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TECHNICAL MEMORANDUM X-53478

PROGRESS REPORT NO. 8

Proceedings of the Twenty-Fourth Seminar
on
Space Flight and Guidance Theory

SUMMARY

Progress reports of NASA sponsored studies in space
flight and guidance theory are presented. The studies are
made by several universities and industrial firms under
contract to MSFC. This progress report reflects work done
on the contracts during the period from April 1, 1965 to
December 31, 1965. The contracts are technically monitored
by personnel of the Astrodynamics and Guidance Theory Division,
Aero-Astrodynamics Laboratory, George C. Marshall Space Flight
Center.

INTRODUCTION

This progress report contains eight papers whose subject
matter lies within the areas of space flight and guidance
theory. The papers have been written by investigators employed
at universities and industrial firms under contract to MSFC.

This report is the eighth of the "Progress Reports" and
covers the period from April 1, 1965 to December 31, 1965,

The contributing agencies and their fields of major
interest are:

Brown University
Stability of Dynamical Systems General Precision Aerospace
Grumman Aircraft

Trajectory Optimization

Southern Illinois University
The Boeing Company
Auvburn University

¢

Control Theory i Brown University




The objective of this introduction is to review briefly
the contributions of each agency.

The first paper is concerned with finite time stability
properties of periodic solutions of Hamiltonlan systems.
The contract for which it i1s a report of progress has for
its principal objective the determination of that set of
initial or injection conditions in which is included the
initial conditions for a given (almost) periodic solution
that will result in (almost) periodic solutions that 1lie
within a prescribed "tube" of the given solution. A theoret-
ical basis for this determination was given by Birkhoff.
However, to obtain actual numerical estimates from the analyt-
ical theory an enormous amount of algebralic manipulation is
required even in the simplest problems. For this reason, a
digital computer and an appropriate non-numeric computer
language to perform the required manipulations were employed.

As an initial application of the mechanization of the
Birkhoff theory, the planar restricted three-body problem
was chosen as a simplified dynamical model; the given
solution in this model is a Lagrangilan critical point.

The second paper is concerned with discontinuous vector
fields which are encountered in problems of feedback control.
It begins with the observation that if X is a discontinuous
vector field then the study of stability under perturbations
e(t) 1s different if the perturbation enters the equation of
motion as a summand in the argument of X, that is, as in the
equation

x(t) = X(x(t) + e(t))

from what it would be if the perturbation were not a part
of the argument, as in the equation

x(t) = X(x(t)) + e(t).

If X 1s continuous then this is not the case. Problems in
feedback control lead to discontinuous vector fields 1in the
form

X(x) = F(x, u(x))




where y is a control function. The author discusses the
distinction between a classical soluftion of the equations
of motion and a Filippov solution, a generalization of the
definition of solution. He then shows as his main result
that if a vector field X is stable with respect to measure-
ment, then every classical solution is a Filippov solution.

The third paper presents a survey of various approaches
to the problem of estimating the domain of attraction of an
equilibrium solution of a system of nonlinear autonomous
differential equations. Based on observations resulting
from this survey, the problem is reformulated as that of
choosing optimally the Liapunov function from the space of
positive definite quadratic forms. An estimate of the domain
of attraction is then obtained as the solution of a minimi-
zation problem. This approach to the problem has the advan-
tages of being suitable for machine computation, of yielding
estimates that are easily visualized and of being relatively
insensitive to system dimension. Some preliminary numerical
results are presented for the Duffing equation with damping.

The fourth paper deals with the problem of obtaining a
transformation technique which can be used to eliminate the
control angles from the Euler-lagrange equations to glve a
system of differential equations in the state variables and
the Lagrange multipliers only. The problem arises in the
study of trajectory optimization by classical calculus of
variations techniques. In applying these techniques, certailn
Euler-Lagrange equations involving the control angles are
encountered. In some cases these equations lead to a solution
for the angles in terms of the Lagrange multipliers, and these
solutions can be used to eliminate the control angles from the
Euler-Lagrange equations resulting in a system of differential
equations in generally desirable state variables and Lagrange
multipliers only. The process, however, can be carried out
more readily in some coordinate systems than in others. In
this paper the technique for a general transformation of the
state variables and their corresponding Lagrange multipliers
from one coordinate system to another is discussed. The
technique is then applied to a specific problem involving
three-dimensional trajectory optimization.

The fifth parer iz concerned with finding criteric for
the stability of the zero solution of the differential
equation

x() | pl(t)(n-l) $oaee + o q(E)x + o (E)x =0



which depend on the behavior of the real continuous functions
ps(t), but not upon their derivatives.

Recently, Ghizzettl obtained simple stabllity criteria
for this problem. The particularly attractive aspect of
these criteria is that they depend only on n constants which
locate a family of hyperellipsoids in the n-dimensional space
of the py(t). If the curve represented parametrically by the
p1(t) is entirely contained within one of the hyperellipsoids,
then the zero solution of the equation above is asymptotically
stable.

In this paper the author uses the second method of
Liapunov to obtain stabllity criteria for the above equation
which depend on only n parameters which determine a familly
of elliptic paraboloids in the n-dimensional space of the
ps(t). It can be shown that these elliptic paraboloids
completely contain the hyperellipsoids of Ghizzetti. A
practical technique for the application of the stabllity
criteria obtained is discussed and is applied to two examples.

The objective of the sixth paper 1s to present a unified
exposition of Liapunov's theory of stability that includes
the classical Liapunov theorems on stabllity and instability
as simple corollaries. The principal idea exploited in this
paper was used by other investigators in the study of nonauton-
omousg functional differential equations. Of considerable
importance is the possibility of extending these concepts to
more general classes of dynamical systems, especially to some
types as defined by partial differential equations.

A noteworthy contribution is Theorem 1 and its corollary.
The theorem, which is concerned with the nonautonomous system
x = £(t,x), explains precisely the nature of the information
given by a Liapunov function; it shows that a Liapunov func-
tion relative to a set G defines a set E which, under the
conditions of the theorem, locates all positive 1limit sets
of solutions x(t) of x = £(t,x) that for positive time remain
in G. However, in order to use the theorem, there must be
some means of determining which solutions remain in G. A
corollary, a consequence of the theorem, gives one way of
doing this and also provides, for nonautonomous systems, a
method for estimating regions of attraction (domains of
stability).

A limit set of Q 1s defined as the set approached by
a solution x(t) of a system of differential equatlons as
f-e, The points peQ are 1limit polnts. A 1limit set has an




v

"invariance property" if all solutions x(t) which start at
peQ remain in Q as t-=. It is pointed out that there are
special classes of differential equations where the limit
sets of solutions have, additionally, an invarilance property
and that this property permits a refinement and sharpening
of Theorem 1, mentioned above, for these special classes.

Because the paper is largely a survey of recent extensions
of past investigations, formal proofs, except for corollary 6,
are not given; but ample references and illustrative examples
are provided for the reader who might wish to work out the
proofs for himself.

In the seventh paper an analytical solution of the
Euler-Lagrange equations for the Lagrange multipliers for
optimum coast trajectories is obtained. Similar solutions
have been obtained by other investigators, but all of these
solutions had singularities for orbits with zero eccentricity.
The solution presented in this paper does not have such a
singularity, but there is a numerical difficulty due to a
removable singularity at unit eccentricity. An approximate
solution, accurate near unit eccentricity, is given. This
solution reduces to the exact parabolic solution for unit
eccentricity.
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Abstract

This study deals with finite time stability properties of periodic solutions of
Hamiltonian systems. It attempts to answer questions such as what tube of
initial conditions about the periodic solution will keep solutions in some pre-
scribed tube about the periodic solution over some prescribed time interval.
A theoretical basis for answering questions such as the one formulated above
was given by Birkhoff [ 1]. However, to obtain actual numerical estimates
from the analytical theory requires a great deal of algebraic manipulation
even in the simplest of problems. For this reason, it was decided to employ
a computer and an appropriate computer language to perform the required

manipulations.

As an initial application of the mechanization of the Birkhoff theory the
system chosen was the planar restricted three~body problem and the solution

chosen was a Lagrangion critical point.

Basic Theorz

Let H(x,y) be the Hamiltonian of a dynamical system so that the equations

of motion can be written as

x =H (x,y) x = (x],...,xn)
1,e00,n, (M
y =-Hx (x,y) y = (YI""'Yn)
v
and let x, = (pv(t), Y, = d;v(t) be a periodic solution of (1) of period 27,
To study solutions in the neighborhood of this periodic motion we make the change

of variables

X = x=¢, 7=Y-¢'




Then (1) tokes the form

v=1,.0.,n, (2)
7 =-|'L; (;171 ")
v

where H has period 27 in t and

Hy 0,0,1) = Fi,_( (0,0,) =0, v = 1,...,n.

v v

Thus the origin is a critical point solution of (2). The problem is therefore
reduced to the study of solutions in the neighborhood of an equilibrium
solution of a Hamiltonian system with an explicit periodic time dependence.

A theorem of Birkhoff, [ 1], is applicable to this problem.

Theorem 1 Let the Hamiltonian H(x,y,t) of a dynamical system with

an equilibrium point at the origin, be analytic in x and y, periodic in t
of period 27, and thus representable in a convergent power series by

[--]

Vi Vo v. V v v
1 2 m ‘ntl "nt2 2n
Hx,y,t) = E a ) ST ...xny]n Yo o eeY

VI,V2’0-|'v2n n

Vit vate.ot v n=2

1 2" 2
= H2 (<,y,t) + H3 (x,y,t) +...t Hk (x,y.t) +...

where Hk(x,y,t) is o homogeneous polynomial in x,y of degree k with
periodic coefficients of period 2. Let the 2n characteristic exponents,
[2 ], associated with H2 be distinct and purely imaginary. As the system is
Hamiltonian, they may be represented as, [3],




>\],...,)\ ’ -X]ln.o-k .

n n

Furthermore let the exponents satisfy

Assumption | m])\]+m2)\2+...+mnkn+mn+]=f-'0

for all integers mi such that

n

0< |m| = E ImilSN 23.

=1

Then there exists a canonical change of variables

x
]

f, (& n.t)
v = 1,.0.,n, 3)

~
I

QV(EI N, t)

where fv and g, are convergent power series without constant terms in
the components of £ and 7 with coefficients having period 27 in t,

such that the Hamiltonian in the new variables has the form

H(Eom ) = H @ nys 6 Mgenn€ 1) + Hy (E, 7, 1),

where ﬁ] is a polynomial with constant coefficients of degree N if N
is even and degree N-1 if N is odd in the variables z = gv n, and
where H2 (¢, n, t) is a power series in gv, n, beginning with terms
of degree N + 1. With H in this form the Hamiltonian is said to be

normalized up to order N.

10




Theorem 2 (Special Case)

Let the Hamiltonian, H,y), of a dynamical system with an equilibrium
point at the origin, be analytic in x and y and thus representable in a

convergent power series by
20 Vi V2 Yn Ynt1 Yne2 Voo

H(XIY) = E av]’.“'vznx] x2 ,,,xn y] Y2 '“Yn =

vl+. .ot v2n= 2

H2(x,y) + H3(x,y) +...t Hn(x,y) teeuy
where Hn(x,y) is a homogeneous polynomial in x, y of degree n with

constant coefficients. Let the 2n eigenvalues associated with H2 be

distinct, purely imaginary and represented by

Furthermore let the eigenvalues satisfy

Assumption 1’ m])\] +m2)\2 + e, +mn>\n 0

for all such integers mi such that

n
0<|{m| = Zlmll <N 23,
i =y

Then the conclusion of Theorem 1 holds. Moreover there is no explicit time

dependence in the change of variables (3) and thus also in the new Hamiltonian

H (g, ).

11



The usefulness of this theorem is the following. If we are studying solutions

near the equilibrium point £ = n = 0, then ﬁ; is of higher order than

A
H] and is discarded for the moment. The equations then have the form

oy .
]

)y (&) = &, ),

v=1,..0,n. (4)
n, = -(H')Ev(z) = -nv(H])zv

If we multiply the first equation by nv)the second by gv)and add, it

follows that

'a' (evT)v) = 0, v = ],...,n.

Thus, gv n, = ¢, (constant) so that (4) becomes integrable yielding

= i(H), ()t
£, = gv(O)e' Izvc

v=1...n, (5)

n, = n, e Hg ©

If we restrict ourselves to a large finite time interval and a suitable region in
phase space it can be shown that the higher order terms previously truncated can
be made small so that (5) is a close representation to the actual solution in this
region. By use of (3) approximate solutions to the original problem may be

obtained. For precise statements along these lines see [ 1] and [3].

Rather than prove this general theorem we now illustrate how to carry out the norm-
alization procedure for the particular Hamiltonian describing the planar restricted
three-body problem and take for the periodic solution a Lagrange critical point.

This problem falls under Theorem 2.

12




Application

The equations of motion for the planar restricted three-body problem in the

rotating coordinate system are

2 m, (x - x,) m, (x - x,)
dx _ 2w dy _ w2x _ 12 2 ,

2 3 K]
dt dt r r

1 2
42 dx 2 ™y MY
+ 2w — ) y - __3_ - _3_ ’

dt dt f o

where the gravitational corstant has been set equal to one.

If we set

then the Hamiltonian takes the form

1,2, 2 ™M ™
H =3 (v +v)+w(uy-vx)-r—-]- - -r? . (6)

If we set |xl-x2| =d and

17 "2 b=1_32§'

m]+m !

_d
)

N

13




then the point

x =a, y=b, u=-=pb v=waq
is an equilibrium point solution for the system. We introduce dimension-
less variables T, 9ys 99s Pys Por in the neighborhood of this equilibrium
point by

T =W, x = o+q]d, y =b+q2d, u=-wb +p]wd,v = wa +p2wd,
The Hamiltonian (3) is now defined in a neighborhood of the equilibrium
point q; =49 =Py =Py = 0 and takes the form after expansion about this

point

H =H +H +-'o.+H +oo.
m

2t M3

where
1 2.1 2 1 2 5 2

Hy = 5P, t5Py *agPy=ayPytg dy ka9~ g% )
73 3, 3[3 2 113k 2 3(3 3

Hy = -2 a” + = a) at —r— 99 *Te %2 ©

yo- 37 4 25 3 123 2 2_ 15 3_3 4 9
A TEY T 2 @ N2 T F YN TR

S my,=m
with k = 3?‘- ( 12y,
m, +m

We now carry out the normalization of the Hamiltonian up to order 3 (N=3)
for the Earth-Moon system. For this value of k the eigenvalues corresponding

to H2 are distinct and purely imaginary and Assumption 1° holds for N =3.

14




From (7)' H2 can be written as

H2 = -%rr'-Er

T
where r' = (q:l s Pys P2) and

/A -k 0 -1]

-k -5/4 0
E =

0 ] | 0

-1 0 0 |

The equations of motion then become

r = (FE)r + ...

where
— —
0 0 1 0
0 0 0 1
F =
-1 0 0 0
0 -1 0 0

As the eigenvalues of FE, A],

an A such that

-1

A "FEA =D

(10)

)\2, - Al, - AZ’ are distinct there exists

15



where

_A] 0 0 0
0 X 0 0

D = 2
0 0 -, 0
0 0 0 Y
e 2]

A'FA = F an

r = AT ' (12)

is a canonieal mapping and thus preserves the Hamiltonian nature of the system.

