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-_  ARSTRACJ! 5536 
A visco-plastic flow theory f o r t h e  solution of hy-per- 

velocity perforation of t h i n  plates  has been investigated. 

short time analyt ics l  solution including the e f fec ts  of ta rge t  

material yield strength on perforation radii and b a l l i s t i c  

limits w a s  obtained. 

i t ies,  displacements, s t r d n s ,  and s t ra in  rates present i n  the  

ta rge t  material during hy-pervelocity impact. Pertinent param- 

e t e r s  were varied and a comparison was m a d e  with the  solution 

i n  which the  yield strength w a s  taken t o  be zero. The e f fec t  

of t a rge t  material yield strength was not found t o  be signif-  

icant  and resulted i n  l i t t l e  variation i n  the  computed perfora- 

A 

Ekpressions were derived f o r  t he  veloc- 

t i o n  radii. 

Ba l l i s t i c  l i m i t  studies were also performed i n  which 

minimum plate thicknesses necessary t o  prevent perforation were 

established f o r  pro jec t i les  of various masses, radii, and 
. .  

impacting veloci t ies .  Yield strength considerations w e r e  

found t o  be of secondary importance; the  more c r i t i c a l  effect 

being produced by the  pro jec t i le  aspect r a t i o  at impact. 



INTRODUCTION 

An analytical  solution t o  the problem of a r ig id  circular 

cyLir;W+csl prodectile of f i n i t e  mass impacting upon an 

in f in i t e  plate  is presented i n  which yield strength considera- 

t i ons  have been included i n  the  governing equations. 

resul ts  of reference l h a v e  been extended and, i n  addition, 

b a l l i s t i c  limits of t h in  plates have been determined. For the 

sake of completeness, the solution w h i c h  w a s  presented i n  ref- 

erence 1 has been repeated i n  the appendix. 

The 

I n  references 2 and 3 an analytical solution was obtained 

f o r  a problem similar t o  that  of reference 1 except that the 

yield strength of the  target  plate was taken t o  be zero i n  the 

governing equations, 

material w a s  introduced subsequently only t o  establish a sep- 

aration cr i ter ion for perforation. 

dimensional analysis of the plate perforation problem (as 

s ta ted i n  ref. 2) i s  presented in  reference 4. 

indicates t ha t  the radial velocit ies are about one order of 

magnitude l e s s  than the axial  velocities and thus helps t o  

ju s t i fy  the use of a one-dimensional approach. 

A nonzero yield strength of the  target  

An approximate two- 

This solution 

An extension of the work presented i n  references 2 and 3 

is  given i n  reference 5, i n  w h i c h  an attempt was made t o  

include the  effects  of target  material yield strength i n  the 

governing d i f fe ren t ia l  equation and associated boundary con- 

dit ions.  The resul ts  of the analysis are  given i n  f i n i t e  



se r i e s  form and a parametric study i s  presented i n  which the 

effects  of variations i n  the  pertinent parameters on the  

radius of perforation are determined. Certain objections can 

be raised, however, t o  t h e  resul ts  of reference 5 .  The 

expressions f o r  velocity, displacement, s t ra in ,  and s t r a i n  

r a t e  presented i n  reference 5 do not correspond t o  the  resul ts  

presented e a r l i e r  i n  references 2 and 3 as expected when the  

yield strength i s  taken t o  be zero. Furthermore, the  solution 

of reference 5 yields the  erroneous resu l t  that  f o r  t h e  l i m -  

i t ing case of an in f in i t e  mass pro jec t i le  the  velocity of the  

project i le  decreases after impact. These considerations have 

provided the  motivation f o r  the  present analysis. 

The present solution agrees with the  solution presented 

i n  references 2 and 3 ,  i n  t h e  l i m i t i n g  case when the  yield 

strength i s  s e t  equal t o  zero. I n  addition, t he  expression 

f o r  velocity l i m i t s  properly, f o r  t h e  case of the  i n f i n i t e  

mass projecti le,  t o  the  condition t h a t  the  velocity of the  

project i le  remains constant after impact. The solution of 

reference 5 ,  when compared w i t h  t he  present solution, i s  shown 

t o  contain additional mass r a t i o  terms not found i n  t h e  pres- 

ent solution. 

The present report compares resu l t s  obtained by including 

Yield strength i n  the  analysis with the  r e su l t s  obtained f o r  

t he  same conditions when yield strength i s  taken t o  be zero. 

Some Pertinent parameters such as i n i t i a l  velocity, mass, and 

radius of the  impacting pro jec t i le  as w e l l  as the  t a rge t  p l a t e  

n 
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thickness, yield strength, and viscosity are  varied i n  order t o  

study t h e i r  effects  on the  radius of perforation. 

t i c  limits of t h in  target  plates  are investigated as w e l l  and 

%he imyoltzixe of yield strength considerations is  ascertained. 

The b a l l i s t i c  l i m i t  studies determine the  minimum target  

The ba l l i s -  

p la te  thicknesses necessary t o  prevent perforation. Ba l l i s t i c  

I limits are obtained f o r  various values of target  p la te  thick- 

ness and project i le  mass, velocity, and radius. 

SYMBOLS 

The uni ts  used f o r  the  physical quantities defined i n  t h i s  

paper are given both i n  the International System of U n i t s  (SI) 

and i n  the  U.S. Customary U n i t s .  

tems are given i n  reference 14. 

