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1. I ~ O D U C T I O N  

W e  shall develop, i n  t h i s  work, the  mathematical formulation 

of a new method of t r e a t i n g  neutron d i f fus ion  i n  ce r t a in  types of 

heterogeneous media. ZAe heterogeneity of immediate concern, and 

tavard which this work is dfrected, is that of a regular  array of 

vacuum channels (such a8 a square l a t t i c e  of cy l indr ica l  holes) In 

an otherwise homogeneous medium. 

1 

With modification of d e t a i l s ,  

the  general procedure should be applicable t o  other types of he te r  

ogeneity. However, a requireaent which should be imposed is  t h a t  

the heterogeneity results i n  two cha rac t e r i s t i c  d i rec t ions .  For 

example, i n  the case of a regular a r r ay  of vacuum channels, the 

two cha rac t e r i s t i c  d i rec t ions  are p a r a l l e l  and perpendicular t o  

the channel axis. 

.- 

- 

Probably the most important considerations of neutron dif- 

fusion i n  media with hole6 are those of Behrens (B). 

g rev iow work, including (B), 1s devoted t o  the determination of 

However, a l l  
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the  effectqof heterogeneity on spec i f i c  parameters relevant to 

ceutron diffusion, rather than t o  a formulation of a general  method 

frost which var ious  descriptions of the neutron d i s t r ibu t ion  can be 

dttermlned. ThC general  problem may be stated along these l ines:  
* +  * 

I -  In wdia with heterogeneity, 6uCh as the type considered here, it 

is c l e a r  that a "slmple homogenization" of t he  medium f o r  neutron 

diffusion ca lcu la t ions  is  not a v 4 i d  representation. W e  define a 
1 

I simple homogenization as the process of reducing the medium cross 

sec t ions  mep ly  by the r a t i o  of mater ia l  volume t o  material-plus- 

vacuum volume. The streaming of neutrons i n  the vacuum channels 

leads t o  a spreading of the  neutrons In  the longi tudinal  d i r ec t ion  

(parallel t o  channel axis) which i e  l a rge r  than that in the t rane-  

verse d i r ec t ion  (perpendicular t o  channel a x i s ) .  Thus, w e  f f n d  

that  not only is the  simple homogenization questionable f o r  omni- 

d i r ec t iona l  parameter calculation, bu t  a l s o  t h e  a n i s o t r q i c  effects 

are completely subdued. 

s i d e r i r q  homogenization of the medium i s  the exis tence of an "arsenal" 

O f  course, the  reason t h a t  we b v e  f o r  con- ' 

of possible  mathematical: a t tacks f o r  such problems. 

The new approach t o  homogenization, which w e  shall develop, 

is based on the  reasoning that  neutrons t rave l ing  with a la rge  

component of t he i r  ve loc i ty  i n  the longi tudinal  d i r ec t ion  probably 

travel fu r the r  between co l l i s ions ,  on the average, then those t r ave l -  

ing w i t h  a large component of ve loc i ty  in the t ransverse d i rec t ion .  

Let us introduce this effect i n t o  the neutron t ranspor t  equation f o r  
? f 
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t h e  homogenized = d i m  by allowing the mean free pa th  t o  be angular- 

dependent. 

f i c t i o n  s ince  the mean free path, as me& i n  necZron transport ca l -  

culations,  is a local parameter. This concept l s  ce r t a in ly  no m o r e  

Clearly, by so doing, we have embarked on a mathemetical 

eo&uslng than th& idea of medium homogenization. 

that we are imposing a total cross sec t ion  which va r i e s  according 

t o  the  d i r ec t ion  of neutron t r ave l  and not merely the usual sca t -  

-&ring di rec t iona l  dependence. 

Iet us stress 
I 

All considerations w i l l  be based on the Idea l iza t ion  of 

monoenergetic neutron t ransport .  

w i l l  be developed, most of the analysis  w i l l  be devoted t o  the  

calc~$lation of s ta t ionary  states. 

we shall develop the mathematical formulation along several l ines .  

S p y l f i c a l l y :  

densi ty  as dependent variables.  

double-P approximations, as well as the moment decomposition. We 

s h a l l  demonstrate that, fo r  the case of i so t ropic  sca t te r ing ,  the 

normal mode procedure, recent ly  used f o r  the solut ion of several  

types of neutron t ransport  problems, i s  applicable and y i e lds  exact, 

closed-form solutions. 

Although time-dependent equations 

For t h e  purpose of completeness, 

W e  shall consider both the  neutron flux and co l l i son  

W e  shall apply the fami l ia r  PN and 

R 

The major part of t h i s  work we d i r e c t  toward t h e  mathematical 

formulation and physical in te rpre ta t ion  of the  new theory. 

however, devote a sect ion t o  brief remarks relevant  t o  appl ica-  

We s h a l l ,  

t ion .  There is  meager experimental data ava i lab le  f o r  l a t t i c e s  of 
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the  type considered. 

the present theory. 

It w i l l  therefore be d i f f i c u l t  t o  evaluate 

These considerations w i l l  y i e ld  e well-defined, 

albeit not well-substantiated,  route t o  so lu t ion  of problem involv- 

ing  neutron d i f fus ion  i n  media pierced by vacuum channels. 

11. MA-TICAL FORMULATION 

It would seem t h a t  appl icat ion of these Ideas t o  f i n i t e  media 

-dependent mean free d i c t a t e s  the use of non-separable posit ion-angle t 

paths. 
* 

The inclusion of position-dependence leads t o  gross d i f f i -  

c u l t i e s  which we have as yet not resolved. W e  shall essume that 

the man free path i n  the homogenized medium depends only on the 

angle between the neutron ve loc i ty  and the d i r ec t ion  of the pos i t ion  

var iable .  

pos i t ion  var iable  e i t h e r  along the longi tudinal  

In a l l  calculat ions w e  8 6 s ~  plane symmetry with the 

or transverse 

direct ion.  

2.1 The Heutron Flux Equation 

The monoenergetic neutron t ransport  equation for .homogeneous 

media w i t h  plane symmetry may be wr i t ten  as 

where q(x ,p , t )  is the neutron f lux  d i s t r ibu t ion  as a function of 

posit ion,  x, d i r ec t ion  cosine of neutron t r a v e l  r e l a t i v e  t o  
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x-direction, p, and t h e ;  t; v is  neutron speed; a(p) i s  the 

angulardependent t o t a l  cross sect ion;  c ,is the  mean number of 

secondary neutrons which emanate frm a neutron-nucleus co l l i s ion ;  

f(Q*SJ') is the nornvslized d i s t r ibu t ion  In g, the neutron pos t -co l l i s ion  

direction of travel, of secondary neutrons produced by c o l l i s i o n  of 

a primary neutron w i t h  pre-col l is ion d i r ec t ion  Q'; and, S(x,p, t )  is 

the rate of neutron introduction from sources which are independent 

cl" the neutron d i s t r ibu t ion .  

descr ip t ivefof  a non-multiplying medium, we shall use the  terms 

m a t t e r i n g  probabili ty for c and sca t t e r ing  d i s t r ibu t ion  for f t o  

avoid e t i l fed discourse. 

Although c and f are not necessar i ly  

We employ an expansfon of the  s c a t t e r i n g  

d i s t r ibu t ion  i n  terms of fregendre polynomials 

and the  spherical  harmonics addi t ion theorem (H, p.143) t o  eliminate 

t h e  azimuthal d i r ec t ion  dependence appearing in the  i n t e g r a l  i n  

Eq. (2.1.1). We obtain 

+l 

(2.1.2) 
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In order t o  proceed w i t h  a general discussion of t he  

proper t ies  of a. (2.1.3) ve require a more spec i f i c  representation 

of ~ ( w ) .  We suppose, w i t h  l i t t l e  loss in relevazt general i ty ,  that 

r 

r(et us further define the  sets i q n ( x , t ) \  and (Sn(x,t)\  by 

Equations (2. I. 5 8 )  and (2.1.5b) specify the  respective expansion 

coefficients in kgendre polynmnial a~p€insIOn8 of the  neutron flux 

and source density, e .g . ,  

In these terms, in tegra t ion  of Eq. (2.1.3) over t h e  In t e rva l  

pe( -l,+l) yields the  re la t ion 

Eq. (2.1.7) i s  the  continuity equation for neutron motion. The 

only tern which appears i n  an unfamiliar fbrm i s  t h a t  which expresses 

t h e  t o t a l  neutron in t e rac t ion  rate.  Clearly, 

(2.1.4) 

(2.1.5a) 

(2. I. 5b) 

(2.1.6) 

(2.1.8) 
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A further, famil iar ,  reduction of the t ranspor t  equation 

can be made i n  terms of t h e  se t s  (#,I, {Sal ,  and {un\ . Using the 

recurkence relation for Legendre polyaamiale (H, p. 321, 

yields the set of coupled d i f f e r e n t i a l  equstlona, 

and has the following propert ies  (H, p. 87): 

(I) 

(W 

The order of the indices  is unimportant. 

