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HETEROGENEOUS MEDIA FOR NEUTRON ‘'DIFFUSION CALCULATIONS

A. Jacobs

1. INTRODUCTION

We shall develop, in this work, the mathematical formulation
of a new method of treating neutron diffusion in certain types of
heterogeneous media. The heterogeneity of immediate concern, and
toward which this work is directed, is that of a regular array of
vacuum channels (such as a square lattice of cylindrical holes) in
an otherwise homogeneous medium. w;th modification of details,

the general procedure should be applicable to other types of heters

ogenelty. However, a requirement which should be imposed is that
the heterogeneity results in two characteristic directions. For
example, 1n the case of a regular array of vacuum channels, the

two characteristic directions are parallel and perpendicular to

fhe channel axis.

v Probably the most Iimportant considerations of neutron 4if-
fusion in media with holes are those of Behrens (B). However, all

previous work, including (B), is devoted to the determination of
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the effects, of heterogeneity on specific parameters relevant to
neutron diffusion, rather than to a formulation of a general method
from which various descriptions of the neutron distribution can be
determined. The general problem may be stated along these lines:
In media with heterogeneity, such as the type considered here, it
is clear that a "simple homogenization" of the medium for neutron
diffusion calculations is not = va}id representation. We define a
simple homogenization as the process of reducing the medium cross
sections merely by the ratio of material volume to material-plus-
vacuum volume. The streaming of neutrons in the vacuum channels
leads to a spreading of the neutrons in the longitudinal direction
(parallel to channel axis) which is larger than that in the trans-
verse direction kperpendicular to channel axis). Thus, we find
that not only is thg‘simple homogenization questionable for omni-
directional parametér‘calculation, but also the anisotroplic effects
are completely subdued. Of course, the reason that we hawe for con-
sidering homogenizatiégjof the medium is the existence of an "arsenal"
of possible mthem&tic&f_ attacks for such problems.

The new approach to homogenization, which we shall develop,
is based on the reasoning that neutrons traveling with a large
component of their wvelocity in the longitudinal direction probably
travel furthef between collisions, on the average, than those travel-
ing with a large component of velocity in the transverse direction.

let us introduce this effect into the neutron transport equation for




the homogenized medium by allowing the mean free path to be angular-
dependent. Clearly, by so doing, we have embarkea on a mathematical
fiction since the mean free path, as used in neutron transport cal-
culations, is a local parameter. This concept is certainly no more
confusing than the idea of medium homogenization. Let us stress
that we are imposing a total cross ;ection which varies according

to the direction of neutron travel and not merely the usual scat-
tering directionsl dependence.

All considerations will be based on the idealization of
monoenergetic neutron transport. Although time—dependent.equations
will be developed, most of the analysis will be devoted to the
calcylation of stationary states. For the purpose of completeness,
we shall develop the mathematical formulation along several lines.
Spﬁpifically: We shall consider both the neutron flux and collison
density as dependent variables. We shall apply the familiar PN and
double—PN approximations, as well as the moment decomposition. We
shall demonstrate that, for the case of isotropic scattering, the
normal mode procedure, recently used for the solutlon of several
types of neutron transport problems, is applicable and yields exact,
closed-form solutions.

The major part of this work we direct toward the mathematical
formulation and physical interpretation of the new theory. We shall,
however, devote a section to brief remarks relevant to applica-

tion. There is meager experimental data available for lattices of
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the type considered. It will therefore be difficult to evaluate
the present theory. These considerations will yield a well-defined,
albeit not well-substantiated, route to solution of problems involv-

ing neutron diffusion in media pierced by vacuum channels,
II.  MATHEMATICAL FORMULATION

It would seem that application of these ideas to finite media
dictates the use of non-separable position-angle-dependent mean free
paths. The inclusion of position—depéhdence leads to gross diffi-
culties which we have as yet not resolved. We shall assume that
the mean free path in the homoéenized medium depends only on the
angle between the neutron velocity and the direction of the position
variable. 1In all calculations we assume plane symmetry with the

position varlable either along the longitudinal or transverse

direction.

2.1 The Neutron Flux Equation

The monoenergetic neutron transport equation for .homogeneous
media with plane symmetry may be written as

»

Q V(x,u,t) + Q V(X:H:t) + U(U) *(X;U:t)
t 3x

< I+

- Cfﬁ(u') £(2:8') ¥(xu',t) 40" + S(x,u,t)

where y(x,u,t) is the neutron flux distribution as a function of

position, x, direction cosine of neutron travel relative to

(2.1.1)
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x-direction, u, and time; t; v is neutron speed; o(u) is the
angular-dependent total’cross section; ¢ is the mean number of
secondary neutrons which emanate from a neutron-nucleus collision;
£(-Q') is the normalized distribution in 9, the neutron post-collision
direction of travel, of secondary neutrons produced by collision of

a primary neutron with pre-collision direction @'; and, S(x,u,t) is

the rate of neutron introduction from sources which are independent

of the peutron distribution. Although ¢ and f are not necessarily
descriptiveyof a non-multiplying medium, we shall use the terms
scattering probability for ¢ and scattering distribution for £ to

avoid stil;ed discourse. We employ an expansion of the scattering

distribution in terms of Iegendre polynomials {rh(g-g')} , 1l.e.,
.0ty - 2n + 1 Lot
18-0") = 20 F 1, Ry(en)

and the spherical harmonics addition theorem (H, p.143) to eliminate
the azimuthal direction dependence appearing in the integral in

Eg. (2.1.1). We obtain

%.gz.'(x,u,t) + u g;-*(x,u,t) + o(u) v(x,u,t)

+1
DI Pn(u)L B (") o(u') ¥(xou'st) du’
+ S(x,u,t)

(2.1.2)

(2.1.3)
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) In order to proceed with a general discussion of the
properties of Eq. (2.1.3) we require a more specific representation
of o(u). We suppose, with little loss in relevant generality, that
o) =D 7 By(u)
" let us further define the sets {wn(x,t)} and {Sn(x,t)} by
+1
ACDRY I AORICHRIEY
-1
. +1
5,00t) = [ 7 (u) S(x,u,t) au
-1
Equations (2.1.5a) and (2.1.5b) specify the respective expansion
coefficients in Iegendre polynomial expansions of the neutron flux
and source density, e.g.,
2n + 1
¥(x,u,t) = Z 221y, (x51) ()
In these terms, integration of Eq. (2.1.3) over the interval
pe(-1,+1) ylelds the relation
dvy, Ov
1 %o 1
. ;Tt+T+(l-C)Zonvn = So

Eq. (2.1.7) is the continuity equation for neutron motion. The
only term which appears in an unfamiliar fbrm is that which expresses

the total neutron interaction rate. C(Clearly,

+1

) ; % *n(x:t) =f o(u) ¥(x,u,t) du

-1

(2.1.4)

(2.1.58)

(2.1.5b)

(2.1.6)

(2.1.7)

(2.1.8)



A further, familiar, reduction of the transport equation
can be made in terms of the sets ”n}’ {Sn}, and {o | . Using the

recurrence relation for Legendre polynomials (H, p. 32),

(20 +1) uP(u) =n B (W) +(n+1) P (u) (2.1.9)

ylelds the set of coupled differential equations,

n

) n ) n+1 0
5% Yoot * 5T 5 Va0t 5T 5% Yo (08)

<)

+ )20+ 1) oy Aggy (1 = ) ¥, (x,0)

4m
= Sn(x,t) (2.1.10)
The set {A&m} is defined by
+1
Mo = 5 Te0) P) 700 @ (2.1.11)

-1

and has the following properties (H, p. 87):

(1) The order of the indices is unimportant.

(11) Ap., = 0 if the sum of any two of the indices
is less than the third.
(111) Appy = 01f £ + m + n 1s odd.

(iv) when Apn, # 0) 1.e., avolding (11) and (1ii), we have
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It is from Eq. (2.1.10) that the various approximations to
the transpert egquation are derived. DBefore we proceed with detailed
examination of some approximations, let us reexamine Eq. (2.1.3).

