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MAGNETIC FIELD OUTSIDE PERFECT RECTANGULAR CONDUCTORS 

by Lawrence Flax and Joseph H. Simmons 

Lewis Research Center 

SUMMARY 

Explicit solutions are obtained in parametric form for the magnetic field due to sur-  
face currents flowing on an infinitely long rectangular conductor. 
analogy between the two -dimensional magnetic potential problem and the corresponding 
electrostatic problem is exploited to obtain these solutions. The method employed is a 
previously developed Schwartz -Christoffel transformation that maps the complex space 
outside a rectangle into the complex space outside a unit circle. Explicit solutions for 
the magnetic field outside the rectangle are derived. 

The well-known 

INTRODUCTION 

The development of small electronic systems has stimulated considerable interest in 
the use of conductors with rectangular cross sections, such as thin films, tapes, etc. 
Application of these configurations requires a knowledge of the magnetic field created by 
the currents passing through the systems. In ordinary conductors where the current is 
uniformly distributed, the magnetic field can be obtained by straightforward application 
of the Biot-Savart law, but if the current only flows on the surface of the samples, such 
as with superconductors or with rapidly oscillating fields, minimum energy configura- 
tions must be considered, and the problem becomes more complex. In recent years, 
attempts to use a Green's function technique to solve for the current density in super - 
conductors (refs. 1 and 2) led to an integral equation that could not be integrated ex- 
plicitly. Solutions a re  generally obtained by numerical integration using successive ap- 
proximations. A simple alternative approach is used herein. This approach is based on 
the fact that a good approximation of the magnetic field configuration around the rectangle 
can be found at distances larger than the penetration or  skin depth away from the con- 
ductor by assuming that all currents flow on the surface of the conductor. With this as- 
sumption, a qualitative description of the current distribution can be obtained. This as - 
sumption is valid particularly for superconductors and normal conductors at high f r e -  
quencies. 



For the case considered herein, infinitely long conductors of constant rectangular 
cross section with the current flowing only on the surface (e. g., a perfect conductor), 
a close connection between some electrostatic and magnetic problems exists. Knowledge 
of the relation between the electric and magnetic field potential functions in these in- 
stances allows the use of techniques developed for  solutions of Laplace's equation, such 
as complex transformations. Through an analogy between the corresponding potential 
functions, explicit equations are derived for the magnetic field and surface current dis-  
tribution by use of the conformal transformation of a rectangle into a unit circle (ref. 3). 
The resulting field is described by equations in which the parameters are the coordinates 
of an intermediate space. 

ANALY S IS  

Fun da me n ta I Mapping 

For a conductor of zero resistivity, no internal electric field can be maintained. 
Maxwell's equation for a time-varying magnetic field V X 3 = - (ag/at) then leads to the 
conclusion that the magnetic field is a function of coordinates alone. In order to 
simulate the case of superconductors, the Meissner condition that B = 0 inside is used. 
This case also applies to normal conductors with high-frequency alternating currents. 
Since no magnetic or electric field is allowed to exist in the interior of this perfect con- 
ductor, the current density is also zero, as indicated by Maxwell's equation for a time- 
varying electric field V X 

and surface charges are possible. 
continuous at the surface of the conductor by an amount proportional to the surface cur- 
rent per unit width. The normal component of magnetic field is continuous across the sur -  
face, and since it is zero inside the perfect conductor, it must go to zero outside the 
boundary. In analogy, the normal component of electric field is discontinuous at the sur -  
face by an amount proportional to the surface-charge density. If the perfect conductor is 
assumed to be sufficiently long so that the distribution of current is not affected by contacts, 
a two -dimensional analysis is possible. 

tween the magnetic potential 
cp due to a surface-charge density. 
of the z-axis, the basic solutions for each type of problem are as follows: 

+ 
= J'+ E(aE/at). At the boundary, however, surface currents 

The tangential component of magnetic field is dis- 

A s  shown in some texts on electromagnetic theory (ref. 4), an analogy exists be- 
due to a surface current and the electrostatic potential 

For a conductor whose axis is taken in the direction 
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Electrostatic: 

Magnetic: 

- A  J,(x', y')dv' 
A = k A , = G 2 /  ,F -Fl  

(All symbols are defined in the appendix. ) Thus, if p, and J, are similar functions of 

the coordinates, then cp and A, (as well as 
vided that cp and A, satisfy similar boundary conditions. 

are 

and E) will have similar solutions pro- 

The necessary and sufficient conditions to define a unique potential cp in all space 

cpl = cp2 + constant 

and 

where cpl and cp2 are the potential functions in regions 1 and 2, respectively, K~ and 
K~ are the dielectric constants, and u is the surface-charge density. 