Ab = 0 If t h e  sum of any two of t he  Indices 
is l e e s  than t h e  t h i rd .  

(iii) Ah = 0 i f  4 + m + n I s  odd. 

(iv) When Ab # 0, l.e., avoiding (11) and (Ill), we have 

(2.1.10) 

(2.1.11) 
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1 (1)(3) . . - (n  + m - - 1). 
( 2 ) ( 4 j * = - ( n  + m -e) 

+ n - m - 1) 
2j(4j...(Q + n - mj 

It l e  from Eq. (2.1.10) t h a t  the  various approximations t o  

' uUe trr ir ;s;;crt eq;;stion a r e  derived. & ~ G T E  ve groceed with detailed 

examination of some approximations, l e t  us reexamine Q. (2.1.3). 

We obtain a simpler i n t e g r a l  term i f  t h e  dependent variable ie 

changed t o  the neutron co l l i s ion  density, 
1 

2.2 The Collision Density EquBtlon 

W e  reformulate Eq. (2.1.3) in terms of the c o l l i s i o n  

densi ty ,  F(x,p,t), and the mean free path, h ( p )  = l / u ( p ) ,  and 

obta in  

t 

(2.1.12) 

. 

(2.2.1) 



-9- 

(2.2.2a) 

(2.2.2b 1 

we obtain the eet of coupled d i f f e r e n t i a l  equations (c f . ,  Eq. (2.1.10)), 

W e  note t h a t  if A = 0 for  n > 0, i.e., t h e  fami l ia r  case of an  

angle-independent mean f r e e  path,  then E q .  .(2.2.3), with the a i d  of 

t he  properties of { A t..), reduces t o  

n 

E 'n (2.2.4) 

which is the  expected result. 

m e m b e r  of Eq. (2.2.3) y i e lds  the  cont inui ty  equation 

We note fu r the r  that the n = 0 
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In recognizing Eq. (2.2.5) as the cont inui ty  equstion, we have 

used the easily derived relations 

In  the remainder of this work we s h a l l  ass-me the case of a 

I n  most case6 t h i s  assumption merely leads t o  s ta t ionary  state. 

simpler algebra and notation and is ac tua l ly  n o t  a requirement for 

the  determination of a solution. 

t i o n  and double-PH-approximation as applied t o  both f l u x  and ' 

We s h a l l  d iscuss  the P N -approxima- 

c o l l i s i o n  densi ty  expansions. We shell consider the moment decom- 

pos i t ion  for both flux and c o l l i s i o n  density. And, finally, we 

s h a l l  consider, i n  g rea t e r  depth, the ca8e of i so t ropic  sca t t e r ing  

using the co l l i s ion  densZity as dependent var iable .  
v 

2.3 The P -Approxinration N 

We define the  P -approximation based on a f lux expansion, N 
or c o l l i s i o n  density expansion, by the  requirements t h a t  i n  

Eq. (2.1.10), or Eq. (2.2.3), JIn(x) = 0 for  n > N, or F n ( x )  = 0 f.or 

n > R, end the equations labelled by n > N are discarded. Thus, 

i n  a P 

w l t h  the  N + 1 dependent var iables  *n(x), n = O, l,..., R, or 

approximstion w e  obtain N + 1 coupled different ia :  equations 
s N- 

( 2 . 2 . h )  

(2.2.614 
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F,(x),  n = 0, I, , N. 
on a f lux expansion gives the single r e l a t i o n  

For example, the Pq-approx-tion based 

a& - c )  *,(x) = 0 

which has the  implication c = 1 for non- t r iv ia l  *o. 

f ami l i a r  result. 

expansion gives the unusual r e l a t i o n  

This is  a 

Ths ?o-approximation based on a c o l l i s i o n  density 

After t h i s  present brief comment w e  shall restrict our consideration 

t o  the  case of A(p) a symmetric function of ~c on t h e  i n t e r v a l  

ve(-l, +l], and, i n  that case A1 = 0. For the moment, l e t  us sup- 

pose t h a t  \ # 0. RI be specific, we suppose that ?j > 0. 

According t o  Eq. (2.3.2), the  implication is  tha t  dFo/dx < 0 which 

indicates  a neutron f l o w  In the + x - direct ion.  The question which 

w e  must pose 1s: 

m t i o n )  and yet  have $(x,p) represent a neutron flaw i n  + x - d i rec t ion  

( l .e . ,  $ increase w i t h  p)?  

since, If A(p) increases  w i t h  u (implied by \ > 0), then t h e  r a t i o  

$/A can be k-independent if $ also increases  with u. 

in& conslderatlons we assume that A(p), and thus a(p),  i s  a 

symmetric function of p. Thus we shall a l w a y s  require A = 0, and 

u = 0, for n odd. 

Can F be p-independent (consis tent  w i t h  P -approxi- 
0 

Clearly the answer is i n  the  a f f i rmat ive  

In a l l  follow- 

n 
* 

n 
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The P1-appraximation (l.e., diffusion theory) based on a 

flux expansion gives the two equations 

d*l - + (1 - c )  Qo *,(XI = S o ( 4  dx 

If it I s  further assumed that all neutron sources are Isotropic  

such that Sn(x) 5 0 f o r  n > 0, then EqE.  (2.3.31) and (2.3.3b) com- 

bine t o  give the  usual diffusion theory r e l a t ions  

with dlffi 

given by 

d*o 
$ 1 ( ~ )  = - D - dx 

slon coef f ic ien t ,  D, and "8bsorptlon" cross  section, u t ,  

1 
3(1  - Cfl)(a0 + 2 4 5 )  D =  

u' = (1 - c )  uo 
I 

It should be noted that only a. and u2 enter  i n to  the d i f fus ion  

theory parameters. 

quadratic i n  order t o  obtain Eqs. (2.3.5a) and (2.3.5b). 

It I s  also worth noting that, had w e  included time-dependence, t he  

The u(u) expansion was not  trwrlsated at a 

I n  passing, 

8 
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Pl -approximation would have given the "telegraphist ' 6  equation. 'I 

The added assumption that aq1/v a t  < c &#,/ax results In the  form 

of the fmiliar the-Cepxdent diffusion theory w i t h  D and u' again 

e v e n  by Eq8. (2.3.9) and (2.3.533). 

me! Pl-appraximation based on a col l i s ion  density e-xpnsioo 

glvee thc tvo equations 

In the case of Isotropic sources, Eqs. (2.3.68) and (2.3.6b) combine 

to give 

As I s  the case i n  the  f lux  based di f fus ion  theory, a quadratic 

truncation of h ( p )  I s  not necessary t o  obtain the results given in 

Eqs. (2.3.7) and (2.3.8). 

e 

(2.3.6b) 

(2 3 78 ) 
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The usual result of exponential spatial decline avay from 

6ource6 i n  Inf In i tO media 1s found f o r  f lux  and c o l l i s i o n  density. 
% 

!&e “period” of the exponential, the d i f f&ion  length L, I s  given 

bY 

2 1 
L+ * 3ao(i - c j i i  - c f l ) ( a o  i-1 

based on a flux expansion, and 

based on a c o l l i s i o n  densi ty  expansion. 

dissimilar results obtained from a Po-approximation based on f lux  

and collision dens i ty  expansions. We can i l lustrate  the divergence 

of results for the  PI-approximation by considering the r a t i o  L 

f o r  a given problem. 

We have pointed out the 

4% 
L e t  us suppose t h a t  h ( p )  i s  ac tua l ly  an even 

quadratic,  i,e,, A = 0 for n = 1 and n > 2. The corresponding a(@) 

i s  not a quadratic, bu t  w e  need compute o n l y  a. and u2 since these 

coe f f i c i en t s  determine L I n  Figure 1 we display t h e  r e s u l t s  f o r  

the range h2/h0e(0,2). C l e a r l y ,  t he  flux and c o l l i s i o n  densi ty  based 

expensions can lead t o  s ign i f i can t ly  d i f f e r e n t  results. 

n 

IL’ 

It should be expected that t h e  two di f fus ion  theor ies  give 

d i f f e r e n t  results. 

an accurate  representat ion for neutron current ,  dll(x), but  an inaccurate 

( t runcated)  representat ion for co l l i s ion  deneity, t h e  F-approximation 

W note that whereas t h e  *-approximation y i e lds  

(2.3.9) 

(2.3. io) 

results in an accurate representation for  to ta l  in t e rac t ion  rate, 
I 
I 

1 
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Fo(x), but an  inaccurate representation for current. 

reasons it w i l l  seem that we favor the  co l l i s ion  densi ty  expan610n 

io this work. 

character and it should not be construed that the F-formulation I s ,  

i n  all cases, superior. 