We obtain a simpler integral term if the dependent variable is

changed to the neutron collision density,

F(X;u:t) = G(H) ¥(x,u,t)

2.2 The Collision Density Eguation

We reformulate Eq. (2.1.3) in terms of the collision
density, F(x,u,t), and the mean free path, A(p) = 1/o(p), and

obtain

bégl'g;'F(t,u;t) + o M) %; F(x,u,t) + F(x,u,t)

+1
.. e = % ; (Qn + 1) fn Pn(p)‘/:‘ Pn(u') F(X,u',t) dy’

+ 5(x,u,t) (2.2.1)
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With the sets {Fn(x,t)} and {A | defined by

Fxu,t) = 9 SB5LF (x,t) Bo(u) (2.2.2a)
n

AMu) = 2 A B (u) (2.2.2b)
n

we obtain the set of coupled differential equations (cf., Egq.(2.1.10)),

A d

)
LG:n (22 + 1) Abm _51 5t Fl(x, t) + TR IZ; (28 + 1)Am’n_l7\m S5 Ft(x,t)
24 14

n+1

o)
a1 ?-; (2 + DAgy 1Py 5 Fp(0rt)
’

| +(1-ct)F (x0)

Sn(x,t) (2.2.3)

We note that if }‘n =0 forn>0, i.e., the familiar case of an
angle-independent mean free path, then Eq. :(2.2.3), with the aid of

the properties of {Almn}’ reduces to

! .R.ann + "o aFn"l + (n+ 1) e BFnﬂ + (1l -ct)F
B v dt 2n + 1 ot 2n + 1 Jt n/ *n
e =5 (2.2.4)

which 18 the expected result. We note further that the n = O

member of Eq. (2.2.3) yilelds the continuity equation

aFm OF
;Ma—(*l’zm(ac“‘l)7‘mALm15§L+(l’c)F°=S° . (2.2.5)
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In recognizing Eg. (2.2.5) as the continuity equation, we have

P used the easily derived relations

, vy (x,t) = 2; A, Fo(x,t) (2.2.§a)
= { P P
¥, (x,t) g_; (20 + 1) A_ A F (x,t) (2.2.6b)

In the remainder of this work we shall assume the case of a
stationary state. In most cases this assumption merely leads to
simpler algebra and notation and is actually not a requirement for
the determination of a solution. We shall discuss the PN-approxima—
tion and double-PN-approximation as applied to both flu; and
collision density expansions. We shall consider the moment decom-
position for both flux and collislon density. And, finally, we

shall consider, in greater depth, the case of isotropic scattering

using the collision density as dependent variable.

1

2.3 The Ph-Approximation

We define the PN-approximation based on a flux expansion,
or collision density expansion, by the regquirements that in
Eq. (2.1.10), or Eq. (2.2.3), wn(x) =0 forn>N, or Fn(x) = 0 for
n > N, and the equations labelled by n > N are discarded. Thus,
in a PN-approximation we obtain N + 1 coupled differentiasl equations

L ]
with the N + 1 dependent variables vn(x), n=0,1+-, N, or



Fn(x), n=0,1,+-+, N. For example, the P_-approximation based

on a flux expansion gives the single relation
5(1 - c) w(x) =0 (2.3.1)

which has the implication ¢ = 1 for non-trivial vy. This is a

familiar result. The Po—approximation based on a collision density

expansion gives the unusual relation

il
3

| &

+(1-ce)F (x) =0 (2.3.2)

After this present brief comment we shall restrict our consideration
to the case of A(u) a symmetric function of u on the interval

pe(~1, +1), and, in that case Ay = O. For the moment, let us sup-
pose that )& # O. To be specific, we suppose that kl > 0.

According to Eq. (2.3.2), the implication is that dFo/dx < 0 which

indicates a neutron flow in the + x - direction. The questlon which
we must pose is: Can F be p-independent (consistent with Po-approxi-
mation) and yet have ;(x,p) represent a neutron flow in + x - direction
(i.e., v increase with u)? Clearly the answer is in the affirmative
since, if A(u) increases with u (implied by A > 0), then the ratio

¥/N can be u-independent if ¥y also increases with u. In all follow-

ing considerations we assume that A(u), and thus o(u), is a

symmetric function of u. Thus we shall always require Rn = 0, and

Un = 0, for n odd.
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The P,-approximation (i.e., diffusion theory) based on a

flux expansion gives the two equations

!

ay
E;L + (1 -c¢) g, vo(x) = 8§4(x)
ay
Taet e+ 29,) wx) -5 x)

If it is further assumed that all neutron sources are isotropic
such that Sn(x) = 0 for n > O, then Eqs. (2.3.3a) and (2.3.3b) com-
bine to give the usual diffusion theory relations

2

Yo (x) = 8, (x)
- D - + o' v, .(x) = S, (x
de 0 0
dvo
¥ (x) = =D 5=

with diffusion coefficient, D, and "absorption” cross section, o',
£given by

1

T 3(T - cf; )(og *+ 205/5)

U'

(1 - ¢) g

It should be noted that only oy and 0, enter into the diffusion
theory parameters. The o(u) expansion was not truncated at a
quadratic in order to obtain Egs. (2.3.58) and (2.3.5b). 1In passing,

it 1s also worth noting that, had we included time-dependence, the

.

(2.3.3a)

(2.3.3b)

(2.3.4a)

(2.3.4b)

(2.3.5a)

(2.3.5b)

1
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P -approximation would have given the "telegraphist's equation.”
The added assumption that Oy;/v 3t < < Jy,/dx results in the form
of the familier time-dependent diffusion theory with D and o' again
given by Eqs. (2.3.5a) and (2.3.5b).

The P -approximstion based on a collision density expansion

gives the two equations

2 dF
g + 5N g+ (1 -¢) Rix) = (x) (2.3.6a)
1 2 dF,
TN +HEN) g+ (L -efy) Fx) = 5 (x) (2.3.6b)

In the case of isotropic sources, Egqs. (2.3.6a) and (2.3.6b) combine

to give
) &F,
—p' =%+ (1-¢) Fy(x) = 5,(x) (2.3.7a)
D' de
F (x) = —
1 (R + 2K/5) dx (2.3.7p)
‘where the "diffusion coefficient" is R
. (7\0 + 2>\2/5)

3(1 - cfy) (2.3.8)

As is the case in the flux based diffusion theory, a quadratic
truncation of A(u) 1s not necessary to obtain the results given in

Egs. (2.3.7) and {2.3.8).
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The usual result of exponential spatial decline away from
sources in infinite medla 1s found for flux and collision density.

The "period" of the exponential, the diffusion length L, is given

by
2 1 .
I% 360(1 -cj{1 - cf;)(op + 20,/5) (2.3.9)
based on a flux expansion, and
(A, + 27 /5)2
2 - 0 2 (2 3 10)
. FT3E SO0 o) -3

based on a collision density expansion. We have pointed out the
dissimilar results obtained from a Pj;-approximation based on flux
and collision density expansions. We can illustrate the divergence
of results for the Pl-approximation by considering the ratio L#/LF

for a given problem. Iet us suppose that A{u) is actually an even

quadratic, 1i.e., kn =0 for n=1and n > 2. The corresponding a(u)

is not a quadratic, but we need compute only oy and o, since these
coefficients determine L*. In Figure 1 we display the results for

i the range Kz/Roe(O,Q). Clearly, the flux and collision density based

= - expansions can lead to significantly different results.

| It should be expected that the two diffusion theories give
different results. We note that whereas the y-approximation yilelds

. ‘an accurate representation for neutron current, wl(x), bﬁt an inaccurate

(truncated) representation for collision density, the F-approximation

results in an accurate representation for total interaction rate,

L]
2]
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Fo(x), but an inaccurate representation for current. For several
reasons it will seem that we favor the collision density expansion
in this work. However, these reasons are mainly of an algebraic
character and it should not be construed that the F-formulation is,
in all cases, superior.

Approximations of higher order than P, are accomplished
following the usual general prescriptions. The added complications
due to the angular-dependence of the mean free path place no restric-
tions on the formalism. Higher order approximations lessen the

differences exhibited by the y and F-formulations.

