u %! is much greater than the yield strength
T

k of the material (see eq. (2b)). In equation form the
strain-rate criterion for separation is

&)

k
gl (9)
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The second condition deals with the shear strain of the
material which, at the moment of impact, is zero and increases
thereafter. In order for the plug to separate from the plate
the material not only has to be considered as having a suffi-
clently small strain rate but must experience large shear
strains as well. In this analysis the shear strains are con-
sidered large when the shear strain exceeds the dynamic value
of the ultimate shear strain of the material.

Thus the second condition can be written as

(3:)

where Cq = dynamlc ultimate strain in shear (a value of

= Cq (10)

7er -
cr

C1 = 0.02 was used in this paper for both aluminum and steel).
For a further discussion of these separation conditions, see
references 1, 2, and 3.

The radius of separation of the plug material and the
time of separation can most readily be determined by a graphi-
cal procedure. In figure 2 a typlcal nondimensional set of
strain distributions for different values of the time param-
eter t is shown. In figure 3 nondimensional strain-rate dis-
tributions are shown for a projectile of mass 0.052 g and ini-
tial velocity 1.2 km/s impacting on a 0.635-cm (1/4-in.) alu-
minum plate. A plot of the locus of critical strain points in
a ;,E space can now be obtained from figure 2 by constructing

& horizontal line representing the critical strain (eq. (10))

and determining its T,%t intercepts with the strain curves.




In a similar manner the critical strain-rate locus in T,t
space can be determined from figure 3. The radius of perfora-
tion and the time of separation are now determined from.the
intersection of the critical strain and critical strain-rate
curves as plotted in figure 4. Thus for this particular case
the radius of perforation and the time of separation as found
from figure 4 are T, = 1.740 and t = 0.250, respectively.
Note that four regions are indicated in figure 4. 1In
these reglons the predominant material behavior could be
described as follows: large strain rates, large strain
(region 1); large strain rates, small strain (region II);
small strain rate, small strain (region IIT); small strain
rate, large strain (region IV). Only in region IV are both
critical conditions of the separation criterion satisfied, and
since separation will occur at the first time at which both
conditions are satisfied it is assumed that at the apex of
this region separation occurs. After initlal separation the

solution is no longer valid due to the changes in the boundary

conditions.
EFFECTS OF PERTINENT PARAMETERS ON PERFORATION RADIUS

Expressions are derived in the appendix for the veloclty,
displacement, shear strain, and shear strain rate written in
nondimensional form. These expressions contain pertinent
parameters assoclated with the perforation problem such as

projectile mass, radius, and initial velocity, and target



density, viscosity, yleld strength, and thickness. Variations
in these pertinent parameters are now investigated to deter-
mine thelr effects on the perforation radius. Numerical
results are obtained by use of a high-speed digital computer.

Perforation Radius as a Function of Initial Projectile

Velocity
In figure 5 is shown the variation in perforation radius

versus initial projectile velocity for a 0.635-cm (1/4~in.)
aluminum plate and a 0.224-cm (0.088-in.) steel plate being
impacted by a 0.119-cm (3/64-in.) radius rigid cylindrical
projectile. The mass of the projectile was taken to be

0.052 g which for aluminum corresponds to a projectile

O.434 cem (0.171 in.) long. Note that the mass per unit area
of the steel plate is equivalent to the mass per unit area of
the aluminum plate. Thus the momentum exchange between the
impacting projectile and both the steel and aluminum plates
is identical.

As can be seen from figure 5, the inclusion of material
yleld strength in the analysis has little effect on the perfo-
ration radius for the range of velocities shown (maximum dif-
ference is of the order of 5 percent). Although steel has a
higher yield strength than aluminum, the critical strain rate,
which depends on viscosity as well as yield strength, 1s for
steel, only 2/3 of that for aluminum (u =15 ;lkgg (0.15 mega-
poise), k = 1.38 i—g (200 ksi) for steel; p = 5 mkN—;S (0.05 mega-

poise), k = 0,69 gg (100 ksi) for Al). Hence, for the same




initial velocity, the perforation radius in steel is larger
than in aluminum and separation occurs in the steel plate
after a greater passage of time.

