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INTRODUCTION

The aim of this discussion is to reproduce the basic
features of stellar structure and evblﬁ%ion (as found froﬁ
;ccurate}calculations) by purely analytic considerations
in orderito gain physical insight into the evolution of
stars. We will not here attempt accurate calculations
6f structures and evolutionary tracks. First we discuss
general properties of syellar structure and evolution.
Then, analytic modelslgre constructed for the early homo-

i

geneous and the advanced inhomogeneous stages of evolution.
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I. EOUATIONS OF STELLAR STRUCTURE

The basic equations governing the structure of stars
are conservation of masé, conservation of momentum and
‘conservation of.energy (Schwarzschild, 1958 and Wrubél,
1958). Rotation and magnetic fields will be neglected

so that a star will be spherically symmetric.

Hydrostatic Equilibrium

A star changes very slowly during most of its life
and so may be considered in hydrostatic equilibrium.
Two forces balance to keep a nonrotating star in hydrostatic
equilibrium: the gravitational force directed inwards

and the gas and radiation préssure force directed outward.

The equation of hydrostatic equilibrium is
dP i '
—d-r'. = - n . (lo;l.)
The total pressure is the sum of gas and radiation pressure,

P = Pgagt Prad .

For an ideal gas

(1.2)

where H = 1.67 x'10'24g is the mass of a proton and W is the

mean molecular weight.

1

Prag = 5 aTé SR ¢ 0%
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Mr is the mass interior to r; the equation

servation is
My = [P 4nrZpdr,

or, in differential form,

Energv Conservation

of mass con-

(i.4a)

!
i

(1,4b)

The total energy of an element of material is

E = U+Q +K,

(1.5)

where U is the internal energy of the gas, 0 is gravita-

tional potential energy, and K is the kinetic energy of !

large scale mass motion, which we are neglecting here.

The internal energy of a  gas plus radiation -is’ i

1 1

U = —— NkT + S aT¥,

Y-1

where Y is the ratio of specific heats (y =

5/3 for a mon-

atomic ideal gas). The sources and sinks of energy are

(1) energy release due to nuclear reactions; and (2) energy

transport into and out of the element of material.

Let € be the ne% release of energy per gram per second,

and F be the energy flux. The equation of

energy is then

dE du . a0 1.
— BB e e = - —
dat at T @ ¢ - GdivF

conservation of

(per gram per second). The change of gravitational potential




energy is
@ = -aw = Pdv = -Zd .
Define the luminosity L. as the total net energy flux

through a spherical shell of radius r, so that
= 2
:Lr 4T r<F .

Then the equation of energy conservation is

dLr _ 21'_ P do . dU | :
-_— = AT e + go e e .
dr T 4nrTe 22 dt dt . (1.6)

Energy Transport §
Lnergy is transported by radiation and convection,

and by conduction when the electrons are degenerate.

L |

In the interior of a star, where the radiation is

‘almost isotropic, the momentum balance for radiation is

dPR = - _”_'_9_ Lr'
dr c 4grr2z
where PR = % aT4 is the radiation pressure, (wp)~1 is

tﬁe.photon mean free path, and ¢ is the velocity of light.
That is, the force due to, the gradient of the radiation
pressure is equal to the momentum absorbed from the radiation

beam in passing through matter. ‘Thus, in the interior
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of the star, the radiative energy flux is

4acT 3 dr

Frad = = 3KD dr ] (1.8)

and the gradient necessary to drive the radiation flux is

dt  _ 3 .%o L,
—_— = - — —4 . 1.
dr 4ac E? 4rr (1.9)

The convective flux is (Spiegel, 1965), crudely, the
energy fluctuation (excess or deficiency) of an element of
gas, times its velocity, averaged over a spherical surface

in the star,

Foonv = PCpwe (1.10)

where w is the radial velocity fluctuation and 8 the tem-
perature fluctuations in the matter. The velocity and
temperature excess or deficiency of a convective element

depend on the superadiabatic gradient

g = - .% - (%} ad] . (1.11)
<
Because convection is an extremely efficient energy trans-
port mechanism, the superadiabatic gradient is very small
and the temperature gradient will be very nearly equal

-

to the adiabatic gradient,

aT o far} - L-1 I dF | (1.13)
dr dr/.d T - P dr

where T is the effective ratio of specific heats, including

ionization, dissociation and radiation. Near the surface,
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_where the photon mean free path is long, there is a leakage

of heat by radiation from the convective elements and the

convective temperature gradient is greater than the adiabatic

.

gradient.

Stellar Structure

Order of magnitude estimates of the density, pressure,

Ce

.and temperature of a star can easily be made from the con-

dition of hydrostatic equilibrium. The mean density is

: M '
. [ -%—ﬂ-;g- . (1.13)
In thé equation of hydrostatic equ'ilibriwn (1.1), setting

dP/dr = (P; - Py)/R ,

where P; is the central and P, the surface pressure, gives
- - ¥nd . :

- 2 :
. GM G M - .
1 S __R—E ~ —ﬁ—d'— (1.14)

since P, << Pg. Let B ='Pg;s/P, the ratio of.gas pressure

to total pressuéé and assume that the material of the star

is a perfect gas. Then the central temperature is obtained
from‘thg’pgrfect éés law (equation 1.2),

| _ ugH P wgH G M
.Tcﬁ "‘E- _;-_C_ -7} T T ' [ (1.15)

The mean  energy generation rate is
. ' ’ '
i

gE= LM .

-

P e
R A

PN O 3 2
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For the sun |

'L = 3.89 x 1033 ergs/sec,

M= 1.99 x 1033 g, (1.16)
R=6.95x100 cem .

‘Thus the dintermal conditions of stars are of the order of

magnitude: ’ Y

5 o= 1.4 (’@(%Q)s g/‘;:ms

. 16 (M \2 R@)4 2
P .~ 1.1 x 10 ﬁé} (ﬁ' - dynes/cm

Tg m 2.3 X 1.07 " (EPQ;) (%‘i) K

g = 1.9 (%;) (gg) N ergs/gésec

as functions of the stars' mass, radius, and Juminosity

given in solar units.i

For a more detailed account of the restrictions
imposed by hydrostatic equilibrium on stellar stﬁucture
see Chandrasekhar (1939).

This secﬁion is concluded by presenting a derivation

of the expression for.the gravitational potential energy

of a sphere of uniform density. The gravitational potential ‘

energy is

‘a= 3 fﬁ" d M(r) = -3 [ P av, (1.18)

where ¢ is the gravitational:potential.
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For a sphere of uniform density the equation of hydro-

static equilibrium (1.1) is

P _ d (P . d#
dr dr o/ dr °

‘Upon integrating, using the boundary condition that P/lp - 0

Ol
o,

at the surface, we'éet

_ P = GM .
then
GM R . R P
Q= -i-—x fo d M(r) - % Io o d M(r)
2 2
- GM 1 R = 1 GM 1
-%R- E.foPdV -§R+go'

»

Thus the gravitational potential energy of a sphere of

uniform density is - f;
. 2 :
3 GM :
A = . 2 =R o 1.
Q : X (1.19)

‘The absolute value of the gravitational potential energy
in an actual star will be somewhat larger, but of tﬁe same

order of magnitude. .
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II. STELLAR EVOLUTION

A star is a self-gravitating mass of‘gas in space.
‘The evolutionary trend of intermal stellar conditions is
determined by'hydrostatic equilibrium and its radiation of;
energy away into space. The life history of a star is
the progressive concentration of its mass towards its
center, pulled by its éwn gravitational field. This con-
traction sreleases gravitational energy, heats up the gas,]
and, as the gas becomes hotter, thermonuclear reactions
among various nuclei become possible. At certain temperatures
éhe thermonuclear reactions can supply the energy losses,
the gas and radiation ppessuﬁe can support thgjstér,§and
the gravitational con?réction is temporarily ﬂalted,i
A necessary condition for hydrostatic equilibriu@
‘is the virial theorem for a self-gravitating mass (Ch%ndrasekhar,
1939), | N
2K+qa= 3(vy-1)Uu+a=0 (2.1)
Here K is,the total thermal energy of the mass, U is iés
| internal energy,,aédllﬂis its gravitational potential épergy.
The virial theorem requires that the thermal energy of %
star equal half the absolute value of its gravitationalk
potentiai energy (since 1 is intrinsically negative).
As a star contracts aqd releéses gravitational energy,

becomes more negative, and. the thermal energy must

increase. Half of the gravitatipnal'energy that is.released> 

.
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is stored as thermal energy, increasing the temperaturg
in the interior of the star, and half is radiated awaf;
The mean relation of temperature to density can be.

derived from the virial theorem. For a sphere of gas

-whose internal pressure is given byAthe perfect gas law

with ratio of specific heats y = 5/3, the virial theorem

(2.1) becomes

2U+Qa=0 . (2.2)

For a uniform density distribution the gravitational energy

is )
Q= ...é. _G.M.Z
5 R
and the internal energy is
. 3 _ M ‘.
:_U= -5 kTa—H-) A (2.3)

7
3

where M/UH is the number of particles. Thus
. LN

7; . . (2.4)

ol
iz

T = G

The mean density (equation 1.13) is

p= L M

SO

3 |
1 (.42) SQuH - \2/3 13 (56

Thus the relation between temperature and density for

stars with negligible radiation pressure is

. - \2/3 ~ .
T = 4.1 x 105 u@‘—e P13 K. ‘i(z.6) |

o . \
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Hére T and p are the local te@peratufe and density at any
point in the_star. |

The above temperature-density relation does not hold -
for those stars whoSe internal pressures are predominantly
governed by the radiation pressure. Define the beundary
41ine between stars whose internal conditions obey the
perfeét gas law ahd those whose internal conditions?are‘
3¢egulated by radiati&nlby an equality of pressures for the

two cases, i.e.,

1 4 K
- T7 = ——
3 a i m T s

or . ' .
1

T'= 2.55 x 107 p1/3 .
. 1
The boundary corresponding to this condition occurs gt
,5.5 MB. For heavier stars radiation pressurdﬁis predominant.
In such cases Y = 4/35and the virial theorem gives U = - ., -
Thus, . i
| - 4 - 3 &M '
U VarT 5 R . (2.7)
Expressing R in terms of the mean density (1.9) we obtain
the temperature-density relation : 1
' 1/6 1/3 |
T=1.92 x 100 M6 13 (2.8)
The temperature depends on density as before (to the 1/3
power) but the effect of mass is less pronounced.

The. temperature-density relations (2.6) and (2.8)

describe. the dependence of the temperature on the density

EATOTE Y |1
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inside a star. The evolution of stars consists of pro-
gressive gravitational contraction, increasing the central

density and temperature according to

t,
i

interrupted at times by central nuclear burning. Some
simplified evolutionary tracks for’internai stellar con-
ditions are shown in Figure 1. |

When the central density of a Star>gets very large,
the matter may become dégenerate and the equation of state
thus changes. The boundary of degeneracy in terms of density
ahd temperature has the asymptotic forms for low and high

'density (nonrelativistic and relativistic energies),

. s /o 2/3 .
T=1.2 x 10 (%r;) low density,
' 7(0 \. . .
T = 1.49 x 10 <-—) high density.
- Mo .

The full boundary curve is derived by Chandrasekhar.(1939).
‘This boundary is also plotted in Figure' 1.
Stars of mass less than about 1.3 Mg enter the de-

'generate region. For these stars the pressure due to
dégenerate electrons is so high that further compression
is no longer possible. This is essentially the end point
in the evolution of a star of small mass. The star be- .
comes a white dwarf, achieving in this process some max-—

imum temperature which depends specifically on its mass.

i
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Figure 1. Simple evolutionary tracks for the

internal conditions of stars of various
masses.
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The general evolutionary trend of contraction, in-.
Creasing the central density and temperature, is interrupted
pPeriodically by nuclear burning. The energy-generation
history of a star is a succession of grav1tat10na1 con-
tractions which raise the central temperature of the star
sufflclently teznrtlate thermonuclear reactions; the
thermonuclear reactions transform a given type of fuel
nuclei into heavier nuclei and release energy; the supply
of the given fuel nuclei becomes exhausted and the core
resumes its gravitational contraction. The order of thermo-
nuclear reactions is determinedrby the nuclei Present and |
their charges. The larger the nuclear charge; the higher
its Coulomb barrier and the higher the kinetic energy
(temperature) of the bombarding particles must be to
penetrate .the. barrier and initiate nuclear reactlons.
" A schematic sketch of. :the energy history of a star is shown
in Figure 2. During nuclear burning the temperature is
‘almost constant. During gravitational contraction the iso-
topic comp0s1tlon does not change. |
The most abundant element is hydrogen, which aleo
has the lowest charge, one. It is transformed into He4,
releasing 6 x 1018‘erg/g at temperatures above 107 °K (Reeves,
1965). Helium is transformed into C12 at temperatures above
about 108 °K and at slightly higher temperatures the carbon
reacts again with helium to form 016. The amounts oﬁ carbon
and oxygen produced in the core during helium burnlng depend
on the central temperature and therefore on the mass of the

t
star.- The C and O curves in Flgure 2 are the lower and upper




Figure 2. Energy history of a star (schematic diagram).
Nuclear burning stages and the resulting composition
of the core of the star are shown. Where two curves

" are drawn they represent the lower and upper limits
of the range of nuclei produced. (H. Reeves: Stellar

Energy Sources, Goddard Institute for Space Studies,

NASA, 1963). ‘
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limits respectively. Ca}bon reacts with itself at temp- .
eratures above about 7 x 108 °X; carbon burning produces
nuclei in the range 016 to Mg26. Tﬁe two curves again

are the upper and lower limits. Neon photodisintegrates

-and oxygen reacts with itself at still higher temperatures,

about 1.4 x 109

16

°K.. Neon burning predominantly produces

:O and Mg24. Oxygen produces isotopes in the mass range

A = 25 - 32 with a strong peak at 5128. The two curves

show the lower and upper limits.
The full chain of thermonuclear reactions does not

occur in all stars. For a star of given mass there is a

" maximum central temperature attainable in a nondegenerate

core. The exclusion principle requires that the average

separation of particles be greater than the e;ectfon wave-

‘ length," 7 ; ’
T = 'mpl/z S W S— (2.10)
T ry e J2 mg kT ’ )

where r is the size of a cube containing one proton and
Ae = 2/P and P = /2 mekT. Using expressions (1.13) and

(2.5) for p and T, we must have
i—1/3

p 2 mekT

Thus the condition for nondegeneracy requires :
' | 1/3
R - -1 (Mg

The -necessary central temperature for hydrogen burning is

(f

. - 16 2
1> =573 - 0014 w2 Gﬂ @9) :
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7
T, £ 10" °K,

.so that mass and radius must satisfy the condition, from

(1.13) and (2-5):

7
M 10 :
H (g)(-gg) > 61 x 100 = 2.16 . (2.12)

_Combining these two requirements, (2.11) and (2.12), the

minimum mass a star can have and burn hydrogen is

3/2 M
9% — 2 0.05 . (2013)
Mo

For heliwm burning the central temperature must be 10 °K.