As the equations of motion of the system in the new variables become

the Hamiltonian in the new variable becomes
H2 (q'll 997 Py P2) = >‘-| 9 Py + >‘2 99 Po t oo

Omitting the details, the set of all matrices that diagonalize FE and are

canonical take the form

A = A] AS,

16




where

al 02
b, by
A, =
Aay=b))  (Agay-by)
(01 * b)) (ay*2.by)
|
5, 0
0 5,
A =
0 0
0 0
-1
6, = Ao (11-4a),

9 2
F] 52
)

W5y Byopmhy)
(@ F2b))  (ay*Ab,)
0 0 |
0 0

>
1 0
0 1
= 1,2,

A] being chosen such that (10) is satisfied and A] A so that both (10) and
(11) are satisfied. The matrix S§ has the form

sl 0
0 So
0 0
0 0

where 5 and so are free to vary. As r is real, from (12) it follows that

we must guarantee that

A7 = A¥

(13)
17




where the bar represents the complex conjugate. It can be shown that if we choose
5 and S by

i
(To, |

I8,

then a sufficient condition for (13) to hold is that

FAEEE - o
P] -1 q]

(14)
Py =1 &

Combining the above matrices, the matrix A has the form

a]/l 6]| a2/| 62| -iEI/I 5] | i-azfl 52|

bI/l 6]l bzfl 62| -i'B]/I cll +i‘52/| 62|
al'b])'/l 6] | ()202432)/‘ 62| -i(x]c]_slv‘ 6] l i(§;°2"52)\/| 62‘

(g b, V16, (ag+ A b )/Io | -i('_—To]+A] 1)/'51‘ ""+ XT)/IG I

[ —

ond normalizes the terms of second degree of H.

The Hamiltonian under (12) takes the form

18




v]+...+v =3

4

v \'2 \'4 \'4
+ h S
2 vivgivgv 1 92 P [}

v]+ v2+ vat v4=4

(15)

where (15) is obtained by substituting (12) into (7-9). This relatively simple
symbolic operation, however, is quite cumbersome when attempted to be done by
hand. It was done, though, for this particular model with the Earth-Moon con-

stants and will be used for checking purposes.

We now normalize the third order terms of (15). As we shall see Assumption 1°
for N =3 is essential here. Let us infroduce a canonical change of variables

by the contact transformation, [3],

_ o~ SV
Ek = 9 + 3‘1'7": (16)
k = 1,2
~ Vv
CE (17)
k k ?&;
where V Gk ’ 'r]k) has the form
~V1.V2 V3 Y4
= 18
v Z cvl,vz,vs,v4ql 92 Tl] My (18)
Vit votvatv, =3
We attempt to choose ¢ so as to eliminate as many third-order

Vyr Vor Var V4
terms os possible in (15). Substituting (16,17) into (15) we obtain

19



oV

A
Ho= X gpmp+ Ay 8 mpt Ay (g = M 3")“" (525?' "23—)

(19)

S 1,2 V3 V4

+ 9 Ve Ve oy gl 52 7)1 My + terms of degree 4 & higher.
I Xl ’ f 4

v]+v2+v3+v4*3] 2'73"4

We note that V is a function of the old variables a;( By a formal process we
can solve for these variables from (16) and substitute for the ak in (19). Both
the transformation from old to new variables and its inverse may be obtained by
a formal procedure from (16), (17). Both lead to powers series representations
which converge in a neighborhood of the origin. Eliminating all dependence on
9 in (19) by this method, :-\I takes the form

N R (3 LI (20)
+ A (62 a\g/(E:ﬂ) m, _g%;&m)) +

Y,

' evt ‘nv‘ ‘nv" + terms of degree 4 & higher.
],v2,v3,v4 1527 72

A + v2+ v3+ v4

Vi V9 Va3 V4
Collecting third order terms in §] §2 ny Mgy in (20) and using (18) we
obtain for a typical term

[X] (V]-V3)+A2 (V2-V4)]+ g

CV]IV'21V31V4 V],V2,V3,V4. (2])

If the bracket in (21) doesn't vanish we can solve for ¢ and
V1234
eliminate the corresponding third order term from the Hamiltonian. But from

20




Assumption 1' the bracket can vanish only if V] =Vgr Vg =v,. However
this would imply the order we are dealing with is even. Thus for N =3
Assumption 1' guarantees: all third order terms of the Hamiltonian can be
eliminated by the change of variables (16,17). One must keep in mind
that although all third order terms are eliminated many more fourth order
terms arise from this process. These must be kept tract of for error bounds
and also if higher order normalizations are to be carried out. This has been
done by hand for the fourth-order terms of the Earth-Moon model and will be
used for checking purposes.

Following the same procedure as above, normalization of the Hamiltonian
up to degree s can be carried out if Assumption 1' holds for N =s. Let us
assume that the normalization has been carried out up to degree s - 1.
Then the change of variables defined implicitly by (16 - 18) with

Vit vt vatv, = s preserves the normal f’c;rm 32 tovdaegr‘e,: s=1. As
before, collecting sth order terms in £y €9 My My leads to an
equation of the form (21). If |v, - v3i + iv2 -V i 0 fthen

c can be chosen to eliminate the corresponding sth order term
V3 Vo Va,V
10203774
from the new Hamiltonian. Reasoning as above, all sth order terms con be
eliminated if s is odd. If s is even then all terms save those for which
V| = Vgs Vg =V, can be eliminated. We choose the corresponding

cv], Vor Var Vg equal to zero in this case. However these terms are formed
from products € M and lead to an integrable Hamiltonian. It should be noted
that the complexity of the operation of normalization increases with s. This
manifests itself in keeping tract of all coefficients that combine to form a partic-

ular 9, ve v v in (21) which in turn is a Tunciion of uii previcus
17 72" "3' "4
normalizations.

21



Returning to our original task, after third-order terms have been eliminated,

the Hamiltonian takes the form

A
H(&y &or mya M) = X gy + Xy 6omy +

A v v v v
E h g ] 52 2 4 3 My 4 + higher order terms.
=4

ViVaVaVy
Vitvotvgtv, =

Dropping the 4th and higher order terms the differential equations become
fe T M &

T?k =">‘k le,
so that
At
§k = gk(O)e k

_ -t
"‘Ik—'ﬂk(o)e k' o

It can be shown that if the initial conditions are chosen such that nk(O) = iEI:(O)
then solutions in the original variables will turn out to be real. Thus, if we
invert all transformations, information about the original system may be obtained.
The error in this case comes in because of the truncation of the 4th and higher
order terms. It is intuitively obvious that this procedure will give better results
than a linear analysis. For in such a linear analysis the error comes in by

truncating cubic and higher terms in the Hamiltonian.
A computer program is being written to perform the algebraic manipulations
described above. This program is utilizing the 1.B.M, FORMAC language and

is being written for the 1.B.M, 7090/94 computer.

22
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DISCONTINUOUS VECTOR FIELDS AND FEEDBACK CONTROL

H. Hermes

Introduction. The study of "stability”" under perturbations, €(t), for a ¢t
vector field X 1is no different when the perturbation enters the equation as

K(t) = X(x(t) + €(t) , (x(t) = ) or as x(t) = X(x(£))+ €(t) . Tnis is

no longer true if X is discontinuous. In particular, problems of feedback
control naturally lead to discontinuous vector fields of the form X(x) = F(x,u(x))
where u 1is a control function. In practice, the value of u is determined

after making a measurement on the state x(t), at time t. If this measure-

ment is in error, say x(t) + €(t) 1is measured rather than x(t), the governing

equation of motion will have the form

x(t) = X(x(t) + &(t))- (1)

It is this concept which leads, in section 2, to the definition of stability
with respect to measurement. Intuitively, X 1is stable with respect to measure-
ment if any solutions of eq.(l) and x(t) = X(x(t)), satisfying the same initial
conditions, remain arbitrarily close over any finite positive time interval
whenever the supremum of |€(t)| over this time interval is restricted to be
sufficiently small.

In general, the initial value problem for a discontinuous vector field
X need not have a solution. If, however, there is an absolutely continuous
function @ of the real variable t which satisfies the initial condition and

P(t) = X(®(t)) almost everywhere; we will cdall @ a classical solution. There

are many ways to generalize the difinition of solution, so that solutions will

exist, even if X 1is merely measurable. A summary of the more standard notions,

26




most of which replace the vector field X by an "averaged" or "smoothed"
associated vector field, are given by Filippov in [3]. 1In [3] Filippov defines
a new concept of a solution, which ismotivated by control problems; we will
discuss this notion in §1 and here after refer to such solutions as Filippov
solutions.

It will be seen that control laws synthesized from "open loop' controls
(hence classical solutions exist) may lead to vector fields which are not stable
with respect to measurement. An example is given for which an optimal feedback
control exists when sclutions are taken in the classical sense, but does not
exist if solutions are taken in the sense of Filippov.

The main result shows that if a vector field X 1is stable with
respect to measurement (solutions taken in the classical sense in the definition
of this stability) then every clussical solution is a Filippov solution.

If X 1is stable with respect to measurement, solutions for t =z O
of the initial value problem for the corresponding ditferentiali equation are
unique, and such a solution when evaluated at a fixed positive time, varies
continuously with the initial data. This means that, with increasing time,
solutions may join but not branch. Thus it is felt that feedback controls
which are meaningful from the viewpoint of applications should lead to vector
fields which are stable with respect to measurement. To characterize such

vector fields directly, however, is no easy task.

~ocon foar NI canntinnane F‘ip"ﬂS:. the Filipvov Solution.

Consider a control system of the form
x = g(x, u(x)) , x= (Xl"°"xn)’ u = (ul,...,ur) (2)
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with values u(x) to be chosen from a control set U. Let the terminal manifold
(target) be a manifold S contained in [0, =) X BN, (En denotes Euclidean
n space.) If g is bounded and Lipschitzian in both arguments and u is a
given Lipschitzian control, then an initial value problem for (2) with data

x(0) = x” has a unigue solution, with value at time t denoted cp(t,O,xo)°
Suppose @(tl, 0, xo) € 5. The question considered is the following: If

S bhas dimension less than n in En+l, is it possible that, for each x in

some neighborhood 7Z(xo)c:_ E' of xo, there exists a value t(x), O = t(x) < o,

such that o(t{x), 0, x)e S?

From a control system viewpoint, it would be desirable that this question
have an affirmative answer (which is the case if u is allowed discontinuities).
However for u Lipschitzian we will show, using a method related to a result
of Bridgland [1l, lemma 2], that the answer is negative. Indeed, for fixed t',
o(t', 0y ») 1is a homeomorphism therefore the image of an n neighborhood will
have dimension WM. To consider the case where the value of t may depend on
the point x € /{(x°) define the map ¥ : EXTT 5L by w(t,x) = (£,9(t,0,x)).
Then V¥ is a homeomorphism with inverse w—l(t,x) = (t,9(0,t,x)). Since §
has dimension less than n, w'l(S) has dimension less than n. Let P be a
projection defined by P(t,x) = (O,x). Then P(W—l(S)) has dimension less
than n. But P(W'l(s)) is precisely the set of initial points in E° from
which S is attainable. Indeed x'e P(w'l(s)) if and only if there exists
"2 0 such that (t', (t', 0, x'))e S. To see this, x'e P(y"(8)) ==> for
some t', (t', x')e w-l(S):;> v(t', x')e s or (t', o(t', 0, x'))e S. On the
other hand (t', (t', 0, x'))e 8 =>(t', x') = (¢', ®(o, t',0(t',0,x'))e ¥ (S)
and x'e P(W'l(S)). Thus the set of initial points from which S c¢an be

attained has dimension less than n.
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It is useful, therefore, from a control viewpoint, to study differential
equations with discontinuous right sides. For the sake of completeness we will
briefly discuss the generalized concept of solutions for such equations as given
by Filippov [3].

Let X be a measurable function defined almost everywhere in a domain
¢ € E° with values in a bounded set in E . With X(x) associate the convex

set

KX(x)} = 0 n co {X(u(x,8) - N))
& >0 u(N)=0

—~
AN
g

where co denotes closed convex hull, U(x, &) 1is a closed & neighborhood
of %, N an arbitrary set in £ and 4 is n dimensional Lebesgue measure.

An absolutely continuouas vector valued function ¢, defined on [0, T1,

is called a solution in the sense of Filippov of X = X(x) if for almost all

t, &(t)e K{X(p(t))}. It is shown in [3] that such solutions will always exist,
and many of their properties are discussed. In particular, if X is continuous,
K{X(x)} = x(x).

To illustrate this type of soluti-n and its consequences we consider

a very simple control problem,

Example 1. The problem will be that of minimum time transfer with terminal

manifold S = {(t, Xy, x2) 1420, x;, =0, x5 = 0} and system equations

}(1=u;1

X, = u

2 2

with comtrol components subject to the constraint 0 = lull + lu,] = 1. It is

U

~

clear that the minimum time needed to attain S from the initial peint (xi, xg)

29



is |x§| + lxgl , and there are many ways in which this can be accomplished.
We single out two such strategies; each will be given in closed loop (feedback)

form as symthesized from obvious open loop strategies.

(-1, o) , x; >0, x, 20

2
(o, -1) , X, 20, x, >0
Strategy 1 1
—_— =4 (1, 0, x <0, x50

(0, 1) , x 20, %<0

Lo, 00 , x =x=0

Pictorially, the resulting vector field looks as follows:

Figure 1.

X2

All vectors are

7 unit vectors.

Strategy 2

( (0, -1) , x,>0

(-1, 00 , x=0, x >0
2
w(x) = { (1, 0) , x=0, x>0
(0, 1) , x,<0
\(0, 0) , x =x,=0.
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Pictorially:

Figure 2.

In each case, the classical solution of the equations of motion exists
for arbitrary initial data, is uniquely defined for all t 2 O, depends continuously
on the initial data and reaches the origin in minimum possible time. These
same properties are true with strategy 1 when solutions are considered in the
sense of Filippov, however in the case of strategy 2 the Filippov solutions
become rest solutions when a state with Xy = O 1is attained. Therefore, sclutions
in this sense, do not reach the target S. This occurs since the first component
of the vector field ug(x) is zero except on a set of measure zero, i.e. the
Xy axis. From a practical viewpoint, since the control signal is determined
by a state measurement, one should not expect sets of states having measure
zero to influence the solution. From this viewpoint, the Filippov solution is
the more realistic notion.

In the procciling cxomple  with the rraner choice of strateav, i.e.
strategy 1, an optimal feedback control existed whether soluticns are taken in

the sense of Filippov or the classical sense. The fullowing example will show

that this need not always be the case; i.e. we will produce a feedback ccntrol
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synthesized from optimal open loop controls, which is an optimal feedback
control if solutions are taken in the classical sense. However an optimal

feedback control for solutions taken in the sense of Filippov will not exist.

Example 2. Let the equations of motion be:

°l <2 (%)

hae
1]
t
»
+
o
-
o
1A
<
1A
—
.
»

with the optimization problem being to minimize the cost functional
t

£ 2 2
f u[(xl—l) + X5
o}
reaches the origin.

2 .
- 1] dt where t is the smallest nonnegative time a solution

f
The open loop strategy of u =0 until the circle (xl-l)2 + xg =1
is reached, at which time a switch to u = 1 allowing this circle to be
traversed in a clo¢kwise fashion, produces a trajectory which reaches the
origin with zero cost. The corresponding synthesized feedback control leads

to the following vector field for (U4):

0 if (xl-l)2 . £l

x
2
X(x) = 2 where u(x) = {— 5 5
-x) + u(x) 1 if (xl-l) +x, =1
{(*=2 )|
On the other hand K[X(xl,x2)] =\ -xJJ since u(x) is 1 only on a set of zero
1

measure, and the corresponding Filippov solutions will not reach the origin.

From the form of the cost functional, it is seen that for any function u(x)

for which the corresponding solutions in the sense of Filippov reach the origin,
there will be a positive cost involved. Since this value can be made arbitrarily
small, but not zero, an optimal feedback control for solutions in the sense of

Filippov will not exist.
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§a. Stability with Respect to Measurement.

An examination of the two vector fields of example 1 shows a type of
stability present in the first which is not present in the second.

For notation ease, if f 1is a bounded function on a real interval [0,T]
with values in E°, let ||f]] = ess. sup. {|£(t)] , t € [0, T]}. We will use
U(x, 8) to denote a compact, spherical neighborhood of radius &, about the

point x € En, and coA to denote the convex hull of a set A.

Definition. A vector field X, for which a classical solution ® of X = X(x)

with arbitrary initial data x° exists, is said to be stable with respect to

measurement if given € >0 and finite T >0, 3 a ©>0 such that when-

ever € 1is a measurable function with values in En and norm less than & for

which a corresponding solution ¥ (in classical sense) of X(t) = X(x(t) + €(t)),

x(0) = x°, exists on [0, T] , then ||¢ - ¥] < e.