Perforation Radius as a Function of Projectile Mass or

Plate Thickness

The effect of varying the thickness of the aluminum plate
on the nondimensional perforation radius is shown in fig-
ure 6. The initial velocity of the aluminum projectile was
taken to be 6.1 km/s and the plate thickness was varied from
0.635 cm to 6.35 cm (1/4% in. to 2.5 in.) all other param-
eters being held constant. The increase in plate thickness
decreases the perforation radius and time of separation. The
inclusion of yield strength in the analysis has little effect
on the calculated perforation radii (maximum variation in cal-
culated radii is of the order of 4 percent). Note in addition
if the mass of the projectile is decreased by a factor (the
radius remaining constant) instead of the plate thickness
being increased by the same factor, the calculated results are
identical. This result is due to the fact that the nondimen-

slonal parameter H,
2

=)
1+ —{—==

changes in the same proportion with decrease in M; or

H = (11)

increase in h. The perforation radii are thus seen to
decrease with either a decrease in projectile mass or an

increase in plate thickness. It is evident from figure 6



that the effects of yield strength need not be considered in
the calculation of perforation radii.

Perforation Radius as a Functlon of Coefficient of

Dynamlic Viscosity

The variation in nondimensional perforation radii due to
changes 1in the coefficient of dynamic viscosity 1s shown in
figure 7, for the 0.052-g projectile impacting on the aluminum
plate. A velocity of 1.2 km/s was chosen and the coefficient
of dynamic viscosity was varied from O to 15 Egﬁ (0.15 mega~
poise), all the other parameters remained constant and are
given in figure 7. Although calculations were made for larger
values of p, it was found that the dimensionless‘separation
times exceeded the limits of the applicability of the short
time solution.

Note that as the coefficient of dynamic viscosity is
increased, the resulting perforation radil also increase. A
small variation in the coefficient of viscosity 1is shown to
produce a large variation in perforation radii, and indicates
a definlte need for better evaluation of this coefficient.
The inclusion of the yield strength in the analysis results in
perforation radii as much as 10 percent lower than the solu-
tion with yield strength tsken to be zero. However, this
variation can be considered to be negligible in comparison to

the variation caused by changes in viscosity.




Perforation Radius as a Function of Projectile Radius

The effect of varying the projectile dimensions on the
perforation radius (in units) is shown in figure 8. The mass
and impacting veloclty of the projectlle were considered to
remain constant at 0.052 g and 6.1 km/s, respectively. The
target plate was considered to be made of aluminum of 0.635-cm
(1/4-in.) thickness. The figure illustrates that as the
shape of the cylindrical projectile changes from that of a
pencil to that of a disk (note projectile schematics in
fig. 8) the perforation radius increases. It is important to
recognize that the ratio of perforation radius to projectile
radius is diminishing with increasing projectile radius. The
effect of including dynamic yleld strength in computing perfo-
ration radii is seen to be negligible in comparison to the
effects produced by varying the projectile radius.

Perforation Radius as a Function of Dynamic Yield Strength

for a Fixed Separation Criterion

The calculations presented earlier for the aluminum tar-
get plate have assumed a value of dynamic yield strength in
shear of 0.69 %g (100 ksi). A great deal of uncertainty
exists in determining the dynamic yield strength especially
under hypervelocity impact conditions. To determine the
effects of wide variations in stréngth on the computed perfo-
ration radii the dynamic yield strength has been varied from O
to 6.9 ﬁg (1,000 ksi) and the calculated perforation radii are

shown plotted in figure 9. These perforation radii are



determined using a constant value of the critical strain rate

(é!) 8
or Jor Vo

has also been varied in accord with the varlation in dynamic

= o.o692>. If the critical strain rate, (k/u),

yleld strength k, keeping pn constant, then as the yleld
strength approaches zero the critical strain rate would also
approach zero and the perforation radius would approach
infinity. This result 1s unrealistic and the critical strain
rate therefore 1s not varied according to the varlation in k
but is assumed to remain constant.