Factors re la t ing the two sys- 

a 

C1 

QO 

h 

c 
H 

inerfc  x 

In 

Jn 

k 

K 

Kn 

M 1  

radius of pro jec t i le  

dy-namic ultimate yield s t ra in  i n  shear 

i n i t i a l  project i le  velocity 

p la te  thickness 

2Ytah/M 

2?ra%p/M 

nth integral  of erfc  x (See appendix, eq. (A*)) 

modified Bessel function of f irst  kind of order n 

Bessel h n c t i o n  of first kind of order n 

dynamic yield stress i n  shear 

ka/Vop, Bingham number 

modified Bessel function of second kind of order n 

mass of pro jec t i le  



mass of project i le  and plug of p la te  material of 

radius a, M1 + xa2hp 

rad ia l  distance 

nondimensional rad ia l  distance, r/a 

transform parameter 

Struve function of order n 

t i m e  

nondimensional t i m e ,  2- t 

axia l  velocity 

transform of V 

i n i t i a l  velocity of project i le  and ta rge t  plug of 

a2 

radius a, Vo = go M1 M 

nondimensional velocity 

nondimensional shear s t r a i n  rate 

axial displacement 

nondimensional 

nondimensional 

displacement 

shear s t r a i n  

Bessel function of second kind of order n 

shear s t ra in ,  - aw 

coefficient of kinematic viscosity, E 

ar  
coefficient of dynamic viscosi ty  

mass density of p la te  material 

transverse shear stress 

axial coordinate 
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Subscripts: 

c r  c r i t i c a l  

t 

P perforation 

A dot over a symbol denotes different ia t ion with respect 

t o  t i m e  t. 

ANALYSIS 

Governing Equations 

I n  the present analysis, a r igid c i rcu lar  cylindrical  

p ro jec t i le  is considered t o  impact upon a t h i n  i n f i n i t e  plate .  

The resul t ing perforation of t he  plate  by the  pro jec t i le  is  

assumed t o  be a simple shear plugging perforation, i n  which 

only the  transverse shear s t resses  act  t o  r e s i s t  the  i n e r t i a  

of t he  impacting project i le .  The perforation is  also con- 

sidered t o  be axial ly  symmetric and the  shear s t r e s s  is  taken 

t o  be constant through the thickness of the  plate.  The 

resul t ing deformations w of the p l a t e  are then represented 

as functions only of t he  radial coordinate r and the t i m e  t 

being independent of both the axial coordinate 

cumferential coordinate 8 .  (See f ig .  1( a) .) Hence, by 

summing the  forces i n  the  axial direction on a circular  r ing 

z and the  c i r -  

element of p la te  material (see fig. l ( b ) )  the  basic equation 

of motion f o r  t h i s  simple shear perforation model can be 

writ ten as 



This approach and the  following discussion on p la te  mate- 

rial and governing equations i s  similar t o  t h a t  presented i n  

references 1, 2, 3,  and 6. 

The plate  material considered herein i s  assumed t o  behave 

l i k e  an incompressible, visco-plastic Bingham sol id  i n  which 

the deformation accompanying transverse shearing commences only 

a f t e r  the dynamic yield strength of the  material has been 

reached. (See re f .  7.) When t h e  value of t h e  transverse 

shear s t r e s s  falls below the yield strength of t h e  material 

(or  when the  l o c a l  rate of deformation becomes equal t o  zero), 

visco-plastic flow ceases and the  material i s  assumed t o  be 

r igid i n  t h a t  region. The relat ion between the  shear s t r a i n  

ra te  and shearing stress f o r  the  case of simple shear perfora- 

t i o n  can be writ ten as (see ref. 7): 

or, since the sign &/ar i s  always negative i n  t h i s  case 

T~~ = p - -  k 
ar 

where 

CL dynamic viscosity of t a rge t  material 

k dynamic yield strength i n  shear of t a rge t  material 

-=.- a' a' shear s t r a i n  rate a r  a r  
and the relations between t h e  velocity V, ax i a l  displace- 

ment w, and shear s t r a i n  7 are 



b 

v = G  

Substitution of equation (2b) in to  equation (1) yields the  

governing l i nea r  p a r t i a l  d i f fe ren t ia l  equation 

- a % + l a v  - - - - - _ - -  1 a v - 1 k  
ar2 r ar v at r p 

where 

v = -  IJ. coefficient of kinematic viscosity 
P 

( 3 )  

The i n i t i a l  conditions are taken t o  be 

v = o  (t = 0, r >  a) (4) 

v = vo (t = 0, r $ 4  ( 5 )  

where Vo is t he  initial velocity of the combined mass of the  

pro jec t i le  and plug of target  material of radius I n  t h i s  

study V, is determined from the  conservation of momentum at  

a. 