2.4 The Double-P -Approximation

The double-PN-approximation is derived from Yvon's
method whereby the angular-dependence of the neutron flux, or col-
1ision density, is decomposed into contributions from + x - directed
and from - x - directed neutrons. In order to simplify notation,
let us consider the case of a stationary state in a medium charac-
terized by isotropic scattering. The plane symmetry, monoenergetic

neutron transport equation, Eg. (2.1.3), is then

-

+1

H g;*(xsu) + o(u) w(x,u) = %/ o(u') wix,u') dp' + S(x,u)
-1

(2.4.1)
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We use the half-angle-range expansions

Vixu) = T (2 + 1) v.(x) B (2u - 1), w>0 (2.4.2a)
= Zn: (2n + 1) ¥_(x) P (2u + 1), <o (2.4.2b)

S(x,u) = Y (2n + 1) S;(x) P (2u - 1), u>0 7 (2.h.2¢)
= 2;, (en + 1) s (x) P (2u + 1), u<o (2.4.24)

olu) = znj 0; P_(2u - 1),‘ u>0 (2.4.2e)

= );j o; 1>n(2M + 1), p <o (2.4.21)

to obtain the set of coupled differential equations

ays ay:
n Wn-l n+1 v

+ ay®

n+l} n + +

2n + 1 dx YonF 1 ax * ax ° e ;E; (24 + 1) Almn Oy vl
J

- - + + +
=¢b, Z("z Vp + Oy ¥p) + 25, (2.4.3)
I,

The double-PN-approximation is defined by the requirement

wz(x) = 0 for n > N and the equations labelled by n > N are

H

discarded.
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The same analysis is followed for the collision density

based approxijmation. Thus, with the definitions

F(x,u) = );; (2n + 1) F;(x) P (2u - 1), >0
¢

= };_: (2n + 1) F;(x) P (2u + 1), u<o0

h(u)=§ )\;Pn(2u-l), u>0

=an A P (2u +1), u<o

we obtain the transport equation in the form

+

W

n 1+ _.1

Zn+1 ; (22 + 1) A Am, a1 ~Ex
m

+
dF
n+ 1 . *+ 4
* 2n + 1 ;z; (2é+1) Am Am,nﬂ dx
’

+

4aF”
t t
: ;: (22 + 1) )\mAlmnTiﬁ+2Fn

£33

+ - t
=c 5’10 (Fo + Fo) + 28

The collision density double-Ph-approximation is defined as in

the y~formulation.

(2.4.4a)

(2.4. 4b)

(2.4, be)

(2.4.44)

(2.4.5)
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Besides the usual usefulness of Yvon's method in the
solution of problems where accurate representation of source or
free boundaries are required, we find an added flexibility for the
angular-dependence of the mean free path. Thus, A(u) may have one
form for yu > O determined by the set {%;} , or {a;} , and another
form for y < O following the set {A;}, or {o;} . For example,
using these methods we can express a symmetric A{u) which varies
linearly with y for u > O and u < O by using only two terms in each
- +

oA =—)\‘,and)\§=0for

A{u) expansion, i.e., set A; = A ) )

n> 1.

2.5 A Moment Decomposition

In the usual theory of neutron transport through homo-
geneous media, it is well-known that any sp§;e~angle moment of the
neutron distribution can be found even though the distribution itself
is unknown. In fact, an important method of determining the neutron
distribution is the construction of a likely flux shape from a
finite set of moments. Iet us now consider a moment decomposition
for the case of an angular-dependent mean free path where, as in our
previous conelderations, two formulations will be examined, 1i.e.,

with ¢y and F as dependent variable.

We define the neutron flux and source moments by
+

v;’lsf x! v, (x) dx

-0
4o

. Sg =/ x'j Sn(x) dx

(2.5.18)

(2.5.1b)
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We assume that the medium is of infinite extent. Multiplication
of the stationary state form of Eq. (2.1.10) by xJ and integration

over x € (-, +=) ylelds the set of algebraic moment relations

Ez: (2L + 1) % Apon (1 - cfn) tg =g+ EEJ:—T [ﬁtg:: + (n + l)w‘”l

om n nﬂ_,
(2.5.2)

With the collislon density moments similiarily defined, 1i.e.,

4+
Fﬂ = x4 Fn(x) dx (2.5.3)
L
~d
and performing similar operations on the stationary state form of
Eq. (2.2.3),gwe find a set of algebralc equations relating the

collision density moments, i.e.,

- qJ Jn -1
- Cfn) Fﬂ =Sy *Ene1 Ezg (22 + 1) M Alm,n-l€i

Jgn + 1) ( FJ—I
+ 2L+ 1) A A
2n + 1 ;,m m {m,n+l ¢ (2.5.4)

The moments of the neutron distribution resulting from a unit,

plane, isotropic source (at x = O) are easily interpretable in terms

of important macroscopic parameters. For this source, Sg = Bno 630 .

Iet us first consider calculation of flux moments and then contrast

this result with the method applied to collision density moments.
For the sake of definiteness, let us assume that o(u) is an even M

degree polynomial in u. With 6(u) an even function, it is clear that




w2~

wi =0 for J + n odd. An examination of Eq. (2.5.2), using the

properties of the set {Almn} , indicates that with M # O and n +

even, *g depends on Vi:: ’ *g;: ) *?n-}ﬂ’ *%n-nhz 207 i’gﬂ‘_’ ’ V;jHM .

Thus, we find tha
tion on the set {vn(x)} . This is, of coursey the simplification used
in a PN-approximation and would not yield exact moments. The famillar
case of M = O poses no such difficulties and one can readily find
the exact moments.

In considering the collision density moments, let us assume
that A(u) 1s an even M degree polynomial in p. It follows that
Fg =0 for n + j odd. It is also possible to show, from Eq. (2.5.4)
and the properties of {A&m} , that Fg =0 for n> §(M + 1) and
therefore, with finite M, we can calculate any collision density

moment exactly. For example, we find for the case of M = 2,

2 2
F A
0 .2 18 2
2 = il 2Ly * 175 (T - o)(T - cf;)
0 >

where <{x2) is the mean value of x2 and Ly is the diffusion length

as calculated by a collision density based P, -approximation. We

note that the result of Eq. (2.5.5) is unlike tﬁat found in the
angle-independent mean free path case. 1In that case M = O and we

find that the second spatisl moment is given correctly by diffusion
theory, i.e.y {x2) = 2I? both in the exact calculation and in diffusion

theory.

(2.5.5)
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In passing, we note that the set {vg} can be found from

the set {Fﬁ} via the‘easily derived relation

J _ J (2.5.6)
¥n = = (22 +1) *m Almn ?L
The result of Eq. (2.5.6) does not contradfect our earlier assertion
regarding the problem of finding the flux moments. When the determi-
nation of the {tg} is spproached directiy by Eq. (2.5.2), it is the
total cross section which is considered to be an M degree polynomial
in u. When {vg} is found using {Fi} as in Eq. (2.5.6), the mean free
path is assumed to be an M degree polynomial in .
2.6 The Case of Isotropic Scattering
¥
The stationary state form of Eq. (2.2.1) with the
additional assumption of isotropic scattering gives the collision
. 4
density equation
3 +1
c
u )\(H) 5% F(x:“) + F(x,u) = ‘é‘f F(x,u') du' + S(x:“) (2.6.1)

-1
In this case of isotropic scattering an angle variable change 1s sug-
gested. Specifically, let us define the angle variable u = pA(u)/A(1),
measure x in units of A(1l), and change dependent variable to F(x,u) =
g(u) F(x,u) with g(u) = |du/du]. With the source density change

S(x,u) = g(u) S(x,u), Eq. (2.6.1) takes the form

' +1
u;gE-F(x,u) + F(x,u) =‘% g(u)J/- F(x,u') du* + S(x,u) (2.6.2)
-1

[ 2
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We shall consider various aspects of the solution of Eq. (2.6.2).

legendre Polynomial Expansion

Following the procedure used in the derivation of Eg. (2.1.10),

we obtain the coupled differential equation form of the transport

equation .
dF 4aF cg
n n-i n+1 n+) - _ n
2n +1 dx Yon vl a&x + Fn(x) *on + 1 Fo(x) + Sn(x) (2.6.3)

where we have used the Iegendre polynomial expansions

F(x,u) = Z gn_zi_l Fn(x) Pn(u) (2.6.4a)
n

S(x,u) = %‘12*—1 5_(x) P_(u) (2.6.kb)
n

g(w) = D &, B (u) - (2.6.ke)

It should be noted that the requirement of a symmetric A(u) imposes
the condition that &, = O for n odd.