Figure 9 again illustrates that the effect of including
dynamic yleld strength in the calculation of perforation radii
is negligible for reasonable values of dynamic yield strength.
As can be seen from the figure, the decrease 1n perforation
radii for an Ilncrease of the dynamic yield strength between O
and 3.45 Eg (500 ksi) is less than 10 percent.

Comments on the Effects of Yleld Strength on Velocities,

Displacements, and Stresses

In the previous sections, 1t has been shown that the
results for perforation radii obtained with the inclusion of
yield strength in the analysis differ little from the results
in vhich yileld strength was taken to be zero. In reference 1
many calculations have been made on velocities, displacements,
and stresses with and without yield strength consideratlons
and a few pertinent remarks on these results are in order.
The strain and strain rates are little affected by the

inclusion of yleld strength terms and result in similar curves




when plotted as a function of plate radii. The velocities,
displacements, and stresses of the solution containing yield
strength, however, are at times markedly different from the
solution in which yield strength is taken to be zero. The
effects of yleld strength in general are to produce much
smaller velocitlies and much smaller displacements than when
the yield strength is taken to be zero. In fact, for the par-
ticular case where the projectiles do not perforate the target
plate, the analysis including yleld strength indicates the
velocity drops to zero and the plate becomes rigid in a
deformed state, while if the yield strength is taken to be
zero the velocity approaches a nonzero limiting value, and the
plate contimues to deform. A more complete discussion and
analysis of the effects of target material yleld strength on
the velocities, displacements, and stresses of the target plate

is given in reference 1.
BALLISTIC LIMITS QOF THIN PLATES

Another question of prime concern in the investigation of
hypervelocity impact is that of establishing minimum thickness
requirements of thin plates necessary for the prevention of
projectile perforation. This minimum plate thickness or maxi-
mum projectile velocity allowable before perforation initiates
is termed the ballistic limit. The ballistic limit was deter-
mined in the following manner. The graphical procedure as

i{llustrated in figure 4 by the intersection of the critical



strain and critical strain-rate curves, establishes the radius
and time of separation of the plug of plate material being
sheared from the target plate. By decreasing the lnitial pro-
Jectile velocity, the critical strain curve in figure L rises,
and the critical strain-rate curve decreases and bends more
sharply toward the ordinate t. Thus, the radius of perfora-
tion and time of separation decrease until the intersection of
the two curves occurs at r = 1. For any further decrease in
initial projectile velocity, the curves will not Intersect and
a ballistic 1limit is assumed to have been reached. Note that
under the assumptions adopted in thils paper no considerations
have been made for spallation. The ballistic limits estab-
lished in this manner for thin target plates could yleld plate
thicknesses which are unconservative (i.e., too thin to pre-
vent perforation for a given projectile velocity) and compari-
son with experimental data is essential to ascertain the
degree of error introduced in neglecting the effect of spalla-
tion of the target plate.

The ballistic 1limit thickness as a function of projectile
mass for six different projectile velocities 1s shown in fig-
ure 10. The projectile velocities were varied from 0.91h4 km/s
to 6.462 xm/s. However, the projectile radius was held

constant at 0.32 cm (1/8 in.). The curves which are shown in
the figure are valid for k = 0.69 gg
m

tile velocity shown above the curves, and for k = O and the

projectile velocity shown below the curves. The inclusion of

(100 ksi) and the projec-




the material yield strength in ballistic limit studies produces
effects which are only slightly higher (approximately 10 per-
cent) than those presented earlier on perforation studies
{approximately 5 percent).