t h e  ins tan t  of impact i n  which the projectile-plug combina- 

t i o n  i s  assumed t o  be r ig id  and t o  act as a u n i t .  Thus 

where 

QO 

M1 mass of pro jec t i le  

M = Mi + na2hp 

i n i t i a l  velocity of f ree  project i le  

combined mass of project i le  and plug 

The boundary conditions are as follows: at  t > 0, r = a 

from Newton's second l a w  



where 

( = -  &ah 
M 

and a t  t 2 0, r + 00 

v + o  
Method of Solution 

An analyt ical  solution t o  the  governing equations i s  

obtained i n  reference 1 by Laplace transform techniques i n  a 

manner similar t o  the  approach used i n  reference 5 .  The homo- 

geneous solution can be written d i rec t ly  i n  terms of modified 

Bessel functions. The par t icu lar  solution, however, i s  obtained 

by u t i l i z ing  Struve functions of order zero rather  than by the 

method of variation of parameters used i n  reference 5 .  The 

solution t o  the governing d i f f e ren t i a l  equation, equation (3), 

and i t s  associated boundaq conditions (eqs. (4), ( 5 ) ,  (7), 

and (8)) i s  discussed i n  detail i n  the  appendix. The solutions 

obtained are "short time" solutions i n  t corresponding t o  

values of the transform parameter s >> or  t << (see 

appendix) result ing from the  use of asymptotic expansions 

i n  the transformed state. It i s  shown i n  the appendix tha t  

t h e  velocity (A34) ,  displacement ( A 3 7 ) ,  shear s t r a i n  (A36) ,  

and shear s t r a i n  rate (A35) can be expressed i n  dimensionless 

form i n  terms of a dimensionless radius r and a dimensionless 

time t .  

a2 

- 

When the  yield strength k i s  taken t o  be zero i n  the  

equations given i n  the  appendix they reduce t o  the ident ica l  

expressions given i n  reference 3.  
I 

Also i n  the case of t h e  



i n f i n i t e  mass projec t i le  i n  w h i c h  H = 0 (Mi = m) the  expres- 

sion given i n  equation (A%) f o r  velocity reduced t o  V = Vo 

a t  F = 1 for a~ values of t' h 0. 
Separation Criterion 

I n  order t o  determine the radius of the  plug of p l a t e  

material which is sheared (or perforated) from the  plate  upon 

impact a separation c r i te r ion  ( ident ical  t o  t h a t  discussed i n  

re fs .  1, 2, 3, and 5 )  consisting of two conditions is estab- 

lished. The first condition for separation is  based on the 

assumption that detachment of the project i le  and a portion of 

the  p l a t e  material occurs when the  p la te  material can no 

longer transmit a given shear s t ress .  If the p l a t e  behaves i n  

a highly viscous manner it i s  capable of transmitting a shear 

s t r e s s  of any magnitude. 

the  material  i s  highly viscous when the  s t r a i n  r a t e  is  above 

some l i m i t i n g  value, here assumed t o  be k/p. Below this 

I n  t h i s  analysis it is assumed that 

value only a limited shear stress can be transmitted and con- 

sequently separation may take place. 

shear s t r e s s  and visco-plastic flow w i l l  exis t  immediately 

This condition of high 

mer impact when the s t r a i n  r a t e  is a t  a maximum and the  

viscous s t r e s s  

k of the material  (see eq. (a)). In equation form the  

8 
p - ar is  much greater than the  yield strength 

s t ra in- ra te  c r i te r ion  f o r  separation i s  



The second condition deals with the  shear s t r a i n  of the  

material which, a t  the  moment of impact, i s  zero and increases 

thereafter. I n  order f o r  the  plug t o  separate from the  plate  

the material not only has t o  be considered as having a suf f i -  

ciently s m a l l  s t r a i n  rate but must experience large shear 

s t ra ins  as well. I n  t h i s  analysis the shear s t r a ins  a re  con- 

sidered large when t h e  shear s t r a i n  exceeds the  dynamic value 

of t he  ultimate shear s t r a i n  of the  material. 

Thus the  second condition can be written as 

where 

C 1  = 0.02 

C1 = dynamic ultimate s t r a i n  i n  shear ( a  value of 

was used i n  t h i s  paper f o r  both aluminum and steel) .  

For a fur ther  discussion of these separation conditions, see 

references 1, 2, and 3. 

The radius of separation of t he  plug material and the  

time of separation can most readily be determined by a graphi- 

cal  procedure. In  f igure 2 a typ ica l  nondimensional set of 

s t r a i n  distributions f o r  different  values of t h e  t i m e  param- 

e t e r  i s  shown. I n  f igure 3 nondimensional s t ra in-rate  dis-  

tr ibutions are shown f o r  a pro jec t i le  of mass 0.052 g and in i -  

t i a l  velocity 1.2 km/s impacting on a 0.635-cm (1/4-in.) a l ~ -  

minum plate.  

a r,t  

A plot  of t he  locus of c r i t i c a l  s t r a i n  points i n  
- -  

space can now be obtained from figure 2 by constructing 

a horizontal l i n e  representing the c r i t i c a l  s t r a i n  (eq. (10) ) 

and determining i t s  ?,e intercepts  with the s t r a i n  curves. 



I n  a similar 

space can be 

t i o n  and the  

i nf. er P e e t  i on 

manner the  c r i t i c a l  strain-rate locus i n  

determined f r o m  figure 3 .  

t i m e  of separation are now determined from the  

of t he  c r i t i c a l  s t r a i n  and c r i t i c a l  s t ra in-rate  

:,E 
The radius of perf'ora- 

curves as plot ted i n  figure 4. Thus f o r  t h i s  par t icular  case 

the  radius of perforation and the  t i m e  of separation as found 

from figure 4 are FP = 1.740 and = O.aO, respectively. 