For the remainder of this section we will assume X 1is a measurable
function defined on a domain Q in En with values in a bounded set in En.
Qur concern will be with relating the concepts of stability with respect to
measurement, Filippov solutions and classical solutions. In particular, lemma 3
will show that if ¥ is a Filippov solution of X = X(x) , x(0) = x° (such
solutions do exist) then for any €, 8 > 0 , there exists a measurable function
€ with ||e] < & such that a classical solution 9 of X = X(x + €(t)) , x(0) = x°
exists and satisfies ||¢ - V| < e. This essentially says that if one allows
arbitrarily small perturbations ¢f the argument, a response to any vector field
X may be made to agree closely with a response to the associated Filippov

generalized field K{X(°)}. After this has been established one easily obtains:

Theorem 1. If X 1is stable with respect to measurement then every classical
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solution is a Filippov solution.

égmma 1. Let V¥ be an absolutely continuous function on [o, 7] with values

in E, and z a measurable function with =z(t)e K{X(¥(t))}, t € [0, T]. Then

: . . . 1 k
given any © > 0, there exist a finite number of measurable functions w ,...,®

with wl(t)e U(¥(t), &) such that the function v’ defined by vl(t) = X(ml(t))

are measurable and for any € >0, z(t) 1is contained in an € neighborhood of

1 k
colv (t),.ee,v ()},
Proof Filippov [3] shows that the requirement z(t)e K(X(¥(t))} is equivalent

to the condition that for any vector 1

z(t)*n £ 1lim (ess. max {X(u)*'7n : ueU(y(t), 1}) (5)
¥ >0

or equivalently z(t)-n £ ess. max (X(u).7n : ueU(¥(t), v)} for every y >O.
Let 2z be any measurable function with z(t)e K{¥{(¥(t))}. Suppose we
are given &, € > 0. Pick an arbitrary vector 71 ¢ O ; we will first show that

one can construct a measurable function « with o(t)e U(¥(t), &) such that

z(t)'n = X(w(t))-n + €/2 (6)

for t e [0, T].
Subdivide the interval [0, T] into subintervals by a partition

0 = to <t . <...< tm =T and let B(t-ti) be a continuous real valued function

1

defined on [t,, ¢t with 8(0) = 8, &2 S(t-ti) 2z 3/2 and such that

i+l)
u(¥(t), 8(t-t;)) < uw(t'), 8(t'-t,)) (7)

for t, = t' =2t <t,
i+

i The existence of such a partition and function S(t—ti)

1*

is an immediate consequence of the uniform continunity of ¥ on [O, T].
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Figure 4

\
{
1
13
]

+

[ 2}

r':*. - s o

Cross sections with t constant are
the neighborhoods U(¥(t), S(t-ti)).

For any € >0 , by Luzins' theorem we may cloose a compact subset
Ei(el) of U(#(ti), 8) differing in measure from U(W(ti), 8) by less than
€ and such that X is continuous on Ei(el). Then for every ¢t € [ti’ ti+l)
the set X = Ei(el) 0 u(w(t), S(t-ti)) is a nonempty compact subset of Ei(el)
on which X(-)-n is continuous. Let v, (t) = max. (X(w)*n : w € Kt}. By (),
1

v is a monotone decreasing function on [ti, ) hence measurable. By

t
el i+1

theorem 1, [2] there exists a measurable function w with (t) € Kt such that
X(o(t))-n = vel(t) s toelty, ti+l)' (Here we have replaced the condition of
the sets K, expanding, KE,C: K., for t< t' in the cited theorem, by K,
contracting, Ktc:i L for t' <t ; a condition which does not alter the proof
since the direction of traversing the time axis is immaterial.)

This defines the function ® on the subinterval [t,, t ) ; since

i+l
i was arbitrary we may assume ® to be defined on {0, T] as that function
whose restriction to [ti’ t,,,) 1s defined as above.

For any €, >0 either vel(t) z ess. max. {X(u):'n : u € U(¥(t), &/2)) =
z(t)*n , the latter inequality following from (5) , or vel(t) < ess max.{X(u)-n :
u € U(¥(t), 8/2)}). In the first case we deal with the situation where the
maximum of X(°*)°n occurs in U(¥(t), 8)- U(¥(t), 8/2) and inequality (6) holds

even with € = 0.
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In the second case, for fixed ¢, v, (t) 4is an increasing function
of € since we may assume, without loss of generality, that Ei(ei)fD Ei(él)

if e} <e. Since, in this case v, (t) < ess.max{X(u)-n : u e U(y(t),d/2)},
1

we may take a sequence of values € tending to zero, The corresponding

bounded monotone sequence of real numbers Ve (t) must converge to ess.max{X(u)n :

1
u e U(¥(t), 8/2)} ; indeed if it converges to a number m less than this, by

the definition of ess.max. there exlsts a set F of positive measure on which

X(*)'n >m . To obtain a contradiction we need only choose € less than the
measure of F,

This establishes that for € sufficiently small, there exists a
measurable function o with values o(t)e U(¥(t), ®) such that v(t) = X(w(t))
is measurable and inequality (6) is satisfied. (Note: It is not true in general
that a measurable function of a measurable function is measurable.)

Now let S%1 be an n-1 sphere in E® which contains
Ute[o, T]X(U(;(t), 8); this exists by hypothesis. Since st s compact
choose a finite number of vectors ni , 1i=1, 2,...,k belonging to Sn'l
and so that g/é neighborhoods of the ni cover Sn-l. For each ni construct,
as before, a function wi, measurable with values a}(t)GX(U(W(t), 8)) satisfying

i i
(6). Let v' be the corresponding measurable function; vi(t) = X(w (t)). Then

1 k
z(t) 1is contained in an ¢ neighborhood of the convex hull of {v (t),...,v (t)}.

Lemma 2., Let vl,...,vk be bounded measurable functions defined on [0, T] with

Li(t) = {vl(t),...,vk(t)). Let co4(t) denote the convex hull of LA(t). Then

if 2z is a measurable function with values z(t) contained in an € neighborhood

of co¢74(t), there exists a measurable function v with values in (/4(t) such
t

that | f[z(7) - v(1)]d1 < €(T+1) uniformly for t e [0, T].
(e}

Proof. a) We will first show there is a measurable function y with values
y(t)e corA(t) such that |lz-y| s e.
36
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Using the terminology of [4], if 2(-) is measurable single valued
function then U(z(*), €) is a measurable many valued function. Indeed, if
B(yo, r) is a closed ball of radius r, center yo, {t : u(z(t), €)n B(yo, r) £ 9) =
= (t: |2(t) - ¥°| s r + € which is measurable.
Next, since the functions v are measurable, we will show coc¢A(-)
is a measurable set valued function. Obviously éoL¢4(t) is nonempty and closed
for each t. Letting B(yo, r) be as above and s%1 genote the wnit n-1
sphere we note that the distance from co{(vi(t)-3°),...,(vi(t)-y°)] to the
origin is max _(min q-(vi(t)-yo)). Then

nest-1 1<i<k

(t: cocA(t) nB(y°, r) 4 0} = (t : max (min 7-(v'(£)-y")) s r)
nest-1 1sisk

which is measurable.
From [4], U(z(:), €) n coz4(-) is again a measurable set valued
function and there exists a measurable single valued function y with

y(t)e U(z(t), €) N co A(t).

b) We next show that if y is a measurable function on [0, t']
with y(t)e co<)4kt) for each t € [0, t'] then y admits the representation
y(t) = Z ?%l ai(t)vl(t) where the scalar valued functions @; are measurable,

k
0sat) s1 and Zi_lai(t) =1 for all t e [0, t'].

4 €
This result is closely related to lemma 1 [6]; which would yield the

desired result if the functions vi wvere continuous. To modify this to the

present case where the v\ are measuravie, lecb ©(%, @) = X, o ()

: Zi:lai =1, 0sqa 1), and R(t) = £(t, Q). Then f if

continuous in « for each fixed t. Referring now to the proof of the lemma

of Filippov [5] and letting a., v® play the role of the u, zi , respectively,
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in that, proof, choose the set E to be so that «,...,a vl,...,vk and

17 s-1%

y are continuous in E. Because of the special form of f it follows that
f(t, ) 1is continuous on E X Q and the Filippov argument may be applied

to give the desired representation for y.

c) From theorem 1 [6], it now follows that for any interval [0, t']
there exists a measurable function v with values V(t)€5/4kt) for each

t € [0, t'] such that
t! t!
[ y(t)dat = [ v(1)dar . (8)
o) o)
Since the functions v1 were bounded there is a constant M such

that |yl = M, ||Vl £ M. Subdivide the interval [0, T] into m equal sub-

intervals each of length T/m. Let Ij denote the interval (JjT/m, (J+1)T/m].

Using (8) for each j = 0,...,(m-1) , define v on Ij so that fI [u(T)-v(T)]dT
0. Now if m is chosen so large that m 2 2MT/e it follows that |f§[y(1)-v(1)]d1|

< € uniformly for t e [0, TJ].

d) To finish the proof we show the function v constructed in part
t
c) satisfies the conclusions of lemma 2, Indeed |[ [z(7)-v(7)]dT ]| =
t t o] t
| J [z(0)-y(7) + y(7)-v(")]at | = |[ [2(7)-y(7)]as| + |[ [y(c)-v(7)]dt| =
o o}

€T+ €= €T+ 1] ; using the results of a) and c) , respectively.

Lemma 3. Let V¥ be a Filippov solution of % = X(x) , x(0) = x°. Then for

any €, 5> 0 there exists a measurable function € : [0, T] - E" with

|€l < & such that a classical solution @ exists, on the interval [0, T],

for the problem X = X(x + €(t)) , x(0) = x° and satisfies [9-¥| < e.

Proof. Let W(t) = z(t)e K{X(¥(t))}. By lemma 1 there exist k measurable

. 1 k i i
functions @ ,...,w with o (t)e U(¥(t), 8/2) such that the functions v
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defined by vi(t) = X(wi(t)) are measurable and z(t) is contained in an
€/(T+1) neighborhood of co(vl(t),...,vk(t)}.

By lemma 2, there exists a measurable function v with v(t)e(vl(t),
...,vk(t)} such that |ft[v(T) - x(1)]d7] < € uniformly for t ¢ [0, T].
Define the measurable funztion w by ot) = u}(t) if t 1is such that
v(t)=vi(t). Then ® is measurable, w(t) € U(¥(t), 6/2) and X(w(t)) = v(t).

We next produce the gbsclutely continuous function @ and measurable

function € in the statement of the lemma.
+

Define @(t) = x° + fvv(r)dr. Then |o(t)-¥(t)| = |ft[v(T)-Z(T)]dTl< €
for t € [0, T] hence o(t) eOU(W(t), €) and |jo-¥|| = e De?ine e(t) =
o(t) - (t). Then € is certainly measurable and |€(t)| = |w(t)-v(t)+¥(t)-0(t)|=
= /2 + €. There is no loss in generality if it is assumed € < &/2. Therefore
lell < &.

Also, ®(t) + €(t) = ot) hence X(o(t) + €(t)) = v(t) and from the
definition of @, o(t) = x° + ftX(m(r) + €(7))dT showing that ¢ is a classical

o
solution of % = X(x + €(t)), x(0) = x°.

Proof of Theorem 1: We shall prove the contrapositivej i.e. if some classical

solution exists and is not a Filippov solution then the field X is not stable
with respect to measurement.

The assumption that some classical solution is not a Filippov solution
implies there exists xO and classical solution @ through xo existing on
some interval [0, t,] such that there is a Filippov solution ¥ through x°
with o@(T) - ¥(T) 4 0 for some T € (O, t,]. Let lo(T) - ¥(T)] = r >0, pick
€ = r/2. Then by lemma 3, for llell arbitrarily small, we can find a classical
solution & of x = X(x + &(t)), x(0) = x° such that |&(T) - ¥(T)| < e

hence |®(T) - &(T)] > €, i.e. X is not stable with respect to measurement.
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We shall end by briefly summarizing some additional properties of
vector fields which are stable with respect to measurement.

If X is stable with respect to measurement, the solutions of
X = X(x) for t 2 0, are unique. This follows as an immediate consequence
of the definition.

If X is stable with respect to measurement and @(tl, xo) denotes
the solution through initial data x° evaluated at time t, >0, then @(tl,')
is continuous.

Indeed suppose & 550 but Q(tl, xk) P @(tl, x°). Then there
exists a & >0 such that |cp(tl, xk) - cp(tl, x°)| 2 8 for all k sufficiently
large. Let Ck(t) = x0 . 8 ; i.e. a constant measurement error. For k
sufficiently large, ||€]] can be made arbitrarily small.

Since (%, xk) = X(o(t, xk)) , 1if we define gk(t) = (p(t,xk)-xO + x5
then Ek(t) = o(t, xk) hence ék(t) = X(gk(t) + Gk(t)) and gk(o) = x°. From
the definition of gk , for k sufficiently large Hgk -o(°, xk)“ can be

made arbitrarily small; it follows that Hgk -e(s, X)) >8/2 for k suf-

ficiently large, hence X 1is not stable with respect to measurement.
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ABSTRACT

A survey of various approaches to the problem of estimatin
the domain of attraction of an equilibrium solution to a system
of nonlinear autonomous differential equations is given. Based
upon observations resulting from this survey the problem is re-
formulated as that of optimally choosing the Liapunov function
from the space of positive definite quadratic forms. An esti-
mate of the domain of attraction is then obtained as the solution
of a minimization problem. This approach to the problem has
the advantages of: 1) being designed specifically for machine
computation; 2) yielding an estimate that is readily visualized;
and 3) being relatively insensitive to system dimension. Some
preliminary numerical results are presented for the Duffing
equation with damping.
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Introduction

This presentation is concerned with the problem of computing
the restrictions on the initial state errors in a dynamic system
which will guarantee that these state errors will tend to zero
as t —o., Thus, we shall be concerned with developing an effi-
cient numerical technique for estimating the domain of asymptotic
stability or more succinctly the domain of attraction of the
null solution. This problem has application in qualitatively
predicting the attitude motions of a satellite and perhaps may
provide a first step toward solving the problem of qualitatively
evaluating the effects of disturbances upon various rocket
guidance schemes.

The applicability of this analysis to rocket guidance prob-
lems is crucially dependant upon the assumption that motions of
the vehicle off the nominal path can be described by an autonomous
state differential equation, viz.,

% = g(x,u(x)) = b(x), h(0) =0 (1)

where x(t) 1is the n-vector describing the deviation from the
nominal state, u(x) represents the control law designed to
control this deviation, and the null solution is an equilibrium
solution. The domain of attraction Q is then defined as the
set of all initial points that generate trajectories that tend
toward the equilibrium solution, i.e.,

Q : (xol Aim X(t;xo,to) = 0) (2)

The only body of theory that has been applied to the general
problem of estimating itue duwaiin of attracticn ic Lizpuncvy's
direct method. Within this theory there are two distinct ap-
proaches that have been taken to determine the domain of attraction.

The first of these approaches, due to V. I. Zubov [1],

allows an exact solution to the problem, if an arbitrary function
can be chosen such that a closed form solution is obtained {or
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Zubov's partial differential equation, or it allows an estimate
of the domain of attraction via a truncated power series solu-
tion to the equation. That is, if a positive definite 6(x)
can be found such that the Zubov linear partial differential
equations

vv(x) ¢ h(x) = =000 (1 -v (x)

or

V. v(x) ¢ h(x) = -6(x) (1-v @) (1+hx - hx)

can be solved exactly for wv(x), then  1is given by

Q <xl 0 < v(x) < 1) .

If a power series solution is obtained in the form

n .
n i
Vi) = ) v, vi(ex) = avix)
i=2
a series of homogeneous forms, then an estimate o of @
is obtained via

Q" (x' 0< vi(x) < 1) s

and

QO Ca .