The minimum plate thicknesses are shown plotted as a
function of initial projectile veloeity for three different
mass projectiles in figure 11. Figure 11 is simply a cross
plot of figure 10, considering the mass M; constant. The
radius of the projectile 1s held constant at 0.32 cm
(1/8 in.), but the mass is varied from 0.001 g to 0.100 g.
This change in mass could be accomplished by either changing
the length or the density of the projectile. Note that the
curves gre all parallel and increase as (go)l'o5. This
velocity dependence is quite similar to experimental results
obtained for the dependence of penetration on the velocity of
the impacting projectile by Collins and Kinard (ref. 8).

In figure 12 the minimum plate thickness is again plotted
as a function of projectile mass for eight different projec-
tile velocities. The radius of the projectile, however, has
now been decreased to 0,119 cm (3/64 in.). Notice how
sharply the minimum plate thicknesses have increased from fig-
ure 10 to figure 12. In the case of a projectile of mass
0.01 g, the minimum plate thickness differs by a factor of
five and a half considering the projectile first to have a
radius of 0.32 cm (1/8 in.) and then a radius of 0,119 cm

(3/64 in.). Under these conditions, the same density



material would resemble first a disklike projectile and

then a bulletlike projectile as the radius is decreased.
Hence, projectile aspect ratio 1s most important in deter-
mining the ballistic limit of thin plates, exhibiting a much
more influential effect on the results than 1s evident in

perforation studies.
CONCLUDING REMARKS

It 1s shown that the incluslon of target material yield
strength in a one-dimensional analysis of hypervelocity impact
perforations produces little effect on the resulting perfora-
tion radius. The variation in calculated perforation radius
as compared to the solution with target yleld strength tsken
to be zero generally amounted to only 5 percent in this inves-~
tigation. This difference in calculated perforation radii
remains at the negligible 5-percent level even with variations
in the pertinent parameters such as plate (or target) thick-
ness, projectile mass, and initial velocity. With variations
in the coefficient of dynamic viscosity, however, the differ-
ence due to yield strength does incfease to perhaps 10 percent.
On the other hand, the variation in perforation radius due to
differences in the assumed value of the viscosity coefficient
alone can be much greater than the 10 percent. Consequently,
the determination of accurate values for the coefficient of

dynamic viscosity is much more critical to the calculation




of perforation radius than is the inclusion of the target
yield strength.

In the determination of the ballistic limits of thin
piates {that minimum allowable thickness or maximum allowable
velocity) the effect of including yield strength in the analy-
sis produces results which differ by approximately 10 percent
from the analysis with yield strength teken to be zero. A
muich more critical parameter was found to be the radius of
the impacting projectile. The aspect ratio of the impacting
projectile (in this case a right circular cylinder), in
changing from a disklike projectile to a pencillike projectile
of £he same msass, produces ballistic limits which differ con-
siderably. Obviously the radius of the impacting projectile
is therefore a factor of prime importance, and the yield
strength of the plate material one of secondary importance in
ballistic 1limit studies. It was noted that the nearly linear
velocity dependence in the determination of ballistic limits
was quite similar to experimental results obtained in the

penetration studies of reference 8.



APPENDIX

GOVERNING EQUATION OF SHEAR PERFORATION

In this appendix an analytical solution is presented for
the governing linear differential equation and its associsted
boundary conditions. In & manner similar to that employed
by Chou in reference 3, the governing partial differential
equation is reduced to a total differential equation by use of
Laplace transform techniques. To obtaln a particular solution
to the resulting total differential equation a further change
in variables becomes necessary. After satisfying the asso-
ciated boundary conditions a "short time" solution is deter-
mined by employlng asymptotic approximations in the trans-
formed state.

