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PREFACE 

In 1955, the team which has become the Marshall Space Flight Center 
(MSFC) began to orgll.nize a resea rch program within its various laboratories 
and offices. The purpose of the program was two-fold: first, to support existing 
development projects by research studies and second, to prepare future develop
ment projects by advancing the state of the art of rockets and space flight. 
Funding for this program came from the Army, Air Force, and Advanced 
Research Projects Agency. The e ffort during the first year was modest and 
involved relatively few tasks. The communication of resuLts was, therefore, 
comparative ly easy . 

Today, mor e than te n years Later, the two-foLd purpose of MSFC's 
research program remains unchanged, aLthough funding now comes from NASA 
Program Offices. The present yearly effort represents major amounts of money 
and hundreds of tas~s . The greater portion of the money goes to industry and 
universities for research contracts. However, a substantial research effort is 
conducted in house at the Marshall Center by all of the laboratories. The com
munication of the results from this impressive research program has become a 
serious probLem by virtue of its very voluminous technical and scientific content. 

The Research Projects Laboratory, which is the group responsibLe for 
management of the consolidated research program for the Center, initiated a 
plan to give better visibility to the achievements of research at Marshall in a 
form that would be more readily usable by specialists, by systems engineers, 
and by NASA Program Offices for management purposes. 

This plan has taken the form of freque nt Research Achievements Reviews, 
with each review covering one or two fields of research. These verbal reviews 
are documented in the Research Achievements Review Series. 

Ernst Stuhlinger 
Director, Research Projects Laboratory 

These pBpers presented June 24. 1965 
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IMPROVEMENTS IN STAGE CHECKOUT 

By 

R. L. Smith, Jr. 

SUMMARY 

Improvements in the checkout of space vehicle 
stages are discussed in this report under four cate
gories of work: a guideline document for analysis 
and checkout of space vehicle stages, improvements 
in automated checkout, checkout display require
ments, and single parameter testing. 

The guideline document, now used by NASA and 
supporting contractors, explains the rationa le for all 
checkout requirements and provides general and 
specific checkout instructions. 

Improvements in automated checkout have been 
obtained through the development of a digital event 
evaluator, a computer method for instrument cali
bration, and control methods for stage checkout. 
These improvements provide for simplified, more 
accurate data acquisition, for automatic readout , and 
for computer programing of the calibration of in
flight instrumentation. More work is needed on the 
refinement of computer- control operations that re 
quire manual intervention. 

Work is continuing on checkout display require
ments which deal with information presentations on 
real- time running status, troubleshoo ting, and 
assistance in test procedure generation. Some of the 
developments include the use of cathode- ray screens 
for displaying a matrix of variables, complex flow 
diagrams, and information stored in digital form . 

In single parameter testing, a single signal (sine 
or complex wave, step funct ion, exponential function, 
etc.) is the input to a device being tested, and the 
output signal is observed for both normal and deviate 
response. Current work is concerned with finding 
the appropriate combination of input and output signals 
for the precise computer identification of normal and 
faulty operation of various devices or systems . 

J. INTRODUCTION 

One of the major responsibilities of Quality and 
Reliability Assurance Laboratory is the checkout of 

vehicle stages after the completion of manufac turing 
assembly and static firing. Since many problems 
are encountered in this complex of operations, so
lutions have to be sought through studies and engi
neering developmental work. These are financed 
mainly through supporting research funds, although 
in some cases ibis support is not requested. 

This report covers the following achievements 
in stage checkout improvement: a guidline docu
ment on stage analysis and checkout, automated 
checkout, checkout display requirements, and 
single parameter testing. The guideline document 
was written mainly in house, but some contract 
assistance was used (General Electric Corp. , con
tract NASw - 410). The other work, with the one 
exception, was supported entirely with research 
funds. The exception was the Digital Event Eval
uator (for automated checkout) . Its initial work 
used supporting research funds, but after its feasi
bility was established, it was completed under line
program funding. 

II. GUIDElINE DOCUMENT FOR ANALYSIS 
AND CHECKOUT OF SPACE VEH I elE STAGES 

Over the pas t ten years, MSFC has developed 
a pattern of operation in stage checkout which takes 
into account many variables, some of which are 
time available; safe ty considerations; engineering 
modifications in stage and checkout equipment , 
made during checkout; and extent of detail to which 
checkout is needed. This pattern has been re
examined a number of times with a view toward 
optimizing the process wi thin these variables, and 
toward maintaining the general philosophy of con
servative development, which has been a leading 
factor in the high degree of success for MSFC pro
grams . 

