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In this article a theory of the general perturbations of a planetary
system is developed.

Abstract

The perturbations of the position vectors of each planet are ex-
panded into series arranged in powers and products of the masses m,,
My 5ees, My of the planets constituting the system. Perturbations of
different orders are obtained in theform of series containing the purely
periodic, the secular and the mixed terms, in accordance with standard
astronomical practice. The influence of the lower order perturbations

on the higher order ones is determined.

Typical differential equations are formed determining those per-
turbations of the i'P planet which are proportional to my,, mym,
mym,mg ,.... The right sides of these differential equations are
obtained as the corresponding terms in the Maxwellian expansion of the
gravitational forces in terms of multipoles. The momenta of these

multipoles are the perturbations of all possible orders.

The explicit calculation is carried out here for the perturbations of
the first, second and third orders, and the procedure for determining
the higher order perturbations is outlined.

Decomposing each perturbation of any particular planet m; along
the undisturbed position vector T;, along the undisturbed velocity v,,
and along the unit vector R, normal to the undisturbed orbital plane,
we deduce the differential equations to a form easily integrable by
quadratures. After the integration it is more convenient in practical
applications to replace this decompcsition of perturbations by the de-
composition along ?i, ﬁi x _x:i and ﬁi. The problem of the constants of
integration is treated for the case of the elements osculating at the
initial moment and for the case of the mean elements. The results
given here extend and generalize the author's previous results on the
case of the whole planetary system. The method suffers, however,
from disadvantages common to all astronomical methods of the general
planetary perturbations. It is not applicable to pair of planets if
their orbits approach each other very closely.




Basic Notations

f = the gravitational constant
}’ T .
! m, = the mass of the i*? planet, the mass of the sun is put equal
T to one
‘ u? = f(1+m)
i R 1 1
?i = the undisturbed position vector of ithe i*h planet
|
NN
ri - ir;
R. = the unit vector normal to the undisturbed orbit plane of the i*" planet
: 14
i dr,
| bd —_ 1
‘ v, =
! dt
8T. = the perturbations in the position vector of the it" planet
T = perturbations inr, proportional to m,
—a B _ . . — - B
r = perturbations in r , proportional to m mg
r%#7 = perturbations in T, proportional to m, mg m,,
i TOTTT
J = |_“ !
i /[kx .pkif
|
‘ 8 Pr; = & rk—b r,
=a = Ra_Ta
Pri =L
- -eaB _ "*a,;‘i__—'a,@
F = Ty
. v, = the del operator with respect to ?i
. D, = V. exp (dr, * V)
Dji = V. exp (8 Py V}_)

LN

= _Vj exp (o 'Bji . Vj)

2By = TaBy _Taby
i k i




ON THE GENERAL PERTURBATIONS OF THE

POSITION VECTORS OF A PLANETARY SYSTEM

INTRODUCTION

In this article a theory of general perturbations of a planetary sys-
tem is developed. The perturbations in the position vector of each
planet is developed into a series in powers and products of the disturb-
ing masses and into a series containing the periodic, the secular, and
the mixed terms with respect to time.

Such a way of representing the integrals of the disturbed motion is
in accordance with standardastronomical practice. From the purely math-
ematical standpoint, this solution can be affected by all the difficulties
associated with the near resonance conditions caused by the small
divisors.

We establish the differential equations for perturbations propor-
tional to the powers and products of masses in a form integrable by
quadratures. The explicit calculation is carried out through the per-
turbations of the third order. In our planetary system it is rarely
necessary to include the perturbations of the fourth and higher orders.
However, an outline of the procedure for including the perturbations of
even higher orders is indicated here.