The maximum central temperature occurs when the hydrogen

burning shell has burnt its way almost to the surface, so

" we can treat the core as a homogeneous star. . The minimum

mass for helium burning is thus

M M
ui/z g = .278 or ﬁg > 18- . (2.14)

The necessary central temperature for carbon burning is

8

about Tc = 7 x 10 °K. The minimum mass fpr carbon burning

is Lo
3/2 M :
. —_— 1.1 . . ! .
My ¥, = 9 | \ (2.15)

3

The necessary central temperature for neon and oxygen burning

is Tc = 1.3 x 109 °K. The minimum mass for neon and oxygen
burning is

. | | .
ui/ Mg = 19 - (2.16)
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Oxygen and neon burning are the end point of thermo-
nuclear burning stages. Nuclear reactions among larggr
mass nuciei (further photodisintegrations and recombi&ations)'
would occur in the temperature range of 2 - 4 x 109 °K}
However, at these temperatﬁres the rate of energy dissiﬁatian

by neutrinos (whlch are produced in the core and escape

directly from the star) is so large that further nuclear

reactions are unable to halt, but can merely slow down,

the gravitational contraction. These reactions can, how-

56, and the temp-

ever, produce nuclei all the way up to Fe
erature ‘is high enough to produce statistical equilibrium

among the various nuclei.

it vt

- g
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III. EARLY STAGES OF EVOLUTION -~ HOMOGENEOUS STARS

Hydrostatic equilibrium and overall energy conservation
determine the evolution of central stellar conditions.

For more of the details of evolution, including the star's

radius and luminosity, the mode of energy transport from

the interior to the surface must also be considered.

The equations of stellar structure--mass conservation, «

hydrostatic equilibrium, energy conservation, and energy

transport~--form a system of nonlinear differential equations

which must be integrated numerically. It is possible,

however, to obtain crude analytic stellar models by separat-

ing the condition of hydrostatic equilibrium from the energy

- transport. In the previous section, the condition of over-

all hydrostatic equilibrium was expressed by the virial
theorem. Now, since a more detailed stellar model is

desired, we assume an:analytic density distribution,

.namely, that the density in a star varies linearly from

the center to the surface.(Cameron, 1963)7 It is then
possible to integrate the equatdons of mass conservation,
hydrostatic equilibrium and energy generation through the
star. Hence, together with the equation of state of an
ideal gas, the run of density, mass, pressure, temperature,
and luminosityvthrough the star are determined. Also,

thé central density, pressure and temperature, and the
total rate of energy generation are determined as a funétion
of the star's mass and radius. Finally, thé different
modes of energy transp&rt-—radiative transport with Kramer's
or electron scattering opacity and convective trénsport-—are-

considered. The energy transport equation can be satisfied
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a£ only one typical>point of the star because of the
approximation made in assuming a given density distribution.
This gives a mass-luminosity-radius relation which gives
the evolutionary track of the star in thg Hertzsprung-Russell
diagram.
| To summarize: Hydrostatic eduilibrium and enefgy
conservation deter&ine the changes -in the central stellar
.conditions, while hydrostatic equilibrium and the mode of
energy transport determine the changes in the surface con-

ditions-~-the track in the Hertzsprung—Russell'diagraﬁ.

Linear Stellar Model %

.  Assume the density in a star varies linearly from

_where R is the radius of the star. We call this a linear
star model. . The equations of hydrostatic equilibrium énd
energy generation can now be integrated but the energyf
transport equation can only be satisfied at one point in

the star. The mass distribution is (from equation (1.4))

M(r) = I: 4ﬂrzp(r)dr

=8, a-30. (3.2)
Hence - : 3
M(R) = = mpR".

Thus

= 564(%X(%>3 g/cm3. (3-35

]
C.al
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The pressure is obtained from the equation of hydrostatic
equilibrium (1.1)

= - r GM(r')p(r)dr

. P=Pp = Io 2 ’ !

r !

where Pc is the pressure at the center. Hence é
o ;|

- 2 2 2 ' 7r._ 3r !

Fofo - Ger Q-FxF55RD) ¢

' : |

-Applying -the boundary condition P(R) = 0, we get

5y . 2.2 B
P, = T Gp _R R | (3-4)

hence

. 2 3 4
=T 202 24r 28r Or

, | = 4.44 x 1013 (%’6)2 ({%\4(1
) | )

- 4.8 %z + 5.6 % - 1.8

r4
'ﬁ) . (3 -5)

Assume that the radiation pressure is negligible;‘the

temperature is then given by the perfect gas law equation (1.2),

where No‘is‘Avagadroxs number, the number of nucleons per
gram. } 9 '3
' i3 Gul 2 S5r 19r 9r
e R +
Ts. 36 kNo Dc (5

R RZ T R3)

= 9.62 x 100 (M%)G:Q)(l + -E - 3.8 i—;

3
rYy
+ 1.8 -R_s_) L J

(3.6)

We now know how the deﬂsity, temperature, and pressure

EERILE S




-20~-
vary throughout the interior of tbis linear star model. We
have found the condition of hydrostatic equilibrium. The
run of pressure, temperature, and density through the star
is shown in Figure 3. We must now consider the condition
of energy conservation. The rate of thermonuclear energy

generation can be expressed in the form (Reeves, 1965) -
k (T\® R
e = ¢&p (§i>" ergs/g-sec
The luminosity of the star varies as (equation 1.6)
r 2
‘L. = fo 4rnr'” p(rt) &drt .

For a linear density distribution the total energy gen-
‘eration is

R
L =’fo.4np(r)6r2dr

SO
2
L = ¢nR3ﬂooc TC) n
.(1+k+n)
6 § GuH 1.0 M

- =T e (& T;) T pG<m) In -
| Thus ' n+k+l nt3k .

.962\0 M “*[Ro

b e G5 (97

Io o(7) , ’
(3.7)
where -

1
I, = Io xz(l-x)n+k+l (1 + 2x - 1.8x2)ndx

has values -f the order of 10”1 or 1072, and- T, () is the
temperature in units of 107‘°K. The energy generation and

luminosity in a 1 M, star are shown in Figure 4. -
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Radiative Energy Transport

Finally, consider thée equation that governs the flow
of energy through the star. First consider radiative energy
transport. The appropriate equation for radiative energy
. transport- is -equation (1.8),

L=~ gur — o

r . 2

2 4ac T3 daT
3

so the temperature gradient necessary to drive the radia-

tive flux through the star is

4nr

We consider two types of opacity (Cox, 1965): (1)
Kramer's opacity,

K~= KODT—3.5 J ) . (3.8)

which is a good approximation at intermediate internal

temperatures, and (2) electron scattering opacity,
w=ag = .20 (1+X), (3.9)

(where X is the mass fraction of hydrogen), which is
dominant at ‘high internal temperatures. We also assume
for convenience'th;t all the energy is generated at thé
centef of the star, so that

L =.L = constant.

r

For Kramer's opacity

aT _ me . L

dr  4ac TOS gup

(3.10)

s AT A P A 12 S

s
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Compare this expression for dT/dr with the radial deriva-

tive of T from the linear model,

s . '
aT _ T Glpe r r o
an 6 KN, R (5-38§ + 27'E§) . (3.11)

" For our analytic model, these two expressions for the

temperature gradient cannot bé equal throughout the star.
We determine the luminosity by equating the above two

expressions at r = 0.5R.

2 . T6‘§. dT
L = - 411(-?):1/2 ﬂ __-_;L.& (__)
’ 3o P1/2 ar/y/2 )
where r1/2 = O.SR,
31 Gup 2
T = C R
1/2 288 Th N ’
p1/2'. = 0-5 pC J
dT _ - 297 Gu R
dr/1/o ~ 144 kN, Pctc
Now M
pc = _;3- 3
5.5
hence 7. 5 M :
' - .329(3 GH) -3 )
L= qd 22 ‘) 2o (G — (3.12)
-15 3

: 10

where a = 7.57 x 10 ergs/cm deg4, c =3 x 107 cm/sec,
-8 -16

G =6.67 x 10 8 dynes cmz/gz, k = 1.38 x 10 1 ergs/deg,

and H = 1.67 x 10-24 g. Hence, for population I stars

!

i

R S
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L _ 556475 (N N ' (3.13a)
= -0 U o o «l3a
Lo Mo Ro '
and for population II stars
5.5, <=0.5 .
L 7.5 M (R‘}
= = 147 u’: —_ _— .13b
Lo . (MO‘) Ro ) , (3 )
Solar matter is.~ 2/3 hydrogen ° and 1/3
helium by weight. The mean molecular weigﬁt for 12 nucleoné; i

-

of which 8 are hydrogen atoms and 1 is a helium atom; is

~

L= mass _ 5 x1+1x 4%
number of particles 8 x2+1x 3!
_ 12 _ {
= 19 0.632
) - u7'5 = 0.0320.
Hence ' 5.5 0.5
; MV /RY T
L = .36 x 1033 — ——) er ec .
53 (o) () erers

For solar mass and radius
Ly = 3.36 x 1033 ergs/sec,

compared with the observed luminosity of the sun which is

Lo = 3.89 x 1033

ergs/sec. Thus the linear star model
gives a result which is within 20% of the observed value.
The luminosity increases rapidly with the mass of the star
and incfeases slightly with decreasing radius.

When electron scattering is the dominant opacity, the

temperature gradient needed to transport the energy flux L is

— = Ll ——Z . 3-14)
dr - 4ac 33 4mrr

13
i
e - !
o ne rama e
i
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Determining the luminosity by equating this temperature
gradient with the expression for dT/dr obtained in the

linear model (3.11) at the midpoint r = 0.3R, gives

~
o

L = - anr2 - dac T1/9 dT}
V2 kg 15 \arliyg
which is .
- 29 /3133 (GH\“ ac . 4,3
L= } o — KM, (3.15)
KZbS/ K} %e
Hence when electron scattering dominates,
L __178 4 §_\3 (3.16)
I, 1+x - M/ 3.

The luminosity is independent of the racius and increases
with mass, although less sensitively than for Kramerts
spacity.

Equations (3.13).and (3.16) are the radiative mass-
luminosity-radius relations for Kramer's and electron

scattering opacity. The effective surface temperature is

defined by

4
Flux = © Teff

or

1
T, = (L/amoR® )4 1
4
5.76 x 10° ( (RO> (3.17)

Convective Energyv Transport

(U

The convective energy flux is (equation 1.10)

where w is the velocity and 8 the temperature fluctuation ‘

i
‘ ]

of the moving convective element. Convection is extremely
A v ;

1
A
i
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efficient, and therefore all the energy to be transported

can be moved by convection with only negligible adjustment

in the superadiabatic gradient = at (gI} ;}. The
dr df"a

energy flux is thus determined by the boundary layer of
the convective region (Spiegel, 1965).

If the star has a substantial region with radiative
transport, that region will determine the energy flux. If,

however, the star is completely convective, the boundary

layer determining the flux is the thin radiative photosphere

surrounding the convective zone, where the energy must be
transported by radiation since the material is becoming

optically thin. The luminosity of the star is then.de-

termined by the temperature of the gas at the point from

which photons can escape from the star, Fria = cT4, soO
L = 41‘[R"0‘Ti R

where T, is the effective surface temperature of the star.
The depth in the star from which photons can escape
nearly coincides with the transition point between the
radiative and convective regions and occurs at an optical
depth of about 2/3. ‘The radiative temperature gradient
drops rapidly as the density decreases, so:the temperature
is practically constant from this point outward. We thus
assume an isothermal photosphere and take the effective
temperature as the temperature at the transition point

between the convective and radiative regions (Hoyle and

Schwarzschild, 1955 and Hayashi, Hoshi and Sugimoto, 1962).

o iy v A0 L

. vy

T SN

L
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We assume an opacity law of the form

Then, since the bottom of the photosphere is at an

optical depth 2/3,

@ 2 a
apdr = = =u T_ | P pdr
I?ph 3 %= I+ ’
and from equation (1.1)
- 1 4?
P z ar
so T.bn a+l
2 b1 . _a “o5'e ‘ph
- = - %, T_ = P dp = :
3 O~ e g er (a?l) g ?

where Pph is the pressure at the bottom of the photosphere.

.Thus, one relation between the temperature and pressure

(or density) at the bottom of the photosphere is

b _atl 2 GM .
Te;Pﬁh = 3 (a+1) WoRZE - | (3.18)

This relation is the boundary condition for the star

. _ 2 " g
P-~ P 3 (a¥1) ; as T - T_

ph Aph £f

This condition is just that the photon mean free path
(xp)—l equals the scale height P/pg at the boundary so that
The radiation can éscape from the sﬁar at the effective
temperature.

A second condition on Te and P L can be obtained from

. P
the condition for the boundary of the convective zone, namely,

Fe=Tr -

st e~
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In the expression for the convective flux (1.10), let us

approximate the velocity w by half the sound velocity{
c = ,/ YkT/uH

- since ¢ is an upper limit to the velocity. Also let us

approximate pCpB by Y times the internal energy
- 3.r. 2 - 3
U 5 kT 5 P

Then the convective flux is

-

FC = % pwc P % Y % U
3y fo x Nz
== ___'g" 2
The radiative flux is
. _ 4 ) : .
. Fp = cTe . ) (3.20)

Thus, equating (3.19) and (3.20), the transition point is

"given by

bl

8 uH 3.5
Poh = 3y (Yk) oTe - (3.21)

The conditions (3.18) and (3.21) can be combined to

determine the effective temperature, which is

12 e [3Y l*a G Yk)(l+a>/2 - 13’3 o 1) 1/ (6F3.5(1+a))
=z WF] o \® u (—:,JL
| (3.22)

In the outer layers of stars the opacity is due primarily

to H and is an increasing function of pressure and tem-

Jerature, so a, b > 0. The H opacity is very temperature

vt o s oo ey ] R

s e . il 7 s e sy 0 g o g




region about 3500 °K is:
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sénsitive, so b is large. Thus Teff is neariy constant;
it increases slightly with increasing mass and decreases
slightly with increasing radius. |
The approximate power law form for the opacity,ob;
tained from the detailed Qpacity calculations in the E
i

For population I stars (X = 0.6, Y = 0.38,.Z = 0.02)

% = 6.9 x 1072% p0-7¢5-3

and for population II stars (X = 0.9, Y = 0.099, Z = 0.001)
x = 6.1 x 10740 p0-079-4
where X; Y, Z are the mass fractions of hydrogen, helium

and all the heavier elements respectively. The luminosity

‘is found by inverting equation (3.17),

. 4 .2 '
L {_R_

Then the effective temperature and luminosity. are:

For populat%Pn I

3 -0.075 /}\{_\0.089(&\—0.178

T = «2 10 M s
e 7.27 x \MO R@)

_ v\ 0.356/3\1.288 (3.24)
Zo=2.53u708 (\{—) (——) )
Io Yo ol

and for population II
o 0666, -0.133
-0.0 M

T, = 5.99 x 103 u >33 ( ( Q)
) _ 0.2665/r \1- 466 (3.25)
L= 1.165u70"2% “
Lo Ro

e effective temperature is less sensitive to the radius

for population IT than for population I stars because the

T - T T T S e S
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opaecity is more sensitive to temperature. In population II
stars, there are fewer metalé uﬁth low ionization potentials
to provide electrons to form H . The electrons must now come
partly from the ionization of hydrogen which has a high
ionization potential, so the electroh pressure will be very
temperature sensitive.

In stars with high surface density, the relation (3.21)
between the pressure and temperature'at the.bottom of the
photosphere is not valid, because in deriving it from the
boundary condition Fp = Fp we evaluated the convective flux
by assuming that the temperature fluctuation is of the order
of magnitude of the temperature itself. This assumption
is valid only in stars.where convection is inefficient near
the surface due to low density and large radiative losses
from the convective elements. In stars with high surfTace
density, convection is.Qery efficient and the tempe?ature
gradient in the convecéive region is nearly adiabatic
throughout. In this case, the temperature fluétuations
are much smaller than the order of magnitude of the temper-
ature itself. .

For stars with high.surface density therefore we go
to the opposite extreme from the low surface density case and
assume the temperature gradient is adiabatic throughout the
convective zone. We may then use the adiabatic relation

-

between pressure and temperature. In the interior,

AN e e L

P = K
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¥
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since (neglecting radiation pressure) Y = 5/3, except in

the hydrogen ionization zone. For a fully convective star

_ _ 2.5
K = const. PC/Tc .

