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ABSTRACT

The spheroidal theory developed by Vinti for determining the orbit of an
artificial satellite of an oblate planet is presented in algorithmic form, in
which empirically derivedinitial conditions are used to obtain the co-ordinate
and velocity components of an unretarded satellite at any time. A differential
orbit improvement method utilizing observational data is described. This
method produces a mean set of orbital elements by an iterated least-squares
fitting of the equations of condition. The results of preliminary applications
of the orbit generator and differential correction to two artificial satellites of
the Earth, through use of a high-speed digital electronic computer, is shown

in tabular and graphical form.
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ORBITAL PREDICTION AND DIFFERENTIAL CORRECTION
USING VINTI'S SPHEROIDAL THEORY FOR ARTIFICIAL SATELLITES

INTRODUCTION

The spheroidal method for satellite orbits provides a procedure for calculating the orbit
of any satellite of an oblate planet, when all forces except those of the primary's gravitational
field are neglected. Determining the effect of the oblateness of a planet on the orbit of a satel-
lite sufficiently near to the planet so that the forces of other bodies may be neglected is one of
the central problems of satellite astronomy.

Vinti, in a series of research papers (listed in the references at the conclusion of this
report), has found a gravitational potential for the exterior of an axially symmetric oblate planet
which is able to produce an "intermediary reference orbit" accounting for more than 99.5 per-
cent of the deviation of the Earth's potential from spherical symmetry. The Vinti potential is a
very accurate approximation for the Earth's gravitational potential, which both satisfies Laplace's
equation and leads to separability of the Hamilton-Jacobi equation in oblate spheroidal co-
ordinates, the most appropriate system for an oblate planet. Use of this form for the potential
reduces the problem of satellite motion to the analytic solution of quartic polynomials and avoids
the use of perturbation theory entirely in deriving an accurate intermediary orbit. The Vinti
potential is actually much closer to the empirically accepted one for the Earth than any previ-
ously used as the starting point of a calculation. In the case of the Earth, the resulting inter-
mediary orbit reproduces the even zonal harmonics exactly through the second and approxi-
mately through the fourth. The secular solution can be obtained to arbitrarily high order in the
second harmonic oblateness parameter, and, by means of rapidly converging infinite series, the
periodic solution can easily be obtained through second order. The solution holds for all angles
of inclination (in the case of equatorial or near-equatorial orbits, certain simplifications can be
made in the equations) and contains no critical inclination or long-periodic terms. For such a
reference orbit, error can never accumulate because of the exactness of the secular terms.

This method of solution for unretarded satellite orbits has been adapted for computational
purposes on a high-speed digital electronic computer primarily by means of the FORTRAN
programming language. The function of the present paper is to provide the computational pro-
cedure for determining and correcting an orbit in algorithmic form, adopting algebraic symbols
consistent with those in Vinti's papers. A summary of preliminary results utilizing observa-
tional data from artificial satellites is included.

INPUT PARAMETERS

The fundamental physical units employed are those of the canonical Vanguard system. In
this system, the fundamental unit of length is the Earth's equatorial radius (taken to be 6378.388
km), and the fundamental unit of mass is the terrestrial mass (taken to be 5.983 X 1024 kgm).
The fundamental unit of time is adjusted so that the Newtonian gravitational constant G is set
equal to unity; this process yields a value for the Vanguard unit of time of 806.832 seconds. To
obtain a physical significance for this time, consider a satellite "orbiting' the Earth at its sur-
face. This time unit is then seen to be the time required for such a satellite to traverse one
radian.

The inertial co-ordinate system takes the Earth's polar axis as the Z-axis (which is also
the planetary axis of symmetry and the axis of rotation). The X-Y plane is the equatorial plane,
with the X-axis pointing toward the vernal equinox (the first point of Aries), the Y-axis orthog-
onally to the east to form a right-handed system, and the Earth's center of mass at the origin.
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The following constants are required in the computations:

« = GM, where G is the Newtonian gravitational constant and M is the Earth's mass.
From the preceding remarks, it is seen that » = 1 in the Vanguard system.

c=r,/],, where r_ is the equatorial radius of the Earth (unity in the Vanguard sys-
tem) and J, is the coefficient of the second zonal harmonic in the infinite series
expansion of the Earth's potential. The value of J, is approximately 1.0823 x 1073,
t;, the initial time.

t,, the final time.

2t, the time increment used in generating position and velocity components for equal
time intervals following t, and preceding t,.

X., Y., Z,, the initial conditions of position.
X, Y,. Z,. the initial conditions of velocity. Note that the set X,,v, , Z, ,X , Y, ,Z, of initial

conditions is also referred to as the set of injection conditions if t, , the initial
time, is taken to be the time of injection of the satellite into orbit.

CO-ORDINATE CONVERSION

We now compute the following quantities. The square of the magnitude of the position
vector:

r2 = X2 +Y2+ 22
The dot product of the position and velocity vectors:
ror, =X X FY,Y, 42,2,

The oblate spheroidal co-ordinates (2, 7,4 ) and their time derivatives:

pf :% [(rf -+ '/(rf -2 + 42 Z":]

2 1 [ 2 _ 2 2 _ 232 2 72
7 —— [~ (rf =)+ J(rl - ) +4c?Zi .
2¢2 1 f

Then ,, and 7, are found by extracting square-roots, with the condition that the sign of 7, is

the same as the signofz, .
. 1 . ror. (r?—c2)+2(:2Zi 21
/[)l :5_ ri rl + 1 1 1
s /(r? - ¢2)2 + 4¢2 Z%

. 1 . rr (r?2 = c?) + 2¢2 YA A
[ Tt
2e™n, (r2 = 2)? + 4c2 22




In the above, £, # 0, but if n, =0, then 7, =2, /p,.

. Y,
sSin :’Di s
(o2 + ey (1 - )
X.
cos d)i - i

Yo+ e =)

From the above trigonometric relations, we obtain ¢, within the limits 0 <¢; <27 .

THE JACOBI CONSTANTS OF GENERALIZED MOMENTA

Compute:

q =R B, 2 Py

N | e

a, = X 9i -Yi).(i
1/2
a, = [(pf + czv';f)z T;f + ag - 20, c? 77? a- 77%)] (1 - 77?)"1‘/2

FACTORING THE QUARTICS: PRIME CONSTANTS

Compute:

2 -1
a.\2
(2
D ,
ko = ¢ pg?

A= -2k0poylz) [l -k, (3xgyg-2xg-8yg +4)]

B=kop2 (1-33) [1 vk, ¥3 (4 -]

p=alplag? [1 Sy (4 -x3) ~16k2y2 (2y2 - 1)

~kixgad g v3 g - 205 < 12)
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g=koy2 (3x% -4) - 16 kZy? (2 yi-1)
-k2x2y2 (2x2y2 - 5x% - 28y2 +20)
1/2
e = [1-xg(1+g)]
If (a2 -a2) =0, then n, = 0 and mp? = ko x5 (1 - ko x2).-

If (o} - a2) # 0, then calculate 7, from

ag - 20 c? 8a, c? (a% - ag)
')782 S — 1+ 14—
2(a§ - ag) (ag -2a, c?)?

a% -2a, c? 8a, c? (ag -ag)
7);2 = <1 - 1t _— .
2(a} - ad) (a3 - 2a, cB?

q =77,

Also,

MUTUAL CONSTANTS

If n, # 0, then compute:

«©

b\ /b
et e ) w0

n=2 2

where P_(x)is the Legendre polynomial with argument x of degree n, and where R, (x) = x" P, (1/%).
The infinite series above (and those that follow) is computed by an iterative method, with com-
putation of terms ceasing when the absolute value of the ratio of successive terms minus unity

is less than or equal to some pre-selected tolerance, i.e., computation ceases when

A,

A)i-y _1‘ e

where ¢ might be 1077. Convergence should be attained by consideration of the first several
terms, in most cases. To increase computational speed, the first term (for n = 2) of the above

series may be given explicitly by
b2 b
— e2y1/2 2 1.
e <p) P2 <b2>

If n, = 0 (corresponding to an orbit in the equatorial plane), compute instead:

@®

(1 = a2y1/2 2! b\ » ~ a241/2
A =(1-e?) pzm<2_.p) R_, [1-¢eD ]

n=2

where the first term (for n = 2) is given explicitly by

2
_3_ (1 - 82)1/2 <_ll>
2 P
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If v, # 0, compute:
= b\ b
A2 - - ez)lfz pt Z <__3) Pn _1> Rn [(1 - e2)1,/2]
n=0 P b2

where P, and R, are defined as above, and where the first term {for n = 0) of the above series
is given explicitly by

(1 - e2)1/2 p‘l 3

If n, = 0, compute instead:

0

A, = (1- et/ g Z @n)’ <-'1> R, [(1-e%)177]

n=0 (n‘ )2 2p

where the first term (for n = 0) is given explicitly by
(1 - e2)1’2 p-l .

Then compute:

©

A3 = (1 - e?)1/2 573 Z Dn Rn 2 [(1 - e2)1/2]

n=0
where, for 7, # 0, D_is computed as follows:
2m

i . 2i - 2m [b b
o e TG e )
2

m=0

2i-2m fp\™! b
oon 3o (T @)
n T P2i+1 P > i \p,

m=0

(n an even integer)

(n an odd integer).

If n, = 0, use instead:

: AFTT amyt b "
D =D, = Z (= 1) - (—) —_— (_‘>
=3 P [(2m)t]2 \2p,
(n an even integer)
! 2i-am (4 2! b\
D -D,,, = Z (- Di-" (i) D (2_‘)
P [c2m « )] 2 \2P

(n an odd integer).



Then compute:

B3:1—(1-—77;2)_1/2— E 7, T);2m

m=2
where
m=-1
(2m)! (2n)!
e 0
22 (m1)? L= 22 (n!)

3 -
A, :Z(l—e2)1/2p3e(—2b1b§p+b;)

3 -
A12 :3_2 (1 - e2)1/2 p 3 b; 82

If (b, /b,) <1, then compute:

A,=01- e)1/2 pl e [bl pl+(3 bf - bg) p 2
“9up2 1 5\ -3, 3pe
Eb1b2(1+4e)p +§b2p—4(4+3e2)
- 1 -
Ay = (-2 [Let @t - b g

- % e? blbg p3+ % bg p* (6e? + e")]

1 = - -
A23:8(1—e2)1/2p1e3(—b1b§p3+bgp4)

3

_ - - 4
A24’§?6 (1 e2)l/2p5b‘;e




A, - (1 -eHl2ple [2 + b p! (3 +%e2) -p? (—;-bg + Cz) (4 + 3e2)}

9 - ‘1 3 - - 1 3 1 l
- a2)1/2 3 2 1 .2 - 2
A32, (1 -¢e% pil—-e +—b1p e p2(—b§+c)(—e2 +—e4)

-2 =3 3 | 1 oy 1 (1.,
A,=(1-eH2p7e [up b, 3P (5b2+c2

1 ; ~5 (1
A34 :“—3—2 (1‘62)1 2e4p5 (Ebg +C2>

It (b, / b, ) > 1 (corresponding to a near-equatorial orbit or an equatorial orbit), then compute
instead:

Ay =(1-eH?pite {b1 Pl B-bib) ctpt —77(2,)2]
1 ‘2 - - -
Ap=5@- eH)!’2pl €2 3-b2b2) c* pt (1 - n2)?

A,, and A,, as given above.

23

Ay = (1-eD)/2p3e [2 + (3 +%e2) 2 p?(1-m) - (4+3e?)c? p‘Z]

_ 1.3 . 1 3 -
= - a2)1:2 3 o2 + 2 2 - 2y - 2 2 2
A, (d-e W2 p3e [—4 A—4c pcl-7) <—4 e +__2)C p ]

1 2 - 1
A33:.§(1+e2)12p5e3c2 (K(l-ng) - 1]

A34 - _31_2 (1 - e2)1/2 p‘S e4 c?

Now compute:
27y = (= 22)' P(a+ b + A +c 2 A BB
If (b, /bz) < 1, compute:

2rv, = (fl.g - 1%)1 2 ?7;)’ A, B;l (a +b, +A + c2 ’73 A, B B;l)-x



If (b, /b,) > 1, compute instead:
2y, = ay[1-20 a3 cX(1 - 112 ABY! (a + by + A+ c?ng A B, BjH)™!

Then compute:
e’ =ae(a+b)"!.

Note that the condition ' ¢ e must be fulfilled.

THE JACOBI CONSTANTS OF GENERALIZED CO-ORDINATES
If e # 0, then compute:

pi(F} + m2 c?)

sinE,
ae /(-2a,)(¢? + Ap; +B)

"

cosE = (1-p a Het.
From the above, we obtain E, within the limits 0 < E, < 27.

(1 -e)2sinE,

sinvi:
1-ecosE

cos E, - e
cos v, = ————— .
1-ecoskE,

From the above, we obtain v, within the limits 0 ¢ v, < 27.

If e = 0, then:

and

If 7, # 0, then compute:

7, (P} + 2 c?)

cos Y, =
boemy /(=2a) (R - 1D

. (A
siny, = .
"l

From the above, we obtain y, within the limits 0 <y, <27.




, (1 -m)V% sin ¢,
. sSin y =

i AR sin?y,

cos .
cos y = —F———t——

|
. i A-gsinty,
|
|

From the above, we obtain x, within the limits 0 < X, <2m.

If n, =0, then: y; = ¢, a.nd)(i =¢. .

1
Now compute:

sin nv, for n=2, 3, 4.

sin “‘/"i for n=2, 4.