The problern of a direct determining of the general perturbations in
the position vectors, including the effects of higher orders, became pos-
sible only in recent years with the advent of electronic computers. By
decomposing the perturbations 5T, along the directions of r;, v, and ﬁi ,
{Musen and Carpenter, 1963] one can integrate the variational equation
of the problem by Hill's [1874] procedure directly without resorting to
the method of variation of astronomical constants. We shall use here
the same decomposition as an intermediary step; but the final decomposi-
tion of the perturbations will be along ?1 s Ri x?i and Ri , in order to
reduce the components of the disturbing term on the right side of the
variational equation to a simple form. In computing the higher order
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perturbations, it will be necessary toc expand the disturbing forces in
powers of perturbations in the position vectors. Maxwell's method of
expanding the electrostatic potential in terms of multipoles by employing

symbolic operators [1904, 3rd ed] can be used profitably also in planctary

theories. In our exposition the moments of the multipoles are the per-

turbations of different orders of the position vectors. Evidently any other

way of expanding the disturbing forces in terms of the perturbations of
the position vectors will lead to a duplication of Maxwell's expansion,
but through a more laborious writing.

we achieve

In the theory of perturbations of the position vectors
computing

economy of theoretical thinking as well as economy of
machine time, because a set of homogeneous operations is being con-
stantly repeated. All these circumstances suggest that future methods
of calculating general perturbations will be based on the expansion of
the perturbations in the position vectors directly.

The Differential Equations of the Problems
Putting
o=T--a

we shall make use of Maxwell expansion of the spherical functions as
defined in terms of multipoles. We have

n r n
— 1 11.3-++(2n-1) - =
(n) - R vA Rl n .
¢ ] ER RN it 3P (1)
k=1 L k=1
k=1,2,---,n a

1,2,3,--- - L3 (@n-3) 7 5'1._52 l l ak.z
2n~1 A

L k=3

v



. here 51 , 52 s e e e En are constant vectors, V is the del-operator with
respect to r, and the sums

- designate the sums of all terms as obtained from the first term by

means of the permutations of all n indices. In particular, we have
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The gradient of the spherical function ¢(7) is obtained from the
Maxwellian expansion of ¢(*"!) simply by replacing the moment a_

by the idemfactor I. Thus from (2) - (6):
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The differential equation of the disturbed motion of the i*®? planet
can be written in the form
2 p? -
s - i 1 1
_(rl-,-sr):vi ! + fm V_ |- + (11)
= = = = g ——
dt? 1ri+5rx$ =1 'pai"'a’ua'i‘ T +8r<7!
crfi
i; O’:l,2,"‘n.
Taking the equation
a?r, i
=ViT
dt2 1



into account and introducing the vectorial differential operators

o
T

V. exp (3T, 7), | (12)

v
"

Vj exp(éﬁ;i-vj), {13)

which perform the development of (11) into a power series in the com-
ponents of S?k (k=1,2,... n), we obtain from (11) the differential equa-
tion for 7, in the form

d?sT, Z ~
o2 (D.—V.)_:_l_.i. fm /n—D_._l_+D___1_ . (14)
1 1 o o1 [#]
dtg2 * Ty Y Py Ty
o=1 8
afli

The perturbation vector S?i can be developed into a series with
respect to the powers and products of the disturbing masses. We pu:

- i § LI 1 —n 1 -
ir. = — = —_— ; A aBy - 15
i uL,r'**z!L_f‘*su_,jr* * (12)
a apB a5y

where T7 is proportional to m,, and 7} is proportional to m, mg, etc.
The factors in front of the sums in (15) are introduced in order to re-

~

move large coeificients in higher approximations.
We define %, T3#Y, ... in such a way that they remain invariant
under the permutations of the upper indices:

— —~a AN _ SR
?";B: r'fa, Y = TAYe o .. etc.

Symbolically,

o~



where in performing the development and the symbolic "multiplications"
the indices are not being added, but written in a row. We have also

We shall now deduce the differential equation for determining per-
turbations of the form

—y - - )
s, }'lgp, rlqu, r*:pqs,..., (i, k,p, "+=1,2,+-+n),

first under the assumption that there are no identical indices among
k, p, q9,... Retaining only the substantial terms, we have

3?1 = (‘;1: + ?f + ?i‘ +?f) (16)
AR AR R AR
+ (}’E(pq +}'ii(ps +;'li(qs +?I;Q$)
+ ?;pqs + o0, .