From the linear model (3.5) and (3.6),

- G\I‘?‘
P = 2 = s .
3 GuUH M
T = = —-— = |
c 12 K R
thus
- 2e5 7 3 2.5 - s -7
2 I K -1. O. 1.5
K = -1-6—:> (ENTTT gmLles 05 g
4w\ 5 \HAf

In particular, the above relation holds at the bottom of

the hydrogen ionization zone.
If we neglect the effect of hydrogen 1on1zat10n,

which reduces Y, then at the boundary between the convective

"zone- and the photosphere

- 2.5
Pon =K Tg

with the same K as for the interior. This relation,.

combined with the optical depth condition equation (3.18),

gives the effective temperature

) _ 1/0b + 2.5(1+a)]
_ [ﬁ (1+a) fMR ‘ (1+a)}

3
{2 1ta [ "'5!}5)2‘5\ 1 2.5t1.5a
- 12; \k“ P G

2.5(1+a) 1.5%0.5a 1.5a—o.5jL1/[b+2‘5(1+a)]
X M M R ‘

&

N

DL R TR K

o o N
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For population I

T

e 2

0.194 0.0576
z (M R
2.6 x 103 HO'44D ( - (ﬁg)

W« \0.776 2.23
0.041 u1'78 (%%ﬂ (g;) .

M;QJZB R 0.0298

]

L
Lo
For population II A
T_ = 3.01 x 103 0298 (

e Mo) \Ro ’
. \0.686 /p \ 2-119
T =o0.075 % () <§i§ :
Lo Mo Ro

The hyvdrogen ionization can, however, be treated
. (=] 2 J

. 2.5
exactly and we can relate X 2

o at the top of

—'Pph/ie
. . . , - 2.5 2.5

the hydrogen ionization zone to X = ‘b/Tb *d = Pc/Tc -at

its bottom. Since the temperature varies adiabatically

through the ionization zone, the entropy is constant

across it. 'The effect of the ionization zone is to decrease

dlaT _ T -1
d In P T

so that the Temperature will decrease less than the pressure
going outward through the ionization zone. Then Ke < K

and Topg will be increased. The entropy per unit mass is

_ X f 5 LX f2nn\3/ gH
S = H L<l+x+6)2 T KT + 1n{‘ hz) + 1n-—}—12
3/2 k1) 5 2 (1446
+ x 1nQ21%§\ + (1hxts) 1o KD (1) ,
where y -is the ionization energy of hydrogen, 6 = Y/4X, and
x .s the fraction of hydrogen ionized. Evaluating S = con-

stant above and below the hydrogen ionization zone, that is,

for x = 0 and x = 1, respectively, gives

i S amary o e 1 e i A . < e g hmiannd &

i b e A2y P 8
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P m 3/2
-——f;}“,-—~ K (1+8) [ 2 e/ ( )
) e

2+6

1

U‘\

I

= (1+8) (2.49)

Thus the effective temperature is

— 1/(1+5)

x 2. 5(1+a)-r.-,% \{\1+05(l+a)(2'0)/(1"'6)
(%)

( \1 5(l+a)l+6 -2 1/0b + 2.5{(1+a)]
&WD/ P

-Again, in the high surface density as in the low surface

density case,:.the effective temperature is very insensit
to mass and radius.

For pdpulation I
O 27 .-
3 0.829 /M L \

T, = 3.66 x 10° ¢

: . /“ 1. 08 R 3
Lo o162 332 (X ( .
Ly MG} Ro

For population IT

0.1925 0. 204
= 3,,0.59 I\I\
T, 3.75 x 10° u oy (391
\0.77 / R \2-816
Lo o.1785 2730 (X (R ) .
1 Mo \ Ro

Summary: The central conditions of a star in the

iinear stellar model are

Pe = 5.04 YTT](K_

/2Y " 1% (2+8)/(1+s)
J I+ (276 2+5 5

2+

‘ 22 1+a
-3 ARG | 176 \1.53 x 1072 .

(3.27)

ive

(3.28)

(3.29)

(3.31)

2.{ 4 t
- 1015 (M_)/Ro) |
PC = 4.44‘); 10 (M ) -R—) s b (3.5Y)

e AL Xy b B e
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T, =. 9.62 x 106 ! (%S) \TTJ . (3.6%)

The total rate of energy generation is

76 5 n ( n+k+1(59) n+3k
b

L

® To(7) R

where the rate of energy generation per gram is

. n
= B k /T .
& &o P,
\ fo/

and T *is in units of 107 degrees, and
o(7) .

| ntik+l
= fl x> (1-x) e (1‘2x—*.bx )" .

The evolutionary tracks of stars in the Hertzsprung-Russell
diagram depend on: the mode of energy transport, which
determines the mass-luminosity-radius relation. For fully
convective séars, the 1uminosity is determined by the

surface condition. Since the opacity is very temperature
sensitive, the effective temperature is nearly constant,
independent of ?he radius, and the track in the Hertzsprung-
Russell diagram is a.nearly vertical line. For stars with
radiative energy transport, thé luminosity is nearly independent
of the radius and the track in the.Hertzsprung~Russell
diagram nearly a horizontal line. The changes in the stellar
radius depend on the sources of energy and the internal

structure of the star.

.

A; RE-MAIN SEOUENCE CONTRACTION PHASE

The linear stellar model is now applied to.the pre-
main sequence contraction stage of evolution. A star is

formed from a condensation of the interstellar gas that
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is dense enough to become opaque to its own radiation.
Then as the 2a8s contracts its temperature will rise. éAs
the temperature rises, the gas, composed predominantl§ of
hydrogen and helium, is ionized. Much energy is necessary
to ionize the gas, which means that the temperature c;nnot
rise much above 104 °k until the hydrogen is ionized. The
ionization of the hydrogen and helium leads to grav1tat10nal
1nstab111ty, since the energy released by the contracthn-
does not increase the kinetic eaergy per particle (the
temperature) but goes into the ionization energy of the atoms.
Hence, the contraction of the gas does not raise the pressure
sufficiently to permit the gas to remain in hydrostatic
equilibrium; the ratio of specific heats Y falls below 4/3,
and the collapse must continue.
A stable star is not formed until the hydrogen ‘and
helium are almost completely ionized throughout most of
the gas frégment. In such a contracting star, with the
internal temperature of the order of 105“°K "the opacity
is so high that the radiative transport of energy is 1mpeded.
Further, the extensive ionization zones increase.the specific
heat and reduce vy to less than 4/2 throughout large regions

of the star. Thus the adiabatic gradient

dT - Y- 1 uH e
\_(-j-; ad Y K .

will be small and the star will be unstable to convection

throughout most of its interior. Its luminosity will then

I



be determined by the surface conditions. For a given star,
the rate of contraction is limited by the rate at which

energy can be radiated away

Sl IR
R dt GM ?

where @ ~ 1. Thus the stellar structure with the highest
luminosity will be stable and the condition for a fully
convective 'star is that the ccnvective luminosity exceed
the radiative luminosity. Initialiy, stars that are not
too massive will be fully convective. Very massive stars
(M > 12 My for population I and M z 16 Mg for population II)
have Lrad > Lconv and never pass through a fully convective
stage. Inclusion of the radiation pressure will, however,
modify this result by increasing the convective ;nstabilityQ
We first determine the conditions for the contracting
star to become stable. The condition for stability is that
~all the hydrogen be ionized,
kT > 1 13.6 volts
3 o
or
= 4 oY
T > 5.2 x 10 K .
The mean temperature of an homogeneous star is
7 - (04 5 cH Mo (M_(&)
~ \175/ 12 K Rp * \M)\R
\"l
1 x 10 ( .

(54

l

[

fhius the maximum radius of a stable star is

. | (%@- ma’x = 110 p \\4@\ . (3.30)
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The effective temperature and luminosity of such marginally
stable stars, as given by the fully convective linear model

for low surface density (3.224) and (3.25), are

3 -0.253 (34_)“°°°89

€ M? 6 Pop. I,
L 3 0.988 (M 1.644
— =-1.07 x 10 u -
Lo M@)' >
) " Q -0.0667
_ 3 =-0.187 (M
Te = 3,19 x 10 @ (Mb) 3
Pop. II.

£ \1-733
1.152 x 105 ul-13 (%;) ,

g"|*

These relations give the starting point for the evolution
of stars.

As a star contracts, when fully convective, the effective
temperature is nearly constant. The track in the H-R
diagram follows the mass—-luminosity-radius relation for a
fully convective star:(equations 13.24,, 3.25,. 13.28,,
‘and 3.29)%. For population I (X = 0.6, Y = 0.38, Z = 0.02)

L ' MYy o
log|{<—=}= = 7.236 log T + logﬁ——kr 0.843 log 4 + 28.345
(HD) g le Mo, 4 g 345

(low surface density),

AN ) » n (3.31)
ob(_%.}_ 10.94 log T_ - 1.874 log(MO - 5.75 log u - 39.77

(high surface density).

These tracks are shown in Figure 5. For population II

(X = 0.9, Y = 0.099, z = 0.001)
4 ’ /
log {%g)= - 11 log T, + logk%é>- 0.821 log u + 41.485
(low surface density),

. . I (3.32)
log (z;)= 13.8 log T, - 1.887 log(ma>- 5.78 log u - 50.07

(high surface density).

e e, .




Figure 5. Hertzsprung-Russell ‘'diagram of the pre-main
sequence contraction evolutionary tracks and )
initial main sequence. The tracks are labeled
with the type of energy transport determining
the direction of that portion of the track.

Dotted curve is observed main sequence (Hayashi,
Hoshi, and Sugimoto, 1962, and Schwarzschild, 1957).
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These tracks are similar to, but slightly steeper than those

for population I stars. ' » %

As a star contracts, its central temperature increases
. . :

aécording to (equation 3.6). 1

|
t
' |
T uH  GM . n
c ® % R ]
The increasing temperature increases the emission oﬁ radia- -

tion and reduces the opacity. A central core which lis in
radiative equilibrium will develop. When about half the
star is in radiative equilibrium, the star will leave the

fully convective path. The'luminosity will now be deﬁer-
) . i

1
i

mined by the radiative flux, which is proportional to|

(equation 1.8) 4 | o
o 1 dT ' _ X

-— ——

x dr a 1
since T3/p is approximately constant. The opacity_dec%eases as the
temperature rises. Thus as the star contracts, the lum-
inosity will increase slightly, and Torg must rise. The
star will then move to the left in the H-R diagram.

The radiative mass-luminosity-radius relation, for

‘Kramer's opacity is given by equation (3.13) and the path

in the H=-R diagraﬁ will be

4 M
;og(%5)= 0.8 log T, + 4.41 log(ﬁg) + 6 logu - 2.02 o

If the'centpal'temperature becomes very high and the central

density is low, the dominant opacity is due to electron
scattering. Then the mass-luminosity-radius relation is

given by equation (3.16),




.
e s At

‘?6 - &z wt (ms)

To = 2.14 x « 10 (1+x)-% (ua)ah-(RG) .

Wb

This is the path followed by the mass1ve stars. Typibal

radiative tracks in the H-R dlagram are shown in Figure 5.

- Time scale of Contrgctiog

\
|
The luminosity of a star is the rate of change oA

total energy

I = AE _ '_ 1 8%
At z [t

The gravitational energy is (from equation 1.19)

-0 EME R '
R- ;5;
so 0
i =~ % Epf- ]
RAt

Thus the time scale of the contraction phase is

At = § GM2

B. CENTRAL HYDROGEN BURNING

As a star contracts, its central temperature rises

until it is high enough for hydrogen thermonuclear reactions

to produce the energy radiated away fromthe star. At this

point, the contraction stops ard the star spends most of

Lo

~ IR )  (3.33)
=1.59 x 10 (Mb) i years.

Pre-main sequence‘contraction times are listed in Table 1.




Table 1 - Evolutionary Time Scales (Years)

Central

Pre-main Central Hydrogen
Mass Population sequence hydrogen shell helium
(Mg) contraction burning burning burning
7 I 2 x 10° ax107° | 1x10 6 x 10
II 2 X 108 5 x 1010 2 X 107 4 x 107
1 I 4 x 107 8 x 10° 6 x 10° 3 x 10’
II 4 x 10’ 9 x 10° 9 x 10° 2 x 107
2 I 3 x'10° 5 x 10° 2 x 10° 1 x 10’
II 3 x 10° 7 x 10° 3 x 10° 9 x 10°
_5 I 3.x’105 3 x 107 3 x 105 2 x 107
II 1 x 10° 8 x 107 4 x 10° 2 x 10
7 I 2 x 10° 1 x 10’ 2 x 10° g8 x 10°
II 7 x 10° 4 x 10’ 1 x 10° 8 x 10°
10 T 1 x 10° 7 x 10° 7 x 107 3 x 10°
II ©.3 x 10° 2 x 107 4 x 10% 3 x 10°
15.6 I 6 x 10% 3 x 10° 2 x 10% 1 x 10°
IT 2 x 10° 1 x 107 2 x 10 1 x 10°

{ ‘

e e T e g i .
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its lifetime burning hydrogen into helium. The locus of
luminosity vs effective surface temperature of such stars
(burning hydrogen‘in their cores and. still of nearly homo- _ -
geneous composition) defines the main sequence in the
Hertzsprung-Russell diagram. '

The luminosity of a star is &etermined mainly by
the thermal conductivity (radiative) of the stellar material.
The centnal‘temperatﬁre ig determined by the adjustment of
the nuclear energy generation to maintaih mechanical and
thermal equilibrium throughou? thé>star. Nuclear energy
genefatiQn processes are very temperature-sensitive and
thus nuclear energy sources play the role of thermostats.

" The radius of the star depends on the temperature and mass
distribution. )

The basic featurég of the structure of‘%omogeneous
stars can bede&nmdnéd Py dimensional analysis. fhe
dependence of the central temperature and deﬁsity on
chemical. composition, mass and radius is determined by
the condition of hydrostatic equilibrium aéq;ﬁhe eqﬁation

of sta?gu(from4equatiqns/1.15 and 1.13)

M
TcauB-ﬁ )

|

|
pg < MRS, - (3.34)
|

The luminosity and radius are then determined by the energy

balanqe, TheAequation for radiative energy transport is (1.8)

.
B

o

e n e g 1 <
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2169 13 ar

— [
3 kp dr

L = «g4r

Assuming an opacity law of the form

_ a b
K= K, P T »
the luminosity is
-1 4-b _3-a-b _3a+tb
Len,  (u8) "M R, (3.35)
The rate of nuclear energy generation is (equation 1.6) .

L= 4nf Eprz dr .
Assuming the rate of nuclear energy generation per gram

has the forﬁ

the total rate of energy generation is

1+k+tn _-3k-n
L, (u8)" M R . (3.36)

When the rate of energy generation equals thglréte of
energylloss (1uminOSity), then the dependence of the
radius, luminosity and effective temperature on the mass

and chemical composition is

R (Egng)/t (up) (PR ylimtato-2)/e

b4

L« x ~(0F3K) /L (3a+D)/0 [n(4+3a) + 3x(4-b)]/2

o o (HB)
" [n(3+2a) + k(9-2b) + 3a + b]/¢ -
x M f
(3.37)
p 4 o, —(0t3Kk-2)/0 , (3atb-2)/2

x (uB)L:(2+3a§ + 3k(4-b) - :b+8]/L u{n(1+28)+K(7-2b) +a-b+5] /2

where £ = n + 3k + 3a +b and b S 0 in the interior. The"

central temperature and density are

J

e o o < ) e
- e
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T o (5oi°)‘l/L (ue)(4+3k+3a)/c Mz(k+a+1)/t,
) (3.38)
o = (6oxo)-3/c (u8) -3(nfb-4)/a y~2(ato-3)/2

Thus the radius, luminosity, effective temperature and
.central temperature increase with mass, and the central
density increases with mass for the pP-p chain, n = 4, but
decreaseé with maés for the CNO cycle, n ~ 18. N
The main seqﬁence is the locus of points in the’

luminosity-effective temperature diagram

L n(3+2a) + k(9-2b) + 3a + b
log (:5\ = 4 3(17%2a) T k(7-2) T a- b ¥ 4 108 Tg * const.