Stated generally, the objective of checkout is to 
establish that the vehicle stage complies with the 
fo llowing requirements: (1) it is built according 
to design documentation, (2) it functions accord
ing to desigll intent, (3) it will mate properly with 
the other vehicle stages, and (4) it will mate pro
perly with the launch site ground equipment. 
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Satisfying the requirements of one checkout 
objective does not necessarily guarantee compliance 
by another. This has been demonstrated many times. 
An example is given by Jupiter AM 2 testing: when 
umbilicals were disconnected for simulation of lift
off during the simulated flight test, the missile be
came completely inoperative. It has been demonstra
ted a number of times, too, that when an item func
tions properly on the bench, this does not necessar
ily mean that it will function properly in the stage . It 
is safe to say that after testing in a complete check
out has been successfully completed, it is established 
only that the stage will perform properly at that point 
in time. Based on experience, stage performance 
may be predic ted for future operations, provided 
that the tests are properly designed and the existing 
local limitations are recognized (e. g. , a simulated 
flight test). 

Problems with satisfying the general objectives 
of checkout were encountered as soon as MSFC be
gan working with stage (and missile) contractors 
who were doing the building and checking out. The 
basic problem was that the contractors did not appear 
to have the same concern for care in all aspects as 
did MSFC. Therefore, MSFC requirements were 
set down not only to establish specific guidelines but 
to show the basic rationale for them. 

Guidelines for the following areas of checkout 
were included in the document: (1) receiving in
spection, (2) fabrication analysis, (3) analysis 
of components and minor subassemblies, (4) anal
ysis of major subassemblies, (5) stage analysis, 
and (6) checkout of assembled stages. The docu
ment is intended to provide guidance that is suffi
ciently general to be applicable to any stage, yet 
suffiCiently specific to ensure detailed coverage in 
technique and supporting rationale. For example, 
specific gUidelines deal with planning, data coverage 
required, reporting, recordkeeping, and examples 
of operations on typical items of a stage . 

III. IMPROVEMENTS IN AUTOMATED 
CHECKOUT 

An evaluator of digital data, a computer method 
of instrument calibration, and advances in control 
methods for stage checkout constitute important 
achievements in the program to improve automated 
checkout. The results of these achievements have 
been or will be applied. 

A. DIGITAL EVENT EVALUATOR 

For many years Esterline-Angus (EA) drag pen 
recorders (Fig. 1) were used in checkout operations 
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FIGURE 1. ESTERLINE-ANGUS DRAG PEN 
RECORDERS AND DIGITAL EVENT 

EVALUATOR 

to provide a chronological record of occurrence of 
discrete events characterized by a step change in 
voltage between 0 and 28 volts. Each recorder chart 
contains 19 information channels and a time-pulse 
channel (Fig. 2). The record is qualitative except 
for time, which can be read to approximately 50 
milliseconds. 

FIGURE 2. PRINTOUT OF TEST RESULTS, 
ESTERLINE-ANGUS RECORDER 

The EA recorders were used because of the ease 
with which the number of information channels could 

~, 
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be increased (i. e., by adding recorders) and because 
of their capability of recording simultaneous occur
rences. Evaluation of test results of major systems 
(e. g. , overall tests) is based to a considerable ex
tent on evaluation of discrete event records. During 
Jupiter work, use of 200 channels was fairly common; 
this meant that 10 to 12 recorder charts had to be 
aligned carefully and evaluated simultaneously. 
Such evaluation is tedious, time-consuming , and sus
ceptible to human error. It was recognized even 
then that there was a need for an instrument to obtain 
these signal changes and to print out changes sequen-
tially with information on the channel involved, the 
time of the change, and the direction of change. The 
major problem to be resolved in the development of 
the needed instrument was a capability for absorbing 
many simultaneous changes of state . 