55, = (5, + B+ A1) (17)
+ (PP - BKS 4+ B8Y)



and again retaining only the necessary terms, we deduce:

2.9, (55,,°9,)2

D:V.},__’.L_.__)_V +____.—v_+...
LN 1 21 j

= TEV. V. 4 (FkP.V_ V. . TK.V. TPV, V)
1 1 1 1 1 i 1 1 1 1 1

(?)qu'v_ V. + T¥P.Y TY9.V ¥V 4 TPI-V Tk.y ©
1 1 1 1 3 1 1 1 1 i 1 1 1

?gk-vi ?f'vi V. + ?’;-\7" TP-V. T9-V. V)

rie.y TPs.y V., Tks.U TPa.V V)
1 1 1 1 1 1

1 - - - -
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. TPs. Tk. Zq. ‘ - -
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1 1 1
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1 1 1 1 1 1 1 1

(18)
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These cevelopments of the operators DJ. -Vj and Dji permit one to
compute the general planetary perturbations even up to the fourth
rder if necessary.

We will establish the differential equations for determining the
perturbations up to the third order. In our solar system occasions re-
quiring the perturbations of the fourth order will be, probably, very
rare. However, in some cases of very sharp commensurabilities of
mean motions, the question remains open and further numerical in-
vestigations are necessary. Substituting (18) and (19) into (14) and re~
tzining only the typical operators, we have:

a? - - ,
_2(rf1.rkp r‘i‘P‘!+...\,: (20)
A
dt
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1 1 1 i 1 i 3 PY 1 1 1 b3S T.
1
f [V +ZP -V U . (P9-V, V .72 -V 39 1L
- o . . . SP -V R 4 e e
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Comparing the terms of the same degree in the disturbing masses in
the left and right sides of (20), we obtain the basic equations for de-

termining the general perturbations up to the third order:

d? rkp 1 -
— #2 <'x-”‘p V. V. 2.+ F‘-(p),
i i FR T 1
dt? i
2 7 kpg
d r. - #2 Tkpa. Y V. 1 N ?kpq\ ,
1 i PO S i
dt? Ty /

where
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The equations (21) - {23) can be written in the form

a7k /1 3%, 7)) 2
spud | - 70Tk - 2k - 7
de2 ! \r? 5 / ry = ATFL

2 Fre (28)

2 Zkpg - -
d®r? o, /I 3r, ri\ . (29)
—_— [ — - .Tkes _ 2 ©kea
dt?2 3 s / i T
i i

The terms in the right sides of {27) - (29) are the partial gradients of
the sums composed of the elementary spherical functions, with the
and 5, . (i, k=1,2, ...,n).

i ki

moments equal to the perturbations in 1
Making use of (24) - (26) we obtain
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In a similar way
can be formed.

the expressions for F:P%% and for its typical terms
The process can be continued as far as necessary,

until the perturbations become negligible. The restriction that indices

k, p, q,... be different now can be removed.

integration Procedure

The typical differential equation which appears in the problem of
the general perturbations in the position vectors has the form

-~



d2 :x ’/;;i 3\ ?1 ;\\ — P
e b 3 E
N R R R (40)
dt? \ r3 e /’
N1 1
where
X =T%, TP, TFrea |
1 i by 1
_ — Zkpq
= k Kp ol oo
F. =F, e

and F; is a series with th periodic, secular and mixed terms. Egua-
tion {40) is thc variational equation of the two body problems.

In order to reduce the solutions of (40} to quadratures we shall

make use of the substitution

g

X, = (s, +2wi>?i_GiJ (2s, 3w,y dt + [ R,. (41)

i

ers from the substitutions used by the author [1963] previously.
was chosen because of a simpler form to which
It is

itution (41)
) is reduced thereby as compared with the earlier exposition.
unnecessary to retain the index i in the further exposition: we can

now omit it without loss of clarity.

S

e subst
Ay
7

It follows from (41) that

s 3
ax Tw 2 r Le ~ dl =
_‘::435,29:_‘1 SR i (0s 3y dtr T o(s + W)V 42 R, (42)
dt | dt at 3 | ! dt

v v J
a2x  {azs d% 3.2 dr | (43)
= > 2 S 2E D (28 4 3w) dt
de? Ldt" dt? p4dt
I ~ B
,;2 - }Cl, 2 R —
+ 22 (3s + 9w) r,‘_‘\-‘-+ﬁ_J(25 + 3w) dth v
3 idt 3
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de?
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1) and (43) into (40}, we obtzin the vectorial differential