For several  

Emever, t hese  reasons are mrrldly of an algebraic  

Approximations of higher order t h a n  P a r e  accomplished I 
The added complications following the usual  general prescriptions.  

due t o  the angular-dependence of the  mean f r ee  p a t h  place no r e s t r i c -  

t i o n s  on the formalism. Higher order approximations lessen the  

differences exhibited by the 3( and F-formulations. 

2. k The Double-PN-Approximation 

The double-P -approximetion i s  derived from -on's N 
method whereby the angular-dependence of t h e  neutron flux, or  col-  

l i s i o n  density, i s  decomposed in to  contributions from + x - directed 

and from - x - directed neutrons. 

l e t  us consider the case of a s ta t ionary s t a t e  i n  a medium charac- 

I n  order to simplify notation, 

t e r i zed  

neutron 

a 
v a x  

by i so t ropic  scat ter ing.  

t ransport  equation, EQ. (2.l .3),  i s  then 

The plane symmetry, monoenergetic 

*(x,u) + U(P) *b,d = 2 del') *(x,v') del' + s(x,p) 

-1 

(2.4.1) 

. 
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Ue we the half-angle-range expansions 

to obtain the set of coupled d i f f erent ia l  equations 

Q 

The double-P -approximation Is defined by the requirement 

*,(x) = 0 for n > lV and the equations label led  by n > N are 

discarded. 

Io 
f 

(2.4.2a) 

(2.4.2b) 

(2.4.2c) 

(2 .4 .2d)  

( 2 . 4 . 2 e )  

(2.4.2f } 
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The Same analysis is  followed for the c o l l i s i o n  density 

based appraxlCPatlon. Bus, with the def in i t ions  

I 
(2 .4.h)  

hhl) = c A+ P ( 2 p  - 1) , n n  n 

(2 .4.4b)  , 

I 
( 2 . 4 . 4 ~ )  

(2.4.4d) 1 

w e  obtain the transport equation In the form 

The c o l l i s i o n  density double-PN-approximation is defined as in 

the *-formulation. 
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&sides the  usual usefulness of Yiron's method i n  the  

solution of problems w h e r e  accurate r e p r e s e n b t i o n  of source o r  

free boundaries are required, we f i n d  an added f l e x i b i l i t y  f o r  the 

angulardependence of '  the  man free peth. 

form for i.~ > 0 determined by the set {A:) , or (a:) , and another 

fo ru  for p < 0 following the set { A i } ,  or {ai}  . For example, 

using these  methods we can express a synanetric h ( p )  which v a r i e s  

i i n e a r l y  with p f o r  p > 0 and 

A ( W )  expansion, i . e . ,  set A, = A; , A: = - A; , end A: = 0 f o r  

n > 1. 

Thus, A(p) may have one 

< 0 by using only two terms in each 
+ 

2.5 A Moment Decomposition 

I n  t h e  usual theory of neutron t ranspor t  through homo- 

geneous media, it i s  well-known that any space-angle moment of t he  
-' 

neutron d i s t r i b u t i o n  can be found even though the d i s t r i b u t i o n  itself 

is unknown. In f a c t ,  an important method of determining the  neutron 

d i s t r i b u t i o n  1s t h e  construction of a l i k e l y  f l u x  shape from a 

f i n i t e  set of moments. ljet u6 now consider 8 moment decomposition 

f o r  the  case of an angular-dependent mean free path where, a6 in our 

previous considerations, two f omulat ions will be examined, I. e. , 
with $ and F as dependent variable.  

W e  def ine t h e  neutron f lux  and source moments by 

-a 

+o - 
SJ n =/ XJ SJX) dx 

(2.5. ra) 

(2.5. i b )  
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W e  assume t h a t  the  mediuqis  of infinite extent .  Multiplication 

of the stationary s t a t e  form of Eq. (2.1.10) by x J and in tegra t ion  

over x C (-, +-) y ie lds  t h e  set of a lgebra ic  moment r e l a t ion8  

With the c o l l i s i o n  density moments s l m i l i a r i l y  defined, i . e . ,  

*. 
d n =/ xJ F,(x) dx 

-L c 

and performing similar operations on the  s ta t ionary  s t a t e  form of 

Eq. (2.2.3),fwe f i n d  a set of a lgebraic  equations r e l a t i n g  t h e  

c o l l i s i o n  density moments, i . e . ,  

(1 - cf,) .;1 = sn J + 2:: 1 + l) h, Atm,n-l FJ -l 

The moments of the neutron d i s t r i b u t i o n  r e su l t i ng  f r o n  a unit, 

plane, I so t ropic  source (at x = 0 )  are e a s i l y  in t e rp re t ab le  I n  terms 

of Fmportant macroscapic psrameters. 

U t  us first consider calculation of f l u x  moments and then cont ras t  

t h i s  result with t h e  method applied t o  collision density moments. 

For t he  sake of defini teness ,  l e t  us assume t h a t  a(p) is  a n  even M 

degree polynomial i n  p. 

6 -  3 For t h i s  source, Sn = bna J 

With ~ ( u )  an even function, it is  c l e a r  that 

(2.5- 3)  
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rl 

' = 0 for j + n odd. An examination of Eq. (2.5.2), using the ** 
properties of the  set {Ah)  , indicates t ha t  wi th  M # 0 and n + j 

IlflJB; ve fir& that %re carrr?=t ckterdne vithcat eijiplsjjing a iturlcs- 'n 

t i on  on the set $ (x) . This is, of course4 the simplification used 

i n  a PN-approximation and would not y ie ld  exact moments. The familiar 

case of M = 0 poses no such  d i f f i c u l t i e s  and one can readily f i n d  

the exact moments. 

{ n  i 

I n  considering the col l is ion density moments, let  us assume 

that A(p) l a  an even N degree polynomial i n  u. 

d = 0 f o r  n + j odd. 

and the properties of kh} , t ha t  4 = 0 for  n > J ( M  + 1) and 

therefore? w i t h  f i n i t e  M, we can calculate any co l l i s ion  density 

moment exactly. 

It follows that 

It is also possible t o  show, from Eq. (2.5.4) n 

For example, we f ind  for  the case of M = 2, 

where <2> is the mean value of x2 and 5 i s  the diffusion length 

as calculated by 8 col l i s ion  density based PI -approximation. 

note tha t  t h e  result of Eq. (2.5.5) is unlike t h a t  found in t h e  

We 

angle-independent mean free path case. 

f i n d  t h a t  the second spatial moment is given correct ly  by diffusion 

theory, i.e.r<$> L 2L2 both i n  the exact calculation and i n  diffusion 

In that case M = 0 and we 

theory. . 
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In passing, we note that  the set can be found from { d l  
' the e e t  {4) VIE t h e  easily derived r e l a t ion  

? 

Tf?e msiilt OT E q .  (2.5.61 does not contradfct  our e a r l i e r  asser t ion  

regarding the  problem of finding t h e  flux moments. 

nation of the "n 

total cross sect ion Vhich is considered t o  be an M degree polynomlai 

i n  p. When {$:) i 8  found using Fn e6 in Eq. (2.5.6), the mean free 

path i s  assumed t o  be an M degree polynomial i n  p. 

When t h e  determi- 

1s cqpr9ackd directly by E q .  (2.5.2), it is t h e  ? 
{ ? 

2.6 Case of I so t ropic  Scat ter ing 
I I 

"be s ta t ionary  s t a t e  form of Eq. (2.2.1) with t h e  

addi t iona l  assumption of i so t ropic  sca t t e r ing  gives the c o l l i s i o n  

densi ty  equation 

a 

' t  

c /.I F(X,P ' )  +' + S(X,P) (2.6.1) u N W )  ax F(X,P) + F(x,Id = 5 
'1 

In this case of i so t ropic  sca t te r ing  an angle variable  change is sug- 

gested. 

measure x i n  units of A(l), and change dependent var iable  to F(x,u)  = 

g(u) F(x ,p )  with g(u) = Idp/dul. 

Specifically,  l e t  us define the angle variable  u = pA(p) /A( l ) ,  

With the  source density change 

S(x,u) = g(u )  S(x,p), Eq. (2.6.1) takes the  form 

(2.6.2) 
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W e  shall consider various aspects of the solution of E q .  (2.6.2). 

milawing the procedure used in the derivation of Eq. (2.1.10), 

we obtain the coupled dif ferent ia l  equation form of the transport 

equation I 4 

where  we have used the Legendre polynomial expansions 

It should be noted that the  requirement of a symmetric A(p) imposes 

the condition that gn = 0 f o r  n odd. 

The idea of a PH-apprcuFmation is equally well-applied here. 