In 1962 Margolis and Vogt [2] reported on a procedure which
employs a digital computer to develop the series solution to
Zubov's equation for a class of differential equations of dimen-
sion two. The authors noted two principal problems: 1) com=-
putational problems arise for systems of higher dimension; and
2) the convergence of the series solution is far from uniform,
i.e., the estimate obtained for the Van der Pol equation by
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using only second degree terms in the series was better than the
estimate obtained by including terms up to sixth degree.

During 1962 and 1963 Szego [3] reported on methods for
solving Zubov's equation in vector-matrix form (these methods
are related to his earlier work [4] on generating Liapunov
functions via a ''quadratic form" whose coefficients are functions
of the state variables) and in [5] on a generalization of Zubov's
equations. The latter was pursued somewhat further by Szego and
Geiss [6]. Although some results regarding identification of
limit cycles and estimation of domains of attraction are reported,
no results regarding the conversion of these processes to numer-
ical algorithms are given.

Rodden [7] and [8] reported in 1964 on an algorithm he
developed for both calculating the solution to Zubov's equation
in series form and analyzing the resulting Liapunov function.
His work was restricted to problems of dimension two and three,
and his results indicated three principal problems: 1) lack of
uniform convergence of the series solution to Zubov's equation;
2) strong dependence of the final result upon the choice of the
arbitrary or ''constraint' function 6(x) in Zubov's equations;
and 3) visualization of the estimate of the domain of attraction,
particularly for three dimensional systems. Rodden found, in
some examples, that the second degree approximation was better
than the 20th, and that the convergence of this series solution
could be improved by solving a modified Zubov equation. How-
ever, this change still did not guarantee that higher order
approximations would be better than lower order approximations.

The second principal approach to estimating the domain of
attraction is to base the analysis upon La Salle's theorems on
the extent of asymptotic stability [9] and use one of the many
procedures for developing Liapunov functions that are available
in the literature [10] and [11]. This tack was reported on in
1962 by Infante [12] and Infante and Clark [13]. Infante developed
an ingenious and successful procedure for developing Liapunov
functions for two dimensional systems based upon an approximation
to the dynamic system. Although estimates are easily obtained
from his Liapunov functions, the technique for generating the
functions does not appear to be suited to machine computation.
Infante's work was developed in 1964 by Walker [14] for systems
of higher dimension but again the technique is not suited to
machine computation. The present author [15] reported in 1964
some favorable results obtained from a cursory look at the value

ko



of using "optimal" quadratic form Liapunov functions for esti-
mating the domain of attraction. (This paper reports on an
extension of this concept.) In 1965, Weissenberger [16] and [17],
using the analysis algorithm developed by Rodden [7], developed

a numerical technique for estimating the domain of attraction

of relay control systems via an '"optimal' choice from the class
of Lure-Liapunov functions.

Thus, upon reviewing the history of this problem the follow-
ing remarks become apparent:

1. The majority of techniques for generating Liapunov
functions are unsuitable as bases for machine
computation of Liapunov functions because of
the requirement of experience and ingenuity in
their application. Of those which are acceptable,
i.e., series solution of Zubov equations, Lure=-
Liapunov formulation, and quadratic forms, the
Zubov approach suffers from erratic convergence
and lack of knowledge of how to choose the
"constraint" function.

2. The method of analyzing the Liapunov function
to determine an estimate of the domain of
attraction should be relatively insensitive
to system dimension. Rodden's technique depends
on geometric analysis to determine points of
tangency of hypersurfaces and hence is directly
dependent on system dimension.

3. The estimate of the domain should be easy to
visualize if it is to be of engineering value.
A glance at the figures constructed by Rodden
for three dimensional problems, and recognition
of the fact that rocket guidance systems are
of at least dimension four gives strong motivation
to this statement.

4. Little attention has been given to selecting
the "optimal" Liapunov function from a given
class of functions; rather, the emphasis has
been on new methods of generating Liapunov
functions.




Based upon these remarks, the Liapunov function to be used in
this analysis will be restricted to be a member of the class of
positive definite quadratic forms. This restriction guarantees
that the estimate of the domain of attraction will always be an
ellipsoid and thus easier to visualize than the results of higher
order estimates. Secondly, based upon the results of Margolis
and Vogt [2], and Rodden [7], there is reason to believe that

. this estimate may be better than those obtained by using functions
of higher degree, particulary if the quadratic form parameters
are optimally chosen. Finally, information may be gained that
will aid in formulating a best choice of the '"constraint'" function
6(x) for Zubov's equations.

Problem Formulation

Consider the basis of this analysis, i.e.,
Theorem (La Salle [15]):

Let V(x) be a scalar function with continuous first
partial derivatives. Let {, designate the region where
V(x) € £. Assume that Q, 1s bounded and that within Qy:

‘ V(x) >0 for x#0
é(x) <0 for x#0 .

Then the origin is asymptotically stable, and above all,
every solution in Qz tends to the origin as t—w,

Thus, gy 1is an estimate of Q and the problem is reduced
to choosing V(x) from the class of quadratic forms and then
establishing that the required properties exist in some domain.
That is, the following must be accomplished:

1. Prove that V(x) 1is positive in some region
that includes the origin.

2. Prove that 9(x) = VW * h(x) is negative in
some region including the origin.

3. Establish a region Qz within which both 1 and
2 hold.

4. Prove that Qz is bounded.




Now since V(x) 1is restricted to be a positive definite quadratic
form, viz.,

V(x) = xPx , P>0 (9)

it is positive everywhere. Further, restrict the system equation
(1) to have a stable linear part, i.e., let

¥ = h(x) = Ax + £(x) (10)

where A 1s a stable matrix (its eigenvalues all have negative
real parts) and f(x) contains no terms of first order in x.
This is not an inordinate assumption since our present technology
only allows synthesis based upon essentially linear analysis and
thus a system with stable linear approximation usually results.

.Based upon the assumption of equation (10) the calculation
of V(x) results in

V(x) = x (ATP + PA)x + 2x P£(x) (11)
and choosing
T
- Q=A"P+ PA (12)
results in
. T T
V(x) = -xQx + 2x Pf(x) . (13)

Thus, if Q 1is positive definite V(x) will be negative in a
region including the origin by virtue of the fact that f(x)
contains no terms of first order in x. Now, since A 1is
assumed stable we know that every positive definite Q will
produce a positive definite P (Kalman and Bertram [18]) and
thus requirements 1 and 2 are satisfied.
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The establishment of QZ is next on the agenda. By virtue
of our restriction on V(x) “the set of hypersurfaces V = cj,
c; <c2<e3 < ...<cj <...<cn will be a set of ellip-
soids of fixed orientation and increasing size. Thus
should be chosen to be the interior of the largest such ellip-
soid within which V < 0, and that ellipsoid will be the
smallest one which has a point of contact with the hypersurface
given by ¥V =0, x # 0 (see Fig. 1).

*1
41
V=0 . .
Ly V<O y-o
'/
. V>0
v>0
f)
V=-c_
V = c4
V=c 0<ey<e,<eq ove <€
3
V=c2
vV = cq =

Fig. 1 Typical Relationship of the Loci V = 0 and V = constant
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The problem is then one of calculating
£ = min V(x) subject to V(x) =0 .
x#0

It is exactly at this point that a computer is of most value.
Also, note that since

Q, : <X| V(x) < E)

is an ellipsoid it is bounded and requirement 4 1is satisfied.

We have tacitly assumed above that there is a solution
to the problem stated in (1l4), a sufficient condition for exis-
tence is obtained as follows. Consider that we must prove that

-xTQx + ZX:P f(x) <0
in some domain D including the origin. Now note that
T T T
x PE(x) < |xPE()| < ||x"Pl| [1£()]]

via the Schwartz inequality, and using the extremal properties
of characteristic values of pencils of quadratic forms,
Gantmacher [19],

15211 < /2P |1xl] = %) |1xl|
where kmax(PZ) is the maximal eigenvalue of P2. Similarly,
xox y M@ [1xl1?.
where %min(Q) is the minimal eigenvalue of Q. Thus, (16)
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is satisfied if

[HEE ] < -————igl llx]] in D

. (20)
Since Q and P are positive definite
nin
_L__ﬂl = KZ >0 (21)

Y 62

and thus (20) is a special case of a Lipschitz condition.

The results of this procedure are dependent upon the choice
of Q and for each Q there will be a different & , thus
perhaps there is a best choice of Q for a particular criterion

function. The most obvious criterion is the volume of Qz
and thus the last step in the analysis is to define

n
3@ = 2 (.ﬂl AJ.L(P))'U2 (22)
i=
and

3(Q%) = max J(Q) (23)
Q>0

The computational procedure will then be as follows:

1. choose Q> 0

2. calculate P wvia (12)
) 3. compute £ wvia (14)
4. calculate J(Q wvia (22)
5. modify Q in direction of larger J(Q)

6. return to 2
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Numerical Results

Consider the Duffing equation with damping, viz.,

We

= X
L2 3 (24)
x2 = -elx2 - Xl + ele
and the quadratic form Liapunov function
2 2
V = P11%1 + 2p12x1x2 + Pyy¥Xsy (25)
whose time derivative with respect to (24) is
V=-|2 x2-+(2p + 26D = 2P14) %X, + (2€,P,, = 2P )x2
P12%1 22 1P12 7 “P11/%1% 1P22 127%2
3 5 4 (26)
+L2€2P22X1X2 + 2€9P1 9%
Thus, the following relationships exist:
0 1 0
A= , f(x) = 3
-1 =€ €%
P11 Py
P = (27)
P12 Py
2Py, Pyy * €1P1p = P1q
Q =
Pyy + €1P19 ~ Py 2e1Pyy = 2Py
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Application of the Sylvester criterion for positive definiteness

of Q and P yields tbe parameter restrictions (for €1 = 1):
2
P P p P
11 22
(Ell - Egg> < 2<E__ + 5——) -5 5, Py, >0 (28)
12 12 12 12
P P2,
Py, Py,
Prr> 0 5 Py >0
This system has three equilibrium points, viz.,
(0,0)
(x,%,) = { (/;,0) (30)
('\/62:0)
the first being stable and the others unstable. Thus, OT? would
not expect the domain of attraction to exceed |x1| = €3 2
and it is reasonable to inquire whether (20) is satisfied in
D, where
2 -1
p: Gl 11xl1% < 3D (31)
Hence, the question is what is K2 such that
€ x3
Heeall - 20 . ¢« x? i b (32)

x| L, 2
kal+ x2
and the solution is
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xeD 1+—x2

Thus, the estimate of the domain of attraction will be larger

than the circle ||x||? if

€2

kaaX(P)

or if

a+ B 4;M//Qx +4g13 + 4(1 - aB) S 4
8-/ -27+@-a+ 1)’

where o = pll(plz)'l and B = p22(p12)'1. The parame
restrictions (28), (29) and (35) are illustrated in Fi

The allowable choice of parameters is as given in

ter
g. 2.

(28),

(29) and (35) or Fig. 2 and the analysis in [15] has shown

that the optimal choice, using the area of
to be

p b

Pu_, P2 _,

P12 P12

which is exactly on the boundary of the allowable region.

that the resulting vV is semidefinite, i.e., = 0 on
and one must use another form of the stated theorem.
or [9], p. 66. The corresponding Q,° (for €2 =0

Note
X] = 0,
See [15],
.04) 1is

) as criterion,

shown in Fig. 3 along with the estimate obtained by using the

energy of the undamped system as the Liapunov function.
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Py
1.
51-
44
34.
2-
14
sty
0 1 2 3 4 5 Py

Fig. 2 Restrictions Upon Liapunov Function Parameters
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“x, + 0.04 xi

Fig. 3 Comparison of Best Estimate, Qg s wWith Energy Function

Estimate, Qz » and System Trajectories
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value of 2 is 12.5 when P12 = 4 and thus the estimate is

: %x§+%—xlx2+%x§ < 12.5 (37)
The points of contact with ¥ = 0 are at the equilibrium points

(x1, %9) = (£5, 0) and the estimate is seen to be close to
the actual seperatrix and considerably larger than the estimate

2 4
X, = O.lel

N[
N

2+ < 6.25

(38)

x2

1

obtained by using the energy of the undamped system as the
Liapunov function.

< 25

In Fig. 4 the optimal quadratic form estimate, Q. , 1is
compared with the estimates obtained by Infante [12] for the
system with €2 = 1. Ingwerson's procedure [20] for generating
Liapunov functions yields the following estimates:

4
2 X
Ql : x1 - _Z + xlx2 +

xZ
2
7 <

s L

(39)

while Infante's procedure yields

2

X

2 1 2 3

92 Poxg [2 - =5 + 2x1x2 + X, < 5

(40)
|x1' <1

Thus for this example it seems that the optimal quadratic form

technique yields an improvement in accuracy, ease of solution,

and ease of portrayal of the estimate of the domain of attraction.

The numerical solution of the constrained minimum problem
(14) is obtained by solving an unconstrained problem, viz.,

61




62

Fig. 4 Comparison of Best Estimate, Qg 5 with Estimates

Obtained by Infante, and System Trajectories




K2(V(x))?

£ = min | V(x) + ————— s (41)
X |1 ]
where ||x|| was introduced to avoid the trivial solution

and Kl is manipulated to agsure satlsfactlon,to a prescribed
accuracy, of the constraint V(x)

At present, we are using a new algorithm for finding the
minimum of a very general class of functionals to solve (41).
(Eventually it will also be used to solve [23].) This
algorithm is being developed at Grumman by Mr. R. McGill based
on work by Davidon {21]. The algorithm being developed by
McGill has the following salient characteristics:

1. It does not require numerical inversion of linear
operators and thus is relatively free of
dimensional limitatioms.

2. It is stable with respect to convergence, i.e.,
convergence to a local minimum is guaranteed.

3. It is efficient, i.e., convergence is quadratic
in a neighborhood of a minimum.

4. 1t allows a tradeoff between precision and
computing time.

5. It requires modest storage.

Typical computational results for €1 =1, €, = 0.04
are presented in Figs. 5 through 12. These figures show the
boundary of the estimate §, and its relationship to the
constraint V = 0, and the area contained with €, . The esti-
mate (, is the elliptical region surrounding the origin.
The aberrations from e111pt1c1ty are due to the plotting machine
routine being used aud &aie oot part cf£ O, . The Taci V = 0
are those with the triangle and square markings. These mark-
ings are used to distinguish the branches corresponding to the
positive and negative roots of the quadratic equation (in x2)
used to generate the loci V = 0. These markings along the
X1 axis indicate that the roots are complex for those values
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of x; and are not part of the loci V = 0. Note that when

P11 = 4.0, p12 = 0.5, p92 = 2.0 V =0 appears to have a cusp
at its point of contact with V = /. (This situation would be
difficult to handle using a geometric approach such as Rodden's).
The best computed result is about 107 off the optimal

J(Q@P) = 507 = 157. Some convergence difficulties have been
observed as the boundary 2 of Fig. 2 is approached. This
phenomenon has not yet been investigated.

Conclusions

Results obtained by investigators who pursued estimation
of the domain of attraction via Zubov's technique, and the
preliminary results presented here indicate that estimation
of the domain of attraction for quasi linear dynamic systems
via "optimal" quadratic form Liapunov functions, as formulated
here, is feasible. This procedure, in conjunction with McGill's
algorithm, offers the advantages of: 1) readily leading to an
efficient algorithm for estimating the domain of attraction
which is relatively insensitive to system dimension; and 2)
providing an estimate which is easy to visualize, i.e., an
ellipsoid.
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In the study of trajectory optimization by classical calculus of
variations techniques, one normally encounters certain Euler-Lagrange
equations involving the control angles used in the formulation of the
problem. In some cases, these equations lead to a solution for the
angles (or, usually, the tangents of the angles) in terms of the
Lagrange multipliers; and these solutions can be used to eliminate the
control angles from the Euler-Lagrange equations and thus leave a sys-
tem of differential equations in the state variables and the Lagrange
multipliers. This is generally desirable. However, it seems that the
process is more readily carried out in some coordinate systems than
others and, in fact, virtually impossible in some systems, Thus, if
one happens to be using a coordinate system in which the latter is true,
it would be convenient to transform to another coordinate system in
which the problem was not present, find the desired solutions, and then
transform back to the original system. This involves transforming the
state variables and their corresponding Lagrange multipliers from one
system to another, In this discussion, the technique for a general
transformation of this type is given and then applied to a specific
problem involving three-dimensional trajectory optimization in a plumb-
line coordinate system (with state variables x, y, z, ;, ;, ;, and

control angles X | and X )l and in a spherical coordinate
pitch yaw

1

W. E. Miner, "Methods for Trajectory Computation", NASA-MSFC,
Aeroballistics Internal Note No, 3-61, May 10, 1961
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system (with state variables r, ¢, ® , v, Y, & and control anrles

@ and 8 )2. In the former system, tan X | and tan X are
pitch vaw

readily solved for whereas the same is not true in the latter system,
However, the desired result is obtained for the latter system by appli-
cation of the method just outlined.