= 4 Sn + 15.5 1o
. _ 3n + 15.5
L (3.39)

g Te + const. (Kramerls)

3n + 9 .
+ o .
4 T3 log T, const (electron scat#erlng)

The central température of a contractiﬁg star is

T, = '9.62 x 107 (%5\) (-29-) .

Hydrogen burning starts at about T, = 8 x 106 °K. 'Thus

a star will start genérating its energy by nuclear reactions
When'its radius is ‘ ' :
R . M .
Ro Mo
Stars of small mass, M < 2M,, burn hydrogen by the
p~p chain at a temperature'around 1.5 x 107 °K. The rate

of energy generation is approximately

4
T
- tos(Tiw)  eresleees,
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Massive stars, M 2 2Mp, burn hydrogen by the CNO cycle

at a temperature generation around 2 x 107 °K.

of energy generation is approximately

P 18 o
& = -&op(m) ergs/g—sec /

€o = 451 Xy Xcyo

equation 3.7)

6 \7
- M y
%g =4.98 x 105 u4 (——) (%Q)
16 7 |
_IL‘_ =1.157 x 107% 14& \) Gﬂ)l CNO cycle o

The rate

i

p—p?chain

- The energy generation rates for the lineér model are (from

/

The propertles of stars on the main sequence--burning

Kramer's opacity

, -0.538 0.0769
R = g.312 07058 (_13_\ ,
Ry : o/
L _ 7.77(M\5-46
— = 49.1 4
LO ’ Wg ? 8
1.05
_ 4 2.21 (M

o]

b4

"hydrogen in their cores--are: For the p-p chain and

| log&—;)= 5.16 log T_ - 0.74 log u - 20.7 ,

0. 923
T, = 3.05 x 107 pl-54 (M;> ,

0.769
186 u;x15(§;) .

For the CNO cyclé and Kramer's opacity

©
(¢]
I

(3.41)

e e e e Wl e o o
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R _ o o, 0395 fy\0-697
- e (7
' 5 18
-LE = 43.5 u’"3 (M'\ s
1.6 0.871
Te = 2.34 x 104 M 3(M@ | ’

. log(I—I-"é}= 5.948 log Te - 2.39 log 4 - 24.36,
0.364
T, = 1.98 x 107 u0+606 ( o,

c0.909 (3.42)
- 65,7045 (1Y *

Stars switch over from the p-p chain to the CNO cycle
7

at a central temperature about 2 x 10° °K, which occurs
at a mass of about M = 2Mp. For CNO cycle and electron

. scattering opacityA

. ) 0.765
R _ 0.588 {M_
R = 00454 M (M) ’ /'f,
® o) -
3
%5 = 112 u4 (%;} ,
0.368
. M
. Ty = 2.77 x 104 0706 (—M;) )
10g€£§}= 8.16..1og Te -~ 1.76 log 4 - 34.15,

]
i

0.235
7 0.412(M°
c 2.12 x 10" (&;\ 4

_ - -1.765 [M -1.294

Stars switch over from Kramer's to electron scattering as

(3.43)

the dominant opacity for mass M > 3 Mg for population I
and M > 2 My for population II.
The evolutionary tracks for different mass stars

i
1

‘are shown in Figures § through 8. During the pre-main

e S ot

. i . .




Figure 6. Evolutionary tracks of population I stars in
H-R diagram during pre-main sequence contraction.

The main-sequence is also shown.
observed main sequence.

.Dotted curve is

i

o o g 5
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Figure 8. Evolutionary track in H-R diagram of star at
one solar mass. Solid and dotted curves are from
analytic models. Dashed-dot curve is results of
calculations using Henyey method by D. Ezer and
A.G. W, Cameron: This conference, p.
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sequence contraction the stars contract to release grav-
itaﬁional potential éﬁergy to supply the radiative energy
losses from the surface of the star. The radius of the

star decreases. The direction of the track is determined

by the mode of energy transport: convection with low surface
density, coﬂvection with high surface denéity, radiation

with electron scaﬁfering opacity, or radiation with Kramer's
opacity. Stars are fully convective when they first become
stable, except for very massive stars M > 12 My (populationvI)
and M > 17 Mo (poﬁulation II). Stars become radiative when
the radiative luminosity is gfeater than the fully con-
vective luminosity.

The main-sequence is the region of the H-R diagrami

where central hydrogen burning occurs. Here the central

_temperature is high enough for the hydrogen thermonuclear

reactions to supply ‘the energy radiated away. There are
three sections of the main sequence with different slopes,
depending on the mode of energy generation and the type

of opacity. Because tﬂe linear model is not sufficiently
centrally condensed, the main sequence is shifted to lower

effective temperature and slightly higher luminosity than

. . . i
‘'obtained from accurate calculations. The radius must:

shrink in order to raise the central temperature to high

enough values to generate the luminosity.

Convective Core

A star which is ‘generating energy at its center by

T U W T Ny

.
e
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a very temperature sensitive thermonuclear reaction (all
processes except the‘equilibrium p-p chain) will have

a convective core. The energy generation region ié very
small, so the luminosity increases very rapidly with radius.
The flux F = L/4nr2 will then be extremely largé, %ince

the radius is very small, which forces the radiativ%
temperature gradient to become superadiabatic in oraer

to carry the flux. This causes instability to conv%ction.

The boundary condition for the convective core is

(%% rad=(%§)ad . (3-44)
.(%%)a(f W%;‘; * d_i - - (N-&)ad %‘ Gt’z"o ) (3.45)
and | - B - 2 -
(N+l)adi; 32.- 248 382 , (3§46>
where ’
B = Pg/P .
(d—T) = Y o e — P S (3D
dr)pad 160 T3 4mr< (N+1).aq P dr’
.where | .
.(N+1)rad - 16ﬂcf(i;B)Mr ’ (3.48)
where
' (1-8) = P_, /P =-% at/p .

Thus the condition for convective instability is

(N+1) g € (V1) 4 o (3.49)
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Expreésed in another form, the boundary of the convective

core will be at

Mg 3 wP L,
a= % = (M),4 Tormact ¥ n
= 1 nL;
NDas Tgnee @8M - (3.50)

For a convective core to exist, the effective poi_cropic
index must be Nad and decreasing inward at. some point in the
star (Naur and Osterbrock, 1953), i.e., at the core boundary

d In (N+1)pg »
d In r

0.

-b
Assuming ® = %o pa T , then

d 1n (N+1)p,9 g 91nT dilnM, dlnP _dinx _dIn L,

dInr d lInr dIlnr d In r d Inr d Inr
_ {1+b+a _ (l+a)} dinP,dInM. _dilnlL,
N+1 . d lnr d In r d In r
+b-
- - (fN+;a - (1+aﬁ V + U - W,
where
. d In M;, _ _anrdp
-— b
d In Mr
y=. 41nP _ GMpw
d 1In r rP ?
W= d In LE
d In r

Expand M, P, L., and T about their central values,

M, = % ﬁpcr3,
P = Pc - % G pc2 rz,
Lp = % T ee ec r3,
T f;Tc - 'ﬁ%i .%'AP‘= T, - i%Tl;% e ‘gﬁ pc2 r.z .

At the center, Uc‘= 3, Vo =0 and We =3, so : -u

. . . .

e oS
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d 1ln (N+l)rad / d 1In r =0 at the center. Thus the condition

for a convective core

p= 41n (N+1)r‘ad=-(___4+b+a-a- )v+U-w2 0
d in r N+1 v

becomes

dD > 0,
dv

since D, = 0 and V increases outward.
Evaluate dU/dV and dW/dV at the center. U = 3, so dU = 0.

Thus we must develop p and Mr to higher order.

2
uH P N 2 Pec 2
p= wm = p (1 -5 576G 35— r?)
k7 c - N+1 3 |
- ¢ N 2
2 Pell = 337 € %)
P
where C = 2 "G —— . Then
3 P
i N
M. = 4 f orldr = ﬁg 0 r3 (1 - 3 I Crz).
Then
2 N
U=3(l—-3mCr2),
V = 2Cr?,
so
du - 3 N
dv 5 N+1 °
Now consider W.
r
= 1+d v _2
L, = 4m€, jo 0 T r®dr
. dv
assuming an energy generation rate of the form€& = € o T .

(1 - 2. C rz).

c N+1

N
0 =p(1-55Cr?) and T=T

Mt T i e N A S

A RS b i e




Thus

where
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1+d. v pF N(1+d 2 v 2, 2
L, =4me p. T Io (1 - —é:i—l Cro) (1 - %571 Cr )rdr
‘ 4m 1+d v 3 3 w-+.N(1+d) . 2
= &o p T. r (1 - - Cr )
3 Ve c 3 N +1
JAe 3y .3 YENQH) a2
Then ) 2
d 3 v + N(A+d) A 244 |
; 6 y +N(I*d)
=3- % Tw+1 O |
so |
_ 12 v + N(d+1)
dw = —-g— N T 1 Cr dr
and
dv = 4Cr dr .
| Thus -
dw 3 vy + N(1+d)
av = 75 N+ 1
The criterion for the existence of a convective core
is thus
a L + + 5Na + §N 5) = 0,
TV snary (3v + 3Nd + 5Na + 5N - 5b - 15 s
(3.51)

32 - 248 - 382

N+1-= 8 - 68 ’
d. v
€ = 800 T ,
- am—b

For Kramer's opacity and 8 = 1, d = 1, this becomes

v 2 4.3.

o e e R . S U i o g e < a
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For a gravitationally contracting core € ~ T; for electron
scattering opacity the condition for a convective core is
then N > 2.4 which occurs for 8 = 0.75. For B = 0, no
temperature or density dependence of € is needed
in order to have a convective core.

Assuming the existence of a cﬁnvective core and L =L
at the core houndarv, its size is given By

(N+1)ad " L

(3.52)
1-8 16 TcGM 5

q

The size‘of the convective core depends on the mass of the
star only through the radiation pressure. Consider the

special case of negligible radiation pressure,

1 _ 3P _ 3k »p 3K Pe
1-8 arT4 auH 3 ® A T3 / -

since p/T3 is approximately constant througﬂ a star. Then

p 3kL
= N+1 R ¢
9 (N+1) 0g Té' 16macGuHM -

Apply dimensional analysis to this expression.

p—(.:—,j ~ 8—3 M-z -
Tc '
_ . _ 4 3
For electron scattering # = %, and L ~ B s SO

a; ~ 8 (Nf1),4 -

For Kramer's opacity # = K°0T3'5;

Pc 2 ‘% L
99 ~ (=] T v
1 TC) Cc M ?
. 8-2/(n+2.5) M6/(n+2.5) ,

. Lc‘.~ 3(7“+22isy/(n+2-S)#(Sn+15Q5)/(n+?.5)5

e e o L et et e e
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SO

1+ 6/(n+2.5) ‘
q1~8 . s

Now con51der the case when radiation. pressure is 1mportant,

8 < 1. Electron scatterlng will then be domlnant, s0'

i
o~ L | ’\
. A

(N+1)ad
and
P - - L 2
1 ~3 4 M 2% hile = ~8%M° .
1-8 T ) M

Thus for massive stars
q; ~ (1) .4

_which increases by a factor of 2 as B decreases from 1

to 0. Thus in all cases a3 depends on the mass only

* through the radiation pressure.

In the case of negligible radiation pressure,the
size of the convecti?e core can be found expiicitly by
using the linear mo&el

- _15 K xele
91 T 128n GHo (Io ) WT, oT.3

For electron scattering

a = .22(1+X),

and for Kramer's opacity

-

1.65(1+X)Z.

a3
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IV. éBYANCED STAGES OF EVOLUTION - INHOMOGENEOUS STARS

A star spends most of its 1ife burning hydrogen into
helium in its core. The advanced stages of evolution
"compriée the staris li}e-after central hydrogen burninge.
When the hydrogen in the core is‘COmpleteiy transformed
into helium, the éore of the star contracts and heats up.
The rising temperature enables hydrogen thermonuclear
reactions to occur in a hydrogen burning shell source
surrounding the core. A star in this stage is composed
of avhelium core, a hydrogen‘burning shell source and a
hydrogen envelope. Depending on its mass, a star may
procéed on to helium, carbon, neon, and oxygen burning.
If the star is massive enougﬁ,the core continues to con-
tract and heat up, until, at about 108 °K,-he1ium burning
thermonuclear reactions occur in the core.

As a star evolves, each nuclear burning process starts
first in the core and burns outward as the star heats up.
Thus, a star that has passed through several nuclear
burning stages will be composed of concentric shells of
the products of the\different processes, with a hydrogen
envelope on the outside and a core of the products of the
last nuclear burning stage ‘through which the star has

passed. Figure 9 illustrates the shell structure of a

star that has passed through all the nuclear burning stages.




Figure 9. Schematic shell structure of a massive star at
the end of nuclear burning. The star is assumed to
have passed through all the nuclear burning stages plus

v approaching equilibrium among the nuclei in the core.
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We first consider some general properties of étars in
advanced stages of evolution. The evq}ution of stars is
towards greater central condensation. Stars contract and
increase their central Jénsity and‘temperature. This con-
traction is occasionally interrupted (but the evolutionary
trend is not altereé) by nuclear burning in the core cof
the star..

The increasing central density as a star evolves, to-
gether with the existence of nuclear burning shell sources,
causes the development of 1arge.radii and extended envelopes.
The lafge radii are caused by increasing central condensation,
that is, increasing central density but decreasing envelope

density. The degree of central condensation is measured by ~

U = d 1n M(fj _ 4ﬂr3o _ 3 p(r)
d 1n r M(r) 5

where p. is the mean density interior to r. ‘Since
1
d In r = 3 d In q ,

the radius is

. 1
- InR = [ dlngqg + 1nR

ql 1 3 (4'1)

=]

where q; and R; refer to the core-envelope interface. Now,

from equation (1.15),

T Q‘lCH Ml
c o I
K R1
SO
1. K T )

{

whqre~Ml is the mass of the core. Thus the stellar Qadius is




U, V, and N+1:
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1 _
in R = 1n (%2> + [ % dlngq + 1n (GHM1>. (4.3)
Cc ql : K .

The larger the central condensation, the smaller the U near
the shell source and the larger the stellar radius. All

stars in advanced stages of evolution have extended en-

velopes.

We digress now to discuss the nondimensional variables

3.