For example, the P1-approximation (d i f fus ion theory) takes the 

( 2 . 6 . k )  

(2.6.4b) 

, - (2.6.4~) ' 
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1 

usual form (cf.y Eq. (2.3.7)) 

where  only isotropic source8 are allowed, 
I 

Moment Decomposition 

Wth the collision density and source moments defined in 

the usual manner ( i . e .y  by Eq. (2.5.f)), Eq. (2.6.3) can be trans- 

0 ol.~peB to the algebraic set 

We have assunx?~ that 

+ J [n + - I +  (n + 1) 2n + 1 n- 1 n+l 

(2.6.5b) 

(p) is symmetric which implies that g ( u )  i s  

symmetric. We also f ind  that $ = 0 for j + n odd, and, for nad n, 

9 depends only on $” and d-’ . n n- i n+ 1 
Furthermore, we have the i n t e r e s t -  

l ng  property that the spatial moment Fo J depends only on the set of 

moments (% n + i ,< j . mrefore, the calculations of a low- 

order spatial moment requires the speclflcatlon of a small number 

of the gn and the prior determination of a small number of other 

moments. 

1 

(2.6.6) 



h 

I; 

As an example, let  us calculate, by these methods, t h e  second 

spatial moerent of the neutron d i s t r ibu t ion  r e su l t i ng  f r o m  a unit, 

plane, i eo t r sp i c  soiirce (at x = Oj. I n  th i s  case Sn J = bn0 6J30 . 
0 0 1 

'Ibe maa~ente Fa I F2 , and F1 are easily determined and are the only 

values rsquired in tbe csI~"1eti01; of Fo . 
malized second spatial nament (cf.,  Eq. ( 2 . 5 . 5 ) ) ,  

2 
:e T i p i ,  for the nor- 

Nom1 W e  Expen elon 

We shall apply the recently developed normal mode technique 

( C )  t o  the  problem of determining the exact and asymptotic so lu t ion  

of E q .  (2.6.2). 

mathematical problem the details of which we consider In Appendix B. 

We consider the  homogeneous form of Eq. (2.6.2), l.e., S = 0. Trans- 

In so doing we shall a r r ive  a t  an i n t e r e s t i n g  

l a t i o n a l  invariance suggests the "ansatz" 

F(x,u) = (v,u) exp(-x/v) 

w h e r e  we allow the sepsrstlon  variable,.^, to be complex. We obtain 

the integral equation 

*1 " 

We adopt t h e  normalization 

~ " * ( v , u )  du = 1 
0 .  

(2.6.8) 

(2.6- 9) 

(2.6.10) 
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? 
If we allow so lu t ions  of Eq. (2.6.9) t o  be d i s t r ibu t ions  ( i n  t h e  

sense of L Schwartz (S)), then we have 
' t  

~e ase'wze that g(u) satisfies a Eioicier condition (M, p. 11 j on 

the  interval of the  real l i n e  u E (-1, +l). Any s ingular  i n t e g r a l s  

which might appear are then of t h e  Cauchy type snd xo 5efine t k e i r  

evaluation as the (=aUChY pr inc lpa l  value (M, p. 26). 

The norxrialization required of @(v,u), i.e., Eq. (2.6.10), 

leads t o  a spec i f i ca t ion  of allowed d i sc re t e  v a l u e s  of v i n  t h e  

region of the v-complex-plane excluding the line (-1, +l), and 

t o  a spec i f ica t ion  of t he  function A ( v )  f o r  v E (-1, +l). To aid 

i n  t he  ana lys i s  of these results, l e t  us define t h e  Cauchy in tegra l ,  

G ( - J )  = - 
2 x  i 

With vf?!(-l, +1), we f i n d  that Eq. (2.6.10) gives 

which b s  a set  of roots which are d i s t i n c t .  

Eq. (2.6.10) y ie lds  an e x p l i c i t  formula f o r  t h e  function A(v) and no 

r e s t r i c t i o n s  are placed on allowed valces of v.  We f i n d  

With v E (-1, +l), 

A ( v )  = 1 + 1 R c v G ( v )  

(2.6.11) 

(2.6.12) 

(2.6.13) 

(2.6.14) 
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Thus, If w e  extend the def in i t ion  of A(v), as expressed in Eq. (2.6.14), 

t o  the e n t i r e  v-plane, we f ind  t h a t  the  zeroes of A(v) determine 
* 
I 

tbe set of' allowed d i s t i n c t  values of' v. 

G(-v) = -G(v),  whence, A(v) is an even funct ion of v. 

of av), therfore,  appear I n  pairs which we label 'Lty 

Since g(u) is  symmetric, 

The zeroes 

J '  
We have found a set of functions of the angle  variable u 

indexed by v, ( b ( v , u ) ~  . 
v c ( - l y  +1) and members characterized by 

There I s  a discre te  Indexed set w i t h  

and, a continuous indexed set with v C  (-1, +1) and of form given 

by E q .  (2.6.11). 

v c(-l,+l), is given by E q .  (2.6.14). Furthermore, the  zeroes of 

A(v) for v {(-l, +1) e s t a b l i s h  t h e  set of discrete indices  { ? v J i  . 

The function A(v), which appears i n  @(v,u) f o r  

If w e  assume t h a t  g(u) # 0 for u € (-1, +l), w e  may w r i t e  

Eq. (2.6.9), w i t h  the  normalization of E Q .  (2.6.10), i n  the  form 

Iet uf, multiply Eq. (2.6.16) with index v by @ ( v l , u )  and sub t r ac t  

the result from Eq. (2.6.16) w i t h  index v '  multiplied by O(v,u). 

Employing Eq. (2.6.10) and integrat ing over u f (-1, +1) w e  ob ta in  

Y 

(2.6.15) 

(2.6.17) 

( 2.6.16) 
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mere i s  clearly no degeneracy and thus Eq. (2.6.17) may be 

rewr i t ten  as the  orthogonality r e l a t i o n  

@(v,u) O(v',u) du = 0 for v # v' 
-1 

The nature of the orthogonality r e l a t i o n  including the  case 

v = v '  depends b n  whether v I s  a laember of the  d i s c r e t e  index set 

clr belows t~ the continuum. If v is a discrete index, then 

If v belongs t o  the continuum, then 

*1 

@(v,u) ~ ( v ' , u )  du = y*. 6 ( v  - v ' )  

We have found that t h e  set of normal modes, ( Q ( Y , u ) /  , is  

orthogonal, with weight function u/g(u),  on the  i n t e r v a l  u c(-l, +l). 
For the  remainder of this sect ion w e  shall assume that t h e  normal 

modes an? also complete i n  the space of functions which s a t i s f y  a 

Holder condition on the in t e rva l  u f (-1, +1). In Appendix B we 

shall, i n  measure, substant ia te  t h i s  hypothesis by demonstrating 

the  existence of the modal expansion coeff ic ients .  

s h a l l  generalize t h e  In t e rva l  of completenese t o  a l l  physically 

relevant cases. 

In so doing, we 

. 

(2.6.18) , 

(2.6.1ga) 

(2.6. lgb) 

(2.6.20) 
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Assumlng t h a t  t he  normal m o d e s  form a complete set on the 

interval u (-1, +I), we have the  general solut ion of Eq. (2.6.2) 

in the form 
1 

F(X,U) = a(v) ~l (v ,u)  exp(-x/v) 
V 

I 

w h e r e  the surmnatlon ind ica tes  integrat ion over continuous spectra 

when qpLicable. Ir, ;;any prabierns we f i n d  boundary conditions 

which can be formulated as 

P(O,U) = +(u) = C a(v) $(v,u) fo r  u ET (-1, +1) 
V 

and yt can use the orthogonality r e l a t ions  t o  determine t h e  expansion 

coefficlente, a(v). In detai l ,  E q .  (2.6.22) is rewri t ten as 

J J 

+ l + ’ ( v )  @(v,u) dv for u €(-1, +1) ’ 
-1 

Direct  appl icat ion of t h e  discrete  index orthogonality re la t ion ,  

Eq. (2.6. lg), y ie lds  the discrete  indexed expansion coef f ic ien ts ,  
+l  

(2.6.21) 

(2.6.22) 

(2.6.23) 

(2.6.24) 

-1  

using Eq. (2.6.18) w e  obtain, from Eq. (2.6.23), 

+ l  

o(u) O(v,u) du = i1 du ,% * ( v ,  uf ’ a (v ’  ) O(v’,  u)dv’ (2.6.25) 
-1. - 1  
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mere appears a doubly a U C h Y  singular  integral and t h u s  the order 

of integration in EQ. (2.6.25) may n o t  be reversed without due 

caution. 
I 

The doubly s i n g u l a r  t e r m  appears as 

-1 -1 

We a s s w e  that E ( V )  satisfies a Holder condition for v (-1, +1) 

a a i  foiiav the aictcntes or' tne  ?oincare'-&rtrana formula f o r  inver t -  

ing the  in tegra t ion  order (M, p. 57). We find 

Using Eqs. (2.6.20) and (2.6.26) we obtain the more useful "ortho- 

Now, applying E q .  (2.6.27) t o  the problem of finding the  continuum 

e-nsion coe f f i c i en t s  in Eq. (2.6.23), we have 

a ( V )  = hll .& @(u) 6(v,u) du 

for v € (-1, +I) . 