Consider the equations of motion which simulate vehicle flight
in three dimensions, through a vacuum, for a non-rotating spherical
reference body. Thrust and weight flow are assumed constant and thrust
and gravity are the only two forces acting on the vehicle. These

equations, in flight path coordinates, are:

2
D, H. Young, "Three Dimensional Vacuum Trajectory Optimization

with End Points in Flight Path Coordinates", Douglas Aircraft
Company Space and Missile Systems Division “emorandum

Symbols from the above are as follows:
v: total missile wvelocity, directed along the flight path

Y: vehicle elevation flight path angle (angle between the
projection of the velocity vector on the local tangent
plane and the velocity vector)

6: vehicle azimuth flight path anqle (angle between north
and the projection of the velocity vector on the local
tangent plane- positive, clockwise from north)

a: in-plane anple of attack (angle between the velocity
' vector and the projection of the thrust vector in the
v-n plane- positive, counterclockwise from the velocity
vector)

B: out-of-plane angle of attack (angle between the velocity
vecetul ana *he prcje,tion ~f t+he thrust vector in the

v-s plane- positive, clockwise from the velocity vector)



) T

v = = e - g sin v
M( +Vtan? a + tan® 8 + 1)

T tan © v

Y = > + -——-E- cos Y
Mv ( t\l‘can2 a +tan B + 1) r v

5 ° T tan B + Vv cos Y sin é
Mv cos v ( ‘VtanQ @ + tan” B + 1) r cot ¢
r = v sin Y
¢ = (v cosY cos 8)/r
8 = (-vcosY sin d)/r cos ¢

where r, ¢, 6 are the usual spherical coordinates and v, ¥ , § ,
a , and B are as previously defined,
In order to use classical calculus of variations techniques,

form:

L = Ay T > - g sin Y]+
_H(*\/tan?‘ a + tan® B + 1)

AY F T tan @ +(:’___f’__cos‘{j|+
B + 1)

7
LMy ( ¢t \/‘c—an2 a  + tan r v

v \g [ T tan P +vcosYsin 5]+

Mv cos y ( i\/‘can2 a 4+ tanZB + 1) r cot ¢
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At fvsiny ]+ A¢ [(v cos Yy cos 6§ )/r] +

A, [(-v cosy sin§ )/r cos ¢ ]

0

It is then necessary that an extremizing trajectory satisfy

’ ]
X - L/ 3y

and similarly for v , § ,r, ¢ and ® ; and also,

oL/

L/ = 0 , 3B = 0

da

along with certain end conditions and transversalitv conditions which

are not pertinent to this discussion. The latter two equations yield

fan @ = (tam2 B + 1) iy
vAv + A8 (tan 8 /cos Y)
(tan’ o + 1)Ag
tan B =

( Ay tan a + v Av) cos Y

It would now be desirable to solve these equations for @ and 8
so as to eliminate @ and B from the equations of motion and the
Euler-Lagrange equations, However, this is precisely the situation
mentioned earlier; namely, the desired solutions cannot be readily

obtained,
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dow, the same original problem can be considered in a plumbline

coordinate system with state variables %, y, 2, x =}, y =m, z = n,

The relations among the various state variables in this and the

previous system are given by:

and, inversely,

]

r cos

r cos

r sin

vlsin

v[sin

vlsin

sin

cOS

sin

tan”~

¢ cos g
¢ sin g
¢
Y cos ¢ cos 8 - sin ¢ cos 8 cos y cos 8 +
sin 8 cos ¥ sin 6 ]
Y cos ¢ sin © - cos ® cos Yy sin § -
sin ¢ sin 8 cos Y cos 4]
Y sin ¢ + cos $ cosy cos § ]
2 2.1/2
m o +n )
x1 + ym + zn
2
L5x2 + y2 + z2)1/2(l Fme o+ n2)l/2
(x2+y2+22)n - z(x1ltym+zn)

2 2 2.1/2
LSx +y )1/2((xm-yl)2+(xn-zl)2+(yn-zm) ) /
y2 + Z2)1/2

Z
(x2 + y?7+ z2)1/2
Ly/x]



The equations of motion in the present coordinate system are:

i_ -F H X
M sin X_ cos X (x27+ y2 + z2)3/?
p y
mos - B 2uy 3/2
M cos X_ cos X (x2 +y° + z2)
p y
n = F Coo E_Z =75
M sin Xy (=% + y2 + 22) /
X = 1
y = m
z=n.
Then, for
L - ol ~F - Ux
M sin X_ cos X (x2 + y2 + 22)3/2
p y
+ F u
Um - y
M cos X_ cos X (x2 + y2 + 22)3/2
p y
o
+ n F - uz
M sin Xy (2 + y2 + 22)3/2

+ 0 1+0 m+ On
x y z

the Euler-Lagrange equations are:

83



X
'0 - -
m y
g = _o
n z
-
. ) uo 3 ux(x 0yty optz on)
X - —
(x2+y2+z2)3/2 (X2+y2+22)5/2
. wo 3 wyx 01+y omt2z on)
0] =
y ——
(x2+y2+z2)3/2 (x2+y2+z2)5/2
. o
B ) Mo o 3u z(x Ulry 0m+z n)
z -—
(x2+y2+z2)3/2 (x2+y2+z2)5/2
jié; = g, cos X.cos X + o sin X_ cos X = 0
3 X 1 D y m p y
P
3%% in X in X X in X +
= g, 3in sin - o cos sin
3 y 1 p y m P y

o} cos X = 0
n y

along with the equations of motion. The latter two equations above
are analogous to those obtained for the other coordinate system from

9L/%a =0 and 3 L/38 = 0. They give:

= - 2 2,1/2
tanXp--Ul/Om . tanxy_on/(cl +Om)

Substituting into the equations of motion gives:
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. Fo

1= 1 _ ux

M( Ul2+ Om2+ C’nz)l/2 (x24l-y2+22)3/2
. o
m = ’ = - L

2

M( 012+ gm2+ gnz )1/2 (X2+y +Z2)3/2
. Fo
n = n — uz

M( 012+ om2+ on2)1/2 (x‘+y2+22)3/2
x = 1 y = m Z = n

Thus, the latter coordinate system provides an example of a
situation in which the desirable solution for, and elimination of, the
control angles is readily obtained. If a transformation from the
latter coordinate system to the former coordinate system can now be
effected, a similar set of solutions for © and B should be immed-
iately obtainable,

Suppose, then, that the immediate example is set aside momentar-
ily in order that a transformation technique can be discussed. This
technique can then, hopefully, be applied to the example., Suppose a

function L is given in a certain coordinate system with variables Xs

(i = 1, 2, .«. , n) and Lagrange multipliers A, (1 =1, 2, ..., n)
as:
L = 2y ri(t, X1s Ay eee 3 xn)

-~

Suppose, further, that a function L is given in another coordinate
system with variables h; (i=1, 2, ««. , n) and Lagrange multi-

pliers Oi (i = l, 2' LN * n)' L = cigi(t' hl’ h2’ LN ) [y hn)o
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L leads to the Euler equations:

. afi

e /axj (3 =1, «ev , n)
and L to:

. agi .

oj = - o‘i / ahj (] = l, vee o n)

(where in both cases, the summation convention applies to the
repeated sub-script i).
Now, suppose that a transformation relationship is given for the

variables in the two systems, say:

hi = hi(xl. x2’ LI ) [y xn)

or, inversely:

X = Xi(hl, h2’ LU [ hn)

Then, for
h.
3
Ai = cj 1 - ~
axi (Xl, cee o Xn)
and
gj = 9 )
the function L = Aifi transforms into
o. [ a7
]

-~ ~

X3 - ~
oL (xl, cee 9 %) Ei(ty Xy eee X )
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-~

) i (Rps von s X)) Ei(E, %)y eun y X))

The corresponding inverse multiplier transformation is:

-~
3x3

It can be demonstrated that, under these transformations, the
Euler equations transform accordingly, Thus, if the functions

gi(t, h h2, e o hn) are properly related to the functions

l’
fi(t’ Kis Xos vee s xn) by the above transformation, the Lagrange
multipliers are transformed as shown.

In the example under consideratién, all functions and transfor-

mation relationships are properly defined for this application. Thus,

3v 9y 38
= ' ]
oy Ay /31 + A /3Lt Al / 31
or 3 30
+ Ar / 3L+ A¢ / 3l + Ae / 3l
with corresponding equations for O %hr Ty Oy and 0, where v,

Yy,$%,r,¢,8 arenow expressed in terms of x, y, 2, 1, my n by

the transformation equations.

NOW, The variovus paciial derivatives invelved in thesae nreceding
equations must be found in order to give the transformation equations
explicitly., These partials can be founa by differentiating the trans-
formation equations with respect to the appropriate state variables and
then solving the resulting algebraic system in the partial derivatives.

Following this rather lengthy process will finally yield:
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v. = sinfBcosYsin$ + cos ¢cos OsinyY - sin ¢ cos B cos Ycos 8

1
Yl = 1/vlcos %cos Ocos Y + sin $cos Osiny cos -
sin 8siny sind ]
§ = -,——:L——— (sin ®cos 8 + sin $cos Osin §)
1 Vv cos Y
v, = cos ¢sin OsinY - cos Ocos Ysin 8 - sin ¢sin @cos Ycos §
Y, * 1/vlcos 9sin Ysin § + cos ¢sinfcos ¥ +
sin ¢sin 8sin Ycos § ]
s S S [sin ¢sin 8sin & - cos 8cos 8]
m v cos Y
v, = sin ¢sin ¥ + cos $cos Ycos 6
Y, = 1/v[sin bcos Y - cos 9sin Ycos 6 ]
S - [cos ?sin ¢
n v cos Y

Further computation gives:

2 + 2 + 2 . 2 + 2 v2 + 2
gy 9 o, = Ay AY/ A

6/v2 cos2 v

Now, the Euler equations for the plumbline system for 1, m, and

n (in the form with tan Xp and tan Xy eliminated) may be transformed

into the spherical system to yield an algebraic system of three
equations in v, Y , and 8§ , This system may be solved algebraically

for v, Y , and S to give:
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F Av

v = - gsiny
2
M( Av + l2y/v2 + X25/v2 cos? v )l/2
y = F )y +
m—
Mv( Av + A25/v2 + A26/v2 cos2 Y )l/2
v _.‘g) cos Y
r v
g F A8 +

Mv cos ¥ ( Ai + A25/v2 + A25/V2 cos? Y )1/2

v cos Ysin 6

r cot ¢

These represent the Euler equations for the problem as expressed in the
spherical coordinate system and with the control angles @ and B elim-

inated. From them, or from direct transformation,

tan © AY /v Ay

1

tan B8 AS /v chos Y

This illustrates the transformation of Lagrange multipliers from
one coordinate system to another and the accompanying transformation
of the Euler equations. A particular value of such a transformation
is that of obtaining expressions for the control angles in terms of
the Lagrange multipliers in a coordinate system in which such ex-
pressions could not readily be obtained in a direct fashion, as noted

in the above. Other motivations for carrying out such a transformation
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may also exist, For examplé, initial Lagrange multiplier values for
one system may be used to give those for another. The simplicity and
workability of such a transformation aid in making it a very valuable

tool in trajectory optimization problems of the type illustrated,




Stability Criteria for n-th Order, Homogeneous

Linear Differential Equationsf
E. F. Infanteﬁ N66

Center For Dynamical Systems, Brown University =

34931

This note is concerned with the homogeneous differential equation
+ p,(t)x + oo t pn_l(t)x + pn(t)x = 0, (1.1)

where the pi(t) are real continuous functions. It is desired to determine
appropriate criteria for the stability of the origin, criteria dependent on
the behavior of the functions pi(t) but not of their derivatives.

This problem has been previously studied by Starzinski [1,2,3] for
particular forms of this equation up to the fourth order, and by Razumichin
[4] for the general matrix equation =x = A(t)x. Theiépproach of these
authors has been to use the direct method of Liapunov, using a constant quad-
ratic Liapunov function V(x) = x'Bx which is generated by determining the
n(n+1)/2 constant elements of the symmetric matrix B. The determination
of all these elements requires very heavy algebraic computations, computa-
tions which are completely unreasonable for n > 2. Recently, Ghizzetti
{5,6] has obtaine? simple stability criteria for (1.1) by using some appro-

priate majoration formulae for all the integrals of this equation. The

This research was supported by the National Aeronautics and Space
Administration under Grant No. NAS8-11264.

tF On leave of absence from Department of Mechanical Engineering,

University of Texas.
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particularly attractive aspect of these criteria is that they depend on only
n constant parameters which locate a family of hyperellipsoids in the n-
dimensional space of the pi(t). If the curve parametrically represented
by the pi(t) is entirely contained within one of these-hyperellipsoids,
then (1.1) 1is asymptotically stable.

In §2 of this note the second method of Liapunov is used to ob-
tain stability criteria for (1.1) that depend on only n _parameters which
determine a family of elliptic paraboloids in the n-dimensional space pi(t).
It can be shown that these elliptic paraboloids completely contain the hyper-
ellipsoids of Ghizzetti., 1In §3 a practical technique for the application of
the stability criteria obtained is discussed and is applied in the last sec-
tion to two examples. The stability conditions presented in this note are
not necessary. Indeed, they are probably not the best possible conditions
obtainable from a quadratic Liapunov function. The technique presented in
this note was devised with particular emphasis on ease of computability of

some simple criteria.

2. Stability Criteria

Consider Eq. (1.1) rewritten in state-space coordinates as

%1% %

i2 = X4

(2.1)
*n-l ® *n

*n = -pn(‘c)xl - .. -pl(t)xn.
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It is assumed that the pi(t), real continuous functions of time, satisfy

the Routh-Hurwitz inequalities [7]. Let the n real numbers a,, assumed

to satisfy the Routh-Hurwitz inequalities, be associated to (2.1), which is

rewritten as

X =%,
. (2.2)
X, = -(On(t) - an)xl - e —(Dl(t) -adx - aX - .. - oax .
For economy of notation, (2.2) is rewritten as
X = Ax - U(t)x, (2.3)

where

0 1 0 0 0
0 0 1 0 0

A= ’ ,
o o0 0 ..o 1
-an -Q -1 -(xn‘_2 o« o ‘0.2 -al

(2.4)

and where ng = pi(t) - a..
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For the determination of the stability of the origin of (2.3),
consider the Liapunov function V(x) = x'Bx, B' =B = (Bij)’ Biﬁ = constant.

Let bn denote the n-th column of the matrix B, and

b o= | 8. . (2.5)

The derivative V of the Liapunov function V in terms of (2.3) is given

by
V = x"(A'B + BA)x - x'(U'(t)B + BU(t))x, (2.6)

or
-V = x'Cx + x'(ubé + bnu')x, (2.7)

where A'B + BA =-C. If it were possible to determine a matrix B, positive
definite, such that -V is positive definite for all t z 0, then asymptotic
stability of the origin of (2.1) will have been determined by the well known
theorem of Liapunov [8]. For this purpose, consider the following simple
lemma:

Lemma 2.1: Given the constant matrix A, defined by (2.4), for

any constant positive semidefinite diagonal matrix C # 0 the equation

A'B + BA = -C has a unique solution B, and B is positive definite.
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Proof. The matrix B, obviously symmetric, is unique since all the eigen-
values of A have negative real parts. Now, let V(xo) = x68x0< 0 for

some X # 0, and define 60 as the trajectory of % = Ax issuing from

x, at t = 0. Along § we then have V(x) g V(xo) < 0. But & approaches
the origin and V(0) = 0. Hence V(x) > 0. Similarly, let V(xl) = 0,

Xy # 0, and 61 the trajectory emanating from X1 at to. Since this
trajectory approaches the origin, it must lie on the manifold x'Cx = 0.