If (b, /b,) < 1, then compute:
By = (- 2a)""2 [bE, +a(, -esinE,) +A v,
+A,sinv, + A, sin2v] 4 c?(a? - a2)"1/2 1] [Bl ¥,
1 2 - l 2 -
-=(2+9¥) sin 2y, + — Q° sin 4y, | - t,
8 64
,82 = - az(-2a1)'1/2 [A2 v, + An sin v, + A22 sin 2\'i
+ Ayysin 3v, + Ay, sin 4v;] + (o - ad) V2 gy a, [Bz ¢,
l 2 2 - 3 ‘ .
- — g*4 +3a@®) sin 2y, + — q* sin 4y, |
32 256
I (b, /bz) > 1, then compute instead:
By = (- 2al)"/2 [b,E, +a(E, -esinE) +A v,

+ Ay sinv, + A, sin2v] +c? 2 azt [1-2a, a2 cF (- ]2 [B, ¥

- 1(2 +g%) sin 2¢, + R q? sin 4‘1’1] -t
8 64



By = -ay(=2a)"V2 A, + Ay sinv, + Ay sin 2y,

+A,; sin 3v, +4A,, sin4v ]+ (1- 2<:L1<:L'22 c2(1 - 'r;g)]“/2 [B2¢i

_ 1 2y o 3 o4
33 Q® (4 + 3q*) sin 2y, + 55¢ 9 sin 4¢'i] .
If 7, # 0 and if (bl/b2 ) < 1, then compute:

183 = ¢i - a‘3(a‘§ - ag)-l/2 770 [(1 - 778)—1/2 (1 - 77-22)-1/2 xi

3 2 4. )
+ By t 37 773 7724 sin 2\/1{‘ 4+ c2 a, (- 2a,) 1/2 [Aa"i

+A;, sinv, + A, sin 2v, + A,; sin 3v; +A,, sin 4v.].
If n, #0and if (b,/b,) > 1, compute instead:
£y =@, - aga;l 11 - 20 a52¢X(1 - )] "V2 [(1 -2y 12 (- 732172 X,
+B, \#i] +c? a, (-2:11)'1/2 [A3vi +A,;, sinv, +A,, sin 2y,
+Ay, sin3v, + Ay, sin 4vi]
If Ny = 0, compute instead:
By = = By(sen ay) ~ay(-2a)" V2 [A v,
+ Ay sinv, +A), sin2v;] + cZa,(- 2a)"12 [A, v,

+ A31 sin v, + A32 sin 2v, + A33 sin 3v, + A34 sin 4Vi]

where sgn a, =

THE ORBIT GENERATOR OF POSITION AND VELOCITY COMPONENTS
In this section, parameters arise which are time-dependent. Initially, the value for time
t is equal to t , but on subsequent iterations t = t, +n (At),n=1,2,3,..... Here 4t is the
time increment input parameter used in generating position and velocity components for equal
time intervals following t, and preceding or coincident with the final time ¢t .
If 7, # 0 and if (b, /b,) < 1, then compute:
M, = 27v, (t + B - B,a3" ) By By

\ps = 277V2 [t + Bl + ﬁza'zl A'zl(a +bl + Al)]

10




If 7, #0 and if (b, /b,) > 1, then compute instead:

M, = (= 20,172 \:Bz(t + B - c2B,a3' B2 B ]
(a+b, +A)B, + czvﬁ A,B,
y, as given above.
If n, =0, then compute instead:
M, = (- 2¢)!/2 (t + B))(a +b, + A)™?

Y= (1 - 2a.la;2c2)1/2 [,62 + azAz(t + Bl)(a +by + Al)'l]

We now solve the following equation for (M, + E,):

M, +E, —e'sin (M, +E) = M,.

If we let € = M_ + E;, then we can solve this equation (known as Kepler's equation) by use of the
iterative Newton-Raphson method.

(E,-e' sin€ -M,)

neloon (1~e'cos &)

(E,-e' sin€ -M)? (e'sin€))

2(1 -e' cos £)3

For the initial value, (8n)n= 0o = M. Iteration ceases when

where ¢ is a pre-selectedtolerance (e.g.,1077). Convergence should be attained with severaliterations.
Now use the anomaly connections:

cos v' = (cos £ -e)(1 - e cos E)~!

sinv' = (1 —e)¥2 (1 —~ecos )"l sint.

From the above, we obtain v' within the limits 0 < v' < 2n. The angle v’ is then placed within
the same circle of revolution as the angle & (which is not taken modulo 27).

Then compute: Vo= VI -M, .

11



If n, #0 and if (b, b, ) < 1, then compute:
Vo = (<20,)7 2 (e - ad)1/2 1 A, By ! v,
M, =(a+b)7! [— (A, +c?nd AZBIB';I A

+_}‘_c2 (-20,)%2 (02 - a2)"1/2 53 sin (29, +2‘/’o)]

If 7, #0 and if (b, /b,) 2 1, then compute instead:
1/2
Yo = (=2a)" V2 [1_2a1a;2 c? (1-7;3)] a, A, B, v,

M, = (a+bp~? [’ (A +c*n3 A,B B ) v,

1 - - - R
g 2" [1-2a,03% ez (=B TV m2agt sin (29, + 24)]

If n, = 0, then compute instead:
¢,0 - (-2a1)'1/2 (1 - 20’10';2 c2)1/2 a2 A2 VO
M,=-(a+b) 1A v,

Continuing, if n, # 0 and (b,/b,) < 1, or if n, = 0, then compute:

E, =(1-¢ cos&) I M, -%e’ (1-¢' cos€)"3M?sin €

If 7, #0 and if (b, /b,)> 1, then compute instead:

E =(1-¢ cos&)I'M,
Now use the anomaly connections again:
cos v" = [cos (£ +E,) - €] [1-ecos (£+ El)] -1
sinv' = (1 -e?)!2 (1 -ecos (€+E)] " sin(€+E))

From the above, find the angle v* and place it within the same circle of revolution as the
angle (€ +E, ).

Then compute: v, v -
If », #0 and if (b,/b,) < 1, then compute:

by = (-28)72 @F - aD VT B (A v, ¢ Ay sin V]

. , 1 - .
+A,, sin 2v") +§q2 le sin (29, + 2yp)

12




If n, #0 and if (b, /b,) > 1, then compute instead:
Yy = (=2a) V2 [1 =20 a72¢2 (1-72)112a,B;! (A, v,
+ Byy Sin V' 4 Ay sin 2v') 4 q? B3 sin (29, + 24)
If 5, = 0, then compute instead:
Yy = (-2a)V2 (A -2a,a32c?)V2q, (A, v, + A, sin V' +A,, sin2V')

Now if (b,/b,) < 1, we continue this procedure one step further to obtain terms of second order,
as follows, Compute:

M,=-(a +b1)" {Al v, + A, sinv’ + A, sin 2V’

+c? (_2a1)1/2 (a§ - a§)’1/2 7]3 I:Bl 12 --:12-\/;1 cos (2y_ +2yy)
-%qz sin (2y, +24,) +é q? sin (4y_ + 4%)]}

E,=[1-¢" cos (E+E)D]ITI N,

Let
E-= 8+El +E,

and use the anomaly connections once again:
cosv" = (cosE-e) (1 -ecosE)"!?
sinv” = (1 -e)1/2 (1 ~ecosE) ! sinE

From the above, find the angle v and place it within the same circle of revolution as the angle E.

Then compute: v, =v" v
= -1/2 2 2y1/2 .« -
\bz‘(-Zal) (a'z—a';;) 7701321 (A2 V2 +A21 Vl cos v'

’ : 1] . '
+2A,, v, cos 2V + A, sin 3V + A, siné4Vv')

«k%q2 B! [\#lcos (24, +2¢,) +%q2 sin (24, +2¢,) _6—34 q? sin (4y_ + 4 ¢'D)]

Finally, let:

v:Ms+v0+vl+V2

Y=+ + Y + Yy

13



Now if (b1 /b2) > 1, we omit computation of M,,E,,v, , andy,. In such case, these terms be-
come of the third order and hence negligible.

Instead, we let:
E=¢€+ E,

v=M +v,+v,
Y=+
Continuing, compute:

sinx = (1 -n3)V2 (1 -2 sin? )~ /2 sin ¢
cosx=(1-mn2sin2y) 12 cos ¢

From the above, find the angle ¥ and place it within the same circle of revolution as the
angle .

If (b,/b,) < 1, then compute:

e=(1+ecosv) lp
If (b,/b,)2 1, then compute instead:

p=a(l-ecosE)
Then, if 7, # 0 and if (b, /b,) < 1, compute:

787, sin

b=By+ay (@F=ad) Vi [(1 IR PO MY
+B, ¢ +-:—2 n2 n3* sin 2¢] -c?a, (-2a) V2 (A
+Ay sinv +A,, sin 2v + A, sin 3v + Ay, sin 4v)

If 7, #0andif (b, /b,) 2 1, compute instead:

7 as given above.
_ -1 -2 .2 2] " 172 2y=1/2 (1 - n32)" 172
¢ =By +aza,t |1 -20a 0 c®(1-75) a-79 M, X
+Bakj/] -ca, (-2a) V2 (Ayv + Ay, sinv

+Aj,sin2v + A, sin3v +A,, sin 4v)

32
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If 7, = 0, compute instead
A n=90
® =Py + By (senay) +ay (-2a)7 12 A, v
+Ay sinv Ay, sin2v)-cla;(-2a) V2 A,V
+Ay sinv + Ay, sin 2v + A, sin 3v + A, sin 4v)
a

where sgna, = —3_

3 |a3| .
The oblate spheroidal co-ordinates must satisfy the following conditions:
P20
-1<7<+1
Now the co-ordinates and velocities may be found as follows:
hf=(p? +c?) (1-7?
p=ae(-2a)12 (p? + Ap + B2 (02 + 1?2 c2) ! sinE

N=cny (-2a)V2 (m3 - 22 (p? 4 n2c?) " cos ¢

X= f(p?+c?) (1 -7 cos ¢

Y= (o2 +c?) (1-7D)sing

Z=pnm
X=X pp 1Y _y (B
0242 1-72 h2
¢
vevy |22~ ] ux [
pT+c? 1-72 h:

Z=pn+mp

This completes the algorithm for predicting orthogonal position and velocity components of the
satellite based upon a set of initial conditions,
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COMPUTATION OF DIRECTION COSINES

Often the set of initial conditions (position and velocity components) provided is only ap-
proximate at best, and thus the orbit that is predicted based on these initial conditions will
similarly contain inaccuracies. In order to remove these inaccuracies and to account for the
effects of forces not considered by the analytical theory (e.g., aerodynamic drag, solar radia-
tion, meteoric bombardment, etc.) the orbital parameters are corrected by comparison with
those found by direct observation. The orbit improvement method produces a mean set of
orbital elements through an iterated least-squares fitting of the differential solution to numer-
ous observational values.

To perform the differential correction process, the following data must be available in
addition to the constants listed in the section on "Input Parameters' above:

fal-r /t,, the flattening coefficient of the Earth (where r, is the polar radius of the
Earth, and r_ is the equatorial radius), taken to be approximately 1/298.3 = 3.3523299 x 10~ 7,

w , the rotational rate of the Earth in radians per mean solar hour (taken to be 0.26251614).

(}\E)i ,i=12,...,s, the geodetic (or geographic) longitude of the terrestrial tracking
stations in radians, as measured eastward from Greenwich (a negative sign must be prefixed
if measured westward from Greenwich). We assume that there are s tracking stations report-
ing observational data used for comparison purposes.

(an)i, i=1,2,...,s, the geodetic (or geographic) latitude of the stations in radians,
measured as positive north of the equator and as negative south of the equator (-7/2 <0, < +7/2),

H),, i=1,2,...,s, the altitude of the stations in feet, measured as positive above sea
level and as negative below sea level.

(Ag)y> d=1,2, ..., the angle in radians, measured eastward from the vernal equinox (the
first point of Aries) to the Greenwich meridian at midnight Greenwich mean time for each day d
during the period that observations are provided. The apparent sidereal time (the hour angle of
the first point of Aries) at midnight Greenwich mean time for each day throughout the year is
tabulated in "The American Ephemeris and Nautical Almanac."

t , a reference time preceding or coinciding with the time of the first observation pro-
vided, which is used as the zero point in determining t , the relative observation time. It may
be the time of injection if the tracking data includes observations made during the first several
orbits of the satellite. The purpose of determining a relative observation time t is to elimi-
nate any reference to the calendar.

We now describe the observation data cards, which are effectively input for the differ-
ential correction scheme. There are several methods of recording satellite tracking data;
we present here one of the most common methods, referred to as Minitrack observation data.
(Refer to the appendix of this report for discussion of another method.) A set of observation
data of this type includes the following parameters for each recorded spacecraft observation:

t' , the date and time of observation. As given, t' is a calendar time. We remove any
dependence on the calendar by determining t =t’' - t,, where t is the relative observation
time and t  is a reference calendar time. Then t becomes a time interval, measured in Van-
guard units of time from the zero point t . As mentioned above, t, is chosen so that for all
observations t > 0. It is convenient to have the choice of t, coincide with that corresponding
to the initial position and velocity conditions X, Y,, Z,, X, f{i, 2i. When this choice is made,
then t, is known as an initial or epoch time.
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k , the code number for the tracking station reporting the observation. Generally, the
range of k is the set of integers 1,2, 3, ..., s.

Lgy» the observed direction cosine in the X-direction.
M,, the observed direction cosine in the Y-direction.

w, and w_, the weighting factors corresponding to observations L, andM,, respectively.
This information is optional; if not provided, then it is assumed that w, andw, are each unity.

The co-ordinate system employed for the observation data is centered at the tracking
station on the Earth's surface, with the X-Y plane tangent to the surface. It is a right-handed,
orthogonal system with the X-axis extending in an easterly direction along the line of latitude,
the Y-axis extending in a northerly direction along the line of longitude, and the Z-axis normal
to the surface and pointing toward the geodetic zenith.

We first compute the so-called "auxiliary functions" S and C (refer to the "Explanatory
Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Alma-
nac") from the relations:

C = [cos? GD+ (1 - £)? sin? 9D]"/2
S=(1-f)3c

Here and in the following, we eliminate use of the subscript "i'"' referring to an individual one
of the s tracking stations, and assume that the computations given are performed for each re-
spective station. The value of H is then converted from its input units of feet to units of the
Earth's equatorial radius (the conversion factor is 4.77865 X 10~ 8) so as to conform to the
canonical Vanguard system of units used throughout (see above under "Input Parameters").
Then the geocentric latitude is given by:

6’G = arctan [(z iﬁ) tan (90] .

Now the geocentric distance of the observation point (i.e., tracking station), in units of the
Earth's equatorial radius, is found:

p = [(S +H)? sin? G + (C + H)? cos? 6] 172

The angle 5 , between the vernal equinox and the observation meridian plane, is computed in
radian measure by the following expression:

§ = ()\D)d + w (AT) +}\E.

Here, (A ), is as defined above with the value chosen (designated by the subscript "'d")
corresponding to the midnight immediately preceding observation time. Also, AT is the com-
puted time, in hours, between observation time and midnight preceding observation time. Thus,
the second term in the expression for 3 accounts for the fact that the Greenwich meridian ro-
tates while the vernal equinox remains fixed in inertial space.