The equivalent boundary conditions for A, are derived as follows: If 5, and 8, 
are the magnetic fields inside and outside the rectangle, respectively, and 6 is a unit 
vector perpendicular to the surface, the following equation results from ? - 6 = 0: 

where 

- 4  

B = VA, Xi; 
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+ 
Then, since = vA,x k, - 

x E - VA,, xi+ ; i =o  =z, 2 

which for the rectangular coordinate system leads to 

and 

A,, - A,, = constant 

The secondary boundary condition on A, is obtained as follows: 

or 

6X(--OA,,2 1 -  

p2 

which for the rectangular coordinates leads to 

and finally 

a A Z , 2  1 a A z , l  .. -c (: an - <Y) = - J 

Since both A, and <p obey Laplace's differential equation inside and outside and are 
subject to the same boundary conditions, the uniqueness theorem indicates that the solu- 
tions for the two potential fields a re  identical (ref. 5) hence, A, = Co<p where Co is a 
constant used to obtain the proper units. Now 
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- 1 
I 

E = - grad cp = - - grad Az 
cO 

and 

0 

B = C o G X E  

0 0 

Equation (3) shows that B and E are perpendicular to each other at any point. Since 

then 

(3) 

where J,(x', y') is a surface current density and p(x', y') is a surface-charge density. 
Since the analysis is two-dimensional, J, is a current per unit width, and p(x', y') is a 
charge per unit width per unit length. Hence, two-dimensional magnetic problems allow- 
ing surface currents only can be solved by using techniques common to two-dimensional 
electrostatic potential problems. One such method involves the use of a conformal trans- 
formation of complex spaces. 
equation by mapping into a space of simpler geometry. 

sumed that, once the transformation equations a re  derived, the solution is essentially 
complete. Certain parameters of the problem, such as the charge distribution at the sur -  
face and the shape of the equipotentials, may be found directly from the transformation 
equation; however, the dependence of the field and of the potential on distance and angular 
inclination from the source is still unknown. The procedure to follow then is to solve 
Laplace's equations for the simpler geometry and then map the solutions into the more 
complex geometry by using the Schwartz -Christoffel transformation equations. Specifi - 
cally, the actual field and potential for a desired location are obtained by mapping the 
proper points outside the simple conductor into the desired point and by solving for the 
associated field and potential. 

This transformation facilitates the solution of Laplace's 

In solving potential problems by use of the conformal transformation, it is often as- 
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Solutions for the Rectangular Conductor 

Consider an infinitely long conductor of uniform rectangular cross section with sides 
2a and 2b (fig. 1). Current flow through the system is assumed to exist only in an in- 
finitesimally thin layer at the surface. The potential around the rectangle can be found 
with the use of the Schwartz -Christoffel transformation. A transformation equation was 
derived in reference 3 that maps the two-dimensional region outside a rectangle in the 
complex C-space (fig. 1) into the two-dimensional region outside a unit circle in the com- 
plex t-space. The following differential equation is derived in reference 3 to perform 
the transformation: 

dS= F'(2 cos 27 - 2p) 1/ 2 
dT 

where t = eiT. The parametric solution of this equation x = f(T) and y = g(7) described 
in reference 3 is not in a form that is easily usable; however, since tables and computer 
programs of Legendre polynomials are  now available, a more readily usable solution may 
be derived in the following manner. Integration of equation (6) leads to 

(7) 
-i(2n+1)T -i(2n + 1)cos 27 +. 2 sin 27 1 4 - (2n + 1)2 

where Pn(p) a re  the Legendre polynomials. The constant of integration D corresponds 
to a displacement of the circle to which the rectangle is mapped from the origin of the 
t-space, and for simplicity is set equal to zero. The interpretation of p = cos 2 a  in 
the t-space is extremely important. Each point on the circumference of the circle given 

D C 

Figure 1. - Rectangular cross section showing < plane. 
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Figure 2. - Ratio of thickness to width against argument of Legendre's polynomials. 