But this is clearly impossible with C diagonal and A in the form (2.4).

Hence B 1is positive definite.

Hence, let the matrix B be generated by the diagonal matrix

C = 0 , (2.8)

u 2 . et . s .
where C and C are constant nonsingular positive definite diagonal
square matrices, and where the zero element in the diagonal is located in the
i,i position. On the basis of the above lemma V(x) = x'Bx will be posi-

tive definite. In this case, Eq. (2.7) then becomes

u, u' u u' u u u L' u' &'
u ub + bu .+ .
C n n u Bnl nn+l—1bn u bn * bn u
. ' u' u’ 2! L
-y = 1 ' - . - . . .
V=x 0 xtx nn+l—1bn+6n1u 28nlnn+l—1 nn+l--1bn+8ruu %
\ z[ \zu' 2 u' 2 L a8 2R
+ b
\ C u'b_ LU u'g .tn . b ub +bu /

(2.9)
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et . . 5
Assume Bni > 0 (it is always possible to find a eni 0, namely B nn)

and consider the regular transformation x = Sy,

I o o |\
]
bi b’
S=i{-zg— 1 - R , (2.17)
ni ni
o' 0 I

where the unit element is in the i,i position and the I are unit matrices
of appropriate dimensions. If this transformation is applied to Eq. (2.9),

one obtains

!
/ ct \ 0 Bni T+l-i"n 0
_ - 'I . uv- uv le_ '
V=y 0 yry Bnl Nh+1-i"n 28ninn-fl—i 8niu T+1-i"n
L 2
L ' . 0
\ C 0 ni T+1-i"n
(2.11)
or
u u u
¢ Bniu “Mn+1-in 0
u' u' ! !
- = ' . . . . 3
v y Bnl nn+l-l n 28nlnn+l-1 Bnlu nn+l—1 n y
2 L
0! -
nlu nn+l-i n CZ
(2.12)
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It now becomes necessary to determine under what conditions (2.12)

is positive definite. For this purpose, consider the second transformation.

y = Tz,

T=j 0 1 o' s (2.13)

where the unit element is in the i,i position,the I are unit matrices

. . . u u u L _ L L
of appropriate dimensions and v =8 .u - M+1-iPn* Vv 7 Bniu nn+l-ibn .

This transformation is obviously regular and when applied to Eq. (2.12) yields

i C 0 0
—O =z'| O w 0'1 2 (2.1%)
o' 0 Cl
where
u u u—l u u
- 1
w 28ninn+l i (Bnl nn+l—ibn) ¢ (Bnlu nn+l—ibn) +

- (8 .ut-n b’”)'cp'-l(e . Y (219

ni ntl-i"n ni n+l-i"n

Since (2.14) is diagonal, it can then be concluded that V will be negative

definite if w 2 6 > 0.

On the basis of what has been said above, it is then possible to

state:

Theorem 2.1: Given the homogeneous differential equation
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+ ...+ pn_l(t)i + pn(t)x =0, (2.16)

with pi(t) real continuous functions for t 2 0, assoclate with this

equation the n real constants Gyseeesl satisfying the Routh-Hurwitz

inequalities, and define n, = p,(t) - a,. Let the matrix B = (B..) be
9 i i i iy’ =

the solution of the matrix _equation

A'B + BA = - 0 . (2.17)

2 - .. . .
where Cu, C are constant, positive definite diagonal matrices, and the

zero element in the diagonal appears in the i,i position; and where

o 1 0 .0 0
o 0 1 .. 0 0

A=| .. Ce e . (2.18)
0 o0 0 0 1
%0 T%-1 T%pe2 v T2 T

pY /
n nn+l—l uu
= . = * = .19
bn Bnl » U M+1-1 Mtl-1 : (2.19)
0 .
b'n nl ul
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Then, if for any & > 0 and any i =1,...,n

-1
_ u U, , .U u u
2Bninm‘l-i (Bniu nn+l—ibn) ¢ (Bniu n+l—ibn) +
(2.20)
2 g, 27t 2 2
- - 1
(8, ;u Me1-iPn) ¢ (B ;u Ne1-31Pn) 2

for all t 2 0, the null sclution of (2.16) is asymptotically stable.

This theorem is not as general as it would have been possible
to state, yet it is still too general for practical applications because
of the generality of the matrices ¢® and Cl. Before restricting the
theorem, it is desirable to make some remarks concerning the results so
far obtained.

First of all we wish to point out that Eq. (2.20) represents,
in the parameter space of the n's, an elliptic paraboloid. This can be
easily seen by introducing the transformation of coordinates for the para-

meter space given by

u u : u
Yat+1-1 v BsI b, O Y
- _ _ ' '
v Yn+1-i Yn+1-i 0 1 0 LI (2.21)
i % ST, 3
Yl v i \ 0 bn BniI u

This transformation is obviously regular if Bi > 0, which as was pre-
viously pointed out, is no restriction. In the new coordinates, Eq. (2.20)

becomes
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Y - v 0 i v>e. (2.22)

28ni n+l-1i

This is evidently the equation of an elliptic paraboloid. If Bni > 0, as
assumed, the domain defined in the parameter space by (2.22), hance by (2.20).
is nonempty.

Secondly, it is evident that, for any ¢ and CZ satisfying
the conditions of Theorem 2.1, the domain of the p parameter space defined
by any of the (2.20) is strictly contained within the domain where the pi(t)
satisfy the Routh-Hurwitz inequalities. On the other hand, it is easily shown
that every point of the domain of the parameter space where the pi(t) satis-
fy the Routh-Hurwitz inequalities is contained in at least one of the domains
defined by (2.20). To prove this, let pi(t) o 5; = constants. Since the

EI satisfy the Routh-Hurwitz inequalities, it is possible to select the .n

numbers ass themselves satisfying these inequalities, and such that

= - > o 3 - =
nn+l-j pn+l—j cLn+l—j = €2>0 for some j and Ph+1-i “Cn+l-i 0 for
all i # j. Under these conditions Eq. (2.20) reduces to
-1 -1
u' u u L' 2 L
2annn+l-j nn+l—j n bnnn+l—j - nn+l-jbn ¢ bnnn+l-j 2 8. (2.23)

But for any € > 0 sufficiently small, a & > 0 can be found such that (2.23)
is satisfied. Hence the remark.
Finally, it is noted that the continuity condition imposed by

Theorem 2.1 on the pi(t) imply that Eq. (2.16) does not have a finite
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escape time. It is therefore possible on the basis of this remark and
the two previous ones to state:

Corollary 2.1: Given the differential equation (2.16) with

pi(t) real continuous functions for t 2 0, IiIf there exista T > 0 such

that for all t 2 7t (2.20) is satisfied for some § >0 and some 1 = 1,...,n,

—

then the null solution of (2.16) is asymptotically stable.

3

Corollary 2.2: If, in Eq.

(2.16), the pi(t) are real continuous

functions for t 2 0 and lim pi(t) = E; , where the ;;- satisfy the
t =+ ®
Routh-Hurwitz inequalities, then the null solution 22_(2.16) is asymptotically

stable.
This last corollary is very well known [7], and can be traced

directly to Liapunov.

3. Applicétion of Stability Criteria

The positive definite diagonal matrices ¢ and Cz have not
been so far specified. The first step in the application of the stability
criteria obtained to a specific example is the selection of these two mat-
rices, from which the matrix B is obtained as the solution of the equation
A'B + BA = -C. Algorithms for the solution of this matrix equation are
available. A particularly simple one has been recently given by Smith [9]
in the case matrix A has the form (2.18).

It is particularly convenient, to obtain algebraically simple forms

n 2.

for B, to select the matrices C~ and C to pe composed vi llucar <om-

binations of matrices of the form

C1 = 2 diag (u, 0,...,0) (3.1)
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and

_ . u
C, = 2 diag (0,..., a;,o,...,o), k #

where ¥ is the Hurwitz determinant [7] of the a:

) g ag .
1 a, a,
0 oy g . .
= 0 1 a2
0 0 0
The matrix equation A’Bk + BkA = —Ck, where

1,

2n-1
2n-2
2n-3

2n-4

A

(3.2)

(3.3)

is given by (2.18)

can be rapidly solved for B, when C is of the suggested form. The

k k

matrices obtained in this manner for n = 2,3 are shown in Table 1.

Ingwerson [10] previously published these matrices for

u

then the matrix B will be the corresponding linear combination of the B, .
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2 . . . .
c and C are obtained, as suggested, by linear combinations of the C

2,3,4. If
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- Table I

n=2
»
al + a2 al 2ala2 0
B. = C, =
1 > 1 !
1
) @) 0 0 |
|
a2 0 0 0
B2 = R C2 =
0 1 0 2al
n =3
]
a (o .a.-a )+a2a a2a a, . ~a 2a (o a.-a.,) 0
2712 3 173 12 172 73 377172 73
B, = a.a o+ 2 C, = 0 0
. 1 1%2 %3 ¢ 1
a.a,.-a a2 a 0 0
172 3 1 1
alaa a.s 0 0 0 0
B, = o a2+a a C, = 0 2(a.a -a,) 0
2 3 1 1 > 2 - 1%27%3
X o 1 | 0 0 0
Fe
A J
a2 o, 0 0 0 0
3 273
By = @0y ajagta, e . c,= |0 0 0
0 e, a, 0 0 2(ala2-a3)
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4, Two Examples

In this section, the stability criteria obtained is applied to
two simple but illustrative example problems.

As a first example, consider the second order equation

X+ px + q(t)x = 0 (4.1)

or

(4.2)

e
L]

5 -q(t)xl - PX,

where, p > 0 is a constant and ¢ <ql+£ s q(t) s q, - £, for £ > 0. It is
desired to determine conditions on 9y 9, and p that guarantee the
asymptotic stability of the null solution of (4.2). This same problem has
been treated by Ghizzetti [5], with whom we wish to compare our results.

In the case of a second order equation, inspection of the matrices
Bl and B, of table one indicates that, for Bni > 0 one must select 1 = 2,

2

With this choice one immediately obtains

2ala2 0
u-l 1
¢ = ’ ¢ = 2a.0 ?
172
L0 0
(4.3)
{321 ! ”2\ q - o,
b = = i 5 u = = .
n\ \ !
B8 n, !
22,‘ 1 1. p—QL
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upon which the stability equation given by (2.20) becomes

2(p - @) - L(q - ay) = a,(p - a;)]

or, letting v

4\)1

To determine

expression, let

Nal

the appropriate values of v

v2(l - vl) - [z(t) - v

1

2ala2

[(q - a2) - al(p -

a
—% and z(t) = Si%l .
p P

2
9~ vl(l - vl)] > ¢ >

1 and v

.
- = = - - 1 -
z, > =V, t vl(l vy) -2 Vvva(; vl)
P
92 [
z, = 5=V, vl(l - vl) + 2 vlvz(l - vl)
P
and to maximize the difference between z, and z, let vy
Zl=H+V2—V\)2 N
z, = £-+ v, + Vv
2 g 2 2 °
Solving now tor v, Trom tne [irsi ol thesc cgucticone
v, = L + z, + Yz
2 4 1 1
is obtained. With these two particular values of v, and

al)] >8>0

(4.4)

o (4.5)

5 for this

(4.86)

1/2. Then

(4.7)

(4.8)

\Y

2 (4.7) yields

105




_ 1
z2 = zl + 2/[H-+ zl + /EI

Hence, if 0 < z) t £ < z(t) <& for some £ >0, an € > 0
can be found such that Eq. (4.5) is satisfied. Therefore, Eq. (4.1) is
asymptotically stable if, for some § > 0,

0 <qy +8&=<qlt) <q,-¢ (4.10)

2

and

q q q

2 _ 9 1 1 1
7'7*2JE+7+7 : (4.11)
p b p P

This result is represented in graphical form in Figure 1: if

alt) . . . .
*(2) is strictly internal to the domain A of the parameter space

P

2 2 . . .
ql/p Vs, q2/p , then Eq. (4.1) is asymptotically stable. The domain
A obtained by Ghizzetti [5] is shown also.

As a second example, consider the differential equation
K+pt+x+r(t)xe 0, (4.11)

where p > 0 is a constant and 0 < £ £ r(t) £ r, - £ for some § > 0. It

2

is desired to determine conditions on r, to guarantee the asymptotic sta-
bility of the null solution of this equation. This equation has been

studied by Starzinski [3], who generated a constant Liapunov function by
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determining, through a very laborious process, appropriate values for all
six elements of the 3 x 3 B matrix.

Inspection of the third order matrices of Table 1 indicates
that, for Bni > 0 one must select either 1 =2 or i =3, Let 1i=3
upon which the stability equation (2.20) becomes

2wt s
2844(p - ay) - [633(r(t) - a3) - By (P - al)] c

1 (4.12)
2.0
- [833(1 - a2) - 832(p - al)] C >8> 0.

Since 1 =3, let C = Cl + AC2 where Cl and C2 are the two matrices

shown in Table 1, and A > 0. From Table 1, then

2 _
B3p S99y ~ 835 Byy T a FAay, By T At oo

1
(4.13)
Cu'l _ 1 Cz'l _ 1
T on (v o -y ? -—T__..__—
2a3(ala2 a3) 22 (a0, as)

are immediately obtained. Equation (4.12) can be therefore rewritten as

Hagh + ay ) ajayma)p - ag) = [0+ a)(e(2) - @) = (aga,-a)(p - )77

(4.14)
43 2 2
- X—{(A + al)(l - a2) - (al + Aal)(p - al)] > e > 0.
The second quadratic term vanishes if
(1-a,) = ul(p - al). (4.15)
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Furthermore, (4.14) can be satisfied as r(t) becomes very small only if

-

At oy

P - a, =g, ——————— (4.16)
1 3 ala2 - Og

Assuming these two conditions, Eq. (4.1l4) yields

0 <& <sr(t) € bo, - &

3 . (4.17)

where & + 0 as € + 0. Equations (4.15) and (4.16) yield

o, - a2 Pt /p2 - 4 + 4a

- 2 2 2
oy T oy 5 ; (4.18)
therefore, let
- D2 /7
a, = 1 - (50 if 0 <p g V2
N (4.19)
a4y =5 if /2 < p

upon which one obtains that Eq. (4.11) is asymptotically stable if

A

1 2 N
0<¢gsr(t) S +——(p° ¢+ EE) - £ if 0<ps< /2

A+p
(4.20)
1
€ —— o 1
0<€sr‘(t)_)\er g if p 22

for some £>0 and A > 0, since the a's obtained from Eq. (4.18) and
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(4.19) satisfy the Routh-Hurwitz inequalitiems,
This same result would have been obtained if the stability
Eq. (2.20) for i = 2 had been used. The stability conditions (4.20) are

identical to those obtained by Starzinski [3].
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AN INVARIANCE PRINCIPLE IN THE THEORY OF STABILITY
by

J. P. LaSalle

Center for Dynamical Systems
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&

1. Introduction.

The purpose of this paper is to give a unified presenta-
ticn of Liapunov's theory of stability that includes the classical
Liapunov theorems on stability and instability as well as their
more recent extensions. The idea being exploited here had its
beginnings some time ago. It was, however, the use made of this
idea by Yoshizawa in [1] in his study of nonautonomous differential
equations and by Hale in [2] in his study of autonomous functional
differential equations that caused the author to return to this
subject and to adopt the general approach and point of view of this
paper. This produces some new results for dynamical systems defined
by ordinary differential equations which demonstrate the essential
nature of a Liapunov function and which may be useful in applications.
Of greater importance, however, is the possibility, as already in-

dicated by Hale's results for functional differential equations,
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that these ideas can be extended to more general classes of dynam-
ical systems. It is hoped, for instance, that it may be possible
to do this for some special types of dynamicel systems defined by
partial differential equations.