The governing linear differential equation of motion in
the axlal direction, for simple shear perforation, as derived

in the text (see eq. (3)) can be written as

NV, 1w 1w _1k (A1)
3r2 Tor v rp

transforming equation (Al) with respect to t by use of
Laplace transform techniques, results in

1T 1T v

k
— A2
dare rar v us ( )

[
Hi

where s 1s the transform parameter. By use of the initial
condition (eq. (4)), V(o,r) =0 at t =0, r>a

equation (A2) is reduced to




AV 147 sV 1k (43)

Let
r:.:.i_z_ (A}_{_)
8
Vv
hence
av _av., f
TSk (45)
}
ﬁ:'dg% (A6)
ar dz

and by substitution of the above relations into equation (A3)

there results

e T —
g;%»+ %_é% +V = 21—-:52 (A7)
d £
: v
The homogeneous solution can be written directly as
Va(z) = AJo(z) + BYo(2) (48)

For the particular solution to equation (A7) the Struve func-
tion of zero order is satisfactory. A known relation for the

Struve function of order p 1is (see ref. 9, p. 211)

Ol

a%sp(z) 1 asp(z) ( ) Lf_) _
w2 Tz @ T\ 3 plz) = (o - 0.5):! #9)
Iet p=0
a2s_(z) as,(z) 2
aze + % S +5o(2) = o (A10)



Hence, the particular solution to equation (A7) can be written

as

g . ik
VP(Z) = EESO(Z)
2[% (A11)
and the general solution becomes
V(z) = Vg(z) + Vp(z) = AJo(z) + BYo(z) - ~ik g (z) (A12)
2 -;f;us

or, resubstituting for z from equation (Ak)
V(r,s) = AJo(ir J%) + BY, (ir \[_-3'-) - ;—\},‘:—;1;80 (ir \/-_vs-'-> (A13)
v
In order to apply now the (transformed) boundary condition
given by equation (8), namely, V =0 as r —o one must con-
sider the asymptotic behavior of the solution as given by
equation (Al3) for ‘r‘ >> 1, The asymptotic approximastion for

the Struve function of order zero as found in reference 9,

equation (136a) is
s (1 §> ~Y (' 5) + —2
o(r J: ollr J: ir E (Al’-#)

and since a known ldentity between the Bessel functions is

(see ref. 10, eq. (110))

rofr f§) - 210 [2) + 1o ix f5)) (115)

B BBl B e

Hence, for |r|>> 1, the general solution can be written as

then




V(r,s) = AIo(r \[%) + BEIo(r J%) - %Ko(r E)]
tofr {F) + 2ro(r F) - %

e Ve Ty

Application of the transformed boundary condition, V=0 as

r - (see eq. (8)) yilelds the relation
A= -Bi -

2 S (a18)
Since Ko -0 and I »» as r —»w». Use of the known iden=-

tities between Ko(r \/-5-) (eq. (A15)), So(ir \/%) (eq. (A1k}),

Is (r \/%), and Y, (ir \/%) reduces the general solution to

Tirse) = 2o(x ) - - J"i 1o f5) - o (r B) (o)
v

The quantity B 1s now evaluated by application of the

(transformed) boundary condition (see eq. (7); note also
eq. (5)):

g.z +§]—‘-=V (r =2, t >0) (A20)

Substitution of equation (A19) into equation (A20) and by use
of equation (140a) of reference 10 yields the following expres-

sion for B:

B = -V, - 2"1‘8 Io(a E) So(la F’) ;T_
+ ;’2‘—:-II<a J_%_) - 25[5 -8 1a, J-] (a21)
2 ;'%(sKo (a J%) + J—§1<1(a E))




Hence, the general solution can be written as
T(r,s) = [v, + =& Io<a ﬁ) + 8¢ (ia G}EE- - Zny (a E)
s s
: (5  E
k|2 s k S\
+ Cg_s‘[f -5 <1a J;-ﬂ e Ko<r E)- I}Ko(a )

v (e f3) - W( ) - ofor ()2 02

A "short time" solution is now determined from the general

oy

solution by assuming a \/% > 1. By reference again to equa-

tion (136a) of reference 10, it can be shown that

51 (1a [E) ~ ( _s_) 2__2
1(3‘]—;) Ylia\/—;+“ naQ% (A23)