(2.6.26) 

(2.6.27a) 

( 2.6.27b ) 

(2.6.28) 
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* 

2.7 The Green's Function f o r  the Case of Isotropic  Scattering. 

As 5 spec i f ic  example of the use of the r e l a t ions  j u s t  

developed, let us consider the problem of f inding the i n f i n i t e  

median (seen's function for isotropic,  plane Sources. In this 

case, the source density,  S(x,u), of Eq. (2.6.2) represents a unit ,  

plane, isotropic emission of fiziiti-ons at a p s i t i m  uhich w e  choose 

t o  designate x = 0, i.e.,  S(x, u) = g( u) 6(x)/2. 

Eq. (2.6.2) wer 8 vanishing in te rva l  about x = 0 y ie lds  the  bound- 

Integrat ion of 

ary condition 

We impose the addi t iona l  condition t h a t  as 1x I-m, P(x,u) - 0 
and expmse the solution in the form 

+/:'a(.) @(v,u)  em(-x/v)  dv for x > 0 (2.7.2a) 

The source condition, Eq. (20701)y then  take6 the form of t h e  general 

boundary condition, Eq. (2.6.23). Specif ical ly ,  we have 

(2.7.2b) 

. 
1 
2 

- - -  
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Wfience, earploylng the normalization expressed by E q .  (2.6.10), 

for v c  (-1, +I) a(v) = 2I(v) 
? 

and we have caaipleted the solution of the Green('s function. 

iet u8 examine some aspects of the  Ween's funct ion.  For 

sinrplicity, we a s s ~ ~ n e  that there is 0- one pair of zeroes of A(v), 

i ve .  We shall develop a suff lc ient  condition for t h i s  property 

In 4pendix A. aie Green's function 1s then given by 

With the def in i t ion  

and the easily derived ey~lmetry  properties,  I ( - v o )  = - I (+vo)  and 

I(+) = - I(v), we f i n d  the co1l ie ion density moment8 for the neutron 

(2.7.44 

(2.7.4b) 
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and the normalization eo(*) = 1. 

implies t h a t  On(v) is an even, o r  odd, polynomial I n  v of degree n. 

Thereforc, ve have 4n(-v) = ( - l )n  6,(+v), and Eq. (2.7.7) reduces 

We note that E q .  (2.7.8) 

to 

d = O  n 

i f  j + n I s  even 
t 
I 

if j + n I s  odd 

W e  have already considered t h e  moments set Fn . For t h i s  ”) 
particular case the  {e} is determined from Eq. (2.6.6) and t h e  

source condition Sn = 6, 

sistency of E q .  (2.6.6) and (2.7.9) is easily demonstrated via the  

recufiellce relation E q .  (2.7.8). 

moments as derived by the two relatlon6,we f ind 

In  passing, we note that the con- 30‘ j 6 

Moreover, equating the 2‘: and 

+l 

(2.7. loa) 

(2.7. lob)  
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From Eqs. (2.7.1Oa) and (2.7.10b) we obtain an e x p l i c i t  expression 

fo r  the discrete Index, v,,, i.e., 

For c < 1, ;1@ is real ana I s  Interpreted as the exact asymptotic 

d i f fus ion  length (here, measured i n  hilts of h ( 1 )  ). 

noted t h a t  the in t eg ra l  terms i n  Eq. (2.6.39) depend on c and 

via the dependence of I(v)  on >hese parameters (cf.,  Eq. (2.6.2~)). 

It should be 

g { nt  

111. FiEWRKS REGARDING APPLICATION OF THE THEORY 

We shall develop B l imited number of considerations relevant  

to t h e  appl icat ion of the theory presented i n  Section 11. These 

remarks are intendkd as a brief illustration of possible methods 

(2.7.11) 

of appl icat ion of the preeent theory t o  pbysical problems. Eaany 

t 

. 



-34- 

ln te res t fng  calculat ions are .possible, and w i t h  the accomplishment 

Of experimental measurements of neutron d i s t r ibu t ions  i n  the  types 

of nredia cplder discussion, z~any comparisons of t heo re t i ca l  end 

exprimentad results would be profi table .  

NE! Crr,rtzliI&V *req*LE? BEt.hc?dn 09' 4ete-mhInl the Praper V83I.h- 

t i on  of mesn free path if these mathematical formulations are t o  

be applied t o  physical  problems. In  t h i s  sect ion w e  shall discuss 

the general types of heterogenei+,jr toward which the current theory 

applies.  W e  shall detail a simple method, using kpnm di f fus ion  

length8, t o  specify the angular dependence of the mean free path 

for a par t i cu la r  type of heterogeneity. 

3-1 TFP B of Heterogeneity 

As mentioned earlier, the motivation of the present 

effort is the establishment of a method of homogenization of regular  

arrays of vacuum channels for the purpose of neutron d i f fus ion  

calculat ions.  We a160 imposed the necessary r e s$ r i c t ion  that, i n  

general, the type of heterogeneity considered should y i e ld  two 
a 

cha rac t e r i s t i c  orthogonal direct ions.  A5 an example of the  caution 

which m u s t  be exercised i n  application of the theory, l e t  u6 consider 

a tyI>e of heterogeneity which, a t  f i r s t  approach, appears t o  s a t i s f y  

the necessary requirements, b u t  which ac tua l ly  I s  unsuitable f o r  

these methods. Specif ical ly ,  we examine the case of a per iodic  

s l a b  a r r ay  of scatterer and vacuum. This heterogeneity exh ib i t s  

two cha rac t e r i s t i c  orthogonal d lmc t ione j  perpendicular t o  s lab,  and 
0 



-35 - 

. .  

the d i rec t ions  i n  the plane of the  slab. Moreover, the d i rec t ion  

perpendicular t o  the  slabs (tmsverse t o  slab "channels") y i e lds  

considerations which are afgebrsiccllly e a s i l y  accomplished, If h ( p , x )  

represents  the mean distance traveled t o  a co l l i s ion  by a neutron 

located at a posi t ion x t o  t he  l e f t  of the right-hand-face of a 

slab of scatterer, t ravel ing with d i rec t ion  cosine p r e l a t i v e  t o  

the e b b  perpendicular direct ion,  we find 

In Eq. (3.1.1)yA 

which hae slab thickness Ts, and T 

For the homogenized medium w e  require a function A(p) which, it 

is the mean f ree  path i n  the  s c a t t e r e r  material 

I s  t he  vacuum slab thickness. 
6 

V 

would seem, should be a "suitable" average of A(p,x). For the case 

of i so t ropic  sca t te r ing ,  the average 
m 

1 

is c l e a r l y  indicated. 

angular integrated neutron flux. We note that, i n  the present case, . 
ii, (x) can be found. 

In Eq. (3.1.2), q0(x) represents  the actual 

Far frcz neEtron sources w e  have $ ( x )  -exp(x/Ls) 
0 0 

where Ls I s  the  "heymptotic" diffusion length in the s c a t t e r e r  material. 

b 

t 
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A note i n  peeing:  

constant and Eq. (3.1.2) gives t h e  result 

T*/L* << 1, t hen  $o(x) is approximately 

which is t he  " e i q l y  hmsgenized" p;-a;iieter. w coiirse, the corlditisn 

T s / L s  << 1 should y ie ld  t h e  homogeneous l i m i t .  

If x now represents the d i rec t ion  perpendicular t o  the s labs  

we have the  asymptotic result $,(x) -+ exp( -x/L ) when the pos i t ion  

x falls i n  a s c a t t e r e r  s l a b  and $o(x) is a constant when x f a l l s  

i n  a Y B C U ~  slab. The "best f i t "  to  t h i s  flux, for the homogenized 

medium, is $o(x)--t exp(-x/L) where L i s  t h e  simply homogenized di f -  

fusion length, l.e., L = Ls (1 + TY/T6). 

if Eq. (3.1.3) w e r e  used. 

s i t u a t i o n  t h a t  e calculat ion based on an angular-dependent mean free 

path y ie lds  r e s u l t s  that a re  less representat ive t h a n  the simply 

homogenized calculation. It i s  expected that, i n  the orthogonal 

cha rac t e r i s t i c  d i rec t ion  (i.e., i n  t he  plane of the  slab), use of 

an angular-dependent man  f r e e  p a t h  i s  indicated. 