U = .d__]_‘.l:)_..}_i.(—!:-)- = 4rrTp = 3 Q(I‘)
d 1n r MZrS Tr ?
= P GM 3 GM
ya 4P @Mre _ 3 Mledr (4
d ln r r 2 -3 P/p
_ d1nP _ 16 mac GM(xr) 4
N+1 - - L J
d 1In T 3 Py L(r)

At the center of a star U -~ 3, V - 0, and at the surface
U= 0, V~ ., The polytropic index N varies betwéen 1.5
for a convective region and infinity for an isothermal

region. Also

- . d In T _ A\
d ln r  Nt1 ?
(4.5)
d ln o _ _ _EX
d In r N+1 °

Thus the r - dependence of the physical variables is: given

in terms of U, V, N+1 by
M(r) ~ r ,

P ~r s

T o~ r-V/(N+1),

0 ~ p~NV/(N+1) - %
From hydrostatic and thermal equilibriﬁm, tﬁe‘phgsical
. ¥ .

variables r, M(r), P, and T must be cohtinuoué"througﬁout a

.

by
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star. A discontinuity in pressure would entail an infinite
acceleration, and a discontinuity in temperature would
entail an infinite energy flux. At.a composition dis-
c¢ontinuity then, the density will be discontinuous, ﬁut
p/4 will be continuous. Thus tﬁé'continuity conditions
on U, V, N+1 are

E er(N+1) Continuous. (4.7)

’ b4

m
The dependence of the radius on the central condensation
U can now be evaluated approximately,
13
ln R = Iql gdlng + 1nRy, (g4.17)
where Rl is the radius of the base of the envelope. The

integral may be evalﬁated approximately by expanding U

about its value U; at the base of the envelope (from equations (4.6)

and (1.4))

R ‘NV/(N+1)
‘= .;..l = ...__._.NV A—z:
0 °1(r) 11 - W 4y,
M(r).F My + 4nr2plAr ,
=@ 3 2 NV A
r
o 2
; Ml + 4rrR1 plAr
4TR17 P i NV Ar -
R Il TS U oy
XV Ar
= - —_—— - U — .8
and
Ar MM . Ag
R, 3n 'Ul ? :
1 47R_Yp _ i

1
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thus
NV

aU= (3 - 71

- Uj) 4q . (4.9)

The main contributionsto the integral for the radius,
(4.1), come from those regions 9 < q < qg where U but
not Aq is small; that is, not near q=1l. Let U = U1 + a(q-ql)

where @ = 3 - NV/(N+1) - U.. Then

- AlnRrR=x [T 1

1 dq

.10)

(
=f’_1__> 1n /30 Uy 3
\U1 - oq \91 U1 +alq-q,)/ .

For Ul << Clql

. a -
AlnR~ 2 1nf{_41 9o q1>.
‘ U1 do

For U, =~ %qq

. aql
>>
~ For Ul Cqu o , |
p1nR~ L 1ni3e),

Thus for great central condensation, small Ul’ the r;dius R
is 1arge; |

The increasing central condensation in advanced‘stages
of stellar evolution is caused by the increasing central
density in conjupction with the existence.of a shell energy
source. Increasing the central density increases theipressure
.gradient dP/dr = -pg. However, the core luminosity is less
than the total luminosity, the core tends toward an iso-
thermal condition, and the temperature varies by less ﬁhan

. @ _
Tf« 01/3. Thus the density gradient in the core increases,

N S S - S SR
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Uy = 301/50 decreases, and the stellar radius increases,
The composition discontinuity between the hydrocgen envelope

-

and the helium core causes a decrease in Py and so U_ by

1
Va'factor of uc/he,land,also contributes to increasing the
stellar radius.

Aitﬂough stellar radii tend to increase during the
advanced stages of evolution, their actual magnitude de-
pends on the detailed structure of the star. There is '
Q general empirical rule for determining the variation of
a star's radius: The direction of expansion or contraction
in a star is reversed at every nuclear burning shell source
and unaffected by any inactive shell. ‘The reversal of
expansion or contraction of a nuclear burning shell source
is due to the thermostatic nature of a nuclear energy
source. A star adjusts itself to maintain a constant
temperature in the nuclear energy source, which causes the
radii of the nuclear burning shell sources to tend to

remain nearly constant. The mechanism is similar to

that which keeps a main sequence star in equilibrium.

e

e e e e o man
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T
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If the radii of the shell sources remain constant,
the contraction of a zone between two shells, for instance,
-means that the density at the inner shell of the zone in-
creases but that the density at thé outer shell must de-
crease, since theJmass and volume of.the zone remains con-i
stant. Thﬁs the density at the inner shel; of the next
outer zone is decreasing and that zone is expanding (see
Figure 10). |

Consider the zone between two shells of radii Ro < Rl’

— —
Ro - Rl

Let m be the mass of this zone and assume R1 >> Ro’ The

mean density of the zone is

= M - M 3m
4 (r§ _ r3) 4m Ry
Thus
ARy o % .._'A‘_’. . (4.12)
Ry 0

We also assume the radiation pressure is negligible so 8 ~ 1.
Consider what happens when tﬁe radius of the inner shell
changes. Suppose Ro'changes by 8Ry. If the shell at R, is
not nuclear burning, iﬁé properties vary in a manner that pre-
serves hydrostatie equilibrium, that is approximately homo-

logously. Then, by equations (1.13) and (1.15),

1 1
-:-Tai’pa.ﬁj’



Figure 10
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S0
AT, _ ARg
-— - = — ’
To Ro
A AR °
Lo = -3 = , (4.13)
pO ‘Ro .
. AP o _ 4 BRe |
Then
ARq - 1 bpo _ AR,
Rl 3 ro Ro

Thus when the inner shell is not nuclear burning the‘outer
shell's radius changes in the same way as the inner shell's
radius, and the shell has no effect on the expansion or
contraction.

If the shell is nuclear burning the structure of the | -
shell initiaily changes homologously. However, due to
the change in the rate of energy generation, there-is'an
additional, nonhomologous, change in the strugcture. The

change in the rate of energy generation is

n Ao AT
ey = & (p+ap)(T+aT) = ex, (1+ =5 + a =y)

‘ R
eNp (1 - (at3) 2g)

AE AR
_.._I\I = - (n+3) __9.> 3
ex Ro /1
AR, . e . . .
where = is the initial change in R,. Initially, this
1 M

o)
net change in energy is deposited (or removed) where it is

so that

generated and the material heats up (or cools down). The
temperature changes until the fractional change in luminosity'

(rate of removal of energy from the region) is equal to the

-
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fractional change in- the rate of energy generation. Since
4
L « %— « T7°3, then

T

9_2) - 1 dey _ _ n¥3 ARo)
i 2 7.5 eN . 7.5 RO 1
|

gives the additional, nonhomologous change in T,. This
additional temperature change produces an additional
pressure change (besides that produced by the initial
homologous transformation),
APO) _ (ATO _ n+3 <ARO)
- Po /2 To /2 75 Ro /1

An increase_ in pressure produced by a contraction of the

shell will push the shéll back out; a decrease in pressure
produced by an expanéion of the shell will allow the shell
to fall back i;. The pressure must return to its equilibrium
homologous value -and the shell must move back in the direction

from which it camé€ according to the homologous relation

AP
P

I

. The secondary correction to the radius of the shell is

hence

(.A_R_o> - 1 _(&) _ %3 AR,
\ Ro/2 . 4 P, /5 . 4 x 7.5 R, /1

o
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. The secondary correction to the radius is thus

ARq n+3 ARQ)
- = Al — - [ ] L ] 1
(;Ro)z 30 \Ro/1 ", (4.14)

There is, therefore, a strong restoring force on the radii
of nuclear‘burning,shells; tending to keep them constant.
The changesin density, if the radii are precisely con-

stant, can be found from the linear model,
r - R
p(r) = p, = (pg-pq) 20 |
° ° R; - R
: 1 o

where Ro is the radius of the inner shell and Rl the radius

2

of the outer shell. Then

4T 3

- 4T Po-P1q
Mp - M, = 3 Ry (o -

R1"‘Ro

( 3Ry - Q1.

The change in the mean density is zero. If R, << Rl’ then

. Ac -
ipl_z - =0 (4-13)
: 3
and ' . changes in the opposite direction to Po- Thererore,
sirn che radii of the nuclear burning shells tend to re-

ma-. constant, the sign of the change in the density will
alternate from one shell to the next. Thus the direction
¢I expansion or contraction is reversed at a nuclear bdrning

shelil.
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Apply the general rule for stellar radii changes
to the Y?Pi9“5 stages of evolution. During the pre-main
sequence contraction stage, the core is contracting; there
are no shells, so the whole star is contracting. During
the hydrogen exhaustion phase, the core is contracting;
there are no shells, so the whoié'star is contracting.
Then a hydrogen burning shell is ignited, the helium
core continues to contract, but now there isA9§? shell,
so the envelgye expands. When the central heli;m Surn—
ing commences the core expands; there is one shell, so
the envelope contracts. These structural changes are
illustrated in Figure‘ll. The structural changes d?ring
the stage of helium burning are illustrated in C. H;yashi:

"Advanced Stages of Evolution," this conference, p.2 .

A.. CENTRAL HYDROGEN DEPLETION

We now consider in some detail the evolution of stars
from thé depletion df hydrogen in the core to the onget
of helium burning in thé core.

The depletlon of a nuclear fuel in the core of ai star .
and the ignition of a shell source is a process whlch\
‘changes the basic.structure of a stab. We can there-§
fore not construct an analytic model for this phase but

only give some of its general proberties.

During central hydrogen burning, the luminosity

of a star increases due to the increasing mean molecular
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Figure 11. Schematic diagram of the changes in stellar
X structure from the pre-main sequence contraction|to
the onset of central helium burning. L
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weight as hydrogen is depleted in.the core. Assuming
the homology relations for homogeneous stars are.still
valid, in- small mass stars where Kramer's opacity is

dominant from (3.13) and (3.35)
L = (UB)7.5 ’

while in massive stars where electron scattering is |

i

dominant from (3.16) and (3.35) B !

I:.'x.(uis)4 .

The mean molecular weight increases.by about a factor of

2 as hydrogen is consumed.

The energy generation rate has the form

n
T
€= e XXy 0 (To) y

wiere X, is Xy for the p-p chain and is X¢yg for the CNO
cycle. The temperature exponent is n ~ 4 for the p-p
chain and n ~ 17 for the CNO cycle. As the hydrogen

concentration in the core decreases, the central temp-

erature must rise in order to maintain the rate of energy

generation. The radius of the star will therefore tend to

shrink (see equation 4.2),
R « M/Tc .

The tendency of the radius to decrease due to the
: o

increasing central temperature is counteracted.by the

tendency of the radius to increase due to the growing
e s . / - Ha+

composition -inhomogeneity which decreases Ujp = e U

at the bottom of the envelope. -

[N




e

-63-
The p-p chain is less sensitive to temperature and
more sensitive to hydrogen concentration than the CNO

cycle. The central temperature will thus 1ncrease much
more in small—mass than in large-mass stars. During 2
central hydrogen burnlng'ln small-mass stars, the rapi&ly
1ncre351ng central temperature nearly balances the grow—
ing composition inhomogeneity and the radius stays nearly
constant. In massive stars, the central temperature

rises only slightly and the radius increases due to the
composition inhomogeneity. The evolutionary track of

.a star in the H-R diagram during central hydrogen burning
is towards higher luminosity. For 1ow-massbstars, where

" the radius is approximately constant, the track is nearly
parallel to the main sequence. For massive stars, where
the radius increases,'the track turns off the main sequence

to lower effective temperatures.

The equation for the consumption of nuclear fuel is

dX

= - & liati
] I S radiative zone ,
M,.
dx 1 2 :
— = wm —— € aM onvective zone
dt BM, IMI roconve “ones

where X is the concentration of fuel nuclei and E is the
energy released per gram of fuel consumed. This equation

can be solved for the time scale of central nuclear burning

M
6t ~ T° E BX, (4.17)
where L/Mc ~ €, the mean rate of energy generation, E is
the energy release per gram, and AX ~ 1l. Lifetimes of sﬁars

near the main sequence are given in Table 1.
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B. HYDROGEN SHELL BURNING

As hydrogen is exhausted in the core of a star, the
central ﬁemperature increases in order to maintain the
rate of energy generation. The temperature farther out in
the star is then increased and the rate of hydrogen burning
outside the core (Qhere*the hydrogen has not been ex-.
hausted) is therefore increased. Thus a shell burning source
is ignited.

When hydrogen becomes nearly exhausted in sﬁall mass
stars generating egergy by the p-p chain, the central temper-
ature has aiready increased and raised.the temperature in |
) th; surrounding regions of higher hydrogen concentration
suificiently to produce hydrogen thermonuclear reactions
t..ere. Wwhen hydrogen becomes nearly exhausted in massive
stars, the central témperature has not yet increased much
dus To the high temperature sensitivity of the CNO cycle.
The energy requirements of the star must still be met by
the core, so the central temperature must now increase
greatly. This causes the radius of the star to contract
and its track in the H-R diagram swings to higher effective
temperatures. Evéntqally the decrease in Xc outruné the
increase in Tcp and the rate of nuclear energy genegation
in the core decreases. The core then starts to éonéract
and reiease gravitational energy to supplemenﬁ the de;/'
cteasing rate of central nuclear energy generation. The

gravitational contraction raises the central temperature

\

R
t

!

|
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i

1/3
Tc < Pg / 5 and the shell temperature and ignites the

i

shell source. The more massive the star, the largergthe '
size of the initial convective core.and the fartheriout
from the center lie the hydrogen rich regions. Theé the
temperature in the hydrogenbrich~she11 will be lowera the
ignition of the shell source will be delayed, and the grav-.
itational ene?gy release will supplant nuclear energy
generation as%the star's primary energy source. Eventually
the contraction will raise the temperature enough to ig-
nite the shell source. Summarizing, as hydrogen is ex—-

) l
hausted in the core of a star the temperature increase?,

nuclear energy generation in the core decreases, and az
hydrogen-burning shell source sdrrounding the core is
ignited.

When hydrogen is exhausted in the core and a shell
burning source is set up, the pressure distribution in .
~ the core is initially similar to that of a homogeneous
star. The valﬁe of U at the outside of the shell, ﬁl+’
is then decreased because: (a)4The composition discontinuity
uc/ue ~ 2 reduces ol+/pc and so Ujy by é factor of 2, and
(b) when nuclear energy generation in the core ceases,
the core tends to become isothermal. The reduced temper-
ature gradient increases the density gradient, which re-

duces °1+/°c somewhat further. 'z
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The U - V locus of a star is given by

-

|
dilnU. 4 _y. N ‘ A

d Inr N+l °

4 1n v (4.18)
n \'; Pt

dinr . V- 1TwE |

or .
dilnV_ U+ v/(N+1) - 1
d In U 3 - U - NV/(N+1) °

The points on the V - U curve with horizontal or vertical
tangent are éiven by
U+ V/(N+1) - 1 =0 (horizontal),

(4.19)
U + NV/(N+1) -,3 =0 (vertical).

These two lines intersect at the point

(4.20)

Thus for N > 3, the .intersection point is in the physical
region and there is:a loop point correspdnding tor = =,
Typical U - V‘curves for homogeneous and inhomogeneous
stars are shown in Figure 12.

For an isothermal core, N = ®, so the U - V curve
has a loop point of U =1, V= 2. The maximum V thus
occurs for U = 1 and is somewhat larger than 2. Thus

for an isothermal core

o lo

U1+N U 2 0.5 . ——

An isothermal core, if too large, however, cannot

support the weight of the envelope. The critical size

of an isothermal core can be found from the virial thgorem

(McCrea, 1957),

3 (y-1) U +Q - 3PV = 0 ;
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S0

’ !

= 1) 3 10
where U and V are now the internal energy and voiume.&
{
ry 1
For an isothermal sphere the internal energy is, from
equation (2.3),

. _ 1

T M
v-1 -

|
E3 P

and for a sphere of uniform densiﬁy the gravitational

Aenergyhis, from equation (1.19),

oM

R [

nz - —
5

The pressure at the boundary of the isothermal core is

therefore

3k

T 1
am uH g3 T

P = 3T

wlee
H,

) o4

There is a maximum pressure consistent with .the equilibrium

virial theorem, which is given by

dP 9 k™ _ 12 GM2
— = - — 7 .fg} 5_ = 0 o
dR 47  WHR 20 =R

Thus there is a critical core radius

3
L%

Rcritn - 1_.5 k Tl 3 (4021)

with stability possible only for Rc = R The

ore crit.”*

maximum possible pressure is
. 3 15)3 fxTq\¢ 1 —
P = e —— —-"'——2, (4022)
max 16m (4 ) WH G3 M;? ’
which.. decreases with increasing core mass. To determine
the limiting mass of an isothermal core this Pmax must
be compared with the pressure necessary to support a star.