P ~ Q !  maps into a corner of the rectangle. Therefore, c1! is a constant 
whose value dictates the ratio of the sides of the rectangle, that is, b/a. The relation 
between p and b/a is shown in reference 3 to be expressible in parametric form: 

b -  -- E(k) - (1 - k2)K(k) 
. 

and 

This relation is plotted in 
T, with T = 0 - ip, yields 

2 / - ~ = 1  -2k  

figure 2. Solving equation (7) 
the following relation between 

in terms of the components of 
the two complex planes: 

[2 cosh 2P + (2n + 1)sinh 2P] sin 20 

4 - (2n + 112 
> 

- -  i cos 20 [2 sinh 20 + (2n + 1)cosh 2/31 - -iL) 2n + 1 ( 8 )  
4 - (2n + 112 
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where the complex space 5 can be broken into components: g = x + iy. The constant 
F', as derived in reference 3, is F' = ib/2L where L = E  -k'K and K and E are 
elliptical integrals of the first and second kind, respectively. From equation (8) the 
parametric equations for x and y can be written as 

cosh 20 + (2n + 1)sinh 
2 4 - (2n + 1) 

+ sin(2n + 1)e sin 28 

sinh 2p + (2n + 1)cosh 2p 

4 - (2n + 112 1 
03 

y = 5 L C p n ( p ) e - ( 2 n + 1 ) p  sin(2n + i)e cos 28 

n=O 

cosh 2p + (2n + 1)sinh 

4 - (2n + 
+ cos(2n + i)8 sin 28 

On the surface, the series expansion involving the Legendre polynomials cannot be used, 
and the differential transformation equation of reference 3 (that is, eq. (6)) must be 
integrated as follows: 

p=0 
C O S  27 - 21-1) 1/21 

dT 

Integration of this differential equation using elliptic forms leads to the following: 

For sides BC and AD: 

2 = 2F'[E(B, sin a) - cos a F(B, sin a)] 

where 
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Figure 3. -Lines of constant magnetic potential around corner. 
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Figure 3. - Concluded 

For sides AB and CD: 

2 5 = -2iF'[E(6, cos a) - sin CY F(6, cos a)] 

4 

where 

In these two equations, the constant of integration has been set  equal to zero so as to 
keep the rectangle centered at the origin of the E-space. E(8, k) is the incomplete ellip- 
tic integral of the second kind, and F(8, k) is the incomplete elliptic integral of the first 
kind. Both can be found in the appendix of reference 6 (note that k = sin a or cos a). 
The fundamental net, which corresponds to the lines of constant magnetic potential and 
the lines of magnetic flux, can be plotted from equations (Sa) and (9b). The lines of con- 
stant magnetic potential correspond to the family of constant 6, and the lines of flux to 
the family of constant 6 .  The lines of constant magnetic potential for three rectangles 
(length-to-width ratios of l O : l ,  5:1, and 1:l) a re  plotted in figure 3 around the corner of 
each rectangle for the same values of P. 
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Current D istr ibut ion 

The use of equation (5) and the charge distribution of reference 3 shows that the 
normalized distribution of surface current per unit width in the region - a! 5 8 5 a!, 

which maps into the side BC (fig. l), is given by 

Jz,I y;+i) 7l J5 
-- - 
J )/sin2a - sin 2 e 

where 

J =  I 
4(a + b) 

In the region a 5 8 I 71 - a! that represents side AB in figure 1, the current per unit 
width becomes 

5 S + l  
Jz,II -- - 7l (b - 

J dsin28 - sin 2 a 

The other two sides of the rectangle (AD, DC) have the same corresponding current dis-  
tribution because of the symmetry. 
corners (0 = fa,  fa!) because the magnetic field goes to infinity at the corners. The 
total current, however, remains finite. The profile of this current density distribution 
across the conductor shows qualitatively the behavior of real currents flowing through 
superconductors and through normal conductors at high frequencies. 
is that the highest concentration of current is around the corners. 

This behavior of current per unit width at the corners is inherent in problems con- 
cerned with pure surface currents. In actual superconductors, where the current at the 
corners does not go to infinity, a deep penetration of the magnetic field into the sample 
occurs that causes the current to flow in a thicker layer along each corner. 