S 

This result would be obtained 

I n  t h i s  pa r t i cu la r  case, w e  have the 

The case of a calculation i n  the s l ab  perpendicular d i r ec t ion  

f o r  a periodic  s lab array is  cer ta in ly  excluded from t h e  present con- 

s iderat ions.  Moreover, one should feel  no rnotiiation toward develop- 

ing a theory f o r  that case s i n c e  It  i s  easily t rea ted  by e stmdard 

method, i .e. ,  change of posit ion var iable  t o  "opt ical  thickness ,"  
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We shall ncu consider the details of a macroscopic-parameter-based 

ca lcu la t ion  f o r  8 heterogeneity for which t h e  present methods were 
_- 

c l e a r l y  intended, Le. ,  a regular array of cy l indr ica l  n c u m  cl;a;mels. 

3.2 Qlhdxics l  channels I n  a Regular Array 

Iet us consider a regullnr =ray sf i=Ciiiiiii  ehanneie of 

cy l ind r i ca l  cr088 section. 

sec t iona l  area % we associate a cross sec t iona l  area of s c a t t e r e r  

mterial As such that V = AV/As is the  r a t i o  of vacuum volume t o  

s c a t t e r e r  volwne charac te r i s t ic  of t he  medium. We shall label the 

axial, or longitudinal, direct ion w i t h  x and d i rec t ion  cosine p, 

aqd the radial, or transverse d i rec t ion  w i t h  y and d i rec t ion  cosine 

With every vacuum channel of cross  

9. D e  t o  streamhg along channels we expect d i f f e r e n t  d i f fus ion  

properties in the  x and y-directions and both of these cases t o  be 

d i f f e r e n t  than the  simply homogenized diffusion.  The simply homo- 

genized mean free path I s  given by 

$ = As (1 + v )  
7 

Before presenting a spec i f i c  method for obtain4ng a representat ive 

A(&), let  us make 6 0 ~ ~ 2  general comments regarding the f ea tu res  of 

such R calculation. It is c lear  that we have 

only two representat ive ilirections; axial, or 

transverse,  or y direct ion.  It is a160 c l e a r  

chosen t o  consider 

x-direction, and 

tha t  i n  t h e  present 

lattice the ac tua l  descr ipt ion of a straight l i n e  path i n  the  



transverse d i rec t ion  e t a r t i n g  from a point i n  the sca t t e r ing  material 

depends upcm both t he  a z i m u t h a l  angle about the x-direction and 
l 
a 

the p r t i c u l a r  pos i t ion  in the scattering material relative to ,  

sa.y, the center of B vacuum channel. 
i 

A "suitable" averaging tech- 

niquh must be employed. 

when considering a descr ipt ion of an axial ly-or iented p t 3 .  

Furthermore, we encoun-r the same d i f f i c u l t y  

k t  

Ax(&) and h (q) represent the angular-dependent mean free paths 

with respect to x-direction aiifusior mE? y-direction diffusion. 
Y 

The following cons t ra in ts  on the  "suitable" averaging technique seem 

I n t u i t i v e l y  reasonable : 

~ (ili) 

The average mean free pa th  based on axial and 

transverse direct ions shauld be equal, i.e., 

The axial mean free path i n  the  transverse d i rec t ion  

(Le . ,  st = 0) should be equal t o  t h e  transverse 

mean free path In the transverse d i r ec t ion  (l.e., a t  

'1 = f I), i . e . ,  

Both axial and transverse mean free paths should be 

symmetric, i .e . ,  

i (3.2.4b) 
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A pOS6ible method of obtaining A(v)  is  t o  f ind,  a6 a function 

of starting position In the  sca t te re r ,  t h e  mean free pa th  length 

t rave led  In all direct ions.  Then, upon "suitably" weighting t h i s  

quantity (according t o  whether Ax(p) or  A (q) I s  desired) an average 

@ 

Y 
yields the ang 4 . a  r-dependent mean f r ee  path. I n  even the  simplest  

lattice this l e  a geometric task of considerable iiiagii:tde. ,"Are, 

f o r  t he  sake of brevity,  we sha l l  take an  alternate, albeit ce r t a in ly  

iess sei€-contshed, x a t e .  $?e s h a l l  assume that we have given 

ce r t a in  macroscopic diffusion parameters, such as diffusion length, 

end use the  general constraints  of Eqs. (3.2.2), (3.2.3) and (3.2.4) 

t o  obtain a representat ion of the mean f r e e  path which y i e lds  t h e  

V t C r S .  TO be Specific, l e t  U6 866Ume thpt hx(v)  and 

h (q) are even quadratics of t h e  respective varlablee. 

term of the Iegendre polynomial expansion 

Thus, i n  
Y 

From Eg. (3.2.2), w e  obtain Ax* = h , and t h i s  result used In 
YO 

m. (3.2.3) yields A =-A /2. "berefore, I n  terms of the two 

unknawns, and , Eq. (3.2.5) may be reformulated as 
;yz x2 

Ax(") = A + 

A y ( d  = 4J - \ p2 (7 )  

P ( P I  0 2 2  

1 

(3.2.64 

I 
(3.2.611) I 



The arguments used here w i t h  respect  t o  t h e  mean free path 

also apply t o  the  determination of the t o t a l  cross section. Thus, 

we expect the general constraints :  

a +1 +l 

If the total cross  sec t ion  is  assumed t o  be an even quadratic, 

then In terme of t h e  tvo unknowns, u O a n d  4 ., we have 
.\ 

For the remainder of t h i s  discussion ve shal l  assume that the 

neutron c o l l i s i o n  density i s  used as dependent var iab le  and t hus  

t h e  I Q C ~  free path is t h e  relevant parameter. One can equally w e l l  

apply these considerations t o  the  neutron flux and t o t a l  c ross  section. 

Rom Eqs. (2.3.10) and (3.2.6) we have the  results 

L'2 X = ,&g& 



Froa F,qs. (3.1.10) and (3.1.11) we obtain 

We O E L ~  we measured values of L and L 

ments, to f ind Lx and I$ i n  order t o  determine \ /As  and A2/A8 . 
Rx example, if we m e  Behren's t heo re t i ca l  formulation (B), 

or  other  t heo re t i ca l  treat- 
X Y' 

+ 2Rv 2RV 
exp(m/v) - i (?r = 1 + 2v + 

+ RV 2RV 
exp(2R/V) - 1 

w h e r e  R i s  t h e  r a t i o  of the  vacuum channel radius t o  As. In 

Fig. 3 w e  present LJLB and L Ls as 8 function of R, RE (O,5), J 
r for the cases V = 0.5, 1.0 and 2.0 as determined by E q .  (3.2.10). 
I 

Then, i n  Fig. 4 we bave, fo r  the same values of R and V, the results 

f o r  A,#, and \/Ae based on the curves in Fig.  3. 

(3.2. loa) 

(3.2. l o b )  
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It should be noted t ha t  w h a t  w e  refer t o  as If, and I? Y 

I 6  Ep. (3.2.10) cue actudly calculated by Behrens (B) as 

<a@> /2 ma<g>/2 ma, via a. (2.5.5), have 

18 $/4 
= "1: + 175x1 - c ) ( l  - C f 3 j  

2 
If 

h(w) I s  questionable. 

> 1 the validity of Fig. 4 as a relevant representation f o r  

However, t runcat ion of A(u) a t  a quadratic 

would, In that w e ,  also be of questionable usefullness. 

W e  have developed the mathematical formulation of a new 

approach t o  t h e  hozwgenization of c e r t e i n  types of heterogeneous 

media (such as a regular  array of vacuum chanqels) f o r  the purpose 

of neutron dif fus ion calculations.  The new method is based on the 

inclusion of an angular-dependent mean free path i n  t h e  theory of 

neutron transport. 

t o  media with plane symmetry and monoenergetic neutron theory is 

emplayed. 

In the present e f f o r t ,  calculat ions are r e s t r i c t e d  

Extension t o  energy-dependent theory and to other sym- 

metries would probably follow the general  l i n e s  fo r  t h e  familiar, 

angular-independent case witboll+, signif lcant  addi t iona l  complication. 

Emever, It seems c l e a r  tha t  the requirement of the existence of two 

(3.2.115) 

( 3.2. l i b )  



orthogonal cha rac t e r i s t i c  direct ions i n  the development of t h e  

angular deper@ence of the  mean free path must be imposed. 

Ue have found that a neutron flux based theory and a c o i i i s i o n  

density based theory can lead t o  s ign i f i can t ly  d i f f e ren t  results 

when ic#-or&er qipr~iif~~ticfis,   CUP^ a8 diffusion theory, are employed 

i n  the S O l U t I O n  of the t ransport  equation. For the case of i so t ropic  

scattering, the normal mode technique is applicable,  and exact,  closed- 

form solut ions can be determiced. 

EM%luating the results implied by t h e  present theory w i t h  

respect t o  nreasurements is impossible. 

pertinent experimental results for neutron d i s t r ibu t ion  descr ipt ion 

in the relevant typ? of mcdta. 