The Digital Event Evaluator (DEE) was developed 
to meet the need for such an instrument (Fig. 1). 
Its development was begun on supporting research 
funding, and the final development was completed on 
line-program funding. As shown in Figure 3, its 
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lin OFF 25. 7D D 
(IIIlS OFF 25.7"" 
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111 OFF 25.7DD 
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18 7 OFF 2 5. 10" 
362 OFF 

25. '" 0 1661 OFF 25.10D 
537 ON 25.100 
TICLr 2 S. 1016 
1H2 on 25. lD 8 
III 6 OFF 25. 108 

FIGURE 3. PRINTOUT OF TEST RESULTS, 
DIGITAL EVENT EVALUATOR 

output record is simplified and greatly reduced in 
size. As a consequence, the possibility of error in 
evaluation of the readout data is reduced. The time 
resolution of events is much more accurate, being 
approximately 4 milliseconds. Current test re 
ports show an additional advantage: the DE E fre 
quently picks up error information that could not be 
detected with the previous equipment. The DEE is 
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now in use at all stage checkout areas and at the 
launch site (Kennedy Space Center). 

B. COMPUTER METHOD FOR INSTRUMENT 
CALIBRATION 

Inflight calibration of instruments, after the 
completion of manufacturing assembly, has posed 
several problems for a long time. In general, a 
given stage condition or function is measured by a 
transducer, the output of which is appropriately 
modified by a signal conditioner and passed along 
for telemetry transmission. A simple system for the 
instrument calibration of earlier space vehicles is 
illustrated diagrammatically in Figure 4. The 

_.-"-~'-._._._._.L _____ \ 
GROUND I 
EQUIPMENT I 

FIGURE 4. OBSOLETE METHOD FOR 
INSTRUMENTATION CALIBRATION 

vertical dashed line represents a capability for 
hardwire connections to a recording facility so 
that one could determine whether a signal was 
within calibration tolerance before it reached the 
telemetry transmitter. The normal flow of a 
transducer / signal-conditioner sys tern is from 
calibration to bench- level- quality verification, to 
installation into a stage, and to reverification and 
adj ustment aboard the stage to ensure the mainte
nance of proper tolerance . This has always been 
a tedious and time-consuming task because of the 
large number of transducers involved. 

With the advent of Saturn programs, basic im
provements (Fig. 5) were made to ease some of the 
checkout problems associated with the system. A 
Digital Data Acquisition System (DDAS) was inter
posed between the signal conditioners and tele
metry transmitters to provide a digital multi
plexing function. A coaxial conductor link was made 
from the onboard DDAS to the ground checkout 
equipment, thereby providing greatly simplified 
access to instrument output Signals. A Remote 
Automatic Calibration System (RACS) was added to 
facilitate setting the signal conditioners to Imown 
s imulated inputs, thus providing an improved control 

3 
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capability. As a result of these improvements, 
control of the RACS, readout from the DDAS, and 
evaluation of results could be accomplished by 
computer. 

ACQUISITION 
SYSTEM 
GROUND 
STATION 

CHECKOUT 

COMPUTER 

DISPLAY 

REMOTE 
AUTOMATIC 
CALIBRATION 

SYSTEM 

TELEMETER 

GROUND 

STATION 

FIGURE 5. SA TURN INSTRUMENT A TION 
CALIBRATION SYSTEM 

Even with these improvements, however, there 
remained the problem of having to adjust individ
ually the gain settings of the signal conditioner 
amplifiers to correct for drift from their original 
settings. Consequently, an investigation of the en
tire complex system was initiated by MSFC in an 
attempt to better integrate the automatic stage check
out systems. The study was conducted by Nortronics 
Division of Northrop Corporation. Three possibil
ities for relief appeared worth investigating: mod
ification of existing procedures by relaxing toler
ances; an electromechanical servoloop; and com
pletely automated, computer calculated and con
trolled calibration. 

For reasons of feasibility and practicality, the 
completely automated, computer calculated and con
trolled calibration method was chosen for use. The 
method is illustrated in Figure 6, which is a repre
sentation of a calibration curve for a transducer and 
signal conditioner. The vertical axis is the value to 
be meas ured, and the horizontal axis is the tele
meter output. The solid s loping line is the original 
calibration curve . A shift in the amplifier is re
presented by a dashed curve rotated about the origin. 
There are two calibration points built into the signal 
conditioner, one at a high point on the curve and one 
at a low point. Access to both points is controlled 
through the RACS, either manually or by computer . 
A given value of the sensed measurement on the 
shifted curve shows a different output from that of 
the original curve. Thus, the value 'read from tele
metry would be incorrect if the curve shifted. 