(;2“.\ dw [ 32 2
ATW Y - oo PG L & oy 2 1
s+ 2 I & —— Vv + 2t { R = «*F {44)
dt2/ t A (*':‘L-Q rs
G

which can be integrated by guadratures. Forming the dot products of

{44) and

into account,
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w = K; + B, (48)
!
P where we put
| na =5 - ,
‘ B = F-Rxr dt; {49)
| ) 1-e?
K b nstant of integration. The integration of series in

o
formed in a formal manner,

The equation (45) can now be integrated using Hill's procedure
r 1 .
L1874:. We obtain:

sin £ + A, {50}

{ II—“'GX?Q’) (ﬁ?x?) [ 2 diw g - =
A= § v TGt - = ¥ (R.FXT) dt. (51)
a (l-ez) S m?2y1_e2 dt?

ector T is considered as a temporary constant and it is replaced
by T after the integration is completed. The integrand is a trigono-
etrical series in the mean anomalies of planets and t
mean anomaly 4 associated with %, and it can al onta
secular and the mixed terms. After the integration is performed <
has to be replaced by 4. Integrating the second integral in (51) by
parts and replacing TXT by zero when it appears outside the integra

sign, we obtain

) (‘dzw—'ﬂz‘ awm - = ie-
] R-rxT dt = -} =—R-vxT dt {52)
j dt? at
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As in (49), the integration is pericrmed in 2 formal manner.

In & similar way we obtain {rom (%

~1

)

r P -
I =K. —cos T +K,—sinf + Z, {(54)
5 a 54
where
- { na 23V (s = 22Y & =
z= | 22 (FR) (RYT) dt (55)
J Vi-e-

M
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and K., K, are constants of integration. From {

50 6
considering
~ N s
A 3 yl-ef ¢ 1 r- .
n—cos fdt = —-Z e nt - —sin f = —qsmf,
a 2 2 < ) ‘i/‘h —62 a“
~ 3
{ T ~ }/, f T r, ~ 1 2 f‘
in—sinit at = - 1-e — {COS I +-—0C COos .
j a a< \ 2
we obtain
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K, 1-e? ;2 /1 1 \‘
_ — —€ +2cos f + e cos 2f TK,T,
n a2 \2 2 /

where K4 is the additive constant of inte

~ A

The forms (30} - (39} of the disturbing terms in the right sides of
the variational equations require the decomposition of rf, 1%,
T¥PS, ... in the moving {rame r , R xr,, R, rather than in the irame
g < A4
T,y Vs R,. Setting
x= 5T 5w RTY - IR (57)
and taking
—q na ¢ sin §
. =
N> ~
i1l-e”
et A 1oen
v-Rx ¥ o=
T
into consideration, we deduce Ircm {(41)

2s + 3w) dt, (58)
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The disturbing vector Fcan also be decomposed aler
- R, Perhaps from the computational standpoint this daco
‘ the szmple:t one, it appea*s in several t"k,Ol"‘eb of the g

S = Fxr, T=F.Rxr,
From
. 2 1 2
- n dr - nia i-€
VIZ—— 1+ p Rxr
r g4 2

we deduce
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Substituting this value into (53), we obtain
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and replacing v by its decomposition as given above we have, after
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Determination of the Constants of Integration
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universal varizble

planetary theories. This is doic
air theories of Jupiter and Saturn.
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Putting: n a2 yi-e?
n, ¥1-e? We=- ————— | (2A% + 3B}) dt, (67)
T
n a? ¥1-e? Pk ¢ gk P
nV1l-e2We=- ——— - j(2A‘i‘P+3B‘;P)dt -— ;‘ ‘ (68)
r r?
b3 1
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n Y l—ef Wied = - _3__’2___.__.‘_ (2A‘;Pq + 3Bl;pq) dt
r?
1
pierl CHUSRE S

N G R R R N

i

1 k . 2pq gk, g9k ;P
: L R
i
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And substituting these values into (64) - (66) and taking (59) into con-
sideration'we obtain