The idea of a PN-approximation is equally well-applied here.
For example, the P, -approximation (diffusion theory) takes the




usual form (cf., Eq. (2.3.7))

2
dFo

dxz

1

—

+ (1 -cgo) F, = 8,

_1 %,
h=—-3%

where only iso:.ropic sources are allowed.

Moment Deccmposition

With the collision density and source moments defined in
the usual manner (i.e., by Eq. (2.5.1)), Eq. (2.6.3) can be trans-

f ormed to the algebraic set

: cg
FJ=SJ+.___.LF‘3
n

n 2n + 1

en + 1

. | + [n Fi:* (n+ 1) Fi:l]

We have assumed that A(p) is symmetric which implies that g{u) is
symoetric. We also find that Fi =0 for J + n odd, and, for ~dd n,

e F a F°! ana ¥}

L n epends only on n-1 and n+ Furthermore, we have the interest-~

ing property that the spatial moment Fﬂ depends only on the set of

moments {F: ,n+1 < J} « Therefore, the calculations of a low-
order spatial moment reguires the specification of a small number
of the gn and the prior determination of a small number of other

moments.

(2.6.58)

(2.6.5Db)

(2.6.6)
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As an example, let us calculate, by these methods, the second
spatial moment of the neutron distribution resulting from a unit,

. J
+vrn 3 = =
plene, isotropic source (at x = 0). In this case S an %50

0 0 i
The moments F; , Fy , and F, are easily determined and are the only
2
values required in the calculetion of Fy . We figd, for the nor-

malized second spatial moment (cf., Eg. (2.5.5)),

2
FO

x2y ==

0
0

1+2cg,/s5
1l-cgo

WRITS)

vx

Normal Mode Expansion

We shall apply the recently developed normal mode technigque
(C) to the problem of determining the exact and asymptotic solution
of Eq. (2.6.2). 1In so doing we shall arrive at an interesting
mathematical problem the details of which we consider in Appendix B.
We consider the homogeneous form of Eq. (2.6.2), i.e., S = 0. Trans-

lational invariance suggests the "ansatz"
F(x,u) = ¢ (v,u) exP('x/V)

vhere we allow the separation variable, v, to be complex. We obtain

the integral equation

+]
(v = u) o(vyu) = %v g(u)[ ¢(v,u') du'

We adopt the normalization

*1

[ ¢(vyu) du = 1
1

(2.6.7)

(2.6.8)

(2.6.9)

.(2.6.10)
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'
If we allow solutions of Eq. (2.6.9) to be distributions (in the

sense of L. Schwartz (S)), then we have

4
o(v,u) = %l’—vﬂgl‘)& + A(v) 8(v - u) (2.6.11)
We assume that g{u) satisfies a Holder condition (M, p. 11) on

the interval of the real line u ¢ (-1, +1). Any singular integrals
whiéh might appear are then of the Cauchy type and we défine their
evaluation as the Cauchy principal value (M, p. 26).

The normalization required of o(v,u), i.e., Eq. (2.6.10),
leads to a specification of allowed discrete values of v in the
region of the v-complex-plane excluding the line (-1, +1), and
to a specification of the function A(v) for v € (-1, +1). To aid

in the analysis of these results, let us define the Cauchy integral,

G(v), by

G(v) = 2}( 11: u-ig-‘% du (2.6.12)

with v§(-1, +1), we find that Eq. (2.6.10) gives
l+1incvG(v)=0 (2.6.13)

which has a set of roots which are distinct. With v € (-1, +1),
Eq. (2.6.10) yilelds an explicit formula for the function A(v) and no

restrictions are placed on allowed values of v. We find

Av) =1+ 1 ncvG(v) (2.6.1L4)




-26-

Thus, if we extend the definition of A(v), as expressed in Eq. (2.6.1L4),
to the entire v-plane, we find that the zeroes of A(v) determine

the set of allowed distinct values of v. Since g(u) is symmetric,
G(-v) = -G(v), whence, A(v) 1s an even function of v. The zeroes

of A{v), therfore, appear in pairs which we label #v

J
We have found a set of functions of the angle variable u

indexed by v, {o(v,u)} . 'There 1s a discrete indexed set with

v¢(-l, +1) and members characterized by

o vy 8(w)
o(tvyu) = 5 ‘\‘%Lx'?

and, a continuous indexed set with v€ (-1, +1) and of form given

by Eq. (2.6.11). The function A(v),\ihich appears in ¢(v,u) for

v € (-1,+1), 1s given by Eq. (2.6.14). Furthermore, the zeroes of

A(v) for v ¢(-l, +1) establish the set of discrete indices {tvj; .
If ve assume that g(u) # O for u € (-1, +1), we may write

Eq. (2.6.9), with the normalization of Eq. (2.6.10), in the form
f-3] st
v glu

Iet us multiply Eq. (2.6.16) with index v by ¢(v',u) and subtract

ST

the result from Eq. (2.6.16) with index v' multiplied by ¢(v,u).

Employing Eq. (2.6.10) and integrating over u € (-1, +1) we obtain

Y
[%}- -%T][ -g—‘(l‘—ﬂ- ¢(v,u) ¢(v',u) vdu =0

(2.6.15)

(2.6.16)

(2.6.17)
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There is clearly no degeneracy and thus Eq. (2.6.17) may be

rewritten as the orthogonality relation

+1
u . _ .
f Em:(v,u) ¢(v'yu) du = O for v # v

-1
The nature of the orthogonality relation including the case
v = v' depends n vhether v is a member of the discrete index set

or belongs to the continuum. If v is a discrete index, then

+
u
/; O] o(ivj,u) O(tvi,u) du = I(ivJ) 6,}1

*1
I(tv,) = % V2 u_g_(_u_)? du
J J - (vJ:u)

If v belongs to the continuum, then

+

2
/ ETET o(v,u) ¢(v',u) du = %T%Q 5(v - v')
-1

We have found that the set of normal modes, {o(v,u)} , 1s
orthogonal, with weight function u/g(u), on the interval u € (-1, +1).
For the remainder of this section we shall assume that the normal
modes are also complete in the space of functions which satisfy a
Holder condition on the interval u € (-1, +1). In Appendix B we
shall, in measure, substantiate this hypothesis by demonstrating
the existence of the modal expansion coefficients. In so doing, we
shall generallze the interval of completeness to all physically

relevant cases.

(2.6.18)

(2.6.198)

(2.6.19b)

(2.6.20)




Assuming that the normal modes form a complete set on the
interval u € (-1, +1), we have the general solution of Eq. (2.6.2)

in the form

F(x,u) = Y a(v) e(v,u) exp(-x/v)
v

where the summation indicates integration over continuous spectra
when z2pplicable. In many proviems we find boundary conditions
which can be formulated as

F(o,u) = ¢(u) = E a(v) ¢(v,u) for u € (-1, +1)

Y

and we can use the orthogonality relations to determine the expansion

coefficients, a(v). 1In detail, Eq. (2.6.22) is rewritten as

Py

’(u) = Z a(+v ) o(+v, ,u) + 2 a(-v ) o(-v ,u)
J J : J J
J J
+1
+f a(v) ¢(v,u) dv for u € (-1, +1) :
-1
Direct application of the discrete index orthogonality relation,

Eq. (2.6.19), ylelds the discrete indexed expansion coefficients,
+1 .

)/ glay *(¥) $(vpu) du

-1
Using Eq. (2.6.18) we obtain, from Eq. (2.6.23),

*+1

+1 +1
f -g—(:j— o(n) ¢(v,u) du = du E?ET o(v,uy a(v')e(v',u)dv’
-1, 1

-1

(2.6.21)

(2.6.22)

(2.6.23)

(2.6.24)

(2.6.25)
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There appears a doubly Cauchy singular integral and thus the order
of integration in Eg. (2.6.25) may not be reversed without due
caution. The doubly singular term appears &s
2 +1 1
ﬁ_i‘:/” ag 28(0) [ vra(v) 4.

vV - u v - u
-1 , -1

We assume that a(v) satisfies a Holder condition for v € (-1, +1)
and follow the dictates of the Poincare-Bertrand formula for invert-

ing the integration order (M, p. 57). We find

+1 1 +1

a . 0oy 2

o[ e n [ el g 250 e ()
1 -1

t +1 +1

v

- u v - u

2 1
+ EE‘{/F ayt ¥ 2lv) u glu) g,
-1

-1

Using Egs. (2.6.20) and (2.6.26) we obtain the more useful "ortho-

gonality relation,”

+1 1
[; du E%ET o(v,u)lz a(v') eo(v',n) dv' = I(v) a(v) for v € (-1, +1)

(2.6.26)

(2.6.27a)

a3 2
I(v) = v g(v) [(2: ) + (“; V) ] (2.6.27b)

Now, applying Eq. (2.6.27) to the problem of finding the continuum
expansion coefficients in Eq. (2.6.23), we have
+1
1 u
a(v) = o(u) o a
) Im/; glay (1) ovou) av

for v € (-1, +1)

(2.6.28)
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2.7 The Green's Function for the Case of Isotropic Scattering.