There is a current lack of 
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APPEXDM A 

THE FUNCTION A ( v )  

W e  have found previously that the zeroes gf A(v)  for 

v (-1, +1) are the d i sc re t e  s e t  of normai mode inaices  and that 

they appear i n  pairs, *vJ- 

allowed discrete indices, To t h i s  end, and f o r  r e l a t i o n s  which are 

k t  us now discuss the number of these 

useful in Section 2.7, we t u r n  t o  a brief study of the general 

properties of the function A(v) as defined by -6. (2.6.12) and 

(2.6.14), 1. e., 

A(v) = 1 + 1 A c v G(v)  

G ( v )  - I+& du 
21r i  u - v  

-1 

I n  terms of the  set {%I , as defined i n  Eq. ( 2 . ( i . k ) ,  A(v)  may 

be rewritten 

e 



I 

I 
I A-2 

I 5 

vhere Q ( v )  is a kgendre func<ion of the second kind defined f o r  n 
i 

the ent i re  v-plane by an extension of the Newoann formula (H, p. 51) I 

with singular In t eg ra l s  evaluated as t h e  Cauchy pr inc ipa l  value. 

For large v, v Q (v )  varies as v ' ~ .  

l a rge  v. 

ing v 

Thus, A(v) is  bounded f o r  n 
F'urthermdre, t he  % ( v i  are analy t fc  i n  the v-plane exclud- 

(-1, +1) end, therefore ,  A(v)  i s  ana ly t i c  i n  t h i s  same region. 

We use the contour i l l u s t r a t e d  i n  Fig. 2 and the  argument theorem 

(T, p. ut;) t o  e s t a b l i s h  the  number of' zeroes of A(v) i n  the region 

v # (-1, +l). 

the number of zeroes by 25. 

Since the zeroes of A( v )  appear i n  pairs, we denote 

The argument theorem applied here y i e lds  

+ 4n J = change in arg A ( u )  on C, + change in a r g  A-(u)  on c - ( A . 3 )  

We have assumed t h a t  g(u) satisfies a Holder condition on 

u 

Plemelj formulae (M, p. 43) t o  f i n d  the  l i m i t  values G*(u). 

(-1, +1) and therefore  G ( v )  is a Cauchy in tegra l .  We apply the  

We f i n d  

: -  1 G*(u) = C ( u )  2 p g(u) 

where G+(u) and C'(u) refer t o  t h e  l i m i t  values of G(v) as v approaches 

u from above and belcw t h e  real line respect ively.  

w e  obtain t h e  limit values 

Fro= Eq. ( A . 4 )  

I 
I 

i l r  
2 k ( u )  = A(u) f - c u g(u) 
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Now, A(u) with uc (-1, +1) is a real function ( w i t h  s i n g u l a r i t i e s  

at u = ~l), and, we have A(o) = 1 and g ( u )  is  a symmetric function. 

Uhence, we obtain the re la t ions  

These results used i n  Eq. ( A . 3 )  yie ld  the  nunbet of pairs of 

zeroes, J, in term of the single angle arg A (+l), i . e . ,  + 

1 + J = -arg A (+I) a .  

It should be noted that  Eq. (A.3)  contains the  implicit  require- 

ment that A+(*> = o for u c (-1, +1>. 
pletely necessary, however, it probably appl ies  t o  most cases of 

physical interest  and its appl icat ion greatly simplifies these con- 

siderations.  

This assumption is  not com- 

We shall develop a su f f i c i en t  condition f o r  J = 1 i n  the  case 

that g( u) is an H degree polynomial i n  u, i . e . ,  

We note t h a t  the Iegendre functions, Qn(v), can be expressed a~ 

Qn(v) = Pn(v> Q,(v> -Wn-,(v) 

. Qo(v) = a r c  tan% v ,  v f (-1, +1) 

(A. 6a) 

(A.6b) 

(A.6c) 
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where  Wn - , ( v )  is an even, o r  odd, polynomial i n  v of degree 

n - 1 (H, p. 51). In these terms A(v)  is rewri t ten as 

N N 

we also bave as u -+ + 1, QO(u)-* 03 and Pn(+l) = 1. 

wn(+l) I s  bounded, and thus, if 

Clearly, 

u 

N 
> o  gan 

*n=o 

then as u -3 + 1, A(u) -.* - (32. 

case, we have 

From Eq. (A.5), i n  the  present 

? 
# 

n= o 

Therefore, we may conclude the following: If Eq. ( A , l l )  holds 

and, in t he  range u (0, + 1), 
N 

n=o 

+ then arg A (+1) = n and we have t h e  desired result, J = 1. Let us 

(A. 10) 

( A .  11) 

(A. 12) 

stress that Eqe. ( A . I l )  and (A.13) give a su f f i c i en t ,  not necessary, 

condition for the number of pairs of d iscre te  Indexed normal modes 

t o  be unity. 



In Section 2.6 the  existence of the modal expansion 

coe f f i c i en t s  1, j = 1, 2,..*, Jy a (v ) ,  v €(-1, +I)]  W 8 S  

ass\rmed. Moreover, tbe orthogonality r e l a t ions  are based on the 

whole angle range u f (-1, +1) and thus only provide a means of 

determining expansion coef f ic ien ts  f o r  the case of a boundary 

condition given w e r  all angles. By reaucing tile problem ;f 

f ind ing  expansion coef f ic ien ts  t o  the solut ion of an inhomogeneous 

Hi lber t  problem, w e  f ind  t h a t  one can demonstrate t h e  exis tence 

of expansion coef f ic ien ts ,  and, prescr ibe a method f o r  determining 

the  value of the coefficients for problems Involving a11 physical ly  

re levant  boundary conditions. 

e legant ly  described by Muskhelishvili (M). 

We follow closf?ly the techniques 

Reduction of TransDort'FYoblem t o  a n  Inhornoneneous Hi lber t  Problem 

W e  sha l l ,  In general, encounter t ranspor t  problem boundary 

conditions of the  form 

*(u) = 2 6 ( + V j )  o(+v  j ,u) + L a ( - v  ,u) & ( - v  J' u) 
JI.1 j =1 

a(v)  @(v,u) dv f o r  .€(a#) + 4  a 

where - 15 0 < f3 

are able  t o  determine the set of d i sc re t e  lniexed coe f f i c i en t s  

+ 1. ht us suppose that by some method w e  

. 
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( a ( i v j ) ,  j = 1, 2,*=*, J}, and define 

J J 

~e timn have an integral equation for  a(vj ,  vc(z,pj ,  i . e . ,  

Using the derived form of @(v,u) Eq. (2.6.11), w e  obtain 

- 2 C u g(u) = - 2a i [n+(u) - A-cu)] 

A(u) = 2 P(U) + *-(,)I 
and therefore Eq. (B.4)  may be rewritten as 

P [A'(u) + A - ( U ~ W ( U )  + [nt(u) - *-(,)I A(u)  

t = u r'(u) 
( ~ . 6 a )  

1 A ( u )  = - 

. 
(B. 6b) 
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We have assurance t h e t  A(u), as defined i n  Eq. (B.6b), e x i s t s  if  

a(.) satisfies a Holder condition on u€(z ,  a). For the moment, 

let us assme t-bat this condition is fuifi l le2 aad define the 

Cauchy integral, A(v),  over the e n t i r e  v-plane, 

A ( v )  = - / ! d d . d u  
2n i u - v  

The Plernelj formulae y i e ld  the l i m i t  r e l a t ions  on the  l i n e  u (Z, @), 

A+(u) - A-(u) = u a (u )  ( B . W  

The results of Eqs. (B.5) and (B.8) applied t o  Eq. (B.6) 

give t h e  a l t e r n a t e  form 

+ .  
We have assumed t h a t  A-(u) # 0 for uC((r, B). With t h i s  

r e s t r i c t i o n  we can easily transform Eq. (B.9) t o  t h e  form of a 

boundary condition f o r  an Inhomogeneous Hilber t  problem on an rsrc 

(M, ch. 10). 

terms: 

Restating the problem of determining a(u) ,  i n  these 

Find t h e  sec t iona l ly  analytic function, A(v) ,  vanishing a t  

in f in i ty ,  w i t h  boundary condition on t h e  line u€(Z, a), 

(B. 10) 
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* 

+ 
We note that t h e  assumptions on g(u) end A-(u) imply that 

A-(u)/A (U) is a function? ea t i s fy ing  a Holder condition and not 

~ ~ ~ ~ i s f i i n g  

condition, co(u), satisfies a Holder condition and a(iv ) exis t ,  

then u O'(u)/A+(u) satisfies a Holder condition on u f (a, (3). 

ljet us help c l a r i f y  our procedure by sunmrarizing. 