The inertial geocentric co-ordinates of the observation point are now converted from a
spherical to a Cartesian system by means of the following equations:
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X, =pcos 90 cos &
Y, =pcos BGsinS

Z.l.=/osin€G

The angle y_, measured in the observation latitude plane between the vernal equinox and the
tracking station's X-co-ordinate axis, is given in radian measure by:

=5+
Yy t3

The local co-ordinates of the satellite (X,,Y, , Z,) can now be determined from the iner-
tial position vector (X,Y ,Z) computed by the orbit generator. Here "local" refers to co-
ordinates measured at the tracking station. The orbit generator will produce the position com-
ponents (X,Y,z) at the observation time. Then the local co-ordinates are given by the matrix
relation:

Xu 1 0 0 cosy siny 0 X Xr
Yyl =10 sin &  cos 91) -siny, cosy O Y| - |Y;
Z, 0 -cosfy sin O 0 0 1 z YA

Here, the difference of column matrices on the extreme right represents a translation from
the Earth's center to the tracking station position; the center matrix on the right represents

a rotation in the latitude plane about the polar axis through an angle of ¥, to bring the inertial
X-axis into coincidence with the station's X,-axis; the left matrix represents a rotation in the
longitude plane about the X,,-axis through an angle of (/2 - 6,) to bring the inertial Z-axis into
coincidence with the station's Z -axis. This matrix equation is equivalent to:

Xy cos Y siny, 0 X-X;
Y, |=1|-siny,siné cos Y, sin 6y cos Gy Y-Y,
Z, sin, cos 6 -cosy, cos 6, singy Z-2,

or, explicitly stated:
Xy= (X-X;)cos Y+ (Y =Y ) sing,
Y, =-(X-Xsiny, sin 65+ (Y - Y,) cos Y, sin 6 + (Z - Z;) cos &,

z, o (X -X;)siny, cos Oy - (Y =Y) cos g cos 6 + (Z - Z) sin 5

We now find the computed values of the direction cosines L (in the X-direction) and M. (in the
Y -direction) in terms of the local co-ordinates.

Xy

L =
¢ X2+ Y2 +Z§)l/2

Y
M. = - 241/2
2 2
(XM+YM+ZM)
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Of course, the computed value of the third direction cosine N_ (in the Z-direction) is pre-
determined by L_ and M_ through the relation:

N, =(1-LZ-MH172

C

THE STANDARD DEVIATION OF FIT

The differences between the observed and computed values of the direction cosines can
now be found:

AL=TLy-L,

LM =M, - M,
These differences are sometimes referred to as ""residuals', although this term is also used
in a different sense in the method of fitting by least squares. We compute these differences
for each observation in the set of observation data. The number of observations in the set is
variable, and it may be determined by an input parameter n.

The average residual is given by:
R-1 3 (OL, + AM,)
n i i’
i=1

where the subscript ""i"" ranges over individual observations.

The standard deviation of the residuals from their mean value is found from:

o= 2_1n 2 [(ALi -R)Z + (OM, _E)2]

i=1

The standard deviation of the residuals (from zero) is called the standard deviation of fit,
and is given by:

o, = 2_n_1:_6 Z [(ALi)z +(AMi)2]

As is customary, the larger multiplicative factor (2n - 6)7! is used to indicate the excess
of simultaneous equations of condition over the number of independent coefficients (see below
under section titled, "Fitting by Method of Least Squares'').

We may also determine an acceptable range of values for the residuals, bounded by an
lower limit r, and an upper limit r,, based upon the standard deviation. If a residual falls

outside this range, it may be rejected, with statistical validity, from inclusion in the fitting
process. For example, we may choose:

rlzﬁ-jcr

r2:R+jU
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For normal (Gaussian) distributions, 68.27 percent of the cases are included within one stand-
ard deviation on either side of the mean ( j = 1 above), 95.45 percent of the cases are included
within two standard deviations (j = 2 above), and 99.73 percent of the cases are included within
three standard deviations (j = 3 above). For moderately skewed distributions, the above per-
centages may hold approximately. I certain of the residuals are rejected on this statistical
basis, the standard deviation of the accepted residuals only may be computed as a "working"
standard deviation of fit. Its value is computed exactly as is o; above, with certain terms
omitted in the summation, and should be substantially smaller in magnitude than o,.

ANALYTICAL PROCEDURE OF DIFFERENTIAL CORRECTION

The first-order Taylor series expansion of the equations of condition may be written:

AL=Ly-L, = Z 5a 0%
1= !

6

M,
AM =M~ M = E o Aq;

i=1

where q, (i = 1,2, ..., 6) are the mean or Izsak elements given below.

q; = a, the semi-major axis.

e, the eccentricity.

9

q, = 7, = sin I, where I is the inclination of the orbital plane to the equator.

q,
motion.

B, , corresponds to the negative of the time of passage through perigee in Keplerian

q; = 53,, corresponds to the argument of perigee in Keplerian motion.
g, = fB,, corresponds to the right ascension of the ascending node in Keplerian motion,

We may expand the above partial derivatives by the chain rule as follows:

3L, 3L X, 3L Y, 3L 3,

9q, T X dq, Y, 9q, B_ZMqu

oM, OM_ ¢SX, OM_3Y, M, 9%,
—_— e —— t —_— .t —
9q; °X,9q; 9Y, 9q, 07, 9q,

From the equations for L. and M, in terms of the local co-ordinates given earlier (refer to the
section titled, "Computation of Direction Cosines'), we find directly:

3L,
X

SO Y BTV O Y T
M
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c ~3/2

- - 2.vyv2 2
= = XY, (X2+Y2 + Z2)

EY"
oL

© ~3/2
sz, N XY+ 20
M 372 oL
— 2 2 2\~ - <
ax“ xﬂ YI (x- +.Yl + Z‘) aYi

M

c _ 2 2 2-1/2 _ -3/2
oy, - Fu et Ve XYyt
M vz (X2 +Y2 + 24y
EYA MM M M M

M

Since the co-ordinates X,Y,, Z, and the angles v, and ¢, are independent of orbital param-
eters (and merely geodesic functions), we have the matrix relation:

.
%

3Y,,

9q,

IZ,

[ %%

. X oY AZ
e find —,—— , —
W 3q;’ °q; ’ oq

in the relations:

oX
cos ‘Px sin -,bx 0 2.
3
. . . ) Y
- siny, sin cosy, sin gy cos g, _Bq.
. . 32
siny cos &, -cosy cosf sin % TR
1

by substituting:

p=a(l -ecosk) and ma7n, siny

X= f(F+eyd -2 cos¢

Y = '/(pz ) A -7 sing

Z=pm

and then determining BE/éqj , 3¢ /3q, , and 3/ 9q, . Here E and ¢ are uniformizing variables,

analogous respectively to the eccentric anomaly and the argument of latitude in elliptic motion.

The parameter ¢ is the third oblate spheroidal co-ordinate, the geocentric right ascension.
The procedure for determining the eighteen partial derivatives 9E/3q., o¥/2q, , and #: /-q, is
a rather lengthy one which is initiated in the next section.
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Before embarking upon this procedure, the following comments are in order. The ana-
lytical partial derivatives in the differential correction given in this report correspond to the
case where (b, /b,) <1 only. This excludes equatorial and near-equatorial orbits. More
specifically, orbits where the inclination I is such that

0<I<I, or 180° - I_< I <180°,

where I_ might be as large as 1°54' for an orbit sufficiently close to the Earth, are excluded.
The analytical partial derivatives for the case in which (b, / bz) 2 1 are, in fact, simpler in
form, and they are derived in an analogous manner from the equations for this special case
presented earlier in this report.

The differential correction process may be carried through to terms of second order, or
it may be simplified to omit terms of purely second order. This is not quite the same as carry-
ing the process through to terms of first order, since some second-order effects are included
even when terms of purely second order are dropped. Generally, the speed of computation in
the differential correction will be increased considerably by neglecting purely second -order
terms, without risking any great loss in precision of the final differential coefficients for the
conditional equations. It should be remembered, however, that even a slight loss in the pre-
cision of the differential coefficients may cause an additional iteration in the least-squares
fitting to be necessary. An option to choose the method desired in the differential correction
may be provided by inclusion of an input variable assuming either one of two values as appro-
priate for the choice. The terms that are to be omitted in the simplified version will be indi-
cated as such in the sections that follow.

PRIME CONSTANTS II

The following parameters are utilized extensively throughout the differential correction
process and must therefore be evaluated beforehand. In many cases, the parameters are those
that were computed previously by approximation methods, and are here re-determined by more
accurate expressions.

p=a(l-ée?)
D= (ap-c?) (ap - cipd) +4a2c?n?
D' =D+ 4 a%c? (l'ng)

B _ _ 2
A=-2ac? D! (ap - 292y (1 - nd)

B=c2n2D! D

1
b‘ B 5 A
b,= VB
.1 I
al = 5 o (a + bl) .
o, = lu(a+b)™MY? [apD' D! - (1 - 72"
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a, = a, {l - c? 7 lapD’ ! - 21 - 773)]-1} 1 q - N2
722 = ¢2 D (ap D)?
q = g3t

k= C2 p—2

DIFFERENTIAL CORRECTION: TIME-INDEPENDENT PARTIAL DERIVATIVES

Compute the following in the order indicated:

op

— 1 - e2

da

Eg: -2ae

de

—1
X --1-etyp?
da

-1
op ~2ale a- e2)-2
de

oD
S5 - 8ac’ng +2p [2ap-c? (1 + )]

oD e,
= -2 2 op
3T = [2ap - c2 (1 + )] a ==
-él-)-:Sa"’czno—2(ap‘-c2)0277,J
B'r]o

D' _ 3p 2 4 - 2
aa—a—a+8ac 1 770)

3D’ _ 9D

Je Je

D’ oD
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Jda da
D! -29D
de de
! p-23D
3770 a'r]o

ob 1
1 -2 op _ kg
Fe e (7o) [amﬁ @ inp “‘]

9b
—L.gc2 |3 (ap-cind)y-2ey D“] (A =-nd) =29, (ap - c?nd)
97y 37, 0 0 0 0 0

ob 1 , . oD , aD-t
a2 :_é_ 0770 (D D—l)—l/2 (IT —é;+D ?
3b ) 1
2 1 D oD
1 D' D-1y-1/2 [p1 + D’
de 2 ¢ mo (D" D7) de Jde
ob, L1 cm (D' Dr1y-1/2 (D-l o, D' 3D_")+ c(D'DH/2
dn, 2 ° 37, 9mo
da db
1 1 -2 1
=ede e (03
da b
1 1 _2 1
—_— == +b —_
- “3H (atby) -
da 1 abl
Lok @rbyt—
97, o
da BDI D1 2\1~1/2
2 1 - . ' m-1 - .2 -
S==5 b (a+ by {[2;»1) D!+ ap(vl S S )] [ap D'D-! - c? (1 - 72)]

m-1 2 2 abl
-(a+b,)? [apDD! -¢ 1 -nH]1/2 1+-a——

a
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~ ’ -1 _
:% [u(a +b,)=1}172 {[anrn-l ;_P+ ap (D'l %% L D %_)e_):l fap DD - c2 (1 - n2)]-V2
e

3b
- (a+b))y! lapDD-t ~c2 (1 - 722 ‘5%}

' 1 ’
=2 l@eb) Y2 ap (Dt vt D) 422 q) ap DD - e (1 - D)2
2 3, 3y

]

db.
~(a+b))! [apDD-T~c? (1-nd)]l/2 = l}

a3t

da

il

i

da,
da

da.
Je

2 %2

an,

il

2_2 1.2
a-nHt? e P L
oa apD'D-1 -c2 (1 - 7))

-1/2
C2 a C27]2 an’ “p-1
+ o % 1- o 2pD'D’l+ap<D‘1 Dy D )
Z[aPD'D“-Cz(l—ng)]z athD—l_c2(1_.,’g) da da

2.2 1/2
1 -n2 1/2 3(12 1 - €% Mo
= {1 = mg) ) 1. .2 2
€ apD'D-! - c? (1 - 7p)

-12
C2 a C2772 3 ! [¢) -1
+ o % 1- ° l:aD'D“ a—p+ap<D'1 Dy 2
2[apD'D‘1-c2(1—77§)]2 apD'D"1-c2(1 —773) € oe k
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3 2.2 172
31_3 = (1-n2)12 20 € Mo
BT] 0 an ap D'D-! - 2 (1 _ 7](2))

-1/2 , .
i ? D , D

+ c 7]00.2 1 C 17(2) 2(C2— apD' D—l) + aP"IO <D_l a_ +D W)]
2[apD'D™! -c?(1-72))2 apD’' D1 -c2 (1 -7d) 7o y

23— 1
=My 23 (1 - 75)

i ~1
om, 2 1 oD’ +ap 9D
- _ , D
3a 2 pc  m, _D 2D ta 5 - a
am, [~ 3 3D p-t
1 - 1 -1{p* °P , ,
5o :-5 ac? M, | D (D e P 3¢/t PD e

7 o 97
29 L -z o
da 072 R)
Sa__ Mo 732 o,
e 072 3e

By :‘(a+bl)—2 ae

oB
3 15 dq
1 :<—q +—q3>

8 32 da

3
By (34,015 5) 2a
de 8 32 de
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9q
3770
de

g
y

1s
32

9
16

3
1

(

2

9B,
de

1 9 3\ odq
gt = —
(2“ lﬁq) 37,

9B,
3 o

_2 9B,
2 3a

-1
8B2
da

-2 Bp
da

’bzp

ab,
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b b\n.- b
tp (1~ ez)x/z{_a%; (‘p‘2> Z n (;2) ' P, (#)Rn_z[(l - e}H)l72]
2
3 by . E":(ﬂ) __21/2}
) £ e

where P (x)is the Legendre polynomial with argument x of degree n, and P. (x) is the deriva-
tive of the Legendre polynomial with respect to the argument. The definition of R is as given
previously, viz., R, (x) = x"PF_ (1/x), All infinite series are computed by an iterative method,
with computation of terms ceasing when the absolute value of the ratio of successive terms
minus unity is less than or equal to some pre-selected tolerance.

JA
1 -1 8_p —Ale(l—ez)‘l
e

—e2y12] 2 (B - _b_z. " <_bi> _e2yl/2
s (S OF 7 (e o
i i (E)n P’ El R [(1 - e2 1/2]}
" e (b2>z p "\b,/ " ( )
+ ~ ol)-1 B\ [(1 - e2)1/2}"-2 5 ©[(1 - e2)-1/2)
pe < (1 —¢%) Z ;— ( € P b P, K e’)
2

b \nr b
- E (n - 2) (__2_) [(l - e2)1/2]h—3 P (_.l> P o [(1 - e2)—1/2]}
p n b n

n=3 2

A 3b, b,\-1 b
8_1 - (1 - e2)1/2 a_2 Z n (_2> P ?1 R, , [(1-e)/2)
7o T b= \P

2

SRR GAN <BE>R [(1 - e*)'/?]
+pﬁ<b2>2<p> SACVAL
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BAZ p-!

da da
b\ <« b,\"-1 b
Ca2y1/2 -1 ) 8 (P2 el P(__l)R[l_zl/z]
o
3 bl) © (_bz)np' (Pl)R (1 - 21/2]}
+_a_a(§2-Z S » \5, . (1 - e?)
9A, op-!