As a specific example of the use of the relations Just
developed, let us consider the problem of finding the infinite
mediun Green's function for isotropic, plane sources. In this
case, the source density, S(x,u), of Eq. (2.6.2) represents a unit,
plane, l1sotropic emission of neutroms at a pesitiou which we choose
to designate x = 0, i.e., S(x,u) = g(u) 6(x)/2. Integration of
Eg. {2.6.2) over a vanishing interval about x = O yields the bound-

ary condition
u [F(0+,u) - P(07,u)] = g(u)/2 for u € (-1, +1) ‘

We impose the additional condition that as |[x|—o00, F(x,u)— O
and express the solution in the form

F(x,u) = %; a(+vJ) ‘(+v3,u) exp(-X/vJ)

+1

a{v) o(v,u) exp(-x/v) dv for x > 0

=~

F(x,u) = — %j a»("VJ) °("VJ)“) exP(X/VJ)

o
-f a(v) o(v,u) exp(-x/v) dv for x < 0
-2

™

The source condition, Eq. (2.7.1), then takes the form of the general

boundary condition, Eg. (2.6.23). Specifically, we have

(2.7.1)

(2.7.2a)

(2.7.2b)

ey da 2(velvpw) + gy 20 alov) o(evppu) E?&T/_', a{v)e(v,uley

.
2

(2.7.3)
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Whence, employing the normalization expressed by Eq. (2.6.10),

1

+a - : {n 7.
a(_ad) m}? . \ce | &a)
R
af(v) = 510wy for v € (-1, +1) (2.7.41b)
and we bave completed the solution of the Green's function.
let us examine some aspects of the Green's fumnction. For
simplicity, we assume that there is only one pair of zerces of A(v),
tvg. We shall develop & sufficient condition for this property
in Appendix A. The Green's function 1s then given by
. 4
¢(+vg,u) 1¢ viu
F(x,u) = 53(;;;7—-exp(-x/vo) + T xp(-x/v) dv for x > 0
°
L]
(2.7.5a)
°
°(-V°) u) 0 Vv, 1
F(x,u) = -;—2—:[-(-_-;,-3 exp(x/vy) — —é—f?.—v‘;- exp{-x/v) dv for x < O
' -1
(2.7.5Db)
With the definition
+1
o, (v) =j:1 #(vsu) P (u) du (2.7.6)

and the easily derived symmetry properties; I(-ve) = = I(+v,) and
I(-v) = = I(v), we find the collision density moments for the neutron

distribution from a unit, plane, isotropic source,

vj+l

n-g [°,,(+v.> + (-1 *n<-v°’] {Cv)

*1
J+1
N1 j [0+ (1% 0] Ty (2.7.7)
9 n
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Ueing Egs. (2.1.9), (2.6.4c), (2.6.9) and (2.6.10), we obtain

a recurrence relation for the set {on(v)} ,

(2n + 1) vyon(v) = n .n-x(v) + (n + 1) ‘n+1(v) teveg

and the normalization ¢,(¥) = 1. We note that Eq. (2.7.8)
implies that on(v) is an even, or odd, polynomial in v of degree n.
Therefore, we have On(-v) = (-1)° on(+v), and Eq. (2.7.7) reduces

to
3+x *1

J+3
Fi = 31 W ¢ ("'V') + %]m On(\)) dv

if J + n is even

t
[

Fg =0 it J + n 1is odd

We have already considered the moments set {Fg} . For this
particular case the {Fﬁ} 1s determined from Eq. (2.6.6) and the
source condition Sg = Snn 830. In passing, we note that the con-
sistency of Eq. (2.6.6) and (2.7.9) is easily demonstrated via the
recurrence relation Eg. (2.7.8). Moreover, equating the FQ and F3

moments as derived by the two relations, we find

Yo, Vogy e L
Iz+v°5 I{v) 1-cg,
(]

3 ‘1
vy ; L t2cgy/s

—T—j-dv =7 —
vy " 3 (1-¢ so)

(2.7.8)

(2.7.9a)

(2.7.9b)

(2.7.108a)

(2.7.10b)
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From Eqs. (2.7.10e) and (2.7.10b) we obtain an explicit expression

for the discrete index, v, i.e.,

1 (1 + 2c g,/5) ‘/""1 V3

Eu - dv

3 -cg)  Jo T
r*1

1

1 [,
l-cg, R ETGT

For € < 1, v, is real and is interpreted as the exact asymptotic
diffusion length (here, measured in inits of A{1l) ). It should be
noted that the integral terms in Eq. (2.6.39) depend on ¢ and {gn*

via the dependence of I(v) on these parameters (cf., Eg. (2.6.27b)).

1

ITI. REMARKS REGARDING APPLICATION OF THE THEORY

We shall develop a limited number of considerations relevant
to the application of the theory presented in Section II. These
remarks are intenddd as a brief illustration of possible methodis
of application of the present theory to pAhysica.l problems. Many

4

(2.7.11)



interesting calculations are possible, and with the accomplishment
of experimental measurements of neutron distributions in the types
of media ynder discussion, many comparisons of theoretical and

experimental results would be profitable.

We certainly require methods of determining the proper varia-
tion of mean free path if these mathematical formulations are to
be applied to physical problems. In this section we shall discuss
t@g general types of heterogeneity toward which the current theory
applies. We shall detmsll a simple method, using kmown diffusion
lengths, to specify the angular dependence of the mean free path

for a particular type of heterogeneity.

3.1 Types of Heterogeneity

As mentioned earlier, the motivation of the present
effort is the establishment of & method of homogenization of regular
arrays of vacuum channels for the purpose of neutron diffusion
calculations. We also imposed the necessary res?riction that, in
general, the type of heterogeneity considered should yield two
characteristic orthogonal directions. As an example of the caution
which must be exercised in applicatlion of the theory, let us consider
a type of beterogeneity which, at first approach, appears to satisfy
the necessary requirements, but which actually is unsuitable for
these methods, Specifically, we examine the case of a periodic
slab array of scatterer and vacuum. This heterogeneity exhibits

two characteristic orthogonal directions; perpendicular to slab, and

-




the directions in the plane of the slab. Moreover, the direction

perpendicular to the slabs (transverse to slab "channels") ylelds

considerations which are algebrsically easily accomplished. If A(p,x)

represents the mean distance fraveled to a collision by a neutron

located at a position x to the left of the right-hand-face of a
slab of scatterer, traveling with direction cosine u relative to
the slab perpendicular direction, we find

TV

— exp(-x/A_u)

)\(u,x)=}\s+p fOrxSTB,u>0
1-exp(-T,/Au)

In Eg. (3.1.1),)\s is the mean free path in the scatterer material
which has slab thickness T;, and TV is the vacuum slab thickness.
For the homogenized medium we require a function A(u) which, it
would seem, should be a "suitable" average of A(u,x). For the case
of isotropic scattering, the average

T

F=3 B
Au,x) WO(X) dx

Ap) = = .

[8 v (x) ax

is clearly indicated. In Eq. (3.1.2), vo(x) represents the actual

angular integrated neutron flux. We note that, in the present case,

wo(x) can be found. Far from neutron sources we have wc(x) —~exp(x/Ls)

where L_ 1s the "hsymptotic"” diffusion length in the scatterer material.

(3.1.1)

(3.1.2)




A note in passing: If T'B/L8 << 1, then *o(x) is approximately

constant and Eq. (3.1.2) gives the result
AMu) =2, (1 +1,/T)

which ig the "simply homogenized" parameter. Of course, the condition
TS/Ls << 1 should yield the homogeneous limit.