Note tha t  four regions axe indicated i n  f igure 4. In  

these regions the  predominant material behavior could be 

described as follows: large s t r a in  rates, large s t r a in  

(region 1); large s t r a i n  rates, s m d  s t r a i n  (region 11); 

s m a ~  s t r a i n  rate, s m a U  s t r a in  (region 111); s m u  s t r a i n  

rate, large s t r a i n  (region N). 

c r i t i c a l  conditions of t he  separation c r i te r ion  sat isf ied,  and 

since separation w i l l  occur at the  first t i m e  at which bath 

conditions are sa t i s f ied  it is  assumed that  a t  the apex of 

t h i s  region separation occurs. 

solution is  no longer valid due t o t h e  changes i n  the  boundary 

conditions. 

O n l y  i n  region I V  are both 

After i n i t i a l  separation the  

EF'FE[;TS OF PERTINENT PARAMEZERS ON PERFORATION RADIUS 

Expressions are derived i n  the appendix f o r  the  velocity, 

displacement, shear strain,  and shear s t r a i n  rate writ ten i n  

nondimensiond form. These expressions contain pertinent 

parameters associated with the perforation problem such as 

pro jec t i l e  m a s s ,  radius, and i n i t i a l  velocity, and ta rge t  



density, viscosity, yield strength, and thickness. Variations 

i n  these pertinent parameters are now investigated t o  deter- 

mine t h e i r  effects on the  perforation radius. 

resul ts  are obtained by use of a high-speed d i g i t a l  computer. 

Perforation Radius as a Function O f  I n i t i a l  Project i le  

Velocity 

Numerical 

I n  f igure 5 i s  shown the  variation i n  perforation radius 

versus i n i t i a l  p ro jec t i le  velocity f o r  a 0.635-cm (1/4-in. ) 

aluminum pla te  and a 0.224-cm (0.088-in.) s t e e l  p la te  being 

impacted by a 0.119-cm (3/64-in.) radius r ig id  cylindrical  

projecti le.  

0.032 g which f o r  aluminum corresponds t o  a pro jec t i le  

0.434 cm (0.171 in . )  long. 

of the s t ee l  p la te  i s  equivalent t o  the  mass per uni t  area of 

the  aluminum plate .  Thus the momentum exchange between the 

impacting pro jec t i le  and both the s t e e l  and aluminum plates  

i s  identical .  

The mass of the  pro jec t i le  w a s  taken t o  be 

Note tha t  the  mass per un i t  area 

As can be seen from f igure 5,  the  inclusion of material 

yield strength i n  the analysis has l i t t l e  e f fec t  on the  perfo- 

r a t i o n  radius for  the range of veloci t ies  shown ( m a x i m u m  dif-  

ference is  of the  order of 5 percent). 

higher yield strength than aluminum, the  c r i t i c a l  s t r a i n  rate, 

which depends on viscosity a8 w e l l  as y ie ld  strength, i s  for  

steel ,  only 2/3 of t ha t  f o r  aluminum (p = 15 9 (0.13 mega- 

Although s t e e l  has a 

m 
poise), k = 1.9 GN - (200 k s i )  f o r  s teel ;  p = 5 kNS m-- (0.05 mega- 

m2 
Poise), k = 0.69 (100 k s i )  f o r  Al). Hence, f o r  the  Same 

m2 



i n i t i a l  velocity, the perfora,ion radius i n  s t e e l  is  larger  

than i n  aluminum and separation occurs i n  the  s t e e l  p la te  

a f t e r  a greater passage of time. 

E r f n r t . i o n  Radius as a Function of Project i le  Mass o r  

P la te  Thickness 

The effect  of varying the thickness of t he  aluminum pla te  

on the  nondimensional perforation radius is shown i n  f ig-  

ure 6. 

taken t o  be 6.1 km/s and the  p la te  thickness w a s  varied f r o m  

0.633 cm t o  6.35 cm (1/4 in. t o  2.5 in.)  all other param- 

The i n i t i a l  velocity of the aluminum pro jec t i le  was 

e t e r s  being held constant. The increase i n  p l a t e  thickness 

decreases the  perforation radius and time of separation. The 

inclusion of yield strength i n  the  analysis has l i t t l e  effect  

on the  calculated perforation radii (maximum var ia t ion i n  cal- 

culated radii i s  of the  order of 4 percent). Note i n  addition 

if the  mass of the  pro jec t i le  i s  decreased by a factor  (the 

radius remaining constant) instead of the  p la te  thickness 

being increased by the same factor, t he  calculated resu l t s  are  

ident ical .  This result i s  due t o  the f a c t  t h a t  the  nondimen- 

s iona l  parameter H, 

2 H =  
1 +'P) 

Ira% h 

changes i n  the  same proportion w i t h  decrease i n  Mi o r  

increase i n  h. The perforation rad i i  a r e  thus seen t o  

decrease w i t h  e i t he r  a decrease i n  p ro jec t i le  mass or  an 

increase i n  p l a t e  thickness. It is  evident from figure 6 
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t h a t  the effects  of yield strength need not be considered i n  

the calculation of perforation radii. 

Perforation Radius as a Function of Coefficient of 

Dynamic Viscosity 

The variation i n  nondimensional perforation radii due t o  

changes i n  t he  coefficient of dynamic viscosity i s  shown i n  

figure 7, f o r  t h e  0.052-g project i le  impacting on the  aluminum 

plate.  

of dynamic viscosity was varied from 0 t o  13 - (0.15 mega- 

poise), all the other parameters remained constant and are  

given i n  figure 7. 