- - a2y=1
52 cAhpS—Ae(-ed)

3 (b, b2>n—l (ﬁ - e2)1/2)
+ (1 - 62)1/2 p-l {_é; (;—> Z n (; Pn b5 Rn [(1 e )

n=1

2 (b i(i)n P (_.‘_) R [(1—e2)‘/21}

ely) Ly \B) g R
2y ~1 had b2 n - .2 1/2]“P (_‘31) P’ [(1 _e2)-l/2]
oo {azer O3 aserare ()
n=1

Y b \n b .,

F o e (e o)

n=1

]

© ne b
b (1 - e2)172 p-t _B_(E) Z n <E) 1 P (_‘> R, [(1-e%H)1?]
my any \P/ L P b,
;.0 (b1> Zm: (E)n P’ (_b_1_> R [1- ez)l/z]}
37, \by p/ "\b,

n=1
-1
A3 o ai
d9a da
-1
aAz - - A-2-2 _ai%
Je de
JA: . aAz
= - A7 —_—
S 2 om,
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3A2 op
1 _ -1 —el/2,5-2 - -1 9p
da - A21 p 5a+ (l € ) P e{ bl P g

ob

+=2 ~2p72 (3b? - bd)

cb ob
P _1 1_ 2
™" +2p <3b1 —-b )

op
da
9. 1 3 3b 3b

+Eb2p 2 <1+Ze2) <3blb2p"l a_i? - b, 1 oy 2

a

3 _ ob, e
+y B Pt (44 3ed) <T -bpt P

9
Ay = A, {_e (1=e2)-1 4 g-1 = p-1 %E]

ob
+(1=-e)l/2 pu2g Jup -1 9P P, 2 _p2y P
P SE ¢+ 51 2072 (3 - b2) 5

ob 3b,
-1 —1 _ 2 9 _ 1 3
v (o S ) S (k) e 2 on Sio

+§ b3 p~ (4+3e2) (z_t:: - b,p-! g_i>+%b§ p=?e (b} p-! -bl)}
8:7721 =(1-e)Hl2p-te {? +2p-t <3b1 2 - b, a&>
o o 97 97,
_%bzp’2 (1 +%e2) <b2 ;)—; + 2b 2_:2>+ % b} p3 (4 +3e?) %:—z}
D, P el (1 - et {[— Pt (302~ b2)

27, 3 3
+ = b, b2 - = p-3 b? +21._P
2 P Ty 2 (67 €D |5

-

9 3b, 3 3b
(3by = 2Pt BY) = S9pT bby +2p bl (6+e?) - b, -ﬁ
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de Je

1

9
3. -3.4 2y | 9P 9 1.2

el b £ b, -= b2} —
3 P 2(6+e)]ae+ 3b, 2P

3

+ {:- 9p7 b, b, +-5-p°2 b3 (6 + e?) ‘bz]

2A
22 -A,, [p-l a_l’+ e (- ez)-l]

2

9b
de

)

+.4.p’3 e? (1 -e?)l2 {[— P! (3bf -b2) +-277p'2 b, b2

b,
de

+%p'3 e (1 - e2)1/2 [3&;3 ~b2-9p b b2+3p-2p4 (3, e2):l

3

+ [— 9p7 b, b, +3p'2 b3 (6 +e?) -bz]

o - = 1 _-,7;2)‘3/2 T);3 + 2

22 :%p—s e? (1 - e2)1/2 {(3b1 -

2 p-1p2 °b,
2 2} 3q

0

my, ny2" !

m=2

9b,
97,

2

—

-

where »_ has been given above in the section titled "Mutual Constants."

oB; 97 .
3 _ 2 F(l-ngz)"3”2n'3+2

@

E my, 137771

de de 2 =
- m= -
JB Ej e~ - = - gm- - 9V
3 _ T2 (1_7)22) 3/27]23+2 “‘7.”’722'“ il Z: (a )-’/;2"‘
97y  °M, i = J — Mo
where
m—1
% (2my: Z @n)! @n) oy
O 2™ (m1)? ket 2 (12 O
2A 3 2 oD
—3_ -1 9P _ e2y1/2 -3 1. e2)1/2
2 - " 3A P+ 2-1 Rip [ - eHV]
prs

where 3D /3a is computed as follows:
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If n is an even integer, then

3D 3D, : , A b\ 2® b
e e (G () e (3)
i 2

da da
m=0

b : ) 2¢i-m) (b \m-1 b
+2 _a. _i (-l)l'mm (i) .—2 sz _l
da \ p Z P P b,
m=0
+__B_ l)l l (-i-m (£ 2amm P_z_ zmp' P_l.
da\b, p p 2m b,
m=0

If n is an odd integer, then

. i 2m4l
3D 9D, 3 < iom - c\2(i-m)-1 (b2> (bl>
oo 2l -2_P§ PTG -m) [ — = P —
= 2cp Sa ( ) ( )(p) P 2m41 b2
m=0

da da

b\ © 2i-my [b\?® <b>
9 2 i- c 2 1
— = -1 (2m + 1) — — P —_—
+aa<p>Z< ) ¢ >(p) <p> it |,
m=0
i 2m
3 (B E 1y S 2(i-m) bz) " P’ b,
+a—-a b_2 (-1 (';) T 2m4 1 b2
m=0

2\1/2 aDn
ZRH+2|:(1—e) ] —
1

n=

oA
3 - A, [3p-1%+e(1 _62)—{\ +(1-e?)l/2p-3

[«

rep 31~ e2>“i[<1-e2)”2] ""p P, [(1 -ez)'m]-z (n+2) [(l-eﬂ)‘“]"+l DnPn+2[<1-e2>"/2]
n=0

n=0

where D_ has been given above in the section titled "Mutual Constants,” and where 9D /ve is
computed as follows:

If n is an even integer, then

oD oD,. : 2¢(i-my-1 [b\ 2" b

noo 2 -23221_ iem o omy (S 22y p [

de de 2cp de D G m)(P> P 2m <b2
m=0

3 (b, i coo fo\2¢iTm b, 2m=1 b, 3 ﬁ : ’i_m e 2(i‘m)& 2m , (b,
) Len o) ) T ) 26 Lo TR e
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If n is an odd integer, then

oD oD

2m+1 b
n _ 214'1_ - Bp Z : iem 2(i-m)-1 (b, 1
g— -2cp 2 (- 1) (1-—m) ( ) ; P2m+l b

3 (b © i=a c\ 2¢i=m) (b)) 2 b,
+s;(?>Z<‘” ey (2) (?) "””(b)

JA 3D
3 _ 2\1/2 -3 E 2y1/2 n
—==(] - P R 1-e
3 o ( ) n+2 [( ) ] 3770

n=1}
where 3D, /37, is computed as follows:

I n is an even integer, then

- i .o 2m -1
D, B} aDzi - 2p! 3_3; . l)l_m (E) 2(i-m) (_‘iz.) P (_b_l)
B-r)o BT)O B'r;o - P P = \b

m=0

L0 R

If n is an odd integer, then

3D 2D.. 3b, o ‘ 2¢i-m) [b)\ 2@ b,
n 2:*1:1)--1a 2 Z -D'""2m+1) <i) ;2 Prt1 '
3m, 07, To &= P

3A 3 3 - 3.2
31 _ -1 9p _a2y1/2 -4 P i b 1 (3;:2e
Sa T YAuPggrd-ehiete 33[ P ( ¢

Jb ob
- 1 1 32y 02
+2P 2(4+382) (Eb§+cz):] +-,—a—a~ (3 +'Ze> 'Szbz

p ! (4+3e?)

-1 0P - [
_ 1 3 __
Se - 3AaP 5o-pt A
- Bp - 342
-p-2 (%b§+c2) (4+3e2{]+(1—e2)1/2p 4. £ I:.blp 1 (3+4—c)
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e R




Jr%b1 e-6pte (%bg + cz)}

32 -1 9 - 9 - 1 3 -
da :-3A32p la_§+(1_e2)l/2p 4 e2 {% [P 2 (%bg-sz) <3+§e2> —ZP lbl:l

32 _ -1 9P 2y~ 1 _e2v1/2 -4 .2 JOP | -2 1.2 5 1
5e =-3A,,p ﬁ-Aue(l—e) + (1 -e®) p e { p 5b2+c 3+5e2

Je

+(1-eh)l/2pT3e {-;-(1 +3b, p7h)y-p72 (%bg +°2> 3 +62)}

A ob 3b
32 - 3 1 1 - 1 2
= (1 - e2 1/2 4 e2 Past 1 b (3 _ez)

87;0 ( ) P I:4 Bno 2p 2 +2

oA
33 ~1 0P - 9p |2 - 1 1 -
- - 3A 1 ¥ 1 - e2)l/2 4 o3 R Nl 2 ~b? 2) - b
Sa 2P gt (- me e {aa [3" (2 2 ) TP ™

+_1 io_l_lp'lb a_bz
12 2a 3 2 3a

A,

— :-3A33p'1%2+p’492 [3(1—e2)1/2—(1—e2)'1/2ez] [.1.15 bl-%p'l <%b§+c2)j|

e

9b 3b

- ) 2 . 1 1 _- 1 1 1 - 2
+(1-e2)1/2 5=4 o3 P [25-2 (12 .2} _ 1y — ——~-Zp b

Goepteiage 37 3% ) "2° M fmEe T3 e




a3b 9b
BA“:(I_ez)l/z preed | L1 1 -ay 2
97n 3

JA 3b
34 _ -19P _ 1 4 _y1/2 =54 _ 2
da SA P da 32(1 e Tp b, da
oA 3 1 1 1 2N1/2 -5 oty 002
EL -10p 1 3 -5 i1 1-ey"1/2e2 _ (1 - e2 1/2] (_b2+c2) - (1-e})/2p~Seth, —2
e s p 2Bt [Ra-e a-ent2| (1u2 5 e
A 9b
. 34:_i(1_ez)1/2p-sec bZB 2
07}0 32 T)o
da
dv - 1
1 1 2 .2 -1y-1 _ 1/2
aa :——2-—;7-(8 +bl +A1+C TIO A2 Bl B2 ) {( 20") da
3b, 2A _, %A, -1 9By
! [I%—T* 76818y 5a t oA (B 53
BB;I 1/2 2 2A B B-l -1
+B, >a (- 24ay) (a+b, +A +c? A, B, B,Y)
da
dv - 1
1 1 2.2 -1y-1 _ /2 1
E-:.5._7;(a+b1+A1+C ng A, By B {( 2a,.) Se
3b, 2A 3A 9B,
1 1 2 .2 -1 2 2 .2 1
[Be +"a—e'+c TZOBl B2 3e +C 770A2 (Bz Se
9B;! ;1 -1
+B, az )} (- 2a)1? (a+by +A; +c? 15 A, By B3T)
dv, 1 A 2,25 B BIH)! {( 20,)"1/2 da,
—_ = = + b +ccm - 1
97, 2TT(a+ 1% 02T 2 97,

3b 3A _ . OA, _lBB‘
+[ L 1+C277(2)B1821§—7—7—+C27}(2)A2 B, 3770

9B;? _ -t
: ) +2c? nOAzBle‘:l (-22)%2(a+b +A +c2n2A, B ByY) }

To
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) 18- -1 0
2_7;7701 @+by +Ay +c? i A, B B! {(ai - aj)t? le__aAz
a

+(a2_a2)—1/2A B’l a &_a ﬁ
2 3 272 2 da 3 da

3B;?
) 2 -
+ (a2 —al)172 7, oo -(ag—ag)l/zAszl [1 + " +

—1 2 -1\~
2 5. TBi T3, >] (a+b, +A; +c? 72 A, B B} 1}

oA
) S -1\~ -
5';7701 (@a+b; +A; +c2n2A,B B! {(ag -aZyl/2 g1 ae2

-1

da da 9B
2 3 2
> +(a§_a§)1/2 A2

2 Be—a3 de

2 _ . 2N-1/2 -1
+ (23 - 93) A, B, <a e

- 1 1 -
- (@2 -al)1/2 7, B! [-——+——e +¢c2 12 B B!

- _aB__l °B3’ 2 2 ~1y-1
+c2nlA, (B! 5 +B, 5 (a+b, +A; +c?2n2 A, B, B

9A
i - 2 .2 -1y-1 2 2y1/2 -1 __ 2
2777701(3**b1+A1+C 5 Ay BBy (a3 -a3)"* By o,

_ . da, da, s ais2 9B;!
+(af -a))71? A, B <a2ﬁ—a3 37 +(a; -a3) """ A
0 0

2 2y 1/2 1 ob, aAl 2 .2 18A2
- - A, B —_— B, B, —
(a3 =9 2 B2 3n0+3770*c Mo B1 By 37,
2 .2 -1 9B, BB;I 2 -1 b A 2,24 B B-1y1
+cnz A, [ B, o + B, 37, +2c?mn A, B B (a+b, +A, +c*n5A,B B,")
o

- (a2 - )23l B;‘}
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The following time-independent partial derivatives are computed only if the differential
correction is carried through terms of second order:

3A 3 N ob b
11 _ -10F _3 4 _ o2y1/25-3 ap ! b b -b2 2
da 3AnP 5] 2(1 ehEpTieb, [b1b233+b2paa +20,p-by) 57
Ay _3 -3 3 2N-1/2 2 2\1/2 =1 o OP 2v1/2
E‘:Zp b, (2b,b, p ~Db3) |(1-€%) e?+3(1-e%)*p eg—(l-e)
b 9b
3 - ap 1 2 2
—y (R e b, [bx "zs:*"z"s:*“bxp'bﬂ'a‘;]
oA 9b Jb
11 3 21/2 -3 1 2 2
=21 -eH) ¥V eb b, p +2 (b, p~by) —
37, 2( )ep 2\: 2P 34, (b, 237,
3A 3b ;5
12 _3 4 a2y1/2 5=3 o2 1,3 (_ﬁ_i -1y 2P
52 s e TR T MA\TI TP %,
JA

°ob 1 -
12 _3 /2 53 o2 13 2_3 -1 9P} . 3 -3 p _eny1/2 _ 1 g _e2ym1/2 g2
:g(l-e2)1/2p 3¢ b3 (z_-zp b23e> +16p eb; 1 (1 e?) 2( )

3b
oA :i(l-ez)‘/zp'3e2b3~ 2
an, 8 231,

3A 3
_ -1 9P
NP

2 - -1 -2, 9P
(1-eh12p 4 edb, [(3b1b2p _4bgp2)§;

0] =

ob Bb2
1 2 ,-1 _ _2
-bz—é—a-+2(2b2p bl) Sa

ob b

-2y OP 1 2 -1 2
- - -1 _ 3p"2y_E b, — -b)—
- 23 - oA, P! g:+;(1 _e2)V/2p 4 edb, [(3b1bzp 4blp )Be b, 5= +2(2bp D) Be]
e

+

o=

p-4 el bg (h§ p-l _bl) ‘:3 (1 _ 82)1/2 - (1 - ez)-l/z e{l

3b b
23 1y _e2y1/2p74e3p, [ -b ———’+2(2b§p"—bl)—]
==Q1- 2 237]0 ano
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24:A 4b-lﬁ-5p-l dp +—3—p'5b4e3 4(1_82)1/2_(1_e2)’1/282
24 2 e e 2

DIFFERENTIAL CORRECTION: TIME-VARYING PARTIAL DERIVATIVES
WITH RESPECT TO ENERGY-MOMENTA VARIABLES

We now compute the following partial derivatives of time-dependent parameters with re-
spect to the orbital elements a,e , and 7,. We shall later compute the partial derivatives of
these same parameters with respect to the remaining orbital elements 58,, 8,, and 5,.