2
)\)i( _ 3 3 K x
n———;—ez— T \T; (- K5, + e Ku) fj t (70)
Kfi . 1 .
- {2sin f. + = e. sin 2f.
n, Yi_e? ! 27 !
1 1
ko
Kau Tioef /Zcos‘ ite +1e cos2f\)
1 - - : 1
n, \ 12 0+ 201 :
a?
ok 1k
+ ?K“ + W
1
}\l.(p 3 a 2
1 - = _1 _ wkp + k
— — ", ( i\> ( Ks‘ e, KIF;) n.t
1 1

e LW (71)
3 B i

rs
i
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A

Akpa 2

3 (% )
= — - Pq kpq
= ", <r> (- K te, Kip9) o
n 1-e i i i

Kjpa 1
-—— {2 sinf +>e. si .
N < in £+ 3 e, sin 2f1>
Ko V1m22

+

n.
i

(2 cos fi +—;— e, -1-?12-ei cos 2fx)

a2

+— Kkpa , whea - (72)

i

We shall make use of the developments

P
/:—i cos qf :lCpq +CP9 cos 4. + C29 cos 24, +
\a, i T3 b0 1i i 23 eyt e
1
r AP
1 -
i - Pa gj . §PY &
(a.) sin qf, S89 sin 4, + S29 sin 24, + ...
X

The coefficients in these developments are computed either by some
analytical classic procedure or by means of a harmonic analysis if the
eccentricity is not too small.

The terms of the form
K, K, t, KEC) cos 4, Kgs) sin 4 (73)

must be absent in the developments of (70} - (71). We have, keeping
only the substantial terms,

ko k K k 2 ko ‘ -
We=a§, +85, n,t +af, cos 4 + 85 sind + ..., (74)
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1kp - 4kp " kp . ~kp J kp cinp 4
L am+3oi n;t+aPcos 4 +85 sind + ..., (75)

Wkpa = gkpa +BgP% n; t + akPd cos 1, +B85P4sind, + ... . (76)

In the process of computing the coefficients a and 53, the machine re-
jects automatically all the useless terms, unless we decide to obtain a
complete development of the perturbations in the truc longitude. The

conditions for the absence of the terms (73) in the right sides of (70)-

(71) lead to the equations: :

K2 1-e? 1 1 1 0
+ = <C8'1 r5e+ C8'2> + EK“ Cs%% +ay =0, (77)
/ 0.1 +_esoz\ + 8, =0, (78)
}' -e2 \ 0 /
0 1 o2
B . -2,0 -
+—n—-——— (2C1 fEeCl > +C12 K4+al_0 (79)
3
+ 5= G50 (-K; +eK;) +8,=0. (80)

Separating in Zk, Z¥?, Zkps, .. the terms with the argument 4, we have
1 1 1

k - ~k p x s
Zi—c“cos*t-ps“smuat...,
Z¥P = cfP cos 4 - sk sin 4+ ...,
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Z‘;Pq = c‘l‘fi’q cos 4 s‘;?q sin 4+ ...

(i,k,pyq ... =1,2, ..., n)

and the conditions for the absence of terms with the argument 4 in
gk, ke, kPe, .. lead to

K, ClMoye, =0, (81)
K, SM o+ s = 0. (82)
The lower index i and the upper indices k, p, q,... are omitted in

(77) - (82). Ewvidently, this is not causing any ambiguity.

Conclusion

The results given in this article represent the extension and com-
pletion of the results given in the author's previous articles on this
subject. The theory given here can also be considered as a modifica~
tion and generalization of Hill's planetary theory, with the latter's
inconveniences removed. The interdependent constants of integration
peculiar to Hill's theory do not appear in the preseni exposition. The
solution is given in the form which permits us to write immediately
the differential equation for the general perturbations proportional to
any prescribed product of masses. Moreover, the vectorial formalism
permits us to penetrate into the structure of higher orders effects with-
out great difficulty. Programming is also facilitated by the repetition
of the homogeneous operations.

The formula (57) permits one to obtain easily the decomposition of
4, ‘r’;‘"‘, .... along the axes of the inertial systems, if it is considered

1
as necessary.

r

On the basis of experience obtained at Goddard Space Flight Center
one might expect that computing the perturbations of a given order for
one planet will require only a few minutes. Considering the simplicity
of the methods for the general perturbations in the position vectors, one
is inclined to believe that such methods will consitiute one of the prin-
cipal approaches to the problem in the not too distant future.
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