A velocity of 1.2 km/s was chosen and the coefficient 

kNs 
m2 

Although calculations were made f o r  la rger  

values of p, it was found tha t  t he  dimensionless separation 

times exceeded the l i m i t s  of the  aQplicabi l i ty  of t h e  short 

time solution. 

Note t h a t  as t h e  coefficient of dynamic viscosi ty  i s  

increased, t h e  result ing perforation radii a l so  increase. 

s m a l l  variation i n  t h e  coefficient of viscosi ty  i s  shown t o  

produce a large variation i n  perforation radii, and indicates 

a definite need f o r  be t t e r  evaluation of t h i s  coefficient.  

The inclusion of t h e  yield strength i n  t h e  analysis resu l t s  i n  

perforation radii as much as 10 percent lower than the  solu- 

t ion  with yield strength taken t o  be zero. However, t h i s  

Variation can be considered t o  be negligible i n  comparison t o  

the  variation caused by changes i n  viscosity.  

A 



Perforation Radius as a Function of Project i le  Radius 

The effect  of varying the project i le  dimensions on the  

perforation radius ( i n  units) is  shown i n  figure 8. 

and impacting velocity of the  project i le  were considered t o  

remain constant a t  0 . ~ 2  g and 6.1 km/s, respectively. The 

ta rge t  p la te  w a s  considered t o  be made of aluminum of 0.635-c~~ 

(1/4-in.) thickness. 

shape of the  cylindrical  p ro jec t i le  changes from t h a t  of a 

pencil  t o  t h a t  of a disk (note project i le  schematics i n  

f ig .  8) the  perforation radius increases. 

recognize that the  r a t i o  of perforation radius t o  pro jec t i le  

radius is diminishing with increasing pro jec t i le  radius. 

e f fec t  of including dynamic yield strength i n  computing perfo- 

r a t ion  radii is seen t o  be negligible i n  comparison t o  the 

e f f ec t s  produced by varying the  pro jec t i le  radius. 

Perforation Radius as a Function of Dynamic Y i e l d  Strength 

The mass 

The f igure i l l u s t r a t e s  t h a t  as the 

It is important t o  

The 

f o r  a Fixed Separation Criterion 

The calculations presented ea r l i e r  f o r  t h e  aluminum ta r -  

get  plate have assumed a value of dynamic yield strengtb i n  

shear of 0.69 (100 ks i ) .  A great deal  of uncertainty 

exists i n  determining the dynamic yield strength especially 

under hypervelocity impact conditions. 

e f f ec t s  of wide variations i n  strengkh on the computed perfo- 

ra t ion  radii the  dynamic yield strength has been varied from 0 

t o  6.9 a (1,000 ksi)  and the calculated perforation radii are  

shown plot ted i n  figure 9. 

m2 

To determine the 

m2 
These perforation radii are  



determined using a constant value of the  c r i t i c a l  s t r a in  ra te  

0.0692 . If the c r i t i c a l  s t r a i n  rate, (k/p), 
( l (E)cr  el = ) 
has also been varied i n  accord w i t h  the  variation i n  dynamic 

yield strength k, keeping p constant, then as the  yield 

strength approaches zero the  c r i t i c a l  s t r a in  r a t e  would also 

approach zero and the  perforation radius would approach 

inf ini ty .  This result i s  unrea l i s t ic  and the c r i t i c a l  s t r a i n  

ra te  therefore i s  not varied according t o  the variation i n  k 

but i s  assumed t o  remain constant. 

Figure 9 again i l l u s t r a t e s  t ha t  the  e f fec t  of including 

dynamic yield strength i n  the calculation of perforation radii 

i s  negligible f o r  reasonable values of dynamic yield strength. 

As can be seen from the  figure, the  decrease i n  perforation 

rad i i  f o r  an increase of the dynamic yield strength between 0 

GN and 3.45 - (300 k s i )  i s  l e s s  than 10 percent. 
m2 

Comments on the  Effects of Yield Strength on Velocities, 

Displacements, and Stresses 

I n  the  previous sections, it has been shown t h a t  the  

resul ts  f o r  perforation radii obtained with the  inclusion of 

yield strength i n  the  analysis d i f f e r  l i t t l e  from the  resu l t s  

i n  which yield strength was taken t o  be zero. I n  reference 1 

many calculations have been made on veloci t ies ,  displacements, 

and s t resses  with and without y ie ld  strength considerations 

and a few pertinent remarks on these r e su l t s  are  i n  order. 

The s t r a in  and s t r a in  ra tes  are l i t t l e  affected by the  

inclusion of yield strength terms and r e su l t  i n  similar curves 



6 

when plotted as a function of p la te  radii. The velocit ies,  

displacements, and st resses  of the solution containing yield 

strength, however, are  at times markedly different  from the 

solution i n  which yield strength i s  talcen t o  be zero. 

e f fec ts  of yield strength i n  genera3 a re  t o  produce mch 

smaller ve loc i t ies  and much s m a l l e r  displacements than when 

the  yield strength i s  taken t o  be zero. I n  fact ,  for the  par- 

ticular case where the pro jec t i les  do not perforate the ta rge t  

plate, the  analysis including y ie ld  strength indicates the  

veloci ty  drops t o  zero and the plate  becomes r ig id  i n  a 

deformed state, while if  the yield strength is taken t o  be 

The 

I 

I zero the velocity approaches a nonzero l imi t ing  value, and the 

p l a t e  continues t o  deform. 

analysis of the effects  of ta rge t  material yield strength on 

the  veloci t ies ,  displacements, and s t resses  of the ta rge t  plate  

i s  given i n  reference 1. 