3Ms_ A 25 a=1p2p B!
32 2"y 3a t+fy -c?fByayt ng B By

-1 B!
-v,c2n? g, (B B! 222 +a'1B-la—Bl+a'lB 5,
1 o2 \P1%2 Ty 2 P2 g 2 %1 T3,

BMS_ BVI 25 471 n2p g1
5e - 274 3. t+ B -t fByay mg B By

daTl 9B 3B;!
1 B
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Je

oy dv
2z-27 {——2 [t + B, +/32 a;‘ A;l (a +b; +A1)]

L A 3aj? a1 b .
+v, [B,(@a+b; +A)) {oF v +Aj ™ + B8, a,1 A3 (1+B_a+?a—)]

:‘u[zs_ BV2 o1 a-t
) =27 5 [t +ﬁl+[32a2 Ayt (a+b, +A1)]

-, 2AG? L PR 1)
+ v, [Bz (a+b, +A)) (a2 3o +A; oy +B,a, b AY Te

81/2 _ _
=27 [t +,81+,82a21A21 (a +b1+Al)]

0 9y

)]

_, PAY _ daj? 1oy (3P 2A
+ v, [,32(8+b1+A1) (a2 3, + A Fy + 8, a,t A} —-+a—7-)-;

oM .
=( s+a—esi_n8) (1 -¢e' cos £)!
a

+ — sin 8) (1 -’ cos £)!
e

oM .
3( s+3-e—sin? (1-e'cosf)™1
3m, 97,

=(1 -e?)sin £ (sinv’)"! (1 -e cos 8)'2E - 53

5

s

Jde

= [(l - e?) sinf:‘—g—g-rsin"’ 8] (sinv) ' (1 -ecosf) 2 -
e

=(1-e)sin€(sinv )"t (1-ecosf) 2 — -
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CIUA da, da, -1 1 oa; 3B
g:xﬁo [(azg—as—a—a (al-a) --2-0.1'1-— - Bl =2

a‘l’o_ %a, da, s -1 1 da, " 9B,
'a-e"‘/’o “2%5e ~ %3 52 (a3 -a3) A TS =B ==

%:\IJ a ﬁ-a E (a2_a2)-1 —la—l aal _g-! aBz_n_
o, 0 2 37, 3 3, 27 % 7 %1 2 o
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- - 0
¢ (-20)72 (@ - oD/ gt By <A EoN _>
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oM . 9b, -1 2.2 1y Vo
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W, | oA, ! 38;!
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1/2 -172 |1 4 . 1
(a2 - ad) [Zallsxn 2y, + 2y 7Y

778 (- 2(11)

-+

oy, Y 1 _ da, da, ]
+ cos (2y, + 244) <a—a 'ﬁ> -3 (ag - ag) 1 <a2 =a oy a—a sin 2y, + 2y,)

oM

. _, b, . 2.2 4 B gl Oy
S F -M(arb) 5= -(a+b) (Ap+c®mp Ay By B =0

oA JA 3B 9B;!
1 _ 2 1 1 2
+ Vg {-—: + ¢? 773 <Bl le -:(;— + A2 82 —8? + A2 Bl e

Ja EIVN Y
(a2 - a2y71/2 B apl sin (24, + 2¢,) 8_91 +cos (29, + 2¢) (-—— + —°>

de de
da dn
- % (a2 - oy <12 a: - a, a:> sin (2, + 2¢0)}}
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[¢] ...m

|

[o%)
3
)

-1 abl -1 2.2 1 avo
—-Ml(a+bl) -E'T/’(,—(a+bl) (A +c noAszB;)g

0

-1
+ v E +c?n2 (B, Bj! -a—Az-+ B;! -E—B—l A, B 5 +2¢c? B, B;!
o |3, o\ % 55, A, B; e t 82 5 o 7o A, By B

E} 3 ]
- %Cz 7}(3) ("2'11)1/2 (ag - ag )-l/2 [..l_ aII sin (2yy + 2¢,) a—:l +cos (2¢, + 2yy) (_& + l‘l)
o

4 CUMCEN
TN Oa, day .
3 (a3 - a}) <2 -BTO -a, 3—7)-0 sin (24, + 2¢y)
_ %c? 2 (- 20,1)1/2 (a2 - a§)-1/2 sin (2¢, + 2¢O)}

aM !
(1-e' cos&)! -a—al -M, (1-¢' cos&)? (e' sin £ %— cos £ aaia)

. -3 . 1 e' 3 N . -1 [ - 88 ae’
-M (1-e'cosf) “sinf [EMIB_a_EM‘e (1-¢€'cosf) (e smga—a cosga—a

1, o, M,
+5M1e C°t88_3+e-$
aM ¥
(1-e' cos&)™! B_el -M (1-¢ cos€)~? (e' sin & gé—cosg a-aie)

-M (1-¢ cos©) 3 sin?® [‘;‘Ml aa—ee —%Ml e (1-¢' ccosE)'l 63' sinE%%—cosS %)

1 1 ma ,aMl
+EM1e cotc¥+e —a:

oM _ de’
(1-¢e' cosE‘)‘l—l-Ml (1-e cosE)? [e Singﬁ--COSS <
LA LN 37,

. -3 . o |1 ce' 3 . . -1 . 9f de’
- M (1-¢"cos€) “sinf [EMIE_—Z—MIE (1-¢'"cost) (e smgﬁ cosSﬁ
o oM
+—M1e'cotc—a£.+ '3—1]
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-

Q)
o

JE 0 3
= (1-e?) sin (€ + E,) (sin v")'l [1-e cos (F +E1)]'2 (ﬁ + _1) - (& + ﬁ)

BMS Bvo
“\%e " e

{(1 - e?) sin (€ +E)) (—g—

da da da da

€+3& + sin? (€ +E)| (sinv)™' {1 g+EHI7?
- = " sin v - ecos (€ +E))

oE,
an o7

oM 2
= (1-e?) sin (€+E,) (sin v")'l [1-ecos (8+El)]'2 (a_s + —) - (——s + 2)

0 o CLICUN

da da oB
2 2.-1 2 3 -1 2
+ (a3 - a3) <a2 33 3 Ba> - B; aaj]
dv JA
-1/2 2 /2 . - 1 2
+(-2a;) (af - a2)""* ng! B;! [Az =5t Vi 5o

1
+ (Ayy cos v’ + 2A,, cos

N

a B; sin (24, + 24;)

FNE

M, v, 34, 3A,,
2v') |— + —]} + sin V' + sin 2v’
da a da da

) L]
q2 B;l cos (2¢S + 2¢0> <£ + _\ﬁ_o->

da da

9q 1 _ . aBz
a— - g q2 822 sin (2¢s + 2¢/0) B_a
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Ay 1 ) 1 da _ da, day
Fyl |:\/;1 _gq"'BEl sin (2¢, + 24) —Ea;l —8:1 + (ag—ag) ' a, == -ay; ==

OB, _ 1/2 avl 2
- B! a—j} (-20)7" % (@3 - o)) gt B A =2 v, 5=

oM, v,
+ (A, cos v' + 2A,, cos 2V') 5o " 3e) * sin v’

{3y )

q? B;l cos (2¢_ + 2y4) k‘% ==/ tz39 B;l sin (24, + 24,)

]

3 om2 oB,
q° B, ® sin (2y_ + 2Y) e

00+t

B\/) 1 B 1 aal -1 'aaz aa3
—t [,{/l—g ZBEI sin (2y +2¢0)} I}Ea;l¥+ (ag_ag) a a,

BT]O 1} 2 3770 3770
3B i v 3A
_p %82 _ -1/2 ;3 2\1/2 __} p-1 . -2
- B; _a")o - T’o]* (-2a)) (af —a3) " m5t By |:A2 7 + vy 5

oM ov 9A 0A,
+ (A, cos v’ +2A,, cos 2v") (—s+ -—0> + sin v’ 3 2! 4 sin 2V’ 2

8770 37]0 "lo 8770
Y ¥ 3q
1 3 p-1 J J s 1 B; ! sin (2y 2 _—
+ i q B2 cos (2y_ + 2yy) 3770 + B*JO + ) q B, (29, + 2¢g) B"’?o
1 poz 9B,
-3 q? B;? sin (2¢, + 2¢¥g) 3—770

The following time-dependent partial derivatives with respect to the orbital elements a, e,
and 7, are computed only if the differential correction is carried through terms of second order:

oM, -1 ob, -1 Ja ovy oA, ., %Ay,
a—a—-Mz(a+bl) l+-?a— - (a +b)) l-$+vl—a—a+smv FP

M_ v, SA,,
+ (A, cos V' + 2A,, cos 2V') == "5/ sin 2v’ Py
a

2.3 -1/2 , 3 _3.-1/2 Qa, 1/2 , 3 3\-3/2 da, cay B U
- C 770 (_ 2(11) (az - a3) _—é_; + (" 20’1) (a2 - a3) 12 ?a. - a3 : 1
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oY 9B
1 . 1/2 -1/2 1 1
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e
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I ' s 0 . A 12
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1
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| o, B 1 TR
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, oM, v, °A,,
(A, cos v’ + 24, cos 2v') |——+ =—] + sin 2v’
o

+ M o7 37,
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37, 4 8
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A A 2A E
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a7y 97 oM, 7,

d 1 )
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9

v
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. 3, 3 4 4 A
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07,
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3n,  9n, oMy 9my 97,

This completes the computation of the partial derivatives of the uniformizing variables E,v ,
and ¥ with respect to the orbital elements a, e, and 7, when the calculation is followed through
terms of the second order. If, however, second-order precision is not necessary, we can
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eliminate the terms with the subscript "2" (thus omitting all partial derivatives of M,,Ey, vy,
and ¢,), and the above partial derivatives of the uniformizing variables reduce to the followmg

3E o8 °E,
; da da da

JE ot oK,
de de Jde

—_ = — %

Te T Te Y Te * de
e ¥, . ) . )
97y B 7o T

We now continue with the necessary equations preparatory to the partial derivatives of the
orthogonal co-ordinates X,Y, and z.

Ox _ . L - P L
Pyl (l-ng) sin Y (sin y) 1(1—7ygsxn2\,b) 3/2 =
B—X = (1-7})siny(siny)™! (1 -7 sin? 7372 oy
“ Je K] X (4 e
N :07;0. = (1-7)siny(siny)"1 (1 - 2 sin? yy~ 372 ;—%

- 7Ty COS Y sin? y (sin ¥)7 ! (1 - 'f]g sin? y)~3/2
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lx :X—(,¢2+c2)'1 paesinEEE_
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=
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(1 = 12 2 1 X
(1 - 75 sin®* )" ny sin Yy (770 cos _3770 + sin Lj/)} + —37)0
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a'ﬂo 8770 aT'O

DIFFERENTIAL CORRECTION: TIME-VARYING PARTIAL DERIVATIVES
WITH RESPECT TO ANGLE-EPOCH VARIABLES

We now compute partial derivatives of the time-dependent parameters from the orbit
generator with respect to the orbital elements 5, £,, and B,. This procedure is analogous to

the one followed in the preceding section. Whenever a partial derivative with respect to g, is
not given, it is assumed to be zero.

oM
S = 2771/1
9B,
oM
So= =27y czng a;l B, B'zl
3,@2
oY _ )
a_ﬁl =27y,
o
> = 27v,a; AN (a + by +A))
Bﬁz
) oM,
= -1 -ecost)!
35, ( ) 98,
M
o€ = (1 -e' cos €)1 .
38, a8,
v M
0 2 . A . iIn-1 -2 oF s
=(1 ~e)sinf (sinv (1 -ecosé) — - =
B,Bl ) a/81 351
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o 2 f[38 OB M, v,
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The following time-dependent partial derivatives with respect to the orbital elements 4, ,
Bys and 8, are computed only if the differential correction is carried through terms of second
order:

M (arbyt N (e, T
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This completes the computation of the partial derivatives of the uniformizing variables
E, v, and y with respect to the orbital elements 5, , 8,, and 5; (those with respect to 8, are all
zero) when the calculation is followed through terms of second order. If, however, second-
order precision is not necessary, we can eliminate the terms with the subscript ""2" (thus

omitting all partial derivatives of M, E,, v, , and y, ), and the above partial derivatives of the
uniformizing variables reduce to the following:

E_ 28 B
A AT
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We now continue with the necessary equations preparatory to the partial derivatives of
the orthogonal co-ordinates X, Y, and z.
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-
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THE EQUATIONS OF CONDITION

Now that we have found 3X/3q,, 9Y/3q. , and 3z/3q, for the Izsak orbital elements q (i =1,
2, ..., 6), we can complete the differential correction process by determining the equations of
condition. First we expand and substitute into the matrix relation given in the section titled
"Analytical Procedure of Differential Correction”. The matrix relation, when expanded explicitly,
yields the following eighteen equations:

)
Txl:cos¢x?_x+sin¢ra—Y
cda da * Qa
o) 4 ,
“ly oo X , ) ¢ . oZ
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R X Y
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de ¢x de I Yy Jde
BYM L Lo § . .! . 9Z
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= o —— j + < —
de S D 3Je x D D Qe
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954 CTEN Y9

;IBL::_ sin\ﬂxSin@D % + cos L,bx sin GD g—;;
i%sinnpxcosé’p %— cos y, cos &, 2_23

The last two equations have only two terms on the right-hand side because of the fact that
8z/35, = 0. We can now write out explicitly the twelve coefficients to be inserted into the equa-
tions of condition:

3L, oL, 90X, 3L, 3y, oL, 3%,

o —— p— ——
Ja oX, ©°a 3Y, oa 9%y 3a
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de 09X, oe 3Y,6 de 3Z, Oe

+

oM, 3M_3X, OoM_3Y
3F, X, 8B, Y, 3B, 3Z, 05,

3M_ 3M_?X, B3M_3Y, 3M_23Z,
—_— ——— —— ¢ —_—t —
3B, °X 9B, Y, 3B, 03Z,08,
3M_ 2M_3X, 3M_23Y, oM_2Z,

M, _M, =
3B, 0X,9B, oY, 03B, 0Z, 03B,

Finally, the two equations of condition corresponding to each observation are given ex-
plicitly by the following:

3L 3L 3L 3L, 3L 3L

AL=L_ -L =-—S2A S he +—EA —=A —=A —A
P T T v e T Y R Y R
. MR M M oM )
MM —-M - = , —S —_ e CAR 4t
e T T3, Tt I 5;*'352 ﬁ2*’aﬁs As

FITTING BY METHOD OF LEAST SQUARES

We have accumulated a set of 2n linear simultaneous equations in six "unknowns," as

follows:
s, foL A
@), =@y - M) = ) (aq°> Aq,
To1 i/i
) T 1i=1,2, ,n
S, [oam, A
AMy, = (M), - M), = Z _ |
(OMy, = (My); - M), L. \3q;) q;
1 1 J
) whereq;(i=1,2,...,6)=a,e,n,,5,,5,, B,- We regard the Aq, as ""unknowns," and the

number n of observations in the set is fixed in advance (see above under the section titled,
"The Standard Deviation of Fit''). The above equations, written in matrix form, become:
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where the matrices of partial derivatives have n rows and six columns, the matrices of un-
knowns have six rows and one column, and the matrices of observational residuals have n
rows and one column. Recall that, in the general case, the observed direction cosines (L),

and (,), have associated we1ght1ng factors (w,), and (wM) respectively (see above under the
sectlon t1t1ed "Computation of Direction Cosines').