4 

W 
:::l 
-' 

SHIfTED CURVE ~ 
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FIGURE 6. CALIBRATION CURVE FOR A 
TRANSDUCER AND SIGNAL CONDITIONER 

Two facts were established to support further 
progress: transducers never drift or shift, and the 
amplifier's drift or shift is such that the output 
curve retains its original shape. Therefore, if the 
original bench calibration is established and the 
information fed to the computer, a program may be 
used to read out the existing calibration points, and 
the computer can calculate the amount of change for 
any given point on the curve. For Simplification , the 
curve shown in Figure 6 is a straight line , although 
this is not essential to the process. This method 
offers the capability for using computer programing 
for calibration of flight instrumentation right from 
the beginning, once bench test data have been estab
lished. An upper limit for allowable drift can be 
established beyond which amplifiers are replaced. 
Other than this. no further need exists for the labori-
0us manual methods previously used. Even further, 
it is entirely applicable to a situati?n in fligh t, orbit, 
or deep space in which knowledge by the astronaut of 
transducer calibration can be vital, and external 
adjustment difficult or impossible. 

C. CONTROL METHODS FOR CHECKOUT 

One of the more pressing needs for improve
ment in automated checkout is a means of allowing 
the test personnel adequate control of the process. 
This requirement is generally satisfied in a manual 
system through the use of manual switches and a 
predetermined test procedure. 

Figure 7 shows the types of control which have 
been common in the past, in which each function 
is accomplished by a manual operation, the timing 
and necessity having been established by the pro
cedure and the operator IS assessment of information 
shown by the indicators. 



FIGURE 7. USE OF MANUAL CONTROL 
FOR CHECKOUT 

READY 
TEST 
PROGr 
71 

START 77 0751 

SEGKNT 000 
SEGMENT 001 
SEGMENT 203 
SEGMENT 300 
STEP 1 
NO ·GO'S 
o 25 
STEP 3 
NO GO'S 
o 431 
STEP 6 
NO GO'S 
o 90 
o 144 
STEP 8 
NO GO'S 
o 17.1 
o 173 00102. 
SEGKNT 000 

08-1 5-64 

FIGURE 8. COMPUTER PRINTOUT AFTER 
ENCOUNTERING TROUBLE 
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Computer- controlled tests generally proceed at 
a rate which makes it difficult for a person to keep 
up with the current step of the procedure. Never
theless, manual intervention in the computer opera
tion will be required at times, regardless of hard
wired safety controls and programed alternatives. 
Manual intervention is required when the computer 
has no alternative rOl;ltines upon which to fall back, 
or when it has exhausted the routines which exist 
and then reports out the exception. (Figure 8 is 
an example of such a printout.) The person con
ducting the test assesses the symptom indications 
which are available, the location of the problem with
in the test procedure, and the major system which is 
in trouble. He then corrects or circumvents the 
difficulty and continues the test, or in some cases 
terminates the test in order to make necessary 
repairs. 

-----
- -. 

,. 

FIGURE 9. SWITCHING CONTROLS FOR 
MANUAL OPERATION, COMPUTER 

TROUBLESHOOTING 

Figure 9 shows one arrangement of switching 
controls to allow selective manual operation for 
troubleshooting independent of the computer. At 
best, this provides a cumbersome approach to the 
problem. Manual capability to make some changes. 
in computer memory to circumvent difficulty, 

5 
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change values, and so on, also exists . However, 
this procedure depends upon an intimate knowledge of 
the computer and its programing, and can be danger
ous because of the possibility of operator error or 
because of unforeseen effects on later portions of the 
program which are iteratively dependent on the mod
ified section. 

Solutions to problems of this type have been of a 
gross nature. For example, the well-known "panic 
button" can initiate a programed shutdown. Another 
possibility is illustrated in Figure 10, which shows 
a sight- operated switch whose function is based on 
light refraction from the operator's eye. The switch-

FIGURE 10. SIGHT SWITCH 

ing operation is initiated when the operator turns his 
eyes to look at the switch . Sensitivity can be varied 
so that an involuntary glance will not operate the 
switch. The sight switch would be useful for setting 
a safe-condition system into operation (e. g. , venting 
a tank to relieve excess pressure buildup), for 
bringing specific items up for display, etc . The 
sight switch is a single-switching operation and there
fore is also a gross control. The switch was devel
oped under contract by Spaco as part of the investi
gation by MSFC into the general problems of stage 
checkout control. 

Refinements of the control problem will not come 
easily. They are dependent upon intimate knowledge 
of all systems involved in a given operation, and 
will vary from one system to another, so that gen-
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eral solutions will be infrequent. MSFC is continu
ing its investigation into specific areas of the Satur:! 
V checkout systems to determine how refinements 
can be made in existing systems. As time and funds 
become available, it can be expected that more de
tailed solutions will be obtained. 