A more complete discussion and 

Another question of prime concern i n  the  investigation of 

hypervelocity impact i s  t h a t  of establishing minimum thickness 

requirements of t h i n  plates  necessary f o r  the prevention of 

p ro jec t i l e  perforation. This minimum p la t e  thickness or maxi- 

mum p ro jec t i l e  velocity allowable before perforation i n i t i a t e s  

i s  termed the  b a l l i s t i c  l i m i t .  The b a l l i s t i c  l i m i t  was deter- 

mined i n  the  following manner. The graphical procedure as 

i l l u s t r a t e d  i n  figure 4 by the  intersection of the c r i t i c a l  



s t r a in  and c r i t i c a l  s t ra in-rate  curves, establishes the radius 

and time of separation of the  plug of p la te  material being 

sheared from the target  plate .  By decreasing the I n i t i a l  pro- 

j e c t i l e  velocity, the  c r i t i c a l  s t r a i n  curve i n  figure 4 r ises ,  

and the  c r i t i c a l  s t ra in-rate  curve decreases and bends more 

sharply toward the ordinate t. Thus, the radius of perfora- 

t ion  and time of separation decrease u n t i l  the  intersect ion of 

the two curves occurs a t  r = 1. For any fur ther  decrease i n  

i n i t i a l  p ro jec t i le  velocity, the  curves w i l l  not intersect  and 

a b a l l i s t i c  l i m i t  i s  assumed t o  have been reached. Note tha t  

under the assumptions adopted In  t h i s  paper no considerations 

have been made f o r  spallation. The b a l l i s t i c  l i m i t s  estab- 

l ished i n  t h i s  manner f o r  t h i n  t a rge t  plates  could yield p l a t e  

thicknesses which are  unconsemative (i.e.,  too  t h i n  t o  pre- 

vent perf'oration f o r  a given p ro jec t i l e  velocity) and compari- 

son with experimental data  i s  essent ia l  t o  ascertain the  

degree of error  introduced i n  neglecting the  e f fec t  of spalla- 

t ion  of t he  ta rge t  plate .  

- 

- 

The b a l l i s t i c  l i m i t  thickness as a function of p ro jec t i l e  

mass fo r  s i x  different  pro jec t i le  ve loc i t ies  i s  shown i n  fig- 

ure  10. 

t o  6.462 h / s .  

constant at 0.32 cm (1/8 in . ) .  

The pro jec t i le  ve loc i t ies  were varied from 0.914 km/s 

However, the  p ro jec t i l e  radius w a s  held 

me curves which a re  shown i n  

GN k = 0.69 - 
m2 

the  figure are  valid f o r  (100 k s i )  and the projec- 

t i l e  velocity shown above the  curves, and f o r  k = 0 and the  

project i le  velocity shown below the  curves. The inclusion of 



0 

the  material yield strength i n  b a l l i s t i c  l i m i t  s tudies produces 

effects  which are  only s l i gh t ly  higher (approximately 10 per- 

cent) than those presented e a r l i e r  on perforation studies 

( a 2 2 r c x ~ ~ ~ t . e ~ ~  5 percent ) . 
The minimum p la t e  thicknesses are shown plotted as a 

function of i n i t i a l  p ro jec t i le  velocity f o r  three different  

mass pro jec t i les  i n  f igure 11. Figure ll is  simply a cross 

plot  of f igure 10, considering the  mass M1 constant. "he 

radius of t he  pro jec t i le  is  held constant a t  0.32 cm 

(1/8 in.), but t he  mass is  varied from 0.001 g t o  0.100 g. 

This change i n  mass could be accanrplished by e i ther  changing 

the  length or  the  density of the  project i le .  Note tha t  the 

curves are  all para l l e l  and increase as (go) l.@. This 

veloci ty  dependence is  quite similar t o  experimental resu l t s  

obtained f o r  t h e  dependence of penetration on the  velocity of 

t he  impacting pro jec t i le  by Collins and Kinard ( re f .  8). 

I n  f igure  12 the  m i n i m  plate  thickness i s  again plot ted 

as a function of pro jec t i le  mass for  eight different  projec- 

t i l e  veloci t ies .  The radius of the project i le ,  however, has 

now been decreased t o  0.119 cm (3/64 in.). 

sharply the  minimum pla te  thicknesses have increased from f ig-  

ure  10 t o  f igure 12. 

0.01 g, the minimum plate  thickness d i f f e r s  by a fac tor  of 

f i v e  and a half considering the  project i le  f i r s t  t o  have a 

radius of 0.32 cm (1/8 in.  

(3/64 in.). 

Notice how 

I n  the case of a pro jec t i le  of m a s s  

and then a radius of O.ll9 cm 

Under these conditions, the  same density 



material would resemble f i r s t  a disklike pro jec t i le  and 

then a bul le t l ike  pro jec t i le  as the radius i s  decreased. 