@M,]

For purposes of this section, it is unnecessary to distinguish between direction cosines
L and M or between weighting factors w, and wy . Further, it is not significant, for the present
purpose, that the constant coefficients in the linear simultaneous equations have the form of
partial derivatives. In order to simplify the notation in what follows, we combine the two
matrix equations, each coefficient matrix having n rows, into a single matrix equation where
the coefficient matrix has m = 2n rows. Then the matrix of constant terms (i.e., observational
residuals) also has m rows. We rewrite the above two equations in the simple general form:

AX =B

where A = [a,;] has m rows and six columns and represents the coefficient matrix of partial
derivatives, X = [x;] has six rows and one column and represents the matrix of unknowns, and
B = [b,] has m rows and one column and represents the matrix of observational residuals.

The number m of equations we obtain by expanding the matrix relation is generally much
greater than the number (six) of unknowns, and since the observations contain inherent random
and possibly systematic errors, no exact solution of the simultaneous set exists. According to
the principle of least squares, the values of the unknowns x; which are preferred are those
which cause the sum of the squares of the residuals after the fit to be a minimum. The so-
called "residuals after the fit'" are calculated by substituting the approximate solution for the
x; in the matrix X, and subtracting the matrix AX from B. When the equations of condition
have different weights, the least-squares solution is that which minimizes the sum of the
weighted squares of the residuals after the fit, where each square is multiplied by its corre-
sponding weight.

The least-squares criterion is satisfied by reducing the m equations of condition to six
equations known as normal equations. This procedure is performed as follows, in which we
adopt the usual notation for matrix elements: the first subscript denoting the row number and
the second subscript the column number, The first normal equation is obtained by multiplying
the first conditional equation by w, a,, the second by w, a,,, the third by w, a,,, etc. and sum-
ming the resulting m equations. The second normal equation is obtained by multiplying the
first conditional equation by w, a ,, the second by w, a,,, the third by v, a;,, etc. and summing
the resulting m equations. If we repeat this process six times, we obtain the six normal equa-
tions. It is seen that this process is equivalent to pre-multiplying the matrix equation AX = B
by the weighted transpose of the matrix A, where the rows of the transpose are multiplied by

the corresponding weighting factors. The set of normal equations can be represented by the
new matrix relation CX =D, where

c.. = a.akjwk(i,jz 1,2,-°°+,6)
k=1
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and

d o Z a,, b w (i=1,2,"6)
k=1

Of course, if the welghtmg factors are not present, i.e., w, = 1 for all k, the elements c,
are precisely those of ATA and the elements d; are precisely those of ATB, Here the super-

script "T" indicates the transposed matrix.

We now have a system of six equations in six unknowns, since C is a square (and sym-
metric) matrix. In order to solve this system, we use a method known variously as the Gaus-
sian elimination method or the method of pivotal condensation. This has the effect of reducing
the square matrix to an upper triangular matrix (i.e., all elements below the principal diagonal
are zero) which represents the same solution for the x i-

To begin this process, we choose the element of the first column of matrix C greatest in |
absolute value, say c,, . We then divide all the elements of the k" row (the 'pivotal row") by
the so-called dominant element (or "pivot"), ¢, . This done, we exchange the corresponding
elements of the pivotal row with those of the first row. The leading element c,, of the matrix
is now unity. We now replace all the elements in each row beginning with the second row by
the following procedure: multiply all elements in the first (pivotal) row by the element in the
first column of each row successively and subtract this product from the corresponding ele-
ment of the successive rows. Mathematically, this is indicated by:

€5 = ¢4 €1 Oy (1=2,3,""6; j)=1,2,"--,6)
Since = 1, it is obvious from this equation that c;, = Oforall i =2,3,..., 6. That is, all
elements in the first column except for the first (diagonal) element are replaced by zeros.
Essentially, we have added suitable multiples of the pivotal row to all the other rows so that in
each resulting row the element in the first column vanishes.

Consider the matrix with five rows and five columns obtained by deleting the first (pivotal) |
row and the first column. Now select as a new pivotal element the largest element in absolute ‘
value in the new first column of the five-by-five matrix, and repeat the entire process with re-
spect to the square matrix of order five.

Continuing in this manner, we have finally a single non-zero (diagonal) element in the last
row. The procedure is completed by dividing this final row by the diagonal element. The result
is an upper triangular matrix with ones along the principal diagonal. Note that all operations
described above to be performed on the original square matrix C are elementary row operations
(i.e., an operation belonging to one of the three following types: the interchange of any two rows;
the multiplication of a row by any non-zero constant; the addition of any multiple of one row to
any other row). Thus, the triangularization process does not change the solution to the simul-
taneous set of linear equations as long as the operations performed on matrix C are performed
in an analogous manner on the elements of the column matrix D. This can most readily be done
by augmenting the six-by-six matrix C by a seventh column composed of the elements of D. In
practice, the six-by-six matrix C is further augmented by a six-by-six identity matrix placed
in columns eight through thirteen. The purpose of this is to determine ultimately the inverse of
the coefficient matrix C, from which we may easily find the standard errors of the least-squares
solution for the Lq; Note that the various columns of C™! can be found in successmn by solvmg
the matrix equatlonCX =1, for the column matrix X, where I, represents the i *" column (i =
2,. , 6) of the identity matrix of order six. We can thus view the six columns of the identity
matrix placed in the augmented six-by-thirteen matrix as constant right-hand side column
matrices replacing B in successive least-squares solutions of the matrix equation. These suc-
cessive solutions are determined simultaneously in the Gaussian elimination method simply by

’
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forming the augmented matrix E and performing the elementary row operations on all thirteen
columns. The augmented matrix E appears as follows, after the normal equations are deter-
mined, but before the elementary row operations are begun:

€11 ©12 €13 €14 €

(o] C

21 C C

22 23 24 26 2

(o o4 C C

31 32 33 34 35 36 3

c C (&4 C

41 42 “a3 “44 “4s T4 Y4

c (& c

51 52 53 54 55 56 S

(&3 C

o1 c c, c..c..d 000 O0O01

62 63 64 65 66 6

-

After the triangularization process, the augmented matrix E is transformed to a matrix
(call it F ) of the following form:

12 Tiz Tia fis tae
23 T2a 'as Ta6

34 ‘35 36

fas fas Bar Ban 843 Bay Bys B4 By

s6 Bsy; Bsy Bsy 854 Bss Bsg Bgy

0 0 0 0 0 1 g B, B3 B 86s 8o Ee7 |

The first six columns of F represent the triangularized coefficient matrix, and the re-
maining seven columns represent successive constant right-hand side matrices, each of which
is associated with a particular column solution matrix. At this point, it is only natural that we
augment the column solution matrix X (corresponding to the seventh column of F only) to a
six-by-seven solution matrix Y, which contains X as its first column. The remaining columns
of Y will contain the inverse of the coefficient matrix C of the normal equations.

We can now write explicitly the set of linear simultaneous equations in the triangularized
form.

Yoo+ fp Vo Eyy Yot Eg e+ fis Ve + e Ve T By
Yoi + fo3 g + Fyy vay +Ha5 Vs + By Ve T By

Y3+ fa3q Vi + B35 Vi + 36 Ve =85

Yai * fas Ysi * fas Yei = Bai

Ysi + fs6 Yei

1]

M
wn
o

64




In the above, the subscript ''i"" assumes values from one to seven, corresponding to various so-
lutions for the seven right-hand side sets of constants.

The construction of this triangular system of equations is known as the forward solution,
and the process of obtaining its solution is called back-substitution. The last equation in the
triangular system gives the value for y . directly. If we insert its value in the previous equa-
tion, we can obtain y., , and so on for the remainder of the unknowns. Mathematically, the re-
lation is:

and
i "By T fix Vi
k=7 +1

where j = 5,4, 3, 2, 1 (in that order) and i=1, 2, ..., 7 (in any order).

We have now completed the determination of the Aq. = y;; by the least-squares principle.
Theoretically, this procedure may always be followed to a successful conclusion provided that
the m original equations of condition are independent; that is, provided that the determinant of
the coefficient matrix C does not vanish,

The formal solution by the method of least squares is now concluded, but ordinarily a
measure of the "goodness" of the least-squares fit is desirable. The residuals after the fit
are assembled in the so-called residual matrix U, equal to B - AX. In terms of elements:

6

u, =b, - Z a,x, (ial.2,--.m

i=1

From this, it is obvious that the sum of the squares (unweighted) of the residuals after the fit
is given by:

[Py

1=1

We can now easily find the so-called variance-covariance matrix of the fit from the in-
verse C~! of the coefficient matrix in the normal equations. Recall that C”! occupies columns
two through seven of matrix Y. The variance-covariance matrix is obtained simply by multi-
plying each element in C~! by the sum of the squares of the residuals after the fit and dividing
this product by m-6 (the excess of simultaneous equations of condition over the number of in-
dependent unknowns). If we represent the variance-covariance matrix by vV, then we have that:

_ 2 i 1 = PP
Vi TV ety (103 51,2, + 6)

where

i=1

By comparison with computations performed above in the section titled "The Standard Deviation
of Fit,”” we can see that the quantity », is a standard deviation of fit. More precisely, «, is the
standard deviation of the residuals after the fit, or the standard deviation of the least squares
fit. It is not to be confused with

m 1/2
1 1
o = < L E bf) :‘/27-“'6 él [eL )7 + @m,¥)
i=1 1=
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in the earlier notation, which is the standard deviation of the observational residuals, or the
standard deviation of the observational fit.

Finally, we can find the so-called standard errors p; of the six unknowns Aq’. =Y,

These are simply equal to the square-roots of the diagonaf elements in the variance-covaxliance
matrix, or

iy =yfVis THey Y5541 (3=1,2,-+-,6)

where y; ;,, is the term on the principal diagonal of the inverse of the matrix C, corre-

sponding to the unknown x;=vy,, .

ITERATIVE LEAST-SQUARES PROCEDURE

The procedure for producing a mean set of orbital elements is essentially an iterated
least-squares fitting of the first-order Taylor differential expansion of the conditional equa-
tions to numerous observational values. Using the values for the Aq, determined by the method

of least squares, as described in the preceding section, we can calculate the corrected Izsak
orbital elements,

a' =a +Aq,=a +Aa

[¢]
[}

e +Ag,=e +Ahe
N = g +Bag =1y + A7y
By =8, +b0a, =8, +48,
By =B, +bag=8,+05,
By =8, +0a,=8;+08,

At this point, it is useful to check that the improved or corrected elements are physically mean-
ingful. For instance, it should be ascertained that the semi-major axis a’ > 1 earth radius, that
the eccentricity e’ > 0, that the sine of the inclination 7| is not greater than unity in absolute
value, and so on.

It is now necessary to update the other parameters used in the differential correction
process, based upon the improved orbital elements. Accordingly, the various parameters in-
cluded under the heading, ""Prime Constants II'" are re-evaluated using the improved set of ele-
ments. This done, the various parameters included under '"Mutual Constants' are similarly
re-evaluated. Now, assuming that the times of the various observations in the data deck are
available as needed, the Orbit Generator may be used to produce the required calculated values
of the position and velocity components. From these components, we calculate the local co-
ordinates of the satellite and then the computed values of the direction cosines (refer to section
titled, "Computation of Direction Cosines'). Finally, the observational residuals are calculated.
Thus, with each observation time in the data deck are associated corresponding principal time-
dependent quantities as follows:

(a) position and velocity components X,Y, Z,X,Y,Z;

(b) local co-ordinates of the satellite X,,,Y, ,Z,, ;

(c) computed values of the direction cosinesL_,M_; and

c? e ?

(d) observational residuals AL,AM .
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Next, the statistical analysis is repeated (refer to the section titled, '""The Standard De-
viation of Fit") wherein the following quantities are determined: the average observational re-
sidual, the standard deviation of the observational residuals from their mean value, the stand-
ard dev1at10n of (the observational) fit, the upper and lower range limits for the observational
residuals, and the standard deviation of fit of the accepted observational residuals. Once these
quantities are found, the differential correction may be repeated. Of course, the time-inde-
pendent partial derivatives are computed once only, while the time-varying partial derivatives,
both with respect to the energy-momenta variables and to the angle-epoch variables, are com-
puted for each observation time in the data deck. A new set of equations of condition can then
be assembled and the fitting by least squares repeated.

In summary, the following sequence of steps represents the iterative least-squares pro-
cedure in producing a mean set of orbital elements for a given time span represented by a set
of observation points:

1. Correct the six Izsak orbital elements utilizing the values determined by the method
of fitting the equations of condition by least squares.

2. Update the parameters included in Prime Constants II.
3. Update the parameters included in Mutual Constants.

4. Produce sets of position and velocity components for each observation time using the
Orbit Generator.

5. Calculate the local co-ordinates of the satellite at each observation time.

6. Compute the direction cosines of the satellite at each observation time.

7. Determine the observational residuals for each time point.

8. Perform a statistical analysis of the observational residuals to find various standard
deviations and a statistically valid range within which observational residuals must fall for in-

clusion in the fitting process.

9. Begin the differential correction process by evaluating the time-independent partial
derivatives. Then evaluate the time-varying partial derivatives for each observation point.

10. Assemble the set of equations of condition.
11. Fit the equations of condition by the method of least squares. First determine the six
normal equations, then triangularize the system by the Gaussian elimination method, and finally

use the back-substitution method to find the solution.

12. Measure the "goodness"™ of the least-squares fitting by finding the residuals after the
fit, the variance-covariance matrix, and the standard errors of the unknowns.

Return to step number one.