If x now represents the direction perpendicular to the slabs
we have.the asymptotic result wo(x)——a»exp(-x/Ls) when the position
x falls in a scatterer slab and wo(x) is a constant when x falls
in & vacuum slab. The "best fit" to this flux, for the homogenized
medium, is vo(x)-—»-exp(-x/L) where L is the simply homogenized dif-
fusion length, i.e., L = L_ (1 + Tv/'rs). This result would be obtained
if Eq. (3.1.3) were used. In this particular case, we have the
situation that a calculation based on an angular-dependent mean free
path ylelds results that are less representative than the simply
homogenized calculation. It is expected that, in the orthogonal
characteristic direction (i.e., in the plane of the slab), use of
an angular-dependent mean free path is indicated.

The case of a calculation in the slab perpendicular direction
for a periodic sladb array is certainly excluded from the present con-
siderations. Moreover, one should feel no motivation toward develop-
ing a theory for that case since it 1s easily treated by a standard

method, i.e., change of position variable to "optical thickness."

(3.1.3)



-37-

We shall now consider the details of a macroscopic-parameter-based

calculation for & heterogeneity for which the present methods were

clearly intended, i.e., a regular array of cylindrical vacuum channels.

3.2 Cylindrical Channgls in a Regular Array

Iet us consider e regular array of vacuiudi channeis of
cylindrical cross section. With every vacuum channel of cross
sectional area Av we assoclate a cross sectional area of scatterer
material A such that V = A.V/As i{s the ratio of vacuum volume to
scatterer volume characteristic of the medium. We shall label the
axial, or longitudinal, direction with x and direction cosine .,
and the radial, or transverse direction with y and direction cosine
7. Due to streaming along channels we expect different diffusion
properties in the x and y—directions and both of these cases to be
different than the simply homogenized diffusion. The simply homo- -

genized mean free path is given by

)‘h:j)\s (1 +V)

>4

Before presenting & specific method for obtaining a representative
Au), let us make some general comments regarding the features of
such a calculation. It is clear that we have chosen to consider
only two representative directions; axial, or x-direction, and
transverse, or y direction. It is also clegr that in the present

lattice the actual description of a straight line path in the

(3.2.1)



transverse direction starting from a point in the scattering material
depends upon both the azimuthal angle about the x-direction and

the particular position in the scattering material relative to,

say, the center of a vacuum channel. A "suitable" averaging tech-
nique must be employed. Furthermore, we encounter the same difficulty
when considering a description of an axially-oriented path. Let

}x(u) and ky(q) represent the angular-dependent mean free paths

with respect to x-direction diffusion and y-direction diffusion.

The following constraints on the "suitable" averaging technique seem
intuitively reasonable:

(1) The average mean free path based on axial and

transverse directions should be equal, i.e.,

>

1 +1
/}Kx(u) du =-/.; ?\y(n) dn (3.2.2)

-1
(11) The axial mean free path in the transverse direction
(i.e., at u = 0) should be equal to the transverse
mean free path in the transverse direction (i.e., at
n=12%1), i.e.,
A0 A (x1) (3.2.3)
(111) Both axial and transverse mean free paths should be

sympetric, i.e.,

A ) = A () | (3.2.ba)

A(n) = Ap(=n) (3.2.4b)



A possible method of obtaining A(u) is to find, as a function
of starting position in the scatterer, the mean free path length
traveled in all ;irections. Then, upon "suitably" weighting this
quantity {according to whether kx(u) or Ay(n) is desired) an average
ylelds the aﬁguiar-dependent mean free path. 1In even the simplest
lattice this 1s a geometric task of considerable magnitude. Here,
for the sake of brevity, we shall take an alternate, albeit certainly
less seif-contained, rcoute. We shell assume that we have given
certain macroscopic diffusion parameters, such as diffusion length,
and use the general constraints of Egs. (3.2.2), (3.2.3) and (3.2.4)
to obtain & representation of the mean free path which yields the
given parameters. To be specific, let us assume that Rx(p) and

Ay(n) are even quadratics of the respective variables. Thus, in

terms of the Legendre polynomial expansion

7\x(“) - )\xo * 7,\xz Pz(u)
7\y(71) = Ng t A, Bw)

From Eq. (3.2.2), we obtain )&0 = kyo , and this result used in

Eq. (3.2.3) yields zyz =-Ax2/2. Therefore, in terms of the two

unknowns, Ag and M, ; Eq. (3.2.5) may be reformulated as
A =
 (u) 7\0 + A P ()

A =N =5 % B(n)

(3.2.5a)

(3.2.5b)

(3.2.6a)

(3.2.6b)
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The arguments used here with respect to the mean free peth
also apply to the determination of the total cross section. Thus,

we expect the genersl constraints:

+1 A
(1) jﬁ ) & < [ a () an
(11) 0,(0) = o (¢ 1)
(111) | Ox(u) = Ox(—p,) and cy(q) = qy(-q)

If the total cross section is assumed to be an even quadratic,

then in terms of the two unknowns, o ,and o, : we have

o (u) =g + 9, B (u)
o (1) = 4 — 3 q B(n)

For the remainder of this discussion we shall assume that the

neutron collision density is used as dependent variable and thus

the mean free path is the relevant parameter. One can equally well

apply these considerations to the neutron flux and total cross section.

From Egs. (2.3.10) and (3.2.6) we have the results

52 _ (ko + 2%2(5)2
x ~ 3(1 - c)(1 - cfy)

. Ny = A/5)2
Iy = s )




We also have

1Y
8
Lﬁ T3T - e)(T - efy) (3.2.8)
~};>; From Egs. (3.1.10) and (3.1.11) ve obtain
N <L
L » (3.2.9a)
¥
{L>=1/3+ 2Ly/3 (3.2.9p)
A ¥ L
ol 3 Eaiad oy (3-2.9¢)
B B 5

We can use measured values of I& and Fy’ or other theoretical treat-
ments, to find I and FY in order to determine )b/As and AZ/AB .

For example, if we use Behren's theoretical formulation (B),

= 1+2V+ 2RV + 2RV (3.2.10a)
L, - exp(2R/V) - 1 T
i\ L )
} 2RV
(ll's)( L+ 2V+ ooy =T * BV (3.2.10b)

where R is the ratio of the vacuum channel radius to )S. In
Fig. 3 Ve present xk/Lh and Iy/I% as a function of R, RE (0,5),
for the cases V = 0.5, 1.0 and 2.0 as determined by Eq. (3.2.10).

= Then, in Fig. 4 we have, for the same values of R and V, the results

for xo/xs and )2/§s based on the curves in Fig. 3.
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It should be noted that what we refer to as I; and é;

is Eq. (3.2.10) are actually calculated by Behrens (B) as

(@) /2 and (¥ )/2 and, via Eg. (2.5.5), we have
2

18 N

It5 (T = o)1 - ofy),

2
18 A /4
v =2l o e o eTy)

{x*) = 21§ +

2
If & > 1 the validity of Fig. U as a relevant representation for

A(u) 1s questionable. However, truncation of A{y) at a quadratic

would, in that case, also be of questionable usefullness.
IV. SUMMARY

We have developed the mathematical formulation of a new
approach to the homogenization of certain types of heterogeneous
media (such as a regular array of vacuum channels) for the purpose
of neutron diffusion calculations. The new method is based on the
inclusion of en angular-dependent mean free path in the theory of
neutron transport. In the present effort, calculations are restricted
to media with plane symmetry and monoenergetic neutron theory is
employed. Extension to energy-dependent theory and to other sym-
metries would probably follow the general lines for the familiar,
angular-independent case withcut significant additional complication.

However, it seems clear that the requirement of the existence of two

(3.2.11a)

(3.2.11b)
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orthogonal characteristic directions in the development of the
é.ngular depernfience of the mean free path must be imposed.

We have found that a neutron flux based theory and a coliision
density based theory can lead to significantly different results
when low-order approximations, such as diffusion theory, are employed
in the solutiomn of the transport equation. For the case of isotropic
scattering, the normsl mode technique is applicable, and exact, closed-
form solutions can be determined.