Hence, pro jec t i le  aspect r a t i o  i s  most important i n  deter- 

mining the b a l l i s t i c  l i m i t  of t h in  plates, exhibiting a much 

more inf luent ia l  effect  on the  resu l t s  than i s  evident i n  

perforation studies. 

CONCLUDING RENARKS 

It i s  shown tha t  the inclusion of ta rge t  material. yield 

strength i n  a one-dimensional analysis of hy-pervelocity impact 

perforations produces l i t t l e  e f fec t  on the  resulting perfora- 

t ion  radius. The variation i n  calculated perforation radius 

as compared t o  the  solution with ta rge t  yield strength taken 

t o  be zero generally amounted t o  only 5 percent i n  t h i s  inves- 

t igation. This difference i n  calculated perforation radii 

remains at the negligible ?-percent l eve l  even with variations 

i n  the pertinent parameters such as p la t e  ( o r  t a rge t )  thick- 

ness, p ro jec t i le  m a s s ,  and i n i t i a l  velocity.  With var ia t ions 

i n  the coefficient of dynamic viscosity, however, the  differ-  

ence due t o  yield strength does increase t o  perhaps 10 percent. 

On the other hand, the  var ia t ion i n  perforation radius due t o  

differences i n  the assumed value of the  viscosi ty  coefficient 

alone can be much greater  than the  10 percent. Consequently, 

the determination of accurate values f o r  the  coeff ic ient  of 

dynamic viscosity i s  much more c r i t i c a l  t o  t h e  calculation 



v 

of perforation radius than i s  the inclusion of t he  t a rge t  

yield strength. 

In the  determination of t he  b a l l i s t i c  limits of t h i n  

plates  (that zinirmlm allowable thickness o r  maximum allowable 

velocity) t he  effect  of including yield strength i n  the  analy- 

sis produces r e su l t s  which d i f f e r  by approximately 10 percent 

from t h e  analysis w i t h  yield strength taken t o  be zero. A 

much more c r i t i c a l  parameter w a s  faund t o  be the  radius of 

the  impacting project i le .  

p ro j ec t i l e  ( i n  this case a r ight  c i r d a r  cylinder), i n  

changing from a diskl ike pro jec t i le  t o  a penci l l ike pro jec t i le  

The aspect r a t i o  of the  impacting 

of t h e  same mass, produces b a l l i s t i c  limits which differ con- 

siderably. 

i s  therefore a factor  of prime importance, and the  yield 

strength of the p la te  material one of secondary importance i n  

b a l l i s t i c  l i m i t  studies. It w a s  noted t h a t  the  nearly l i nea r  

veloci ty  dependence i n  the determination of b a l l i s t i c  l imi t s  

w a s  qui te  s imilar  t o  experimental results obtained i n  the 

penetration studies of reference 8. 

Obviously t h e  radius of the impacting pro jec t i le  



APPENDIX 

GOVEBNING EWA!l?ION OF SBEAR PERFORATION 

In  t h i s  appendix an analytical  solution i s  presented f o r  

t h e  governing l i nea r  d i f f e ren t i a l  equation and i ts  associated 

boundary conditions. In  a manner similar t o  tha t  employed 

by Chou i n  reference 3, the governing p a r t i a l  d i f f e ren t i a l  

equation i s  reduced t o  a t o t a l  d i f fe ren t ia l  equation by use of 

Laplace transform techniques. To obtain a par t icular  solution 

t o t h e  result ing t o t a l  d i f f e ren t i a l  equation a further change 

i n  variables becomes necessary. 

ciated boundary conditions a "short t i m e "  solution i s  deter- 

mined by employing asymptotic approximations i n  the trans- 

formed s ta te .  

After satisfying the  asso- 

The governing l i nea r  d i f f e ren t i a l  equation of motion i n  

the  axial direction, f o r  simple shear perforation, as derived 

i n  the t e x t  (see eq. ( 3 ) )  can be writ ten as 

transforming equation (Al) with respect t o  t by use of 

Laplace transform techniques, r e su l t s  i n  

where s i s  the  transform parameter. By use of the i n i t i a l  

condition (eq. (4)) ,  V(o,r) = o at t = 0, r > a 

equation (A2) i s  reduced t o  



I 

I * 

Let 

hence 

dV dV 
dr dz 

I -  

and by substi tution of the  above relat ions in to  equation (A3) 

there  resu l t s  

The homogeneous solution can be written d i r ec t ly  as 

For the  par t icu lar  

t i o n  of zero order 

Struve function of 

VH(Z) = AJ0(z) + BY0(z) (A81 

solution t o  equation (A7) the  Struve func- 

i s  satisfactory.  

order p is (see 

A known relat ion f o r  the 

ref .  9, p. 2 ~ )  

Let p = 0 



Hence, the  par t icular  solution t o  equation (A7)  can be written 

as 

Tp(z) = - &so( z) 
2 @  ps 

and the general solution becomes 

or, resubsti tuting f o r  z from equation (Ab) 

In  order t o  apply now the  (transformed) boundary condition 

given by equation ( 8 ) ,  namely, V = 0 as r +to one must con- 

sider the  asymptotic behavior of the  solution as given by 

equation ( ~ 3 )  f o r  

the  Struve function of order zero as found i n  reference 9, 

equation (136a) i s  

- 

Ir I >> 1. The asymptotic approximation f o r  

and since a known ident i ty  between the  Bessel functions i s  

(see ref. 10, eq. (110)) 

then 

Hence, f o r  Ir I i> 1, t h e  general solution can be wri t ten as 



I 

I .  