The current per unit width becomes infinite at the 

The important point 
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Magnetic Field Distribution 

The magnetic field can be obtained explicitly from the relation between the complex 
functions involved. A complex potential function P(0, P )  is sought in the t-space and 
then transformed into the E-space. When P(0, P )  is obtained for the %-space, the mag- 
netic field is then obtained by the following transformation: 

where ? is a vector in which the real and imaginary parts of (dP/dz)* a re  the com- 
ponents in the x and y directions, respectively: 

T X = real[(:)*] 

The complex potential function is written as follows: 

where in the t-space, U(0, P )  is the magnetic potential, and V(0, p) represents the lines 
of magnetic flux. The complex solution of Laplace's equation in the t-space is 

P(0,p) = In t = In 6 + i 0  (1 8)  

where t = 6 e ie = e iT = 
is U = In 6; V = 0 represents the stream function. 
normalized current of equations (13) and (14) may now be found from equations (6), (15), 
and (18): 

The potential solution for the unit circle of the t-space 
The magnetic field due to the 

- 
dP dt d7 1 
dt dT d5 

B = - G k x  A ( --- T = G o G X [  
- 

iF'(2 cos 27 - 2p) 
0 

where 
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Substitution of T = 8 - ip and p = cos 2al into equation (19) leads to 

[(cos 28 cosh 2p - cos 2a12 + (sin 28 sinh 2p)2] 

B' = GoC X {z 1 [(cos 20 cosh 2p - cos 2a) - 

Letting 

M = COS 20 cosh 2p - COS 2 a  

and 

N = sin 28 sinh 2p 

yields the following simplified expression for E: 

The 5 -space must be divided into two regions that depend on the value of M to deter - 
mine the value of (M - iN)1'2. In region I, let M 2 0. Several algebraic manipulations 
then yield the following expressions for the magnetic field components: 

GoL -1/4 
[(cos 20 cosh 2p - cos 2 ~ ) ~  + (sin 28 sinh Zp)"] 

Bx,I = b 

,in (;tad sin 28 sinh 2p 
cos 28 cosh 2p - cos 

- 

X 
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-1/4 
[(cos 28 cosh 2p - cos + (sin 28 sinh 2p)2] 

&Go L 
B = -  

Y, 1 b 

sin 28 sinh 2p 
cos 28 cosh 2p - cos 

In region 11 let M 5 0. The magnetic field components are obtained in region 11 in a 
similar way: 

Go & L  2 -1/4 
[(cos 28 cosh 2p - cos 2a) + (sin 28 sinh 2p)2] 

Bx,II = + b 

sin 28 sinh 2p 
-cos 28 cosh 2p + cos 

G o m J  2 2 4 4  B - -  [(cos 28 cosh 2p - cos 2 a )  + (sin 20 sinh 2p) ] 
Y7II - b 

sin 28 ~~ sinh 2p 
-cos 28 cosh 2p + cos 2 a  

The absolute value of the magnetic field is 

2 2  
-1/ 2 2 2G0L 

b2 
IB 1 = ~ [(cos 28 cosh 2p - cos 2a)  + (sin 28 sinh 2p)2] 

The magnetic field is tangent to the equipotential lines at all points. Direct substitution 
into equations (23) and (24) gives for the surface of the conductor (/3 = 0) in region I, 
Bx,I=O and B 
In region I1 for P = 0, B = 0; for any p # 0 at 8 = r/2 and at 
8 = 3ri2,  B 

dominates the expression, and both Bx and B 
Due to the complexity of equations (Sa) and (9b), the magnetic field B' cannot be ex- 

pressed in terms of x and y, the real variables of the original space. When knowledge 
of the magnetic field strength is sought for  a given region in space, two ways of obtaining 
an answer are available. First, a table of corresponding values between x, y, and 8, p 
may be calculated from equations (Sa) and (9b) for the particular width-to-length ratio in 
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m J ;  forany P f O  at 8 = 0  andat  8 = r ,  Bx,I=O and B = IBI. Y, 1 Y 7  1 J' and B x, II Y, II 
and By, II = 0. At the border between regions4 and II, = IB I x, II 

At  infinity the denominator and By, I = By, 11' (COS 28 cash 2p - COS 2 a  = 0), Bx, I = Bx, II 
go to zero. 
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(a) x-coordinate against B. 