For the. linear model, (equation 3.5),

P

s

pw nemy e e g rm—e. B

a,
i
T
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GMZ
P = —5— —— .
[ o] 4 R4

Also for the linear model, (equation 3.6),

S GuH M’

T E = LAl

1¥ 21 kR

Thus the condition for a stable star, that an isothermal

nondegenerate core can support the surrounding envelope, is

>
P max -~ PC
or
;l < 0.16 (4.23)

Accurate calculations (Schonberg and Chandrasekhar, 1942).
give a3 < 0.1.
If the mass of the core is below the isothermal core,

iiniting mass (Schonberg-Chandrasekhar limit), the core

becomes isothermal and the central temperature may decrease.

In massive stars,the core exceeds the Schonberg-Chandrasekhar
limit and gravitaf&onal contraction begins when nuclear
energy generaﬁion ceases to support the star. In small
mass stars,the core is initially below the limiting size,
but shell burning adds material to the core until in this
case, too, the core exceeds thé Schonberg-Chandrasekhar
limit.

In all stérs, therefore, to support the weight of
the envelope the pressure gradient in the core é:;t in- .
crease. This raises the central density and greatly re;
duces U1+ = 3°1+/ac leading to very extgnded envelopes. .

t

The increased pressure gradient is achieved by two ﬁethods:

R
progp et S e
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éor small mass stars the electrons become degenerate
and their degeneracy pressure greatly'increases the pressure
gradient. For large mass stars the core contracts rapidly,
producing an increasgd density gradient and a nonzero
temperature gradient, both of which combine to increase
the pressure gradient.

The envelopes of stars in advénced stages of evolution
are therefore characterized by great extension, Iow density
and small U near the shell at the base of the envélope.

That is, the envelopes have a centrally condensed structure,
with the density;increasiné rapidly inward due to the

large pressure gfadient at the edge of the core, but the
‘mass M remaining nearly constant as r - shell from above.
The greater the central condensation the larger the stellar
radius. The most centrally condensed envelope structure is
P =2, as r = 0. Sigce the mass, Mr’ must remain finite,

o = p & where'a < 3. Then do/dr is finite, so from equation
(4.5) V is finite. Also, since dT/dr # 0, from equation
(4.5) N is finite. From equation (4.4), since M_ is ap-

proximately constant, V « (rT)"l, so

T 1/r . (4.24)

We can now detefmine the limiting values of the nondimensional
variables at the'baée of such an extremely centréziy con-.
densed envelope. Since Pchell 1S very small, the values

at the base of the envelope will not be too different from

their values in the limit r - 0. For N < 3, the limit as

r - 0 is, from eguations‘(4.6) and (4.24),

s, 2 s

ERIR AR

TR RIS IEEY S GG

e A e

TR M 0 AT TR R ) e




-70-
U - o0, V-N+1. (4.25)
Thus U J-O,:the limit of extreme central condensation.

The radial dependence of the physical variables is

-(N+1), T o r-l;

. , (4.26)
p = N .«

Pe« pr

For N > 3, the limit as r - 0 is a loop point given by
equation (4.20). In this case U > 0 and the envelope
is not so centraily condensed. The radial dependence

of the physical variables is
- -+ N_. - -
2(N 1)/( ‘1)’ T 2/(N 1)

P ~ ’
P—ZN/(N—I) _ (4-27)

p~
We now determine the effective polytropic index at
' : N\
the base of a centrally condensed envelope. In tergs of

nondimensional variab1e§/

P - oM
B Y 4WR4 >
W, H GM
T = t e —
k R °? :
Mr = aM, V . |
r = x R,

the hydrostatic equilibrium equations are

T e,

* 5 tx (4.28)
dq _ XxXp

dx t 8¢,

w. re d = u/u,, and the flux equations are

¢t - _ ¢ p? (Kramer's opacity)
ax K 2.8.5 . ’

‘ (4.29)
at . _ C P (electron scattering)

dx . x“ t

-
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For Kramer's opacity, combining equations (4.28) and (4.29),

dp q
.5 - 4.25 CK ’

so, near the surface and near the shell at the base of the
envelope, where U is very small and - the mass fracﬁion

q is nearly constant, the polytropic index is

N = 3.25 .
Thus at the shell ‘
0 r_2’89 (Kramér's). (4.30)
Similarly, for electron scatg;ring, | o ~
e _ 9 _
at? 4 CE 2

so, near the surface and near the shell the polytropic

index is

Thus the density distribution at the shell is

b ~ r (electron scattering).

(4.31)
The only envelopé model which can be readily solved
- analytically is p(r) ~ r °. This, as was just shown,
corresponds to the 1imiting case of extreme central con-
densation for both Kramer's and electron scattering opacity.
The internal structure will be well.representea by such a
model, but because’it is too centra?ly condensed the stellar

radii will be muchtoo large. To calculate the radii a

somewhat less centrally condensed model should be used.

e -
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Inhomogeneous Analytic Stellar Model

Wb‘;ow:construct an analytic model of a starvwith
one shell using a linear density diét;ibutionlin the core
and an r 5 density distribution in the envelope.

1. Core

In the core assume a linear density distribution
o(r) =0, - (g = 0)) T (4.32)

where . is the central density and 04 is the density at

the shell. Then the mass distribution in the core is,\g

by equation (1.4),

M(r) I:4ﬂo(r)r2 dr

4T 3 r
= T3 (oo - 1 (o, —391) EIJ, (4.33)

and the mass of the core is
o 3
My 3 R

This relation can be turned around to give the radius of

o, * 304). (4.33)

the core

1/3 13, \1/3 -1/3
R- (9—@3) =L (e + 3 %ﬁ_ol.)
Rp ‘RO o/ (4.35)
= 1.78( 1/3 (0. + 3 2 yi/s oo
’ (MO> el Tue P

)

The pressure in the core is detérmined by hydrostatic

zquilibrium, equation (1.1),

P () _ Pc _ Gf M(r)o(r) dr

2 2
p _ <] _L‘aal_ r
= P, - %T-'- Gpc [1 - -6(1- L ) —-,+ -g(l- 1o )“21-

pc( R

Lot A e o R, M e
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"At the boundary of the core

K | 27 2.2 1
10 EP1T T Fo - TF O 245"'1°'L 9';-‘)’
SO .
P m—= 5. T +E—'G92R (s+1o "+ 9';—2)
¢ ucH "l-71 36

Thus the pressure in the core is .

2
P(r) = 55 0113 + G5 Goc"Ry? [5 + 10 F= 33—;—2
rZ P1-y rd P1. |, Pil gt
-24i-l-z+28(1—-;;— ;1-3--9(1—2;—:+Dc Rl4] (4.36)
and the central pressure is
K 5m 2. 2 b+ oo P1- 2
P =EC_H P1-Ty * 3z O Ry [1+ 2 5= o T 18— r 1. (4.37).

For a perfect gas, with negligible radiation pressure,

the temperature is, by equation (1.2),

uH P(r)

T(I‘)"—"l—(—-ﬂr—).

Thus the temperature in the core is

_ _Piyra-l . Pi m_ GucH 2
T(r) = [1 - (1 - ' Rl] .['——-oc T, + 36 k PRy
' 04 2 2 P
{5 +10 2=+ 95 _ 2, I + 281 - 1‘)——3 (4.38)
gc OC Rl‘ . . 2
0 P71
-9(1- 2 l-+ 1 )——4}1
DQ pc

and the centralvtemperature is

N .

2
W, P H 2 P
T = E—Q-p-}- + _%—-‘—c— lp (1+2._L+1.8_1_2.)
N e Te Pe CPeT (4.39)
“c 1 2

2 2
Ty + 0.17 x 107 -l p(l + 2 P1-Be 4 5 g Hec 21
ue D R C ) ¥

B TR T S .
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However, when the core is degenerate it is assumed to be

| |
‘isothermal, so T, = T; in a degenerate core. ‘

2. Envelope

In the envelope assume an r-3 density distribution

RS
! , p(r).=p ;l) . (4.40)

Then the mass distribution is, from equation (1.4),
= 3 ¥ dr
M (r) = M, + 4mo Ry Jer )

. N
where Mi is the mass inside the shell. Thus the mass dis-

tribution in the envelope is

]

M (r) = My + gmp R, 1n(r/R,),

M

(4.41)

3 L4
M + 476, R ln(R/Rla.

1 11

‘The pressure is- determined by hydrostatic equilibrium,

equation (1.1),

P(r) =P, - G j; .Miﬁ%%izl e

1
| - . 3 .I" + 3 )] 1
| | =Py - GogRy JRl[Ml' 4me Ry Inlr/Ry)] 7% dr,

< . 4
M R 22

+t w6 Ry 7

The boundary condition P(R) = 0 determines P;

M3 R1\4 i 2 2
PR) =0 =P - 360 7 (1- (i‘) ) g1 R
6

+ ﬂGol E;— (4L + ln'iz) s

9 T T T I R T s ¢

Genen oA ki sy v aa o a%c e we




| i

-75=- ' !

SO

4 . : i :
: My R1 7.2 2. 2 R 'R
= 1o, =L (1 - o+ I - 1 ,
P, = 1603 R, (1 (R) ). + 260 R;" - mGpy —iz(,, + lnﬁq) .

!
Thus the pressure in the envelope is ‘

r ; 1 Ml {: El ¢ - (El)%}'
P( ) G"l Ry (r) R (2.22)

- and the pressure at the shell is

R-\4
P, 4cpl L a (_R) +Z 6olry? (1 )) Y
- wGp, R 1\ 1 R . .
"Gey Ry (R> n Ry (4.43)
Note that the pressure is proportional to r 4 exéept near
the surface.

The temperature for a perfect gas with negligible

radiation pressure is, from equation (1.2),

wH P (r)

SN )

Thus the temperature in the envelope is

. . y
T(r) = GL;EH (Ri - - X (R))

+ Mo R { £)3+41:11n—-

-4_() 1n RIS O (seaw)

Note that the temperature is proportional to r-l except -

near the surface. The temperature of the shell is

i

T =

*-Gol 1[@5— *4(;:")1“1{'1"4(? i

R

- (e (8 e 1)

~ 577 x 17 o (RH(R2) *3 066 x .10 &435) Py -

(4. 45)

p—

e~
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Th; stellaf radius is extremely sensitive to the
‘degree Af central condensation. For our envelope density
distribution p ~ r’3, the radius is obtained from the

mass relation (4.41), .
' M - M =3
R= R ex = Rq-
1 P{4,,pl {}
| 1 - | .
= Rl exp {——E—— P—Q + 3 h)z . o )
12 q; \P1 e !)

Thus the radiu? depends exponentially on °c/°i‘ This

-

leads to extremely large radii, much larg;} than are
observed. This is to be expected, since this envelope
corresponds to the maximum degree of central condensation.

Consider now less centrally condensed envelopes with
. :
density distributions
n

4

o(r) = by

\»‘w"

(L.5< n< 3). (2.47)

The mass distribution in the envelope is then

2-n

n .T ‘
M (r) M, + 4mpqRy lep dr

- Rl n . 3-n
= Mt sl (r - R;T ),

and

oy 4m n 3-n 3-n
M—Ml'i' -3—;le1 (R - R )

Thus the radius is

. 1/(3-n)
Ra- R4 (‘3'“)‘M‘M%)1 . (4.48)
3-n 4T o0y Ry
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degree of central condensation. As a roughAapproximation :
for all stars,we choose n = 2?5. Then

o O
Ll () () oo (Rl) Co !

R i -2 ‘

.sz_l + 5.5 x 10 ( \ (1-q,) (_l .

- R Ro 4 |
The interhal:structure of the 1nhomogeneous modei

is shown in Figure 13. Figure 14 shows the tremendous '

devree of central condensatlon of the mass as compared

‘with vhe homogeneous model.

«din the envelope. The rate of thermonuclear energy gen-‘

‘eration in the shell is, equation (1.6),

s R ’ n .
T 3
_ L = 4nt IR p2 '——}, r2 dr, ‘ .. -
o s 1 TO A .,:‘. - .

where we have assumed a nuclear energy generation rate per

== o'——‘ .
' ° To}

gram of the form

Then -
' . 2 /T n 6+n dr_
L = 4ﬂ8°pl (&l) IRl o .
° .
.3 n+3
- 4.TTR1 _ 2( 1) : Rl) ] '
) D+3 609 1 -T-c; Ll ~ _R_— - e

“Thus the rate of thermonuclear ‘energy release from a shell

source is

or

L .. ° Ri\3 2 [Th\®
-I; 1.12 -;“:"‘— (RQ) 91 To . (4.50)

The energy generation isiconfined'to an extremely thin shell.

K4 49)
|
1

sy o - o Tas % s < &

de now turn from the hydrostatlcs to the energy balance -
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source as shown in Figure 15.
The luminosity for radiative energy transport is

2 1l6o T3-b dr-

L = - arm—— e st .
) 4":' 3,(‘0 ol+a dr I

assuming an opacity law of the form

— amb
= kP T .

‘The temperature gradient determined from hydrOStAtic

equilibrium is %
. $
ar - _ o R | ?

dr 1.2

t
v

Thus the radiative luminosity is

p1+a

Evaluating the luminosity at the shell'giées

64 Mo T14—b
L= —/ R 1+
3 KQ 0q a
7.5
64 1o Ty
= —3“;;. Ry —;II-' ,SKramer's), :
4 (4.51)
84 mo Ry Il (Electron Scattering),
3 no 01
-where for Kramer's opacity a =1, b = =3.5, and for electron

scattebing a =b = 0. Thus the radiative luminosity of

. the enQelope is, for population I (X = 0.6, Y = 0.38, Z = 0.02),
7.5

4.25 x 103 (ﬂ)fﬂlg__ (Kramer's)
L ' Ro P
-f- = . 3 R T 4 | ’ (4-52)
® 2.18 x 10 (i§>.ﬁ§f11- (Electron Scattering)

P ——

1o A ——y Y ¢y A
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and for population II (X = 0.9, Y = 0.099, Z = 0.001),

2.27 x 104 (ﬁ) Tiy)’ 3 (K 's)
- X Ro —T—— ramer's

R 3 . (2.53)
| ' 1.84 x 103 (%é) 3%111_ (Electron Scattering)‘
' 1 ;

The effeg&ive temperature is given by equation (3.17).
For ; fully c;ﬁvective envelope, the luminosity and
effective temperature’ére determined by the surface condition,
ij | equations (3.24), (3.25), (3.28) and (3.29). The track is
the éame as for pre-main sequence fully convective con-
ﬁraction, but traversed in tﬂe opposite direction.

The time scale of evolution is determined by the rate-

-of release of energy,

_ dE _ AE ' )
L = E:E SO ‘ At —f‘ . , (4054)

The time scale during stages of core contraction is de-

termined by the gravitational energy release,

8E = 4a0 = § =S aR .

The luminosity of the core is determined by the opacity 4
(usually electron scattering since the temperature is high,

~ 107

°K) and temperature gradient. In stars with degenerate
cores, the central portion where degeneracy is strong is
isothermal and the temperature drop occurs in the ou?er

nondegenerate portion. The luminosity of a contracting

‘core will therefore be assumed to be

3 .
Le 4(’403
Le = 179 ut(lel . |
o ° \ M o
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Thus for a contracting core

-1 ¢
at = —GMp? (Mc‘ .___OR/Ro

358 u tig Yo (R/Rg) (R'/Ry) ( )
B 4.55

~\

. -1 Ty
8. sy =% (MKt SRS /Ro) (Re/Ro)
94 x 10% u_ (Mg) l(gc/Re) (Rc;/Ro)gyears:

" - - 3
where Rc ‘is the previous and R. the current core radius.