I 

- 
Application of the  transformed boundary condition, V = 0 as  

r 4 co (see eq. (8)) yields  the  relat ion 

Since K, + 0 and Io + m as r +co. Use of the known iden- 

t i t i e s  between %(r 8) (eq. (Al5)), So(ir  &) (eq. (Alh)),  

Io(. E), aad Y o ( i r  6) reduces the general. solution t o  

The quantity B i s  now evaluated by application of the 

(transformed) boundary condition (see eq. (7); note also 

eq. ( 5 ) ) :  

(r = a, t > 0) 

Substi tution of equation (Alg) into equation (A20) and by use 

of equation (14Oa) of reference 10  yields the  following expres- 

s ion f o r  B: 



. 
Hence, the  general. solution can be writ ten as 

A "short  t i m e "  solution i s  now determined from t h e  general 

solution by assuming a ,/$ > 1. By reference again t o  equa- 

t ion (136a) of reference 10, it can be shown t h a t  

A known ident i ty  between the  modified Bessel function of t h e  

second kind of order one and t h e  Hankel function of the  

f i r s t  kind of order one H F )  i s  (see r e f .  10, eqs. (113) 

K 1  

and ( 7 0 ) )  

Hence 

and since 

I1(a J";) = -iJ1 k a  E )  



then, from equation (m) 

Substitution of the  asymptatic expressions f o r  So and 

in to  the  general solution (eq. (A22)) and making use 2 - - S 1  

of the  ident i ty  f o r  Yo (eq. (Al.5)) yields 

ll 

Note tha t  f o r  increased accuracy i n  equation (w), it is 

only necessary t o  increase the  number of terms taken i n  the  

asymptotic expansions of So and Sl; of course, the  semicon- 

vergent nature of the asymptotic expansions must be considered. 

These additional terms are polynomials and would not present 

any new di f f icu l t ies .  

form of equation (e), the  following asymptotic expansions of 

t he  modified Bessel functions Kg, K 1  are employed (see 

eq. (114) of ref. 10) 

To aid i n  determining the inverse trans- 



Substitution of the asymptotic expansions given i n  equa- 

t ion  (A3O) i n to  equation (e) yields, a f t e r  algebraic 

manipulat Ion 

- 
V ( r , s )  = 

and by application of standard transform tables  ( r e f .  11, 

p. 380, formulas (11)) v becomes 

1 

where the symbol 

mentary e r ror  function. 

in denotes the  nth in tegra l  of the  comple- 

Equation (A32) can now be nondimensionalized as follows: 



0 

L e t  

- r  
a r = -  

Hence, the  nondimensional velocity can be written as 

(A%) 
- 1  2E 

- - 
+ R1 2 ci e r f c  + &(l - H)Fi3erfc + pKE(05/2i5erfc [I" 2E 2E 

r 

((i - 1) 2 0) 

where 

By comparison of equations ( A 3 l )  and (A32),  it can be shown 

tha t  s i s  related t o  1/4t and that  aw> 1 implies 

t < 1/4. 

term asymptotic ser ies  presented i n  equation (A3O) axe only 

- 
Nevertheless, calculations indicate tha t  the three- 

- 
approximately 10 t o  15 percent i n  error  f o r  t = 1/2 



am = l/@). Therefore, resu l t s  are  presented i n  t h i s  paper 

for values of t as high as 1/2. Results f o r  > 1/2 should 

be viewed with increasing skepticism. Differentiation of equa- 

t ion  (A*) with respect t o  r yields  the  nondimensional shear 

s t r a i n  rate 

- 

- - 
r - 1  + 8 (q3 /2@(1  - H)R4  - KE]iT erfc  - + 4$35 + K(l - H ) R d i 2 e r f c  

2 6  2E 

where 

7 H 5  H2 + - + - -  + -  256F 16(F - &) - 
3 45 R 5  =--  

256F3 12& 

- 
By integration of equation (A35) with respect t o  

dimensional shear s t r a in  i s  obtained 

t the  non- 



- 
A second integration with respect t o  r would determine the 

corresponding displacement. However, a simpler approach is  t o  

integrate  the  nondimensional velocity with respect t o  t t o  
- 

obtain the  nondimensional displacement 

. - 
+ 16K(1 - H)t2i4erfc e + 64mGi8erfc 

21: 

(A371 (6 - 1) t 0) 

The symbol inerfc x represents the repeated nth integrals  of 

t he  complementary error fbnction erfc 5 

i n  which 
0 i er fc  x = erfc x 



, 

A recurrence relat ion useful i n  determining the repeated inte- 

grals  of the complementary error  function i s  (see refs.  10 

and 11) 

A t a b l e  of t he  e r ror  function and i t s  derivatives and integrals  

for  values of the argument between 0 and 3.0  i s  presented i n  

reference 11 from values given i n  reference 12. 

table  has been included i n  reference 1 with s l igh t  extensions, 

fo r  convenience of use i n  computing the above expressions. A 

table of the first 11 repeated integrals  of the e r ro r  

function with values of the  argument between 0 and 2.80 i s  a l so  

available i n  reference 13. 

A similar 
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