DEFINITIVE ORBITAL PARAMETERS

The iterative least-squares procedure is generally terminated in one of two ways. Either
the total number of iterations through the least squares routine is prescribed in advance, or the
standard deviation of the observational fit is used as the criterion in halting the iterative method.
If this standard deviation falls below a value prescribed in advance during a given iteration, then
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the precision of the differential correction is deemed sufficient at that point. Of course, both
methods of terminating computation can be used concurrently; i.e., if the standard deviation

does not meet the prescribed criterion by the p-th iteration, then the differential correction
process is halted.

At the conclusion of the differential correction, the following definitive orbital param-
eters may be found:

The semi-major axis is found by multiplying a by the proper length conversion constant
(3963.339 mi./Earth radius or 6378,.388 km./Earth radius).

The eccentricity of the orbit is given by e.
The inclination of the orbital plane to the equator is given by arcsin 7, (0°<n, < 180°).

The time of passage through the perigee point is found by multiplying -3, by the proper
time conversion constant (13.4472 min./Vanguard unit of time or 806.832 sec /Vang'uard unit of
time). The time of perigee passage is given with respect to the reference (or epoch) time t,,
which is that used as a basis for the observational times and that corresponding to the initial
position and velocity components X,y , Z,, x. , Yl , Zi.

The argument of perigee (measured in the orbit plane from the node to the perigee point)
is found by multiplying 8, by the angular conversion constant 57.295780 deg./rad.

The right ascension (measured in the equatorial plane from the vernal equinox) of the
ascending node is found by multiplying 5, by the angular conversion constant. (Note that these
last two parameters are angles usually glven as greater than or equal to 0° and less than 360°,
50 that some multiple of 360° may have to be added or subtracted to bring the values into thlS
principal range).

The height of the perigee point above the Earth's surface is found by multiplying a(l-e) -1
by one of the length conversion constants given above.

The height of the apogee point above the Earth's surface is found by multiplying a(l+e)-1
by one of the length conversion constants,

The anomalistic mean motion is found by multiplying a™3/2 by the angular conversion
constant and dividing by one of the time conversion constants (this gives the mean motion in
deg./min. or deg./sec.).

The anomalistic period is found by multiplying 2722 by one of the time conversion
constants.

The mean anomaly (at the time of perigee passage) is found by multiplying -8, a~*’2 by
the angular conversion constant. This expression assumes that the reference (epoch) time t,
is zero; in general, the mean anomaly is found by multiplying-a™3/2 (8, + t,) by the angular
conversion constant.

RESULTS OF PRELIMINARY APPLICATIONS

Both the orbit generator portion and the differential correction process by least-squares
fitting have been tested independently by application to actual satellite orbits. Primarily, use
has been made of two relatively close-in yet drag-free satellite orbits, so that neither atmos-
pheric drag nor luni-solar perturbing forces would exert major disturbing influences. The
ANNA 1B satellite (international designation 1962 BM 1; N.A.S. A, identification number 56017)
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was launched in Cctober, 1962 under the project direction of the U. S. Navy from the Atlantic
Missile Range into a near-circular orbit of medium inclination. Its purpose was predominantly
that of geodetic investigation. The Relay 2 satellite (international designation 1964 3A; N.A.S.A.
identification number 64031) was launched in January, 1964 under the project direction of the
National Aeronautics and Space Administration from the renamed Eastern Test Range into a
relatively high-eccentricity orbit. Its function was that of active-repeater communications
satellite. Initial orbital parameters for ooth these satellites are given in Table 1. The obser-
vational data for the Realay 2 satellite consist of direction-cosine pairs reported from fifteen
tracking stations in the Minitrack network operated by the N,A.S.A., while the data for ANNA
1B consist of right ascensions and declinations reported from twelve stations in the optical
camera network operated by the Smithsonian Astrophysical Observatory. It might be noted that
no weighting factors were associated with any of the sets of observational data for either the
Relay 2 or the ANNA 1B satellite in the applications described in this section.

Table 1
Initial Orbital Parameters for Satellites Used
in Preliminary Applications

ANNA 1B Relay 2

Perigee (statute miles) 670 1298
Apogee (statute miles) 728 4606
Period (minutes) 107.8 194.7
Inclination to Earth's

equator (degrees) 50.1 46.0
Semi-major axis (units of

Earth's equatorial radius) 1.1764 1.7448
Eccentricity 0.00622 0.23918
Sine of the inclination 0.7672 0.7193

In order to gauge the intrinsic accuracy of the orbit generator, a double-precision ninth-
order Cowell numerical integration program was utilized. Two numerically integrated com-
parison ephemerides were produced: one using recently determined geodetic values for the
zonal harmonic coefficients in the expansion of the geopotential and the other using the corre-
sponding values for these coefficients based upon the Vinti potential. Refer to Table 2. The
numerically integrated ephemeris produced by the geodetic values of the zonal harmonic coef-
ficients was used as a basis for comparison with both the numerically integrated ephemeris
produced by Vinti values of the zonal harmonic coefficients and the ephemeris produced by the
orbit generator based upon the Vinti potential function. Figure 1(a) illustrates the residuals of
the X-co-ordinate between (1) the Vinti ephemeris and the numerically integrated ephemeris
produced by geodetic values, and (2) the numerically integrated ephemeris using the Vinti
values and the numerically integrated ephemeris produced by geodetic values. Figures 1(b) and
1(c) do likewise for the residuals of the Y-co-ordinate and Z-co-ordinate, respectively.

The comparisons illustrated in Figure 1 are based on the implicit assumption that the
initial position and velocity conditions do not contain any inaccuracies. In actual practice, such
inaccuracies are always present, and they must be removed by utilizing observational data in
the differential correction. Figure 2 illustrates the determination of a mean set of 1zsak orbital
elements by an iterated least-squares fitting of the differential solution to observational data for
the ANNA 1B satellite. In all cases, the total number of iterations through the least squares
fitting routine is prescribed in advance to be ten. This number is sufficient to attain conver-
gence within a very small tolerance. In the graph of each of the six orbital elements, three
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Figure 1 —Co-ordinate residuals for Vinti potential ephemeris and for numerically integrated ephemeris
using zonal harmonic coefficients of the Vinti potential each compared with numerically integrated

ephemeris produced by geodetic values.
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Table 2
Zonal Harmonic Coefficients in the Geopotential
Function Used in Generation of Numerically
Integrated Comparison Ephemerides

Coefficient Geodetic value Vinti potential value*
J, 1.0823 x 10-3 1.0823 x 10-3
J, -2.3 X 10-¢ 0
J, -1.8x10°° -1.2x10-6
I (a2 5) <1X107¢ <1x10%"

*The zonal harmonic coefficients for the Vinti potential function are obtained from the
. . — k+1 Tk _
relations: J, = (=1)**" J3 and J, ., = O.

rcurves' (actually a sequence of connected line segments) are shown, corresponding to various
numbers of observations included in the fitting. An equation of condition results, of course,
from a "'semi-observation': either a single right ascension or a single declination value. One
curve represents the minimum number of equations of condition for a true least-square fitting,
viz., seven. This is associated with an observational arc length of approximately 45 hours. A
second curve represents twenty equations of condition, or an addition of eleven equations, ex-
tending the observational arc length to approximately 75 hours. The third curve represents
fifty equations of condition, or a further addition of thirty equations, extending the observational
arc length to a total of approximately 98 hours. The starting point of each of the three arcs is
the same, so that they overlap in time. Notice that each observational arc produces a somewhat
different set of mean orbital elements, depending upon the additional observational values intro-
duced. Physically, this may be explained as the resultant effect of forces not accounted for in
the analytical theory. For example, electromagnetic disturbances, solar radiation pressures,
aerodynamic drag, meteoric bombardment, etc., all influence the mean set of orbital elements
to the extent that they are reflected in the observational values. In performing the iterated
least-square fittings, all the residuals corresponding to the pre-selected observation times
were accepted at each fitting. That is, the acceptable range of values for the residuals con-
stituted infinitely wide bands on either side of the mean value of the residuals. Mathematically,
using symbols introduced in the section titled, '"The Standard Deviation of Fit,"”

[rl, r2] =1lim [R-jo, R+j o).
J—o0

Figure 3 illustrates the determination of a mean set of Izsak orbital elements by an iter-
ated least-squares fitting of the differential solution to observational data for the Relay 2 satel-
lite. In this case, however, the observational arc length and the total number of observations
are held fixed, while the acceptability criterion for the observational residuals is varied. The
arc length in all cases is one week, representing a total of eighty observations or a maximum

of 160 possible conditional equations. In each of the six graphs, one curve corresponds to a
""three-sigma'' criterion, i.e.,

[fl, rz] = [R- 30, R + 30]

where, of course, o is the standard deviation of the observational residuals from their mean
value. A second curve corresponds to a two-sigma criterion, and the third curve to a one-
sigma criterion, Each curve is terminated when convergence of the orbital element is attained.
Notice that convergence appears to be a slower process with a one-sigma criterion than with
either a two-sigma or a three-sigma criterion. The rate of convergence in these latter two
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cases seems generally about the same. One effect of a wider acceptance range appears to be
greater fluctuations in the value of an orbital element early in the iterated fitting procedure,
although this is not always true. Also, despite the fact that differing numbers of conditional
equations are accepted in the fittings depending upon the criterion for the residuals, the values
of the orbital elements at convergence are remarkably similar. Refer to Table 3 for precise
values, including the required number of iterations to attain convergence in each case. The
uncertainties in the final significant figures (stated as +X) are estimates based upon slight
fluctuations in the values of the orbital elements in least-square fittings after convergence is
attained.

Table 3
Values at Convergence of I1zsak Orbital Elements for Varying
Observational Residual Acceptability Half-Widths

o Blments | O fema | Tao Sema | Thvee sgma
Semi-major axis a 1.744427'{ (12) 1.7444273 7 1.7444273 1)
Eccentricity e 2.2391623 (21) 3.2391722 (7) 2.2391812 (1)
Sine of inclination 7, 2'723111;) (21) 2'7231022 (1) 2'7231013 (9)
Time of perigee passage 5, 2'099882 (22) 3'09998?] (9) 2‘0999429 (8)
Argument of perigee 3, 1'222262 (21) 2'222235 (9) i'222272 (M
Rt. asc. of ascending node 3, _i'38027§ (22) _i‘380242 (8) _1'38024}1 (8)

Note: Units of all elements are canonical (a in Earth equatorial radii; *31 in Vanguard units of time; ,?2 and ‘153 in radians).
The integers in parentheses refer to the number of iterations required to attain the converged value given.

Table 4 presents the same information relative to the orbital elements as Table 3, but
for an acceptance criterion fixed at two sigma, with the maximum possible number of condi-
tional equations varied. The observational arc length remains one week, but the 160 maximum
possible number of conditional equations are first reduced to one hundred, and then this num-
ber is in turn reduced to forty. An attempt was made to maintain an even distribution of the
observations throughout the seven-day period, while still operating on the ""subset principle”
(i.e., the set of twenty observations is a subset of the set of fifty observations, which is in turn
a subset of the original set of eighty observations).

Table 5 again records the same information relating to the orbital elements, but this time
the parameter involving the order of precision in the differential correction is varied. Here the
maximum possible number of conditional equations covering the one-week observational arc is
held constant at forty, and the acceptance criterion is fixed at two sigma. The inexact designa-
tions "first order" and ""second order" indicate whether or not terms of purely second order
are retained in the differential correction. (Refer to the section titled, "Analytical Procedure
of Differential Correction.") It is seen that retaining terms of purely second order adds im-
measurably to the precision of the final converged results in all cases, and, similarly, does not
affect the rate of least-squares convergence.
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Table 4

Values at Convergence of Izsak Orbital Elements for Varying
Numbers of Observational Points

Orbital Elements 40 Conditional 100 Conditional 160 Conditional
Equations Equations Equations
Semi-major axis a 1.7444278 (10) 1.7444273 (10) 1.‘7444273 n
Eccentricity e (2.2391422 (11) 2.2391733 9) 2.2391723 1)
Sine of inclination 7, 2'7231002 (12) 2‘72309735 (10) 2'7231022 (7)
Time of perigee passage 3, 2.100118 (12) 3'100003 (11) 2'099983 9)
Argument of perigee ;, i.ZZZOQ’; (11) 1.22226%5 9) 1'222232 (9)
Rt, asc. of ascending node 3, -i‘38024g (12) ‘21,'380243 (10) —i'380242 (8)

Note: Units of all elements are canonical (a in Earth equatorial radii; ,”31 in Vanguard units of time; ,’?2 and /33 in radians).
The integers in parentheses refer to the number of iterations required to artain the converged value given.

Table 5

Values at Convergence of Izsak Orbital Elements for Varying
Orders of Precision in Differential Correction

Orbital Elements First Order Second Order

Semi-major axis a 17444278 (10) 17444276 (10)

Eccentricity e 2'2391422 (11) 2'2391422 (11)

Sine of inclination 7 2'7231013 (12) 2'7231003 (12)

Time of perigee passage - 2.100112 (12) 2.100113 (12)

¢ Argument of perigee °, 3'222092 (11) 3'22209; (11)
Rt.asc. of ascending node -, —i.380252 (12) °§'38024§ (12)

Note: Units of all elements are canonical (a in Earth equatorial radii; ;II in Vanguard units of time; .,

and ,’/“"3

the converged value given.
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The remainder of the Figures display the convergence of perhaps the most significant
single parameter in evaluating the efficacy of the differential correction process, viz., the
standard deviation of fit. Actually, there are two standard deviations shown in each graph.
The upper curve corresponds to a standard deviation of fit which includes all of the observa-
tional residuals, while the lower curve corresponds to a standard deviation of fit which in-
cludes only the observational residuals accepted at each fitting. Plotted on the same abscissa
is a curve showing the number of equations of condition (or, equivalently, the number of ob-
servational residuals) accepted at each iteration of the fitting process.

Figure 4 illustrates the standard deviations for a maximum of forty possible conditional
equations covering a one-week observational arc for the Relay 2 satellite. Note that conver-
gence using a two-sigma criterion for the residuals, as shown in Figure 4(b), is much more
rapid than the convergence using a one-sigma criterion shown in Figure 4(a). However, the
convergence is not so smoothly monotonic in the case of the wider acceptance range. Both
these facts confirm what was said earlier about the convergence of the orbital elements.

Figure 5 illustrates the standard deviations for a maximum of one hundred possible con-
ditional equations and Figure 6 for a maximum of 160 possible conditional equations, both cov-
ering the same one-week observational arc for Relay 2. Similar remarks apply to these Fig-
ures as to Figure 4. Table 6 supplies the values of the standard deviations at convergence for
the various runs illustrated in Figures 4, 5, and 6, as well as several others not graphed. It
also gives the number of accepted residuals at convergence, and the number of iterated fittings
required to achieve convergence in each case.