A known identity between the modified Bessel function of the

second kind of order one K71 and the Hankel function of the

(1)

first kind of order one Hj is (see ref. 10, egs. (115)

and (70))
o f5) =3 (0 ) - -85 o [5) + 112 o 7)) (a2
Hence
Jy (ia J%) = -iYp (ia @) - %Kl<a J%) (A25)
and since

Il(a J%) - i3, (j.a ﬁ) (A26)




then, from equation (A25)

I, (a. \E) = -Yl(ia ﬁ) + %—Kl(a E) (827)

1=
5
=t}
n

2-ala f)=nf ) Rl B) o

Substitution of the asymptotic expressions for Sy and
% - 87 1into the general solution (eq. (A22)) and making use

of the identity for Yo (eq. (A15)) ylelds

(oo BBl )
o F) e o [l E)

Note that for increased accuracy in equation (A29), it is

V(r,s) =

(429)

only necessary to increase the number of terms taken in the
asymptotic expansions of Sp and Sy; of course, the semicon-
vergent nature of the asymptotic expansions must be considered.
These additional terms are polynomials and would not present
any new difficulties. To aid in determining the inverse trans-
form of equation (A29), the following asymptotic expansions of
the modified Bessel functions Kg, K; are employed (see

eq. (114) of ref. 10)

X
- |xez(1 - L g
KO(Z)—\[E:ze (l 82+128z2+ )
s (A30)
N R 2.1 L.
Kl(z)‘&e (l+8z 12822 >,



Substitution of the asymptotic expansions given in equa-
tion (A30) into equation (A29) yields, after algebraic

manipulstion

Tr,s) = (2 )2 Lo [; * ool - o) + lgk\/][l (et r)vl_s_

+ <9a2 - 2ar - 71'2

M a->5r Qﬁ 1 __k
8ra +§ V2>m+ T J pser (ABl)

and by application of standard transform tabAles (ref. 11,

p. 380, formulas (11)) V becomes

1/2 ‘j
V(r,t) = vV, (2 / erfc X —& , (X -8 g“a 2 ti erfe L.=8&
or 2{vt 2{vt

982 - 2ar - r2  paa -5r o p2e\vt.2 . r -a
+( o83 "'Cv B + ¢t 21erfc

8r 2{vt

1/2 - - Fy10 32,3 o T
+ (— - g>( ) Emieerfc ZJV_: + (r 8 _ §t_a>ial(“) 1%erfe L2-2

(9& - 2ar - Tre N C‘ue. a - 5r , 2 u2a2)16;t21herfc r-a
12822 8r v/ e 2yvt

v

+ k—u2(§)l/2 E.6t21uerfc -2, (r -2 §L>£(kt)5/215erfc -2
pa® V¥ 2{vt 8r 2yvt

2 _ - Tre _ 242 -
+ (93 2ar2 =, gﬁvi a-or, G = V2 ug316erre T 228 |, | - 1;_:‘
128r 8r v2 Ja 2yvt

((r -a) 2 o) (A32)

where the symbol i® denotes the nth integral of the comple-

mentary error function.

Equation (A32) can now be nondimensionalized as follows:




Let

\
— r
r = -
a
T-xt
t-nz
) )
H - (he - 21a”hp (A33)
- e - Zaho
ka
K = =2
v
ot J

Hence, the nondimensional velocity can be written as

v; = %{ + ¥K(1 - H)T12erfc _2ﬁ + 16kEE21 berse - ffl
+ Rl[ ti erfe I- l + 8K(1 - H)t13erfc T - 1, )2!(!!(_)5/215erfc :]
o 2J?
(A3h)
+ Ro E@izerfc r-1, 16k(1 - H)t Piterre oL 4 ghxmEderse _r__-;_l_ th
2ft 2 T
((r -1) 2 O
where
1l 1
Ry ==-=-H
178 &
Ro =L _2 _ T +H(.l:-2>+32
2 12872 64T 128 8r 8