The amount of material added to the core by the hydrogen g

burning shell during this time is

gy o AEL
e T By x, O’
SO

AML:( le Mo L ,¢. (4.56)

8q) = = M
1 M MEX, /M Tg

Evolution During the Hvdrogen Shell Burning Phase:

The- evolution during the hydrogen shell burning phase is ;

; ot
. - . 1
toward greater central density and temperature and larger stellar

radii. The central density, 045 is chosen as the parameter

labeling the course of evoiucion, since during the con-

traction of the helium core, P.q increases monotonically.

A sequence of models _with increasing p. describes the

course of evolution. It is necessary to choose an initial

.core size to start the sequence, since the details of the

setting up of a shell source cannot be followed analytically.

When Pe >>.p1 and R1 << R, the stellar structure can

. be expressed as an explicit function of 97 M, and 0.+ The

core radius is, from equation (4.35),

kzsg ’ éd-57)
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so ershrinks with increasing p..
The central temperature for a nondegenerate core is

1 in equation

(4.39) and neglecting the first term, which is negligible,

_ 7 M\2/37 0, \1/3
TC 5.4 x 10 uC(M®> 103

found by substituting equation (4.57) for R

. (4.58)

The shell temperature is found by substituting equation

1 in equation (4.45) and neglecting the second
?

term, which is small,

| M 2/3 1/3
T, = 3.24 x 107 (:1) (?95) . (4.59)

1 e Vo 10

. (4.57) for R

For a nondegenerate core

T /Tl = 1.67 u /fug -

In small mass stars, M < 3 - 4 M, the core is degenerate

and isothermal, so

Thus the core temperature increases as Pe . The shell
density is determined by the energy balance, luminosity
= energy generation rate. The'energy generation rate per

gram is assumed to be of the form

-

n
T
e = & ol
| ° (i0>

and all constants are evaluated for the CNO 6ycle at

T° = 2‘x'107 °K, so &, = 451 Xy Xcynp and n = 18. The +tota!
energy generation rate is given by equation (4.30).

The luminosity depends Qn'the opacity and the energy
transport mechanism,:and two cases are considered: Rad-

iative transfer with electron écattering opacity, equatidn



" tering

. Where

- For a convective envelope

L

w82
(4.51), and convective transport with low surface density,
equation (3.23) with equation (3.22). For electron scat-
-(n-4)/3 (M --9- (n 3)( (n~6)/9

91‘3' Cl ue 103 ) (40608)

. = 38.2 (population I) )  ?§
1 42.8 (population II) el

= C ﬂ ‘%%g%ﬁgfl (}k) (}23238 ‘}
x (1-qy ) 2 Eéﬁéél [ 3A- }
(n-13)A+4 (4.600)

) T

where A = b-+ 2.5(a+1l) for an H- opacity law of the form

' <
X = xopaTb, :

A g; 11 (population I)
15 (population II)._s

and

c I= 6.5 (population I)
2 6.6 (population II)

The radius of the star is given by substituting equation

(4.57) for R; and equation (4.60) for p7 in equation (4.49)

-and neglecting thg_émall first term. For électron scattering

) : : (4n-9)/9 (4n—27)/9 2(n-4)/3
R

(2n+3)/9 '
(Iag , : (4q61a)
where . ~ " T .3é {&
. . = {0:21 (population I) ¢ { el
3 0.17 (population II) * & ' . i

[—
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For a convective envelope

L Lo, ue["%}%—”*"‘] () 3 [%;‘I—i%ﬁ‘—]

M
To "o (4.61b)
: . 2 {n— E% 1 n+
x (l-ql)[SAfB} ql‘g [ SAE (9:3)_3' [ 3A- A‘l ,
) o - ‘10 -

where

C = 7.25 (population I)
4 (7.0 (population II)

Thus the stellar radius increases with increasing centgal
density. The luminosity of the star is givep by substituting
equation (4.60) for pl and equation (4.59) for Tl in eqdation
(4.50). For electron scattering

' +21 +
L ooy (n+8)/3 (ﬁ)(Zn 21)/9 (39_ (n 3)/9’ (4.628)
L0 5 e MG) . 103 : . '
where . .A:
c = ;{1.1 x 103 (population I)
5 (8.4 x 102 (population II)

For a convective envelope

PR = I A G =
Ly 6 Te A (Mé . (4.62p)
.x {}1-q1) ql(n-l)/%} 4 -%ifgl.(ﬁgg,é fn+2£§A-4)1"
where | ) |

c '; {32.7 (population I)
6 20.3 (population II)

* The effective temperature of the star is found from equation

(3.17) with equations (4.6 and (4.61). For electron scattering

[

e b mand o aAanam Y D

R g, P RA e
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, | -(2n-13)/12 gl ;
B S 'C7<;L)~ (lfql) 1 qQ; (6n_75)/§$

(0]

’ "(4 633)

Xue

-(n-8)/a
1

~(n+1)/12
Pc .
5)
where ’

C. = ‘{7.24'x 104 - (populatlon I)
7.55 x 104 (populatlon IT) |

For a convective envelope

T, = Cg [ﬁ%ﬁlﬁdl ("e) [?iﬁhl
| x ((1—«::1)«11”(nn1)/£;.lﬁ-‘r%8_l

\

- where %
c 5.11 x 103 (population I) i

8 4.62"x 103 (population II) ‘

%,

For radiative envelopes, the luminosity increases, (~ Pe
and the effective temperature decreases, (~p -2), with
increasing central density. For convectlve envelopesP
the luminosity increases rapidly, (~ °c ), and the ef-
fective temperature decreases slowly, (~ P ), w1t?
increasing central den51ty. The mode of energy transqort
in the envelope switches from radlatlve to~convect1ve!
when the convective fiux becomes larger than the radiative
flux.

The tip of the red giant sequence occurring in small
mass stars is determined b& the onset of helium burning.
"Helium burning commences ipvthe‘center of a star when

To =~ 108e‘K. In sters of small mass with degenerate
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cores the core is'nearly isothermal. For an isothermal

e . 7 2/3 1/3
Tc T, 3.24 x 10 Ve (ﬁé (lﬂ )
S : : (4. 59')

so the central density at which helium burning commences is

core

-3' M1\~
pc = 1
T e (B

~ Thus the maximum luminosity at the tip of the red giant

branch, where the envelope is convective, is, from equation

}1-6 = const., (9-54)2 %‘4’1] ue-z'(%]
4/(3A-8) 4ff=g |
(N;B (%%%l)[ ) ]- (4.64)

i X%

- 0 10 . .
( L) - 6.22 x 107 ( ) (Tagl) (populatlon I)
Lo /max =

i l-‘

0.156 1.125 . {(4.65) ¢ ]

3.94 x-10 (Ha : (:——1) (p0pu1at10n II)
“ il

Thus the luminosity at the tip of the red giant branch at
the onset oﬁ central helium burning is very insensitive to
the mass of the star, and is about two orders of magnitude

higher than obtained from accurate calculations (see Figure 20)

‘due to the absence of any temperature gradient in the core.

The evolutionary changes in the central conditions are

shown in Figure,16. For low mass stars the core ieiiso-

- thermal and the central temperature is constant or %ay even

: v u
decrease slightly when the hydrogen in the‘core is exhausted

and a shell source is ignited. The central dengity |increases

_with:néarly constant éentral tgmpqrature until phe increasipg

ke
ey .
TN e
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Figure 16. Evolution of central conditions during pre-main
sequence contraction, central hydrogen burning,
helium core contraction and central helium burning.
The solid lines and shaded regions are from the analytic
models, the dashed dot lines are interpolations.
Thg dashed lines are from Hayashi, Hoshi, and Sugimoto,
1962. ) RO )
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1

~., luminosity along the red giant branch causes the shell

' /3 !
temperature rises much more rapidly than Pc * unti} it
approaches 108 °K and helium thermonuclear reactiong are

.

ignited. The energy released by helium burning in ?he
degenerate core raises the centr?; temperature, witﬁout
~affecting the density, until the ﬁaterial becomes nonde-
génerate. The core then expands reducing the central
- temperature and density. Stars with masses less than about
3 - 4 My develop degenerate cores. !
In massive stars an isothermal condition does not
develop. The core contrgctioﬁ provides an appreciablé
part of the star's luminosity from the beginning.of ,l

i

-'hydrogen shell burning. The central temperature and dénsity‘

| increase, with Tc increasing slightly less rapidly than
001/3. : : -

The evolutionar} tracks of stars in the H-R diagram'

. during hydrogen shell burning ére shown in Figures 17 to’
.21. The stars-move to-the right in the H-R diagram be-
cause their radii are increasing. The tracks depend in
their grossest features on whether or not the star is small
enough to develop'a degenerate core. Those stars that
develop isothermal degenerate cores must evolve to much
highér central densities and much greater central con-
dénsation'than those that do not. Thus very small mass

' stars develop very extensive envelopes, .which are there-
fore full& convective and very luminous. These form the

‘red giant branch (Figure 20). Intermediate mass-stars

o e e ey ,



Figure 17. Evolutionary tracks of stars in H-R diagram during
hydrogen shell burning with helium core contraction. The
nature of the energy- transport mechanism in the envelope,
which determines the slopes of the tracks is shown. The

shaded area is the reglon where stars have just started to
burn hellum xnto carbon in thelr cores." , i
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develop radii large enough to develop fully convectiﬁe

| y
but not such ‘extensive envelopes, and their luminosity
does not greatly increase (Figure 21).. The very massive

- stars do not develop a very great central condensation
. before their central temperature has reached 108 °K, . s0
they do not develop convective envelopes before helium

“burning.

. At the beginning of hydrogen shell burning the lumin-

osity, except for very small mass population I stars,

. is much too low because we have taken the most centrally con-

.

densed model throughout and have not allowed thevdegree

of central condensation of the envelope solutions to;grad—ﬁ

Y

‘ually increase. The temperature falls off extremel& rap~

idly outside the shell and the hydrogen shell burning region
is therefore very thin, covering about 1% instead of an

initial 10% of the mass, as found in accurate calculations.

The total amount of energy generated is therefore too\small.'

Since the degree of central condensation and the thickness
of the shell are constant, the luminosity in our models in-
creases during evolution. Accurate calculations show,ihow—

ever, that the shells are originally much thicker-thaniours,

and the narrowing of the shells, due to the‘steepeningftemp-

erature gradient and the exhaustion of fuel on their inside,
counteracts the rising shell,temper§turexand the luminosity
étays fairly constant. | |

The time scales for evolution during the hydrogen shell

Burning - contracting helium core stage are given in Table 1.

“e 1..'— -
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Figur

e 20. Evolutionary track in H-R diagram of 1.2 M,

star. Solid lines are from analytic models for pre-main
sequence contraction (PMSC), central hydrogen burning (H),
hydrogen shell burning red giants (RG), and central
helium burning (He). Dashed line is from Hoyle and
Schwarzschild, 1955 and Selberg and Schwarzschild.
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Figure 21. Evolutionary track in H-R diagram of 7Mp star.
Solid lines are from analytic model for pre-main !
sequence contraction (PMSC), central hydrogen burh:.ng

.. (H), hydrogen shell burning (HSB), and central helium
‘burn:mg (He). The dashed curve ‘is from Hoffmelster,
K:.ppenhahn, and Welgert.
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Summari;ing:‘ The cause of the extended envelopes
of hydrqgen shell burniﬁg stars is their central conden-
sation; the cause of their central condensation is as
follows. As the hydrogen in the co;e is exhausted, the
density and pressure distribution in the core change.-only
slightly, but a cheﬁical compOSiﬁion discontinuity de-
velops and the density of the outside of. the core (at
the shell) is decreased. Since gc/ue = 2 and p/u is
continuons across the shell, the density at the outside
of the shell is halved. This decreases the ratio of the.
‘density at the shell to the central density, i.e., increases
the central condensation. VWhen the core hydrogen is
exhausted and the thermonuclear energy generation occurs
in the shell, the core tends toward an isothermal state. -
Then the dénsity'gradient ih the core increases and this
further increases the central condensation. An isothermal
nondegenerate core cannot, however, support, the weight of
the envelope qhen the mass of the éore is larger than
about 10% of the mass of the star. Then the pressure
gradient in the core must increase in order to support the_

weight. This further increases the central condensation,

Pcenter/Pshells to very large values.

C. CENTRAL HELIUM. BURNING

When the central temperature of the helium core is_
raised to about 108 °K, helium will begin to burn at

the center of the star. If the core was degenerate, a




L P

A 8o

'\x.helium flash will occur because the pressure of degenerate

matter depends only on the density, not the'tempera%ure, so
that the energy released by the Ansqt of helium bur%ing will
increasq‘the temperature without a corresponding in%rease

in pressure. The increased temperature speeds up;tﬁe
reactions, which further increaseé the temperature, until
the temperaturé is high enough for thé matter to become
nondegenerate. The rapid increase in the helium reaqtion

rate continues until kT in the central degenerate region

-rises above the Fermi level and the perfect gas law again

holds. In nondegenerate material, increasing the tember-

ature increases the pressure, which causes the core to ex-=

| rand, thereby reducing the density and temperature and

damping the reaction. The core will then settle down to
bﬁrning_ helium at a much lower density and slightly higher
temperature than at;the onset of the flash. In stars with
nondegenerate coreg,there is no flash; the process of
adjustment is ‘small and occurs smoothly.

A star burning helium at its center will be much
more centrally condensed than a main sequence hydrogen
burning star. The density at the shell where the com-
position disgontinuity, and possibly hydrogen burning,
occurs is much less than the central density. Thus the

core may be treated as a separate star with the density,

" but not the temperature, going to zero at its surface. The

-

luminosity of the core is determined by the balance between
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the radiative energy transport and the helium energy
generation rate? This‘energy balance determines the
central'temperature,'which together with hydrostatic
equilibrium'determines the central density. The radius

of the core is determined by the density distribution,:
"which we assume is linear. Thus for the model of a

star burning helium at its center; assumé a linear density
distribution in its core, a p ~ r~3 density distribution
in its envelope and treat the core as a separate star.

The helium energy generation rate is

2 (T \" '
833‘ ..Clz = &Oo (’.i.:) ) (4066)
for
- <a—3 2 )
T8~1 n=41’.80-4.4x.L0 XHe,
. 2
T8 ~ 2 ? = 19’ ao = 15 xHe .

The total helium burning energy generation rate is

3 3 n
L =4mRy" &, 0e T, Jp, (4.67)
where
1 -n+3 .
Io =y %2 (1-x)" (1F2x-1.8x%)" ax,
since .
: 2 3
T(r) = Tc [1 + X - 3.8 X + 1.8 X ]o
Then P

©

: n+3 n+6 9
%" = 201 &anucn (%) RO) (.6 x 10 ) (4. 68)

The luminosity, with electron scatterlng opacity is igiven

4

e,

. . - : i
!
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by equation (3.16). The central temperature and density

are from equations (3.6) and (3.3)

611_&9)
Tc = 9,62 x 10 “C(Mg)(ﬁi )

o, = 5.65 -fa (%)3, .