. .  
0 2~124  4d24 h / 2 4  8d24 1W24 12d24 

p - I n 6  
(b) y-coordinate against p. 

are shown for a point (5,9).  ) 
Figure 4. - Coordinates x and y against B for rectangle of length-to-width 

ratio of 10. (€I1 and 

question, and B can be found from these values of 8 and P from equations (23) and (24). 
The second method is more easily accomplished and is demonstrated as follows. Due to 
the symmetry of the rectangle, only the first quadrant 0 5 8 5 1~/2 need be considered. 
Points outside the first quadrant can easily be rotated into the first quadrant by sub- 
tracting n7r/2, with n depending on the location of the point. Therefore, plots of x 
and y against P for  a family of constant 0's between zero and 7r/2 are obtained from 
equations (sa) and (9b) (fig. 4). For a given point, R(x, y), two values of 0 (e. g., 
and 02) are picked from the x and y graphs such that the corresponding p values to 
each and O2 are nearly equal. This is shown in figure 4 for the point R(5,9). The 
values obtainedfor O1 and O2 are 1.04 and 1.17, respectively. Once O1 and e2 are 
obtained, new plots of x and y against p can be calculated for a family of constant 
0's between O1 and 02. New limits on 0 are obtained, and the process is repeated 
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until complex point R'(8, P )  gives a point R'(x', y') within the required accuracy of the 
original point R(x, y). Usually, the process need not be repeated many times, since, in 
practical applications, values of magnetic field are only sought for given areas, such as 
locations of wires or circuit components, rather than mathematical points. 

CONCLUDING REMARKS 

The magnetic field of a rectangular conductor, whose current flows on the surface, 
was  obtained by the use of a complex transformation and the corresponding two- 
dimensional electrostatic potential solution. The results can be applied to any rectangular 
conductor whose cross -sectional dimensions are large compared with the magnetic field 
penetration distance so that the induced current can be assumed to flow on the surface. 
Such systems are waveguides, good conductors with alternating currents, and super - 
conductors whose cross -sectional dimensions are much larger than the London penetra- 
tion depth. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, May 24, 1966, 
129 -02 -05 -02 -22. 
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APPENDIX - SYMBOLS 

a 

E 

Bx, I 

B*, 11 

b 

E' 

F' 

GO 

I 

0 

J 

JZ 
magnetic vector potential 

component of A along z -  
-c 

coordinate axis 

width of rectangular conductor 

magnetic field induction 

component of i5 along x- 
K' 

coordinate axis in region I k 

component of E along x- 

component of 5 dong y- 

component of 6 along y- 

coordinate axis in region 11 
k' 

coordinate axis of region I 
i; 

coordinate axis in region II 

thickness of rectangular con- L 

ductor L' 

1 "(m) M 

constant of integration N 

volume element of conductor n 
A 

electrostatic field 

complete elliptic integral of 2nd w e ,  P )  

kind Pn(P) 

E (k' 1 R(x, Y) 
1 ib 

- - c c s c o ! = -  
4 2L 0 r 

total current passing through T conductor 

surface current density in the 
conductor 

component of surface current 
density along z -coordinate 
axis 

complete elliptic integral of 
first kind 

K(k' 1 
modulus of Jacobian elliptic 

functions and integrals, 
sin a 

com plem en tary modulus , 
iL-2 

unit vector along z-coordinate 

E(k) - k12K 

axis 

E(k') - k"K' 

cos 28 cosh 2P - cos 2 a  

sin 28 sinh 20 

unit vector perpendicular to 
surface 

complex potential function 

Legendre polynomial 

sample point in calculation of 
transformation 

radial coordinate of field 
point, r2 = x 2 2 2  + y + z 

point, r12 = x' + y12 + Z f 2  

radial coordinate of source 

vector whose components are 
real and imaginary parts of 
(dP/dS) * 

17 



t 

x, Y, 

a! 

P 
6 

E 

EO 

b 

0 

K1' K2 

I-10 

P 

complex space where con- 
ductor is circular, 

i 7 i 0  t = e  = 6 e  

coordinate axes of S-space 

angle in t-space correspond- 
ing to corners of rectangle 

In 6 

radial vector in t -space 

perm itivi ty 

permitivity of free space 

complex space where conduc - 
tor is rectangular, 
b = x +  iy 

angle in t-space 

dielec tri c cons tmts 

cos 2a 

magnetic permeability of free 
space 

pl, p2 magnetic permeability for 

p(x', y') electrostatic charge distri- 

regions 1 and 2 

bution 

CJ surface -charge density 

7 l n t = O  - i P  

cp electrostatic potential 

Subscripts: 

172 regions on either side of 
boundary between two 
materials 

H region I, 
cos 20 cosh 2p 

- cos 2a 2 0 

I1 region 11, 
cos 20 cosh 2p 

- cos 20 I O  

Superscript: 

* denotes complex conjugate 
functions 
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