+ 

uc(o1, a), and, if '  we assume that the angle boundary 

J 

If we 

assume (what we w i s h  t o  prove) that a(u) satisfies a Holder condition 

on u c((ar,B), then t h e  in t eg ra l  A(v) ,  defined by Eq. (3.71, I s  

of the Cauchy type. 

funct ions w i t h  boundary the  l i n e  of integrat ion.  

(Z,f3) 1s t he  l i n e  of integration: 

Suu, Cauchy i n t eg ra l s  are sec t iona l ly  ana ly t i c  

Specif ical ly ,  i f  

(I) 

(il) 

A(v) is ana ly t i c  i n  v-plane excluding (CY, a). 
A(v) approaches well-defined limits as u f  (a, 0) 

is approached from e i ther  side of (CY, (3) w i t h  possible 

exception of t h e  end p o i n t s ,  a and/or f3. 

Near the end points, A(v)  satisfies the  conditions (iil) 

. 

. 

where a, b, A and 3 are real constants,  and a < 1 

and b < I. 



Moreover, A(v) vanishes as i v i  + a. 

equation for a(.) in to  the boundary condition Eq. (B.lO) which is 

We have transformed the integral  

the form of an inhawg~ereom Hilbert probltxn bo*w&try condition. 

Thus, we have reduced the origiaal transport problem to  c ~ l l  inhomogeneous 

Hilbert problem. 

no physical ambiguity, then our assumption of the exietence of ~ ( U ) J  

3cf we can f ind  a 6olutionJ A(v),  whjch introduces 

uc (zJ a), will be substantiated. 

Solution of the Hilbert Problem 

~n t e rn  of ~ ( u )  = arg ~+(u>, we have A-(* ) /A+(~)  = exp(-2i e(u)) 

and the Hilbert problem boundary condition ( c f . ,  Eq. (B. 10)) 

Since A(v) m u s t  8180 vanish as 

(B. 11) 

(B. 12) 

where H(v) is  the fundarPenta1 so lu t ion  of the associated homogeneous 

H i l b e r t  problem and is given by 

The Caucfy integral @(v) is defined by 
iB. 13) 

(B. 14) . 



Providing K = 6(p)/. - e(Z)/x is a pos i t ive  integer ,  we have t he  

+e addi t iona l  requirements 

.. du = 0 for n = 0, I,*.*, IC - 1 
un+l @'(U) P r A+(U) H+(U) 

These addi t iona l  requirements are a necessary feature of the  solut ion.  

T t  should be reca l led  that the function @'(u), u E (2, a), is not 

completely specif ied,  i .e.  , t h e  d i sc re t e  indexed expansion coef f ic ien ts ,  

a(iv ), i n  Eq. (B.2) are,  as yet,  unknown. 

blems considered later, it w i l l  be demonstrated t h a t ,  i n  each case, 

For the general  pro- 3 

t he  K requirements are necessary and s u f f i c i e n t  f o r  the  complete 

spec i f ica t ion  of a l l  d i sc re t e  and contlnuum ex'pansion coef f ic ien ts .  
I 

Agplication of t h e  Hilbert Problem Solution 

Plane synrmetry t ransport  problem fa l l  i n t o  two general  

ca te  gor ie  s : 

(i) I n f i n i t e  media problems with f ull-angle-range 

boundary conditions (such as the  Green's funct ion 

solved i n  Section 2.7). 

Half-space media problems w i t h  half-angle-range 

boundary conditions (such as albedo or Milne type 

problems). 

(ii) 

Combinations of the  solutions of these type'problems lead t o  t h e  

so lu t ion  of cases with f i n i t e  media ( s l abs ) .  For ful l - range boundary 
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conditions, the orthogonality of the normal modes provides a d i r e c t  

method f o r  determining expansion coeff ic ients .  The solut ion of 

the H i l b e r t  problem in these eases demonstrates the existence of 

the coef f ic ien ts  and thus  p a r t i a l l y  supports the completeness 

hypothesis. For half -range boundary problems, there are no apparent 

orthogonality propert ies  of the normel modes. I n  these ceses, the 

c 

so lu t ion  of the H i l b e r t  problem not only provides proof of existence,  

but aiso gives e weii-definea prescr ipt ion f o r  the aetermination 

of expansion coef f ic ien ts .  W e  shall now out l ine t h e  appl icat ion 

of t h e  Hilbert  problem solut ion t o  the  categories  of ful l - range and 

half -range boundsry conditions. 

In  the  case of an ' i n f in l t e  medium, full-range boundary con- 
7 

d i t i o n  problem, a source condition i s  usually given a t  some posit ion,  

wnich we choose t o  designate x = 0. For e C 1, it follws that 

F(x,u)  should vanish as 1 XI  --. a. 
t i o n  is that given i n  Eq. (2.7.2). 

Thus, t h e  general form of so lu-  

The source condition can be 

4. /+I a (v )  O ( v , u )  dv for u f (-1, +1) 

-1 
Instead of using the  ObviOU6ly indicated orthogonality propert ies ,  

l e t  us consider the coef f ic ien t  evaluation by the  route  prescribed 

In the H i l b e r t  problem solution. Note that 3 = -1 and p = +l. Fron . 

( B. 16) 
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Eqs. ( A . 6 )  and (Ao?), we have the r e s u l t s  e(-l) = -Jx and 

6(+11) = Jn.  

are 25 requirements of the  form of Eq. (2.7.15). Specif ical ly ,  

Therefore, i n  t h i s  case, we f i n d  that K = 25 and there  

du = 0 for n = 0, 1, * * -  p 2 J - 1  
(I 

-:+I O'(U) 
A'!.) E+(=] 

J-1 

Eq. (B.17) provides a sufficient number of equations t o  f i n d  t h e  

d i sc re t e  indexed expansion coeff ic ients ,  a(+vj), j = 1, 2,***, J. 

The fundamental solut ion,  K ( v ) ,  i s  given by (cf . ,  Eq. (B.13) 

H ( v )  (-1 - v )  J ( 1  - V )  J .G(V)  

Thus, A(v)  is determined (by Ep. (B.12)) and we can f ind  a ( U >  

for uE: (-1, +1) from the  l f m i t  r e l a t i o n  (cf. ,  Eq. (3.8s) 

Since t he  problem has been completely and unambiguously solved, It 

is  clear that the  supposit ion that a ( u )  s a t i s f y  a Holder condition 

is substant ia ted and we have demonstrated the  exis tence of the  

expansion coef f ic ien ts .  

, 
I 

For half-space media we consider two t ypes  of problems. An 

"albedo problem" Is described by a boundary condition at the  m e d i u m  

surface (x = 0 with medium occupying x > 0) specif ied f o r  u f. (0,  +1) 

and the condition that F(x,u)  vanish as x 4  00. 
e 

A "Milne problem" 

( B . 1 8 a )  

(B. 18b) 
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LT 

is riescribed by a similar boundary condition at x = 0, but with 

j = 1, 2,-*-, J, or 3' F ( X , U )  + @(-v,u) exp(x/v) w i t h  v = 

v €(Q, +I), as x - 0 0 .  We have spec i f ied  these problems as boirndary 
I 

I 

conditions on the half-range uC(0, +1). 

the preedure is easily applied t o  half-space medie occupying x < 0 

With obvious modifications, 
/ 

and boundary conditions on u (-1, 0). With the half-space 

occupying x > 0, the general solution of an albedo problem is 

and for 8 Nlne problem, 

F(x,u) = A @(-v,u) exp(x/v) + 

j =1 

+['.(.) @(v,u) exp(-x/v) dv for x > 0 

0 

In both cases, the boundary condition at x = 0 can be expressed in 

the form of E q .  { B . l ) ,  l . .e-, 
? 

@(U) = 2 a(+. J ) @ ( + v  J' u) +11 a ( v )  9(v,u) dv 

j =1 

for u € (0, +I) 

(B. 20) 

(B. 21) 

(B. 22)  



* 

B-10 
c 

Now, J = 0 and f3  = +1 and, from EqS. ( A . 6 )  and ( A . 7 ) ,  e(0 )  = 0 

and e(+1) = Jlr. Tfius, L = J and w e  have the J requirement8 

These are suff ic ient  t o  determine the d iscrete  Indexed coe f f i c i ent s ,  

a(+vj), 3 = 1, 2,***, J. 
/' 

The fundamental so lut ion takes the form 

= -q eo - du 

The Hilbert problem solution, A(v),  v C ( 0 ,  +l), and the continuum 

expansion coe f f i c i ent s ,  a ( u ) ,  u f ( 0 ,  +l), are found as i n  the case 

(E. 248) 

(B.  24b) 

of a full-range boundary problem. Again, w e  f i n d  substantiation 

for the supposition of the existence of the relevant members of 

( a ( v ) )  . 
expansion c o e f f i c i e n t s  when the use of orthogonality conditions is 

mreover, we f ind  a prescription for calculat ing the 

*os6 ible  . 

. 