The core structuré; for T, ~ 1 .x 108 °K, .is

. M *
T = 1.16 x 10° u e 213 (__l) ,

c Mo

-1062
0o m 99 %10 uT ) (4.69)
0.
RL = 8.27 x 1072 c°'787 (%) ,
L 4 (M 3
— = 179 u = .
L, c \M,

The density and -temperature at the shell are determined

by the'conditions of hydrostatic equilibrium and energy
conservation. The shell temperature is given by equation .
(4.45) with the small second term neglected and equation
(4.69) for R,

‘ 7 0.787. M 0.128
T; = 6.97 x 10" (ue/u, -7 7)(%) . (4.70)

The shell density. is the solution of
Luminosity = L g .e * Lghells (4.71)

where L is the core luminosity, equation (4.69), Lshell

core

is the. shell enérgy generation rate, equation (4.50), and
the luminosity is given by equations (4.51), (3.24) or (3.25).

Once pq is known, the luminosity is found from equation (4.71).
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The efTective temperature is given by equation (3.17)

"and the radius is given by equation (4.49) as in the case of

hydrogen shell burning.
When helium burning commencesvin the core of a star,
the core expands, the central density decreases, andﬂthe
envelope contracts (Figure 16). In massive stars, where
the core was not degenerate, this‘adjusthent is slight. 1In
small mass stars, which developed a degenerate core during
the helium core contraction, a helium flash occurs in which
the core becomes Qondegeneratg and the central density is
greatly reduced, the core expands and the envelope contracts.

The resulting radii are much smaller than in the red giant

B stage, but still much larger than when on the main sequence.

For small mass stars that have passed through the
red giant stage, thelluminosity during central helium
burning is insensitive to the mass. The luminosity depends
only on the core mass [see equations (4.69) and (4 .70)], which
is approximately the same at the onset of the helium burning
in all such stars, since the smaller the mass of the star
the larger the fraction of mass in the cbre. Thus small
mass stars lie at. the onset of central helium burning in
a strip of nearly constant luminosity, but with varying
effective temperature depending on the mass.

The locus of points in the H-R diagram where initial
central helium burning occurs is shown as the shaded
regions in Figures 17 to 19. The relative contributions

of hydrogen and helium burning to the luminosity are

e . s B LA L thh gt e Bl A e & S, S -
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found to be: Ly >> Lye for population I étars, while
LH << Ly for population II stars. The time scales for

evolution during the central helium .burning stage are

. given in Table 1.

In the more advanced stages of evolution--helium
burning, carbon burning, neon and oxygen burning--the
core of the star continues becoming densgr and hotter,

a complicated shell étructure develops, with some shells
aqtive and others inactive, and the radius continues to
grow. A schematic picture oﬁ the stages of central;
nuclear.Purping and shell formation is given in Figure

5 of C. Hayashi, "Advanced Stages of Evolution," tbis
conference, p. . How far a star progresses throﬁgh
these stages of nuclear burning depends, as we have shown,

on its mass.

- -




V. FINAL STAGES OF EVOLUTION

After a star has exhausted all the nuclear fuels it
is capable of burning, its only remaining sources of
energy are its gravitational potential energy, which it
can release by contracting, and ifé thermal energy, which
it can release by;cooling. Such a star will contract,
increasing its central density and temperature. The core .
will, héwever, tend tolbe cooled off by energy losses from

neutrino emission. The rate of emission of neutrinos

increases with temperature, and since their mean free path

is larger than the radius of the star they remove energy -
from the star. If neutrino pair emission is intense,

all stars in the stage of gravitational contraction after -
the exhaustion of nuclear fuel will develop degenerate
cores.

If the central density resulting from the gravitational
contraction is. low, only electrons, not nhcleons, are
degenerate and supply the pressure to support the star.
There is a maximum density.possible for a stable star
supported by degenerate electron pressure.. At higher
densities the ele;trons are forced onto.the.protons,
creating neutrons. This process is a phase change and
absorbs a great.deallof enérgy, causing instability.

The grévitational collapse of massive stars produces
cores with densities above the critical density. The core
of such a star will be composed of free degenérate neutrons

and other baryons. If the mass of the remaant from the

ey
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gravitational coliapse is small enough, it can be sup-
ported by the pressube of the degenerate neuﬁrons and

a stable neutron star will be formed. If the massiis

... too large, the gravitational force, augmented by the

relativistic effect that the pressure contributes to the

effective mass, overwhelms the. nuclear forces.and the
' n

star collapses indefinitely. What happens to such core

remnants remains to be discovered.

Structure of White Dwarfs

White dwarfs are stars whose support is provided by

the pressure of degenerate electrons throughout most bf

the mass of the star. In white dwarfs only electrons,

not nucleops, are degenerate. We assume that the electrons’
are completely degenerate. This is, of course, not possible,
since in the surfacé'layers the density is very low anhv
the electrons are nondegenerate. However, the surface
layers are extremely thin.

The equation of state of a deéenerate gas is a compli-

cated function

P="P (p)

approaching the limiting forms

P =K 05/3 = 9.91 x 102 (pA4e)5/3 (5.1)

at low density where the electrons are nonrelativistic

(P << mgec), and

P =k, 043 = 1.23 x 10%% (Y3 (5.2)
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the mass, so the th forces will be in balance for only
one mass, the limiting mass of a white dwarf star. For
larger masses the gravitational force always exceeds the
pressure force.
Thg mass-ra&ius relation for a white dwarf can be

obtained from the virial theorem,.(Salpeter, 1964)

3(y-1) U + Q=03 (2.17)
where @ is the gravitational potential energy, given by

equation (1.19),

and the internal energy U is the electron kinetic energy

U=NKg .

Here N is the number of electrons and Ke is the kinetic

energy per electron. The mass of the star is

M =N He mp s

where Mo is the molecular weight per electron

Y ' Z5-1
M = [X x] t —" (y1|2y2) t —2]

e I

-

so iy = 2 for a fully ionized gas if X = 0. Here m, is

the proton mass. Thus from the virial theorem

GmﬂzuezN

o = TR (5.4)

K
The electron kinetic energy is related to its momentum

b
y 2
Pe

e 2mg

Pe << mgC

: ‘ >>
e . pec . pe mec [

e
4

TS = T

N e
3
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The average electron momentum Pe is related to the average:

interelectron spacing ro by the uncertainty principle

r 2 h .,

e Pe

Using the equality sign gives for the kinetic energy

2 ’ 2
= Pe _ 1. .2 [To
Ke Zme g Mg C GT(;) [pe << meé_},
s r (5.5)
Cn e o () B e

where ry = h/mec is the electron Compton wavelength.

These two limiting equations can be combined in the inter-

polation formula (Wheeler, 1064)

Ke .= m 02{: 1 ] s (5.6)

e s + 254

where s = ro/r. . This formula is accurate to within 8%.

The radius of the stﬁr is expressed in terms of re by
R = N r . (5'7)

Equating the expressions (5.4) and (5.6) for the electron

kinetic energy giveé the relation.

Y-1) *
1+ 29 = (3( . I‘gmec} y-2/3

= 30D (K 2/3 _ 3(y-1) (Mc)2/3
- 2 N_') = 3T \" ’
ue U.e
" where _ . \ -3/2
N, = =B = 2.2 x 1097,
° e

e oL

B o = M- st




For a nonrelativistic electron gas Y = 5/3, and for an

extreme relativistic electron gas Y = 4/3. The variﬁtion

of Y is glven by Schatzman (1958), - ‘

i
9r 2/3, 0 g2

a2

3(Y-1) varies between 1 and 2 and the above expre551oﬂ

y-1 =

[
e

can be replaced by

_ 1+ 2s
3(y=1) T

. with a maximum error of 27%. Thus

2/3 .
L+ s= a7y GH 2 (5-81)

First note that the minimum value of the left-hand

side of the above relation is 1, so there is a maximum

mass for a white dwarf

- -2 _ 1.85 Mp
M.max He My = _fazi_- . (5.9)

However, long before the density becomes infinit:, inverse

8 reactions will occur and the above analysis will cease

to apply. The increasing density causes instability of
the white dwarf before the singularity is reached.

Second, the above relation can be written as a mass-

radius relation
. L -1/3 o -4/3 (M VL3 1y \1/3
R= R, u, / (Me s/ (‘p[;) -(M;) 1, (5.10)

s s e ek
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where

1
R, = Ng /3 ro = 5x 108 cm .

Thus the radius of a white dwarf is very small and it

decreases as the mass increases.’

The mean density of a white dwarf is
- -
s = /@R

3 Mgle (u -4/3 (M_.)‘2/3 1 -3
4T R, e Mo

- \~2/3 -
7.06 x 10° he [He 4/3 Gﬁ-‘;) - 11 "3,

Since a white dwarf has a very thin nondegenerate surface‘

’ layer, we may approximate it by a homogeneous model with

a linear density distribution. Then the central density
is

e

c M

O .
There is a maximum density possible for a stable white
dwarf. As the density increases the electron Fermi energy
increases. An electron with energy greater than th§

g-decay energy for electron emission from a”nucleugt(z-1,44)-
. i T

will produce inverse 8-reactions -

e + (Z,A) - (z-l,;A) + v .

" This process increases the value of u, in the interior,

and thus the maximum stable mass is reduced. The predominant

nuclei under white dwarf conditions are elements in the

= - -2/3 -

v
ot

HEN
!

v p——— -

e tporg
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range neon to iron; for which inverse B~decay will
occur at densities about 107 g/cm3 . Thus the critical
density for a white dwarf is about 199 g/cm3 « The relation
between central density and mass for a white dwarf is
showa in Figure 22, from Wheeler (1964). The stable con-
figurations shown at higher densiﬁies are the neutron
stars. |

The degenerate interior of a white dwarf is practically
isothermal because heat conduction by degenerate el?ctroﬂs'
is very efficient. This isothermal interior is blanketed
by a noﬂdegenerate surface layer, which is very thin and

contains only a minute fraction of the mass of the §tar.

- The small extent of the surface layer is easily seen by

considering the scale height

pg ug-

The temperature at the transition layer is Jf the order
of a million degreeg'but g = GM/R2 is extremely large :

because R is very small. Assuming M~ Mgy, R~ R, and

8

T =~ 106, then g ~ 5 x 10" and 4 ~ 106 cm = 10 km. The

density in the surface layer is less than about 103 g/cm3

6

since it is nondegenerate. Again assuming T ~ 10~, the

mass of the surface layer will be

Mg = 4mR% o AR ~w 1027 & 1070 M .

Therefore the equations for the surface layers may be

integrated explicitlz,sinoe g, M, and L are practically

constant.

N3

T
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Figure 22. Schematic mass density relation for white dwarfs
and denser configurations from Wheéler (1964), calculated
for coid catalyzed matter.
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The sﬁrface layer is in hydrostatic equilibrium and
energy transport is by radiation. We will assume Kramer's
Opacity,'

X ="%_p qu.s;

25z (1+X)
(¢/8)

where (t/g) is a quantum mechanical correction factor ~ 10

= 4.34 x 10

in this case. Then the equations for the structure of the

envelope are (Schwarzschild, 1958 and Chandrasekhar, 1939)

dP  _ GM

ar Tz P

dr 160 73 4w rd
so

dp _ 64 ToGM 3

dT 3nL

94 o GM E; P—l T7.5
-3noL uH

Thus the pressure and density are related to the'temperature

by

-

Cp o (2 64 ToGMK \2 %25
(8.5 3 KOLLLH ?

(5.12)

o=

‘J T3 '25

- < 2 64 ToGMUH )
P B25 3 Aolk |

The radial dependence of T can be found from the equation

of hydrostatic gquilibrium

dp P uH 1
i T koM 2

and from equation (5.12)

dT

L ,
_I—’ 4.25‘—-5 .

-

s st -
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Thus

T = 2 gy @-%) . (5.13)
These equations for T, P, and p can be used throughout
the nondegenerate surfacé layer. | |
';The propertieé of the transiﬁion layer between tﬁe
degenerate interi;r and the nondegenerate surface layer
can be found as a function of the luminosity of the white
dwarf (Schwarzschild, 1958). The isothermal nature of
the interior gives a relation between interior temperature

and the luminosity, which is constant through the surface

layers, as follows:

L =.2 64 moGM uH r6-5

3.5 3 %, k p2 ¢ (5‘14)

Apply this to the transition layer. The boundary condition

is the equality of the electron pressures in the two regions

v5/3
k = D %
2 2/3 -5/3 ‘
= h™ (3 = 12
Ky = o (ﬂ) H 9.91 x 1077,

so the boundary condition is

' 3/2
kT -8 3/2
Pep = He §fiﬁl) = 2.4 x10  ug Tgp / . (5.15)

HK 4
‘Then the luminosity and internal temperature, T, = Tgpny are
‘related by
2 64 ToGM (H)4 W 3.5
(5.16)

_ 25 (t/g M 3.5
5.7 x 10 (—ZE):%Z "'M;' Tc(é) .

R SIS TRA e Ty
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The internal température, transition density, and extent

of surface layer as a function of luminosity is shown in

the.following table for a 1 solar mass star with composition

X=0,Y=0.9,2=0.l.

L/1g T, (10% k)  log pep 5;:§£§z
10~ 2 ' 17 | 3.5 0.011
10™3 .9 i 331 0.006

— i
1074 4 ; 2.6 0.003

This table is taken from M. Schwarzschild: Structure

and Evolution of Stars,.p. 238.

-t

- .

The source of energy for white dwarfs is the ﬁhermalF; ;{f

. energy of the nondegenerate nuclei. The energy source

cannot be nuclear reactions. At the high densities found
in white dwarf interiors the Coulomb barriers of nuclei
are reduced. At densities greater than about 5 x 104 g/cm3
hydrogen reactions occur and at densities greater than

about 5 x 108 g/cm3 helium reactions occur. However,

.during a star's evolution before becoming a white dwarf,

" all the hydrogen in its core will have been exhausted,

while white dwarfs with central densities high enough for

helium reactions are massive enough to have exhaustéd the
i

helium in their cores. In the surface layer, where%hydrogen

may be abundant, nuclear reactions would cause instability
because of their temperature sensitivity. Duiring a con-
traction, the rate of energy generation would increase

above and during an expansion, would decrease below its

|
\

B
N \

1
rm”

L gy
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equilibrium value, thus feeding energy into the pulsations.
The energy source cannot be gravitational, because a star's
radius is fixed by the mass-radius relation after it has
become .almost completely degenerate and no further con-
traction is possible. The energy source cannot be the
thermal energy of the electrons because they are degenerate
and most are already in their lowést pOSéible energy state.

The evolution of a white dwarf is a continual slow
cooling at constant radius; its luminosity and effective
temperature decrease in time..'Evolutionary paths in
the H-R diagram are shown for several masses in Figure 23.

The luminosity of a white dwarf is the rate of changé
" of the thermal energy of the nondegenerate ﬁuclei,

=._ 4 .3 M
L 0T ( 5 kT‘EXE)’ (5.17)

where Ha is the molecular weight of the nuclei,
uA— =X + 1Y, This equation can be integrated to obtain
the cooling time of a white dwarf (Schwarzschild, 1958).

Using the expression for the luminosity, (5.16),

L = K(u,M) T3°3

gives
a - ¢ 1, \
dt .
2 KupH

. Integration gives the

where n = 3.5 aﬁd C =~ 3 oM

cooling time from "infinite" temperature, setting the

integration constant equal to zero, which is the time

scale of evolution of white dwarfs




;
i

\

Figure 23. Evolutionary tracks of white dwarfs in the H-R

diagram. Solid curves are from analytic expression (5.10){
the dashed curve is from Schwarzschild, 1958,
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Evolution of Whife‘Dworfs
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t=(% ul;TH M)/(Z.S L)

. -1 ..
5.15 x 10° T_(4) (g‘a}u[l (%) years (5.18)

uez 2.5

- 13 Z _He -
5.47 x 10 (Ué)(u ™ ) Tc(6) . years.

it