In section 2 we present some basic results for ordinary
differential equations. Theorem 1 is a fundamental stability
theorem for nonautonomous systems and is a modified version of
Yoshizawa's Theorem 6 in [1]. A simple example shows that the
conclusion of this theorem 1s the best possible. However, when-
ever the limit sets of solutions are known to have an invariance
property then sharper results can be obtained. This "invariance
principle" explains the title of this paper. It had its origin for
autonomous and periodic systems in [3] - [5], although we present
here improved versions of those results. Miller in [6] has estab-
lished an invariance property for almost periodic systems and ob-
tains thereby a similar stability theorem for almost periodic
systems. Since little attention has been paid to theorems which
make possible estimates of regions of attraction (regions of asymp-
totic stability) for nonautonomous systems results of this type are
included. Section 3 is devoted to a brief discussion of some of
Hale's recent results [2] for autonomous functional differential

equations.

2. Ordinary differential equations.

Consider the system
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%= £(t,%) (1)

. . . n+l
where x 1is an n-vector, f is a continuous function on R

to Rn and satisfies any one of the conditions guaranteeing unique-
ness of solutions. For each x in R° we define [x| =
(xi + oee. + xi)% , and for E a closed set in R" we define

2
d(x,E) = Min {Ix—yl: y in E}. Since we do not wish to confine our-
selves to bounded solutions, we introduce the point at o and
define d(x,«) = le'l . Thus when we write E* = E {{w)}, we shall
mean d(x,E*) = Min{d(x,E), d(x,»)}. If x(t) is a solution of
(1), we say that x(t) approaches E as t - w if d(x(t),E) -0
as t -, If we can find such a set E, we have obtained in-
formation about the asymptotic behavior of x(t) as t -« The
best that we could hope to do is to find the smallest closed set

Q that x(t) approaches as t » =, This set Q is called the

positive limit set of x(t) and the points p in £ are called

the positive limit points of x(t). In exactly the same way one

defines x(t) - E as t — -o , negative limit sets, and negative
limit points. This is exactly G. D. Birkhoff's concept of limit
sets. A point p is a positive limit point of x(t) if and only
if there is a sequence of t{imes tn approaching ® as n — o and
such that x(tn) —»p as n o=, In the above it may be that the
maximal interval of definition of x(t) is [0,T) . This causes
no difficulty since in the results to be presented here we need

only with respect to time t replace » by T. We usually ignore
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this possibllity and speak as though our solutions are defined on
[0,9) or (-,=) .

Let V(t,x) be a C:L function on [0,®) x R" to R, and
let G be any set in R" . We shall say that V 1is a Liapunov
function on G for equation (1) if V(t,x) = 0 and G(t,x) <
-W(x) $0 for all + >0 and all x in G where W is

) a
continuous on R to R and

. n
V=§X 4+ Y

We define (G is the closure of @)
E= {x; Wx) =0, x in G}.
The following result is then a modified but closely re-

lated version of Yoshizawa's Theorem 6 in [1].

THEOREM 1, If V is a Liapunov function on G for equation (1),
then each solution x(t) of (1) that remains in G for all
t > to 2 0 approaches E¥ = EU (o} as t — » , provided one of
the following conditions is satisfied:
(i) For each p in G there is a neighborhood N of
p such that |[f(t,x)| is bounded for all t >0 and
all x in N,
(i1) W is ¢l and W is bounded from above or below

along each solution which remains in G for all

t > t =z 0.
o
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If E 1is bounded, then each solution of (1) that remains in G
for t > to z 0 eilther approaches E or o as t - o,

Thus this theorem explains precisely the nature of the
information given by a Liapunov function. A Liapunov function
relative to a set G defines a set E which under the conditions
of the theorem contains (locates) all the positive limit sets of
solutions which for positive time remain in G. The problem in
applying the result is to find "good" Liapunov functions. For
instance, the zero function V = 0 is a Liapunov function for the
whole space R" and condition (ii) is satisfied but gives no in-
information since E = Rn . It is trivial but useful for appli-
cations to note that if V., and V

1 2

then V = Vi + Vé is also a Liapunov function and E = El N E2 .

are Liapunov functions on G,

If E is smaller than either E, or E then V is a "better"

1 27
Liapunov function than either'Vl or Vf? and is always at least as
"good" as either of the two.

Condition (i) of Theorem 1 is essentially the one used

by Yoshizawa. We now look at a simple example where condition (ii)
is satisfied and condition (i) is not. The example also shows that
the conclusion of the theorem is the best possible. Consider
R+ p(t)x+ x=0 where p(t) 2® >0 . Define 2V = % 4 y'2 N
where y =% . Then V = -p(t)y2 s - 8y2 and V 1is a Liapunov
function on R2 . Now W= Syz and W = 2Byy = -2d(xy + p(t)yg) =

~-Bxy. Since all solutions are evidently bounded for all t > O,
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condition (ii) is satisfied. Here E is the x-axis (y = 0)
and for each solution x(t), y(t) = %(t) -0 as t -»o , Noting
that the equation % + (2 + et)i + x = 0 has a solution
x(t) = 1+ et , we see that this is the best possible result with-
out further restrictions on p .

In order to use Theorem 1 there must be some means of
determining which solutions remain in G . The following corvllary,
which is an obvious consequence of Theorem 1, gives one way of

doing this and also provides for nonautonomous systems a method for

estimating regions of attraction.

Corollary 1. Assume that there exist continuous functions u(x)
and v(x) on R" to R such that u(x) s V(t,x) s v(x) for all

t 2z 0. Define Q; = {x ; u(x) <1} and let ¢" be a component
of Q; . Let G denote the component of Qﬂ = {x 3 v(x) <1}
containing ¢t. 1f v is a Liapunov function on G for (1) and
the conditions of Theorem 1 are satisfied, then each solution of
(1) starting in ¢" at any time t 2 0 remains in G for all

t > to and approaches E¥ as t —»eo , If G is bounded and

0]

E° = ENGCG . then EC is an attractor and G is in its

J
region of attraction.

In general we know that if x(t) dis a solution of
(1)--in fact, if x(t) is any continuous function on R to R"--

then its positive limit set is closed and connected. If x(t) 1is

bounded, then its positive limit set is compact. There are, how-
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ever, special classes of differential equations where the 1limit
sets of solutions have an additional invariance property which
makes possible a refinement ot Theorem 1. The, first of these are

the autonomous systems

% = £(x) (3)

The limit sets of solutions of (3) are invariant sets. If x(t)
is defined on [0,®) and if p is a positive limit point of x(t),
then the points on the solution through p on its maximal inter-
val of definition are positive limit points of x(t). If x(t) is
bounded for t > 0 , then it is defined on [0,»), its positive
limit set Q is compact, nonempty and solutions through points
p of @ are defined on (-w,©) (i.e., Q is invariant). If
the maximal domain of definition of x(t) for t > 0 is finite,
then x(t) has no finite positive 1limit points: that is, if the
maximal interval of definition of x(t) for L >0 is [0,B),
then x(t) > as t -8 . As we have said before, we will always
speak as though our solutions are defined on (-,0) and it should
be remembered that finite escape time is always a possibility unless
there is, as for example in Corollary 2 below, some condition that
rules it out. In Corollary 3 below, the solutions might well go to
infinity in finite time.

The invariance property of the 1imit sets of solutions
of autonomous systems (3) now enables us to refine Theorem 1.

Let V be a C function on R® to R . If G is any arbitrary
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set in R" , we say that V 1is a Liapunov function on G for

equation (3) if V = (grad V)* f does not change sign on G .

Define E= {x 3 V(x)=0, x in T ] where G is the

J
closure of G . Let M be the largest invariant set in E . M

will be a closed set. The fundamental stability theorem for

autonomous systems is then the following:

THEOREM 2. If V is a Liapunov function on G for (3), then
each solution x(t) of (3) that remains in G for all t >0
(t < 0) approaches M¥ = M U {w} as t »o (t - -w), If M 1is
bounded, then either x(t) oM or x(t) o as t oo (t - -) .
This one theorem contains all of the usual Liapunov like
theorems on stability and instability of autonomous systems. Here
however, there are no conditions of definiteness for V or v s
and it is often possible to obtain stability information about a
system with these more general types of Liapunov functions., The
first corollary below is a stability result which for applications
has been quite useful and the second illustrales how one obtains
information on instability. Betaev' s instability theorem is

similarly an immediate consequence of Theorem 2 (see section 3).
COROLIARY 2. Let G Dbe a component of Qﬂ = {x; V(x)<n}.
Assume that G is bounded, V=0 on G, and M =MNGCG .

Then M° is an attractor and G 1is in its region of attraction.

o
If, in addition, V is constant on the boundary of M~ , then
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M° is a stable attractor.
Note that if M° consists of a single point p ,

then p 1s asymptotically stable and G provides an estimate of

its region of asymptotic stability.

COROLLARY 3. Assume that relative to (3) that VV >0 on G
and on the boundary of G that V= 0 . Then each solution of
(3) starting in G approaches « as t - » (or possibly in
finite time).

There are also some special classes of nonautonocmous
systems where the limit sets of solutions.have an invariance

property. The simplest of these are periodic systems (see [3]).
x = f(t,x) , f(t + T,x) = £(t) for all t and x . (k)

Here in order to avoid introducing the concept of a periodic
approach of a solution of (4) to a set and the concept of a
periodic limit point let us confine ourselves to solutions x{t)
of (4) which are bounded for t >0 . Let Q be the positive
limit set of such a solution x(t), and let p be a point in @ .
Then there is a solution of (4) starting at p which remains in
Q@ for all t in (-o,®) ; that is, if one starts at p at the
proper time the sclution remains in O for all time. This is tne
sense now in which Q 1is an invariant set. Let V(t,x) be Cl
on R x nn aud pericdic in + of veriod T . For an arbitrary

set G of Rn we say that V is a Liapunov function on G for
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for the periodic system (L) if V does not change sign for all

t and all x in G . Define E

1§

@

{ (t,x); &(t,x) =0, x in
and let M Dbe the union of all solutions x(t) of (L4) with the
property that (t,x(t)) is in E for all t . M could be called
"the largest invariant set relative to E". One then obtains the

following version of Theorem 2 for periodic systems:

THEOREM 3. If V 1is a Liapunov function on G for the pericdic

system (4), then each solution of (4) that is bounded and remains

in G for all t >0 (t < 0) approaches M as t oo (t - -»),
In [6] Miller showed that the limit sets of solutions

of almost periodic systems have a similar invariance property and

from this he obtains a result quite like Theorem 3 for almost

periodic systems. 'This then yields for periodic and almost periodic

systems a whole chain of theorems on stability and instability

guite similar to that for autonomous systems. For example, one has

COROLLARY L. Let Q“:] = ( x; V(t,x) <m, all t in [0,T] } , and
let G* be a component of Q; . Let G %be the component of

Q, = [ %3 V(t,x) < n for some t in [0,T] ) containing ¢t . If G
is bounded, Q £ 0 for all t and all x in G , and if M =
MnGc G+, then Mo is an attractor and G+ is in its region of
attraction, If V(t,x) = ¢(t) for all t and all x on the
boundary of M° , then M° is a stable attractor.

Our last example of an invariance principle for ordinary
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differential equations is that due to Yoshizawa in [1] for "asymp-
totically autonomous" systems. It is a consequence of Theorem 1
and results by Markus and Opial (see [1] for references) on the

limit sets of such systems. A system of the form
! % = F(x) + g(t,x) + h(t,x) (5)

is said to be asymptotically autonomous if (i) g(t,x) — 0 as

t - o uniformly for x in an arbitrary compact set of R™ s
[+ ]

(ii) [ In{t,9(t))| dt < » for all ¢ bounded and continuous
on [0,=) Oto R" . The combined results of Markus and Opial then
state that the positive limit sets of solutions of (5) are in-
variant sets of % = F(x) . Using this, Yoshizawa then improved

Theorem 1 for asymptotically autonomous systems.

' It turns out to be useful, as we shall illustrate

=
e}
o

moment on the simplest possible example, in studying systems (1)
which are not necessarily asymptotically autonomous to state the

theorem in the following manners:

THEOREM 4. If, in addition to the conditions of Theorem 1, it is
known that a solution x(t) of (1) remains in G for t >0
and is also a solution of an asymptotically autonomous system (5),

then x(t) approaches M¥ = MU {w} as t — o , where M is the

2

largest invariant set of % = F(x) in E .

=

Tt can happen that the sysiew (i) is itcelf asymptotically

autonomous in which case the above theorem can be applied. However,
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as the following example illustrates, the original system may not
itself be asymptotically autonomous but it still may be possible
to construct for each solution of (l) an asymptotically autonomous
system (5) which it also satisfies.

Congider again the example
y (6)

-x - p(t)y , 0<8 = p(t)
for all t >0

b'q

i

A
=

Now we have the additional assumption that p(t) 1is bounded from
above. Let (x(t), y(t)) Dbve any solution of (6). As was argued
previously below Theorem 1, all solutions are bounded and y(t) — O
as t oo . Now (X(t), ¥(t)) satisfies X =y , y =

-x - p(t)y(t), and this system is asymptotically autonomous to

(*) % =y, ¥y=-x . With the same Liapunov function as before,

E 1is the x-axis and the largest invariant set of (¥) in E is the
origin. Thus for (6) the origin is asymptotically stable in the

large.

3. Autonomous functional differential equation.
Difference differential equations of the form
%(t) = £(t,x(t),x(t-r)) R r>0 (7)

have been studied almost as long as ordinary differential equations

and these as well as other types of systems are of the general form
%(t) = f(t,xt) (8)
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where x is in R and Xy is the function defined on [-r,0]

by Xt(T) = x(t+1), -r £ T £ 0, Thus x, 1is the function that
describes the past history of the system on the interval [t-r,t]
and in order to consider it as an element in the space C of
continuous functions all defined on the same interval [-r,0], Xy
is taken to be the function whose graph is the translation of the
graph of x on the interval [t-r,t] to the interval [-r,0] .
Since such equations have had a long history it seems surprising

that it is only within the last 10 years or so that the geometric
theory of ordinary differential equations has been successfully
carried over to functional differential equations. Krasovskii [8]
has demcnstrated the effectiveness of a geometric approach in ex-
tending the classical Liapunov theory, including the converse
theorems, to functional differential equations. An account of other
aspects of their theory which have yielded to this geometric approach
can be found in the paper [9] by Hale. What we wish to do here is

to present Hale's extension in [2] of the results of Section 2 of

this paper to autonomous functional differential equations

%= £(x) - (9)
It is this extension that has had so far the greatest success in
studying stability properties of the solutions of systems (9), and
it is possible that this may lead to a similar theory for special
classes of systems defined by partial differential equations.

With r =2 0 the space C is the space of continuous
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functions ¢ on [-r,0] %o R" with ol =
max {|p(t)]; -r £ 7 = 0}. Convergence in C is uniform conver-
gence on [-r,0]. A function x defined on [-r,») to R° is

said to be a solution of (9) satisfying the initial condition o

at time t = O if there is an a > 0 such that x(t) = f(xt)

for all t in [O,a) and X, =9 . Remember X, = ¢ means

x(1) = ¢(7), -r £ T =0. At t =0, %X is the right hand deriv-

ative. The existence uniqueness theorems are quite similar to
those for ordinary differential equations., If f dis locally
Lipschitzian on C, then for each ¢ in C there is one and only
one solution of (9) and the solution depends continuously on ¢ .
The solution can also be extended in C for t > 0 as long as it
remains bounded., As in Section 2, we will always speak as though
solutions are defined on [-r,o). The space C is now the state
space of (9) and through each point @ of C there is the motion
or flow x, starting at ¢ defined by the solution x(t) of (9)

t

satisfying at time t = O the initial condition @} 05t <o,

Xy,
is a curve in C which starts at time t =0 at ¢. In analogy

to Section 2 with C replacing Rn, X replacing x(t), and

t
thH replacing |x(t)|, we define the distance d(xt,E) of x,
from a closed set E of C to be d(xt,E) = min {”Xt-Wr; ¥ € E}.