Evaluating the results implied by the present theory with
respect to measurements 1s impossible. There is a current lack of
pertinent experimental results for neutron distribution description

in the relevant type of mediam.
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LIST CF FIGURES

The ratio of diffusion lengths as calculated by a
¢
neutron flux based and collision density based

Pluapproximation for the case of an even quadratic

mean free path, A(u) = A, + A, Pé(u).

Contour in v-plane used in determination of the number
of zeroes of the function A{v).

Neutron diffusion lengths as found by Behren's
theoretical formulation.

Expansion coefficients for an even guadratic

representation of the mean free path - angular dependence.
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APPENDIX A

THE FUNCTION A(v)

We have found previously that the zeroes ¢f A(v) for
v g: (-1, +1) are the discrete set of normal mode indices and that

they appear in pairs, v Iet us -now discuss the number of these

3
allowed discrete indices. To this end, and for relatlions which are
useful in Section 2.7, we turn to a brief study of the general
properties of the function A(v) as defined by Egs. (2.6.12) and

(2.6.14), t.e.,

AMv) =1 +1 e v G(v)

+1

G(v) = 2xlif ugsu\)/ du

-1

In terms of the set {g | , as defined in Eg. (2.6.4c), A(v) may

be rewritten

Av) =1-cv 3 g Q(v) (a.1)




where Qn(v) is a legendre function of the second kind defined for

1

the entire v-plane by an extension of the Neumann formula (H, p. 51)

to include v € (-1, +1), i.e.,

H P_(u)
qn(v) = %' vn- u' du (A.2)

-1

with singular integrals evaluated as the Cauchy principal value.

¥or large v, v Qn(v) varies as v °. Thus, A(v) is bounded for

large v. Furthermdre, the Qn(v) are analytic in the vy-plane exclud-
ing v € (-1, +1) and, therefore, A(v) is analytic in this same region.
We use the contouy illustrated in Fig. 2 and the argument theorem

(T, p. 116) to establish the number of zeroes of A(v) in the region
vﬁf (-1, +1). Since the zeroes of A(v) appear in pairs, we denote

the number of zeroes by 2J. The argument theorem applied here ylelds

Lx J = change in arg A+(u) on C, + change in arg A (u) on C_ (A.3)

We have assumed that g(u) satisfies a Holder condition on
u € (-1, +1) and therefore G(v) is a Cauchy integral. We apply the

Plemelj formulae (M, p. 43) to find the limit values G (u). We find
" 1
G (a) = G(u) ¢ 5 g(u) (A.4)

where G (u) and G (u) refer to the 1limit values of G(v) as v approaches
u from above and below the real line respectively. From Eg. (A.4)

we obtain the limit values

Af(u) = () £ e u g(u) (a.5)




Now, A(u) with u€ (-1, +1) is a real function (with singularities

at u = *1), and, we have A{o) = 1 and g(u) is a symmetric function.

A-3

Whence, we obtain the reiations

arg Af(u)
arg A+(o)

A’ ()

These results used in

zeroes, J, in terms of the single angle arg A+(+1), i.e.,

J

i It should be noted that Eq. (A.3) contains the implicit require-

Eq. (A.3) yield the number of pairs of

=

~arg A (u)
arg A (o) = 0

A (=u)

¥ i

arg Af(+1)

ment that A'(u) = 0 for u € (-1, +1).

pletely necessary, however, it probably applies to most cases of

pPhysical interest and its application greatly simplifies these con-

siderations.

We shall develop a sufficient condition for J = 1 in the case

This assumption is not com-

that g(u) is an N degree polynomial in u, i.e.,

g(u)

We note that the Iegendre functions, Qn(v), can be expressed as

(V)

o Q,(v)

M=

g, P (u)
n=0

B_(v) @ (v) = W__ (v)

arc tanh v,

arc tanh .];,
v

v € (-1, +1)

v (-1, +1)

(A.6a)
(A.6D)

(A.6c)

(A.T)

(A.8)

(A.9a)

(A.9p)
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where W x,(v) is an even, or odd, polynomial in v of degree

n -1 (H p. 51). In these terms A(v) is rewritten as

N N
AV =1=cvQ() D g B+ D g W (V)
n=0 ~ ,n%=o0

We also have as u — + 1, Qo(u)-—ﬂ @ and Pn(+l) = 1. Clearly,

W_(+1) 1s bounded, and thus, if
' N

E gan>0

‘n=0

then as u —+ 1, A(u) = — . From Eq. (A.5), in the present
case, We have '

N
+ i Z
A (u) = A(u} + -—5- c u gn Pn(U)
n=o
Therefore, we may conclude the following: If Eq. (A.11) holds

and, in the range u € (0, + 1),
N

Z &, Pn(u) >0

n=o0

then arg A'(+1) = n and we have the desired result, J = 1. Iet us

stress that Egs. (A.11) and (A.13) give a sufficient, not necessary,

condition for the number of pairs of discrete indexed normasl modes

to be unity.

(A.10)

“(A.11)

(A.12)

(A.13)
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APPENDIX B

A RELEVANT HILBERT PROBLEM

In Section 2.6 the existence of the modal expansion
coefficients {a(tvj), J =1, 2,--+, Jy a{v), v €(-1, +1)} was
assumed. Moreover, the orthogonality relations are based on the
whole angle range u € (-1, +1) and thus only provide a means of
determining expansion coefficlents for the case of a boundary
condition given over all angles. By reducing tine problem of
finding expansion coefficients to the solution of an inhomogeneous
Hilbert problem, we find that one can demonstrate the existence
of expansion coefficients, and, prescribe a method for determining
the value of the coefficients for problems involving all physically
relevant boundary conditions. We follow closely the techniques

elegantly described by Muskhelishvili (M).

Reduction of Transport Problem to an Inhomogeneous Hilbert Problem

We shall, in genersl, encounter transport problem boundary

conditions of the form

J J
‘(“) = Z 3(*\"1) ‘(*VJ:U) + Z a(‘VJ’u) °(‘VJ)U~)
J=1 J=1
5]
+ / a(v) ¢(v,u) dv for u€(a,B) (B.1)
a ' '

where — 1 S a <B < + 1. Iet us suppose that by some method we

are able to determine the set of discrete indexed coefficients



{a(ivj), J=1, 2,°°-, J}, and define

J J

o'(0) = o) = D a(ev,) e(av,u) = D al-vy) e(-vy)

321 =1

We then have an integral equation for a(v), v€E(a,B), i.e.,
a A
f a{v) ¢(vyu) dv = ¢'{u) for u€(x, B)
x

Using the derived form of ¢(v,u) Eq. (2.6.11), we obtain

, B
ww) () + Few [ ¥2ilay
o/ »

¢'(u) for u€(a, B)

From Eq. (A.5)

Suew) - 57 [0 - W)

"

roj -

A(u) [A+(u) . A‘(u)]

and therefore Eq. (B.4) may be rewritten as

% [Al(u) + A-(u)] wa(u) + [A+(u) - A’(u)] A(u)

¢ = u ¢'(u)
1 1 )
a
Av) = 57 / H dv
o 4

for u€ (e, B)

(B.2)

(B.3)

(B.4)

(B.58a)

(B.5b)

(B.6a)

(B.6b)
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We have assurance that A(u), as defined in Eg. (B.6b), exists if
a(u) satisfies a Holder condition on u€ (¥, B). For the moment,
let us assume that this condition is fulfilled and define the

Cauchy integral, A(v), over the entire v-plane,

8
. - 1 u aguz
| A(V) = 53 f ey du (B.7)

jo 4

The Plemel) formulae yield the limit relations on the line u € (X, B),

AT(Q) = AT(w)

i

u au) (B.8a)

f

A"(u) + A7(u) = 24(u) | (B.8b)

The results of Eqs. (B.5) and (B.8) applied to Eq. (B.6)
give the alternate form

() A"(w) = A7(w) A7(w) = u o' (u) for u € (3, B) (2.9)

. -
We have assumed that A (u) # O for u€ (o, B). With this
restriction we can easily transform Eq. (B.9) to the form of a

boundary condition for an inhomogeneous Hilbert problem on an arc

(M, ch. 10). Restating the problem of determining a(u), in these
terms: Find the sectionally analytic function, A(v), vanishing at
infinity, with boundary condition on the line u€(x, 8),

Aty = Ay me(u) (.10)

At (u) A (u)
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+
We note that the assumptions on g(u) and A (u) imply that
- + '
A {v)/A (u) is a function satisfying & Holder condition and not
vanishing on u€(x, B8), and, if we assume that the angle boundary

condition, ¢(u), satisfies a Holder condition and a(ivJ) exist,

then u 0'(u)/A+(u) satisfies a Holder condition on u € (@, 8).