By comparison of equations (A31) and (A32), it can be shown
that s 1is related to l/ht and that a\/s/“v> 1l implies

t < 1/4. Nevertheless, calculations indicate that the three-
term asymptotic series presented in equation (A}O) are only

approximately 10 to 15 percent in error for t = 1/2 (and



afs/v = l/\/E). Therefore, results are presented in this paper
for values of t as high as 1/2. Results for t > 1/2 should
be viewed with increasing skepticism. Differentiation of equa~
tion (A38) with respect to T ylelds the nondimensional shear

strain rate

_(F-1)2
VW a_1/ .1 B R T-1, R - S F-1
¥ oa . 2. 5 erfe E=d 4 2E[Ry - K(L - H)]1 erfe T==
Vo T (T T L 2yt
+ ¥E[Rs + K(1 - H)R3]1%erfc r-1, 8(%)5/2@((1 - H)Ry - KHJ13 erfe r-1
2T 2\t
+ 1602(0Rx + K(1 - H)R]ikerse E=L 4 32(T)5/2kmpy15erre =L
o5 ) 2t 2t
+ 6u€3mm516 erfe =L . .\ 4 % ((F -1 2 o)
2yt T
(A35)
where
1
R £ __3_ - - H_
57787 8

15 b) 7 H(> 2
Ry = - + =(= - H
b e G 128 8<f ¥ 5)

45 3 T H(D 3 g2
Rs = - + —_+ B2 - 2) -
> T T 6D | 1o8e2 | 26% ¥ 16<? ?Q) er

By integration of equation (A35) with respect to t the non-

dimensional shear strain is obtained




™ v _bE/ erfc E=L } Rzi2erfc L=t 4 2fE[Ry - X(1 - H)] 1Jerfe =L
{gfj > 2T oL ] ok

+ 4T[Rs + K(1 - E)Rs]i%rfe E=2 + 8(%)3/2[k(1 - H)Ry - KH|1derrc E=1
> 2 2l L ] 2%

-1

* 16€2ECER3 + K(1 - H)R.ﬂ iberrec & '_1 + 32({)5/2mk17erfc I
2yt

((; -1z o)

L1E %

2Vt

(A36)

A second integration with respect to T would determine the

+ 64T xHRs10erre f-&-—:l- .. } +

corresponding displacement. However, a simpler approach is to
integrate the nondimensional velocity with respect to t to

obtain the nondimensional displacement

a?v,

vt - M2 T2y k(1 - H)t1 erfc T=1 4 16 KHT iserfc L 'r_l
2\t 2E 2t

+ Rl[ J—i erfe =L 4 8K(1 - H)(t)j/e Serfe =1 4 321(H(_)5/21 erfc L= l]
2{': 24t 2\%—

= =2
+ Rg[%{iherfc T ol a6k - ;)21 terre =2 & guxatdi8erre Z—:-%} LN - 7§;
2T ol ol

((F-1 20 (A37)
The symbol inerfc x represents the repeated nth integrals of

the complementary error function erfec g

[e o]
iPerfe x = b/ﬁ in"lerfcg dg (A38)
X
in which
ioerfc x = erfec x
1 —x2

it

=

i erfe x



A recurrence relation useful in determining the repeated inte-
grals of the complementary error function is (see refs. 10

and 11)

{N-2e e x - Pxil~d

erfc x (A59)
2n

illerfec x =

A table of the error function and its derivatives and integrals
for values of the argument between O and 3.0 is presented in
reference 11 from values given in reference 12. A similar
table has been included in reference 1 with slight extensions,
for convenlence of use in computing the above expressions. A
table of the first 11 repeated integrals of the error

function with values of the argument between O and 2.80 is also

avallable 1n reference 13.
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Figure 10.- Ballistic limit curves for projectile of O. 52 cm (1/8 in.)

radius. st (0.05 megapoise); p = 2680 X& 5
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