The positive limit set of x ig then defined in a manner completely

t
analogous to Section 2. Because there are some important differences

we shall be satisfied here with restricting ourselves to motions
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xt bounded for t > 0. One of the differences here is that in

C closed and bounded sets are not always compact. Another is that
although we have uniqueness of solutions in the future two motions
starting from different initial conditions can come together in
finite time t_> O; after this they coincide for t 2 t - (The
motions define semi-groups and not necessarily groups.)

Hale in [2] has, however, shown that the positive limit
sets  of bounded motions x, are nonempty, compact, connected,
invariant sets in C . Invariance here is in the sense that, if
Xy is a motion starting at a point of (, then there is an exten-
sion onto (-w,-r] such that x(t) is a solution of (9) for all
t in (-w,©) and x, remains in Q for all t . With this

result he is then able to obtain a result which is similar to

[59)

Corollary 1 of Section 2.

For ¢ € C let xt(@) denote the motion defined by (9)
starting at ¢ . For V a continuous function on € to R define
% and Qz by

Vo) = Tm E [V(x ®)-v(@)]. (10)
T - O+

and

Q, = (@5 V(@) < 4] .

THEOREM 5. If V is a Liapunov function®on G for (9) and x, is

a trajectory of (9) which remains in G and is bounded for t > 0,

then xt —-M as t oo,

¥ As before, V is a ILiapunov function on G, if V does not
change sign on G.
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Hale has also given the following more useful version

of this result.

COROLLARY 5. Define Qn = {p; V(p) < ) and let G be QTl or
a component of Qﬂ . Assume that V is a Liapunov function on
G for (9) and that either (i) G is bounded or (iii) |p(0)] is
bounded for ¢ in G . Then each trajectory starting in G
approaches M as t — o,

The following is an extension of Eetaev’s instability
theorem. This is a somewhat simplified version of Hale's Theorem U
in [2], which should have stated "V(p) >0 on U when @ # O
and V(0) = O" and at the end "... intersect the boundary of
CT ...". This is clear from his proof and is necessary since he
wanted to generalize the usual statment of Eetaev's theorem to in-

clude the possibility that the equilibrium point be inside U as

well as on its boundary.

COROLIARY 6. Let p € C be an equilibrium point of (9) contained
in the closure of an open set U and let N be a neighborhood of
D . Assume that (i) V is a Liapunov function on G = U N N,

(i1) M N G is either the empty set or p, (iii) V(p) <n on G
when ¢ # p, and (iv) V(p) = n and V(p) = n on that part of
the boundary of G inside N. Then p is unstable. In fact, if
No is a bounded neighborhood of p properly contained in N then
each trajectory starting at a point of Go =GN NO other than p

leaves No in finite time.
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Proof, By the conditions of the corollary and Theorem & each
trajectory starting inside GO at a point other than p must
either leave GO, approach its boundary or approach p .

Conditions (i) and (iv) imply that it cannot reach or approach that
part of the boundary of Go inside No nor can it approach p

as t - o ., Now (ii) states that there are no points of M on
that part of the boundary of Nb inside G . Hence each such
trajectory must leave No in finite time. Since p dis either in
the interior or on the boundary of G, each neighborhood of p
contains such trajectories, and p is therefore unstable.

In [2] it was shown that the equilibrium point © = 0 of

£(t) = axO(t) + bx (t-1)
was unstable if a >0 and |[b| < |a|. Using the same Liapunov.

function and Theorem 5 we can show a bit more. With

N o)
Vip) = — ¢_(0) +3f @6(9)d6 ,
Lg ~r
4 t
Vi) = = B v 3 P
a L-r

and

o) = 26°0) + 2 2 2007 (-x) + 0% ()
which is nonpositive when |b| < |a] (negative definite with re-
spect to @(0) and o¢(-r)); that is, V is a Tiapunov function
cn C and E = {p; 9(0) = 9(-r) = 0} . Therefore M is simply

the null function ¢ = 0 . If a > 0, the region G = (9; V(p) < 0}
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is nonempty, and no trajectory starting in G can have ¢ = 0 as
a positive limit point nor can it leave G . Hence by Theorem 5
each trajectory starting in G must be unbounded. Since ¢ = 0
is a boundary point of G, it is unshable. It is also easily seen
[2] that if a< O and |b] < |a], then ¢ = 0 is asymptotically
stable in the large.

In [2] Hale has also extended this theory for systems
with infinite lag (r = =), and in that same paper gives a number

of significant examples of the applications of this theory.
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ANALYTICAL SOLUTION OF EULER-LAGRANGE
EQUATIONS FOR OPTIMUM COAST TRAJECTORIESt
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An analytical solution of the Euler-Lagrange equations for the Lagrange
multipliers for optimum coast trajectories (minimum fuel consumption)

is obtained. Previous solutions have a singularity at zerc eccentri-
city. The present solution does not have this singularity, but there
is a numerical difficulty due to a removable singularity at unit
eccentricity. An approximate solution, accurate mnear unit eccentricity,
is given. This solution reduces to the exact parabolic solution for
unit eccentricity.

t This study was part of the work done under Contract NAS8-1124L,
"Advanced Flight Mechanics and Guidance Studies", carried out for
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1. INTRODUCTION

Optimization of the flight trajectory of a rocket powered space vehicle
with the indirect method of calculus of variations requires the simul-
taneous integration of the equations of motion {constraint equations)

and the Euler-Lagrange equations for the Lagrange multipliers. Because

of the difficulty in obtaining an analytical solution to this problem !
during powered portions of the trajectory, the integration must be
performed numerically. TFor coasting portions (zero thrust) of the tra-
Jectory an analytical solution for the motion of the vehicle can be
produced if it is assumed that the vehicle moves in a vacuum under the
action of the gravitational field of a single central body (spherical
earth). The motion is, of course, governed by the classical Kepler
-solution of the two body problem. However, the Lagrange multipliers are
not constant during coasting portions of the trajectory and it is neces-
sary to solve the Euler-Lagrange equations for the multipliers to deter-
mine the optimsl direction of thrust at the end of each coasting arc.

It is the purpose of this paper to present a new analytical solution for
the multipliers. This solution used with the appropriate form of Kepler's
solution gives a particularly convenient anslytical form of solution for
optimal coasting arcs. When implemented in a numerical routine for
trajectory computation, the analytical solution not only reduces compu-
tational time, but also eliminates the errors due to numerical integra-
tion for long coasting arcs. In studies made of the earth orbit rendez- .
vous probleml, it was found that long coasting arcs were often a

necessity to avoid severe payload penalties. In this case, the analytical
solution for coast is of especial advantage.

Analytical solutions for coast were presented by W. E. Miner? in 1963 -
and by S. A. Jurovies3. In the June, 1965, issue of the AIAA Journal,

M. W. Eckenwiler® presented a solution very similar to Miner's. These

solutions have the disadvantage of a singularity at zero eccentricity.

Since circular and near circular orbits are of major interest, this

singularity is removed in the present solution. A numerical difficulty

appears here for near unit eccentricity. However, an exact solution for

parabolic orbits and, in addition, an epproximate solution for near

parabolic orbits that eliminates the numerical difficulty are given.

2. MINIMUM FUEL TRAJECTORY

The equations of motion for a rocket in the gravity field of a spherical,
homogeneous earth are:

K=V

% = - £3-§'+

H |-

(1)
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2. (Continued)

The state variables are the position vector R, the velocity V, and the
mass m. The control variable is the thrust vector T. The gravitational
constant of the central boyd and the magnitude of R are denoted by u
and r, respectively. The mass flow rate of the rocket is assumed to be
constant, ang given by

m=-M (2)

For minimum fuel consumption, it is required that

2 S

J - m dt = MINIMUM (3)
to

Appending the equations of motion, Egs. (1) and the mass flow require-
ment Eq. (2) as constraints with the Lagrange multiplier techniques,
the following integral must be a minimum

te — . .
[-@ + X (v+}1__1§'..1) +Y . (R-V) +o(m+ Mlat (L)
¢ = r3 m
t
o
The ¢omponents of the vectors X and 7, and o are the Lagrange multipliers.
The Euler-Lagrange equations for these Lagrange multipliers are:

A+y=0

Y-L T+ (T -RR=0
r3 I'S

T A

T30

o--l‘-z-x'_'l‘-=0 (5)
m

vhere T and A are the magnitudes of T and A, respectively. The third of
these equations shows that A is the same direction as the thrust. When
the thrust is zero, the last equation implies that ¢ is a constant. The
following differential equation for A comes from the first two of Egs. (5).

T=_b YT+3(XT:BF
A r3T+ % (» - RR (6)

This equation and the constraint equations have to be satisfied along
the optimum trajectory.
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3. ANALYTICAL SOLUTION FOR LAGRANGE MULTIPLIERS DURING COAST PERIOD

During coast the plane of motion is fixed, and from Eq. (6) the differ-
ential equation for the component of A normal to the plane of motion
becomes

-y (1)
r

Let x and y represent the components of the Kepler solution in & carte-
sian coordinate system with the x axis directed toward perigee and the
y axis in the plane of motion. By comparing Eq. (7) with the equation
of motion during coast, we see that the solution of Eq. (7) is

Ay = Kix + Koy (8)

where K, and K, are the integration constants. It is particularly _
convenient to assume the solution of Eq. (6) for the projection of A
on the plane of motion to have the form

%p = FR + CR (9)

The F and G are, in general, functions of time and uniquely define Kf
when the position and the veloecity vectors do not coincide.

Note that the form of Eq. (9) is similar to that assumed for the position
vector in terms of the classical f and g series?. Here, F and G are not
these series, but, as shall be found, finite expressions involving
quantities from the Kepler solution.

Substituting Eq. (9) into Eq. (6), we have after manipulation

'XP=L(2F+3§G)§-—LG§ (10)

3 3

2]

Eq. (9) is differentiated twice with respect to time. This yields:

¥p = (F + 3 - 2B - EF)F + (oF — &6 + O)R (11)
rh r3 r3 r3
By cdomparing Eqs. (10) and (11), we see that:
G = —oF (12)
F= o (3F+ 2G) (13)
r
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3. (Continued)
From Eq. (12), we have
G = Ky - 2F (14)

By substituting Eq. (14) into Eq. (13), a differential equation for F
alone is obtained

F+‘:§(F-2K3)=O (15)
This equation has the solution
F = KX + KgY + 2K3 (16)

where, again, x and y are the components of the Kepler sdlution and K,,
Ky, K5 are integration constants. The function G is obtained by inte-
grating Eq. (1k4).

G = [(K3 - 2F)at = - S(3K3 + 2KjX+ 2KgsY)at

In order to carry out this integration, the eccentric anomaly of the
Keplerian motion is used as the integration variable for elliptical
orbits.
1
_ - |a a 2\2
G = -3Kgt = 2Ky H(cos u-e)(l -ecosu)du - 2Kg E{l - ef)

sin u(l - e cos u)du
The integration gives

G = -3Kst + %Kh ﬁ{%(r + P) - 3et] + KsZ P(r + P) + K¢ (a7)
where time

semi-major axis

mean motion

total energy

angular momentum
semi-latus rectum
eccentricity
= integration constant

oD P

el
o)}

The G function has exactly the same Iorm {u: Lypeitclic orbite when the
integration is performed by using hyperbolic anomaly as the integration
variable. Similarly, for parabolic orbits, the G function becomes

G = -3Kgt + %Kh Lr2 - p(r + P)] + KsEP(r + P) + K (18)
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3. (Continued)

Finally, Y can be obtained from

-'Y_ = —I = —G-R_ + LB- + K3§ - (Kl).( + KQY)-E (19)
with
D = -Kg T+K,§

where E; J and k are unit vectors of the perigee oriented coordinates.

4. APPROXIMATE SOLUTION OF COAST FOR ORBITS WITH ECCENTRICITY VERY CLOSE
TO UNITY

The elliptical solution as found in the previous section is

.A_P = Fﬁ + G; (9)
F = K)X + Kg¥ + 2K (16)

G = -3Kgt + %K% [%(r + P) - 3et] + KsTP(r + P) + K6 (17)

All terms are well behaved numerically as eccentricity approaches unity
except the term with coefficient K), in the G-function. The energy E and
the squared bracket term vanish separately at unit eccentricity but their
ratio is finite. To eliminate this numerical difficulty, let eccentri-
city e = 1 - € with € << 1, then the eccentric anomaly u is also much
less than 1 and can be expanded in a series of sin u, which is:

u=sinu+x.Llsip3u+1.3. Lsindu+.... (20)
23 2 b 5

This series is truncated after the third term and substituted into
Kepler's equation:
t =Ly - e sin u) (21,
n
This yields
1. 1.3 .3 .5 .
= = + + - -
t h[s:.n u + Zsinu + {=sin’u (1 - €)sin u]

= %{e sin u + %sin3u + %asinsu]

136




4. (Continued)

Since
1 1 1
sin u = %(1 -e2)2 =L 20 - ¢)2
P
and
1 3 3 3
2 2
n= (1‘—3-)2 =L-e2)" =L e%(2 -¢)
a P p2

t=%[%P(l+%)+——2'+eL— (22)

The second and higher order terms in € have been dropped in the last
expression for time. These terms will also be neglected in the deriva-
tion hereafter.

Now
Y2 = a2(1 - e2) sinu = aP(1 + cos u)(l - cosiu)
%E-= (1 + cos u)all - (e + €)cos u]
= (1 + cos u)(r - ac cos u)
Since
=1(1.-2 = -I = - oL
cos u = 2 (1 a) (1 + )1 a) 1+ e(1 2P)
with
P 3
ae = E(l + 2)
thus
2 2
= (or - P) + 2¢[(er - P) - £ (23)

Substituting Eq. (23) into Eq. (22), yields

T

= %f (¢ ' D)+ Eflr + P) + hEEJ (2h)
r
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L. (Continued)

With this expression for time, the term with coefficient K), in the
G-function is

_;.Kh-g-{%(r+P)-(l-e)%[(r+P)+§-(r+P+!¢%-2—)]}
=2, L {2 -2r +7) - fIP(x + B) + 1221}

Finally we have

G = -3Kst + %Kh % {r2 - P(r +P) - -E[P(r + P) + hrg]} + (25)
KeXp(r + P) + K
ST, 6
When € = 0, this becomes the parabolic solution given by Eq. (18).

5. DISCUSSION

The singularity at zero eccentricity that exists in previous analytical
coast solutions does not appear in the solution presented here. The
form of solution taken for the projection of A onto the plane of motion
eliminated this singularity and also gave a particularly simple form for
the resulting solution. The absence of the singularity is of assistance
for study of optimal trajectories for boost to circular and near cir-
cular orbits. With the improved accuracy due to elimination of integra-
tion and round off errors, the analytical solution presented is also
useful for optimizing parking orbits.

The numerical difficulty for very nearly parabolic orbits can be handled
by employing the approximate solution presented in Section 4. It is of
interest to note, however, that in actual numerical work carried out,
the exact parabolic solution gives satisfactory results in that region.
The average of the significant figures of agreement of the Lagrange
multipliers obtained from the analytical solution with the multipliers
calculated by direct numerical integration is shown in the figure below.
The comparison was made 100 seconds after the beginning of coast. Coast
was initiated 1000 seconds after perigee. The values were calculated
carrying eight digits. In the ranges of eccentricity away from unity,
the difference in analytical and numerical values is due to error in
the numerical integration. In these regions, there is no numerical
difficulty with the analytical solution and it gives precise values.

The results in the neighborhood of eccentricity e = 1 £107° can be
improved by using the approximate solution.
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5. (Continued)

The analytical coast solution can be employed for three dimensional
problems as well as planar cases. It is only necessary to rotate into
the plane of motion at the start of coast and rotate back out of the
plane to the original reference at the end of coast. The axes used must
coincide with the perigee oriented axes used in developing the coast
solution.
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