Table 6
Values of Standard Deviations of Fit and Number of Accepted
Conditional Equations at Convergence for Various Runs
Covering a One-Week Observational Arc

Description of Run
Std. D?V‘ Std. ng. Accepted | Percentage | Iter-
thgl Residual Order of Fit of Fit Residuals of Total ations
Conditional P (all) (accepted)
. Criterion | of D.C.
Equations
40 1o 2nd 0.432 0.157 37 92.5 26
40 2o 2nd 0.440 0.177 38 95 12
40 2o 1st 0,438 0.175 38 95 12
100 1o 2nd 0.373 0.160 95 95 11
100 2o 2nd 0.377 0.169 97 97 9
160 1o 1st 0.307 0,132 141 88.1 24
160 1o 2nd 0.307 0.132 140 87.5 22
160 20 2nd 0,313 0.172 157 98.1 8
160 3o 2nd 0.315 0.187 158 98.75 9

Note: All standard deviations of fit are given in mils (i.e., in units of 1073). The parenthetical word “all” signifies that
all of the observational residuals, AL and AM, were included in determining the standard deviation of fit; "accepted”
means that only the observational residuals corresponding to the accepted conditional equations were included in
determining the standard deviation of fit.
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Figure 4-Standard deviations of the observational residuals and the number of equations of condition

acceptedat each iteration of the fitting processfor a maximum of 40 possible conditional equations covering
a one-week observational arc for the Relay 2 satellite.
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Figure 5~Standard deviations of the observational residuals and
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the number of equations of condition

accepted at each iteration of the fitting process for a maximum of 100 possible conditional equations
covering a one-week observational arc for the Relay 2 satellite.
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Figure 6~Standard deviations of the observational residuals and the number of equations of condition
accepted at each iteration of the fitting process for a maximum of 160 possible conditional equations
covering a one-week observational arc for the Relay 2 satellite.
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Figure 7 illustrates the standard deviations for a maximum of one hundred possible con-
ditional equations covering an observational arc of only three hours for Relay 2. This is the
three-hour period immediately following insertion of the satellite into orbit, when observations
are recorded at very frequent intervals in order to insure a wealth of data for the real-time
differential correction. Here, using a one-sigma criterion, convergence of the orbital elements
occurs after only four (in some cases, five) iterations. The standard deviations of fit converge
after three iterations to values of 0.425 x 103 (all one hundred observational residuals) and
0.145 % 10 ~? (including seventy-seven accepted observational residuals). The graph shows that
the standard deviations remain essentially constant after the third iteration, and this is con-
firmed by the insignificant fluctuations in the orbital elements after the third iteration, although
a total of ten iterations through the least squares fitting routine was prescribed in advance.

Figure 8 illustrates the standard deviations for a maximum of one hundred possible con-
ditional equations for two distinct non-overlapping observational arcs for the ANNA 1B satel-
lite. Figure 8(a) covers an arc of approximately nine days and fifteen hours, while Figure 8(b)
covers an arc of approximately six days and nineteen hours. Both use a one-sigma criterion,
and convergence of the standard deviations occurs after five iterations in both cases. The
values are a relatively large 38.379 milliradians (all one hundred observational residuals) and
10.919 mrad (including eighty-eight accepted observational residuals) for Figure 8(a). For the
somewhat shorter arc in Figure 8(b), the values are 6.684 mrad (all one hundred observational
residuals) and 0.726 mrad (including ninety-five accepted observational residuals).

The totality of data presented herein represents a small sampling of the preliminary
applications by which the orbit generator and differential correction have been tested. Yet
this sampling is indicative of the utility of the spheroidal method for artificial satellite orbits.

CONCLUDING REMARKS

The method of solution for unretarded satellite orbits discussed in this paper has been
programmed, primarily in the FORTRAN language, for use on the I.B.M. 7094 digital electronic
computer, It requires a relatively small number of computer storage locations, and the ana-
lytical nature of the entire procedure assures a very rapid computational process. Extensive
tests have indicated a capacity for generating co-ordinate and velocity points, based upon a set
of empirically estimated initial conditions, in impressively short intervals of computer oper-
ating time.

Presently, work is underway on slightly modifying the accurate reference orbit to account
for the effects of the most important perturbations of the neglected zonal harmonics, notably
the third and the residual fourth. The inclusion of these perturbative effects by a procedure
described in a recent paper by Vinti (see references) is expected to improve the accuracy of
the method so as to provide computed values agreeing with observation over a longer interval
of time.

In the future, a method of modifying the spheroidal potential for an oblate planet in order
to permit the exact inclusion of the effects of the third zonal harmonic in the reference orbit is
anticipated. Preliminary investigations are also being conducted into accounting for the luni-
solar forces and aerodynamic drag. Further results will be published as they become available.
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Figure 7—=Standard deviations of the observational residuals and the number of equations of
condition accepted at each iteration of the fitting process for a maximum of 100 possible
conditional equations covering a three-hour observational arc for the Relay 2 satellite.
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Figure 8~Standard deviations of the observational residuals and the number of equations of condition

accepted at each iteration of the fitting process for a maximum of 100 possible conditional equations
covering two distinct observational arcs for the ANNA 1B satellite.
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APPENDIX

Herein we present the modifications which must be introduced in order to utilize an
alternate form of satellite tracking data known as right gscension-declination data, Such data
are recorded, for instance, by the optical Baker-Nunn cameras of the Astrophysical Observ-
atory of the Smithsonian Institution. The modifications to be described replace the material
presented in the main body of this report in the section titled, '"Computation of Direction
Cosines,"

A set of observation data of the right ascension-declination type includes the following
parameters for each recorded spacecraft observation:

t', the date and time of observation. The same remarks about removing reference to
the calendar in transforming t’ to the relative time t apply here as included in the main body
of this report.

k, the code number for the tracking station reporting the observation.

a,, the observed right ascension, measured in radians eastward from the vernal equinox
(0 < a, < 277)
< ay, .

84, the observed declination in radians, measured as positive north of the equator and
as negative south of the equator (-7/2 < §, < + n/2).

w, and w,, the weighting factors corresponding to observations «, and 3, respectively,
This information is optional; if not provided, then it is assumed that w, and w; are each unity.

The co-ordinate system employed for the observation data is centered at the tracking
station on the Earth's surface, and, unlike the system used for recording direction-cosine
data, its three co-ordinate axes are parallel to the respective axes of the inertial system.
That is, the Z-axis is parallel to the Earth's polar axis, and the X-Y plane is parallel to the
equatorial plane of the Earth, with the X-axis extending toward the vernal equinox. The Y-
axis extends orthogonally to the east to form a right-handed system,

The differential correction process requires the same data to be available as listed in
the main body of this report, viz., the Earth's flattening coefficient f, the Earth's rotational
rate », the geodetic longitudes A, of the stations, the geodetic latitudes &, of the stations, the
altitudes H of the stations, the angular distances A, from the vernal equinox to the Greenwich
meridian at midnight Greenwich mean time for each day in the observational arc, and the
reference time t. -

Computations follow the same scheme given in the main body of this report for the follow-
ing parameters: the auxiliary functions C and S, the geocentric latitude &, the geocentric
distance 7 of the station, the angular distance 5 between the vernal equinox and the observa-
tion meridian plane, and the inertial geocentric co-ordinates X,, Y;, Z;of the station. How-
ever, the angle y, between the vernal equinox and the tracking station's X-co-ordinate axis
(measured in the observation latitude plane) is zero, since the topocentric and inertial co-
ordinate systems are parallel., No rotations are necessary to bring the two systems into co-

incidence; a single translation will suffice. Hence, the relations for the topocentric or local
co-ordinates of the satellite are simply:
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Z,=2-12,

where X, Y, Z are the inertial geocentric co-ordinates of the satellite predicted by the orbit
generator. The above simplified relations are obtained from those of the direction-cosine-
data case by the artificial device of setting ¢y =0and g, = /2 in the corresponding equa-
tions for X,, Y,, Z, given in the main body of this report. (Refer to the note at the end of this
appendix.)

The computed values of the right ascension and the declination may now be found in terms
of the local co-ordinates:
Y
a = arctan X
- (32)

Zu
c arctan i
Xz + YD

It is important that the angles a_and 5_ be placed in the proper quadrant for comparison
purposes with the angles o, and 3 . In the case of the right ascension, this is done by examin-
ing the signs of X, and Y, separately. The following list presents all possible combinations
(note that the range for o, is 0 < o, < 27).

o
it

ks
X.>O, Y">0: 0 <a <7

Xy > 0 Yy <0: Fea <om
X, >0, Y,o0 a, = 0

Xy <0 Y, >0 —<a <7

Xy <0, Y, <0 7r<ac<%
Xy<0, Y, =0 a, =7

X, =0 Y,>0 aC:%
X,=0 Y, <0 ac:%
Xy=60 Y, =0 o, indeterminate

In the case of the declination, the signs of the numerator and denominator of the arctangent
argument are examined separately. The following list presents all possible combinations (note
that the range for s  is - 7/2 < 5, < + 7/2).
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K+ ¥ >0, 2,500 0<h <

X2+ >0, z,<0: -%< 5, <0

X2+YH >0, z,=0: 5 =0
x2+y)V% =0, z,>0: Bc:%
(X§,+Y;)1/2:0, Z,<0: 38, :_%

)1/2

Of course, the case (X2 + Y = Z, = 0 is not physically possible.

The observational residuals are now found:

Aa:OLO—ac

DS =8, -8

Here too, care must be exercised. There is one instance where simple subtraction in finding
the observational residual will yield a misleading result, If one of the right ascensions
(either observed or computed) is in the first quadrant and very nearly zero and the other right
ascension is in the fourth quadrant and very nearly 2=, then direct subtraction will provide an
erroneous result near to 27, whereas the intended difference is near to zero. This situation
can be rectified by the following logical steps:

If I% - ac| < 7, then da = af - = (as above).

If |a0 - ac‘ > 7, then Aa = sgn(ao -ac) 27 - \ao - acl] .
Equivalently, whenever |a, - a_| > 7, use the following:

(1) lf (10 > ac, then Aa = 27 ~ ao + a, > 0.

(2)if a0<ac,then Aa:ac—a0—2W<0.

The statistical analysis of the observational residuals follows the procedure given in the
main body of this report in the section titled, "The Standard Deviation of Fit" except that the
observational residuals are given by 2Aa, and A6 , rather than by AL, and AM;. Hence, the
average residual is given by:

= 1 Zn \
R = — Aa. JAY-
2n ( al + |)
i=1

The standard deviation of the residuals from their mean value is found from:

o = 2_1n Z [(Aai -R? + (B8, -ﬁ)’]
i=1
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The standard deviation of fit is given by:

_ 1 . 2 2
o “/2:1_6 D [eart v sy
i=1

Modifications are now presented to supplant the material from the main body of this re-
port in the section titled, "Analytical Procedure of Differential Correction.”

The first-order Taylor series expansion of the equations of condition may be written:

$., 3a
Aa = < Ag.
* Z °q, %

i=1 *

where q (i = 1,2, -+, 6) are the mean or Izsak orbital elements. Expanding the above
partial derivatives by the chain rule yields:

da, da_ 09X, da_ 9Y, da, °Z,

3q, X, dq, = Y, 3q, 0oZ, 2q
35 Bs_ B, 36_ 3Y, 35, dZ,
qu X, cq, BYH qu azu aqi

From the equations for «_ and §_in terms of the local co-ordinates, we find:

da

a_x::

1

Y, (X2 + YY)

da

< 2 2\"
o K O YR

1

I
+

da
< —
3Z

98

<

Xy

S o X, Z, R YTVI(RE 4 YR 22y
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35,

3y, " TwZu (X2 + Y22 X2+ Y3+ 27!
M

98

c 1/2
0Z,

It

TG AR AN RN C I

Since the station co-ordinates X, Y,, Z, are independent of orbital parameters (and merely
geodesic functions), the following simple relations hold:

Xy _ 93X
d9q; 9q,
oY, _ oY
3q, 9q,
BZM _ 3z
3q; 9q,

The method for calculating the partial derivatives 3X/3q,, 9Y/9q,, and 37Z/9q, is identical to
that presented in the differential correction scheme in the main body of this report. Then the
equations of condition are formulated in a precisely analogous manner to that given for the
direction-cosine data (see the section titled, ""The Equations of Condition'), and there is little
need to repeat the explicit form of these equations,

NOTE: The fact that the observational co-ordinate system is independent of the latitude
and longitude of the tracking station for right ascension-declination data (as is not the case for
direction-cosine data) leads to certain possible simplifications in the determination of the
computed co-ordinates of the satellite, o and & _. First, recall that the equations for the
Cartesian inertial co-ordinates of the observation point are given by:

Xp = p cos 8, cos 8
Yr = p cos O sin
Z;. = psin b

where & = (%), + @«(AT) + r,. Here the terms ();), and »(AT) depend upon the time of the
observation only, while the term A IS 2 function of the location of the observation point, Let
us denote:

8' = (Ag), + @(LT)

Then we can expand the above equations as:
Xy = pcos Gy cos (3" +AL)

pcos 6, cos Apcos §' - pcos g sinAg sin 8!
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Y, = p cos Bg sin (3" + Ap)

It
o3}

N . .y - . .
cos G; cos X sin 3’ + pcos f; sin Ap cos 8

ZT:,Bsin Gg

Now denote:
X, =p cos 6; cos Ag
Y, = p cos BG sin Ag
Z, o) sin QG

so that:

X; cos &' -sin &' O X,

Y;| =isin 8 cos & 0 Y,

z, 0 o 1} |z

0

This represents, in matrix form, the fact that the co-ordinates X, Y., Z,are obtained from
X,y Y, Z, by a simple rotation about the inertial Z-axis through an angle 5'. Here 5’ is the
angle between the vernal equinox and the Greenwich meridian at observation time. The rec-
tangular co-ordinates X,, Y,, Z,, obtained directly from the spherical geocentric co-ordinates
p, 645 Mg of the station, represent the Cartesian inertial geocentric co-ordinates of the track-
ing station at a time when the Greenwich meridian and the first point of Aries (the vernal
equinox) coincide. K the co-ordinates X,, Y,, Z, (dependent upon the station location only) are
provided as input parameters rather than A, £, and H, then the computations leading up to
X;s Y5, Z; are simplified considerably. We need not first compute c, s, 6., o, and 5. In-
stead, find ' from parameters relating to the time of observation, and then compute directly:

X; = X, cos 8' - Y, sin &'

Y, = X, sin 3’ + Y, cos &'

1

Z

z,

0

Note that this simplified procedure cannot be adopted efficiently with direction-cosine data
because the rotation matrix involved in computing X,, Y., Z, is a function of ¢,, the geodetic
latitude, and y_, an angular parameter dependent upon A, the geodetic longitude.
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