Iet us help clarify our procedure by summarizing. If we
assuve (what we wish to prove) that a(u) satisfies a Holder condition
on u €(a,B), then the integral A(v), defined by Eq. (B.T), 1is
of the Cauchy type. Now, Cauchy integrals are sectionally analytic
functions Vit!l boundary the line of integration. Specifically, 1f
(2,8) 1s the line of integration:

(1) ¢ A(v) is analytic in v-plane excluding (a, B).

(11) A{v) approaches well-defined limits as u € (a, B)

1s approached from either side of (a, B) with possible
exception of the end points, & and/or B.

(111) Near the end points, A(v) satisfies the conditions

A

IA(VH s l-v—:;i: as v—»0Q
lA(V){ < -i——g'fg as v—»f
iv — 8|

where a, b, A and B are real constants, and & < 1

and b < 1.
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Moréover, A(v) vanishes a8 |v| — . We have transformed the integral
equation for a(u) into the boundary condition Eq. (B.10) which is

the form of an inhomogeneous Hilbert problem boundary condition.

Thus, we have reduced the original transport problem to an inhomogeneous
Hilbert problem. If we can find a solution,’A(v) » wbich introduces

an physical ambiguity, then our assumption of the existence of a(u),

u€ (2, 8), will be substantiated.

Solution of the Hilbert Problem

In terms of 8(u) = arg A'(u), we have A.(u)/A+(u) = exp(-21 6(a))

and the Hilbert problem boundary condition (cf., Eq. (B.10))

-

A (n) = exp(-21 8(u) ) A”(n) + L}(-(?)- for u€ (2, B)
. A {(u

(B.11)
Since A(v) must also vanish as |v| — o, the solution is (M)
B
1
‘ A(V) = gé(_\i% f u °+(u) " du
x (u = V) A (u) H (u) (B.12)
where H{v) is the fundamental solution of the associated homogeneous
Hilbert problem and is given by
Hv) = (2 - v)-e(a)/ﬂ (B - v)e(ﬂ)/" eG(V)
(B.13)

The Cauchy integral 6(v) is defined by

8(v)=--]§ /ﬁaggg% du
fo 4

(B.14)
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Providing x = 6(B)/x — 8(2)/x 1s a positive integer, we have the

x additional requirements

n+l _, :
jﬁi——l‘l’)—-du=o forn = 0, l,o++, k = 1
o 4

A*(u) H'(u)

These additional requirements are a necessary feature of the solution.
Tt should be recalled that the function ¢'(u), u € (x, B), is not
completely specified, i.e., the discrete indexed expansion coefficients,
a(tvj), in Eq. (B.2) are, as yet, unknown. For the general pro-

blems considered later, it will be demonstrated that, in each case,

the x requirements are necessary and suffici?nt for the complete

specification of all discrete and continuum expansion coefficients.

Application of the Hilbert Problem Solution

Plane symmetry transport problems fall into two general

categories:

(1) Infinite medie problems with full-angle-range
boundary conditions (such as the Green's function
solved in Section 2.7).

(11) Half-space media problems with half-angle-range
boundary conditions (such as albedo or Milme type
problems).

Combinations of the solutions of these type problems lead to the

solution of cases with finite media (slabs). For full-range boundary

(B.15)
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éonditions, the orthogonality of the normal modes provides a direct
method for determining expansion coefficients. The sclution of

the Hilbert problem in these caées demonstrates the existence of

the coefficients and thus partially supports the completeness
hypothesis. For half-range boundary problems, there are no apparent
orthogonality properties of the normal modes. In these cases, the
solution of the Hilbert problem not only provides proof of existence,
but aliso gives a well-defined prescription for the determination

of expansion coefficients. We shall now outline the application

of the Hilbert problem solution to the categories of full-range and
balf-range boundary conditions.

In the case of an "infinite medium, full-range boundary con-
dition problem, a source condition is usuaily given at some position,
which we choose to designate x = 0. For ¢ < 1, it follows that
F(x,u) should vanish as |x| — . Thus, the general form of solu-

tion is that given in Eq. (2.7.2). The source condition can be

formulated as

J
o(u) = 5_: a(eu) o(ovpa) ¢ D al-v) a(-v )
=1 J=1

+1
+/ a(v) ¢(vyu) dv for u € (-1, +1)
Y (B.16)

Instead of using the obviously indicated orthogonality properties,
let us consider the coefficient evaluation by the route prescribed

in the Hilbert problem solution. Note that X = -1 and 8 = +1. From

[
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Egs. (A.6) and (A.T), we have the results 8(-1) = -Jn and

6(+1) = Jn. Therefore, in this case, we find that x = 2J and there

are 2J requirements of the form of Eq. (2.7.15). Specifically,

un+l @'guz
du=0 forn=0,1, ¢+--, 27 = 1
H

Eg. (B.17) provides a sufficient number of equations to find the
discéete indexed expansion coefficilents, a(th), J=1, 2,~+, J.

The fundamental solution, H(v), is given by (cf., Eq. (B.13)

H(v) = (-1 -v)J (1 - v)J e@(v)
+1

-t [
-1

Thus, A(v) is determined (by Eq. (B.12)) and we can find a{u)

for u€ (-1, +1) from the limit relation (cf., Eq. (B.8a)
u a{u) = A+(u) — A (u) for u€ (-1, +1)

Since the problem has been completely and unambiguously solved, it
is clear that the supposition that a(u) satisfy a Holder condition
is substantiated and we have demonstrated the existence of the

expansion coefficients.

For half-space media we consider two types of problems. An

"albedo problem" is described by a boundary condition at the medium

surface (x = O with medium occupying x > 0) specified for u € (0, +1)

L d

and the condition that F(x,u) vanish as x — ®. A "Milne problem"

(B.17)

(B.18a)

(B.18b)

(B.19)
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is described by a similar boundary condition at x = 0, but with

F(x,u) —> ¢{-v,u) epr(x/v) with v = vy J=1, 2,--+, J, or

v €(0, +1), a8 x —+00. We have specifled these problems as boundary
conditions on the half-range ug (0, +1). With obvious modifications,
the proée:iure is easily applied to half-space media occupying x < O
and boundary conditions on u € (-1, 0). With the half-space

occupying x > O, the general solution of an albedo problem is

J v
Fxu) = D a(vy) e(ev,u) exp(x/v,)

3=1

1
S+ a(v) o(v,u) exp(-x/v) dv for x > 0

and for a Milne problem,

J

F(x,u) = A ¢(-v,u) exp(x/v) + a(+v,) o(+v, ,u)exp(-x/v,)
J
,j—Zl J J

>l
+[ a(v) ¢(v,u) exp(-x/v) dv for x > 0.

In both cases, the boundary condition at x = O can be expressed in
the form of Eq. (B.1), 1i.e.,

?

Jd *+1

¢(u) = Z a(+vd) 0(+v3,u) +[ a(v) ¢(vy,u) dv

J=1

fOI u C (0, +1)

(B.20)

(B.21)

(B.22)
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Now, 2 = 0 and B = +1 and, from Egs. (A.6) and (A.T), 6(0) = O

and 8(+1) = Jx. Thus, ¢ = J and we have the J requirements

+1
n+l ’
u ¢ (u
[ T - du=0 forn=20, 1,:++, J -1
o A(u) H (u)

These are sufficient to determine the discrete indexed coefficlents,

a(+vJ), J=1, 2,--+, J. The fundamental solution takes the form

A(v) = (1 - v)7 exp(8(v))
+1
8(v) = '—% g% du

-]

The Hilbert problem solution, A(v), v€(0, +1), and the continuum
expansion coefficients, a{u), u€(0, +1), are found as in the case
of a full-range boundary problem. Again, we find substantiation
for the supposition of the existence of the relevant members of
{a(v)} . Moreover, we find a prescription for calculating the

expansion coefficients when the use of orthogonality conditions is

impossible.

(B.23)

(B.24a)

(B.24b)