IV. CHECKOUT DISPLAY REQUIREMENTS 

A knowledge of existing conditions and symptoms 
is required for adequate checkout control. Three 
situations in automated checkout requiring information 
presentation are: real-time running status, symptom 
and system information for troubleshooting, and 
assistance in test procedure generation. 

Figure 11 illustrates one means of providing in
formation on real-time status. This photograph 
shows a bank of lights arranged to indicate existing 
status, as well as the progression of a sequence of 
events. This is useful during a rapidly sequenced 
operation such as engine ignition, but is generally 
not sufficient in itself . 

• • 
I 
! 

FIGURE 11. LIGHT INDICATORS FOR RAPID 
SEQUENCE TESTING 

Figure 12 shows a panel with meters for infor
mation indication. These are useful in static con
dition, but generally are not useful during a computer
controlled test unless an observer for each meter or 
small group of meters is present to monitor the over
all test status.. The rapid progression of the test 
sequencing makes such use almost of no benefit to a 
test conductor. 

The person conducting the test requires an over
all awareness of test status and progress and a cap
ability which will enable him to anticipate an action 

I 



FIGURE 12. USE OF METERS FOR 
INFORMA TION INDICATION 

he must take. The combination of a computer and a 
cathode-ray-tube (CRT) display offers a good partial 
solution to the test conductor's problem. Many types 
of CRT displays are available. The problem of use 
in stage checkout is what to show on the display, and 
to what quantitative depth. 

A simple analogy would be a situation in which 
one must know, from a remote location, the position 
at every instant of time of an individual walking 
from one corner of a room diagonally to the opposite 
corner. By placing sensors in a grid pattern one 
could place x and y digital indicators in the remote 
location and with a certain amount of estimating and 
a grid map, ascertain the position. A simpler solu
tion would be to use a closed circuit television system 
with a screen in the remote location. The viewer 
could then have the necessary information instantly. 

A matrix of variables with current quantitative 
status can be shown on a CRT screen. Table I shows 
a sample of what such a matrix could include. It is 
not intended to be typical, but to show a cross sec
tion of the type of information and how it is presented. 

Studies as well as experience in checkout indicate 
that a person conducting a test requires qualitative 
real-time information analogous to the closed cir
cuit television example while the computer is pro
ceeding with a test. Therefore, a flow diagram, as 
indicated in Figure 13, would be very useful. In this 
case, the "flow" in the test can be indicated by a 
cursor, shading, or other means. Manual estimation 
is not required, and events requiring anticipatory 
action can be clearly indicated. When an involuntary 
computer "stop" occurs, the position of the stop is 
clearly shown, and it indicates a beginning point for 
remedial action. 

---.. -.-------~ 
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TABLE 1. SAMPLE MATRIX OF VARIABLES 
FOR CRT DISPLAY 

VOLTS AMP. N/ m 
2 

N/m 
2 

ON/ 
(psig) (psia) OFF 

BUS # 1 28.5 14 On 

BUS # 2 29.2 Off 

LOX TANK 310 k 
PRESSURE (45) 

FUEL TANK 172 k 
PRESSURE (25) 

TAIL SEC TION 41 k 
PRESSURE (6) 

WATER 1M 
PRESSURE ( 150) 

FIGURE 13. SAMPLE FLOW DIAGRAM FOR 
REAL-TIME PRESENTATION 

When a stop has occurred, the conductor of the 
test must determine the nature of the problem, 
which frequently lies with a major subsystem of 
either the stage, the ground, or both. Because of 
the complexity of both stage and checkout equip
ment, the components involved may be located on 
several different pages of a large number of draw
ings. Tracing through all these to pinpoint the 
trouble can cause a number of problems, not the 
least of which is error in diagnosis. For several 
years, test engineers have sketched in extra infor
mation on drawings at various places to simplify 
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this h-acing operation. Figure 14 shows a composite 
schematic of a fairly complex system which could 
be depicted in its entirely on as many as ten pages of 
stage and checkout system drawings. A number of 
details have been omitted to simplify the repre
sentation and bring together the essential elements 
to form a complete "picture" of the system. From 
this point it is comparatively easy to begin to trou
bleshoot the system by referring to the detailed 
documents as necessary. 

information presentation, such as projection from 
microfilm, could be used to overcome the digital 
storage problem, although information would not be 
easily accessible. Magnetic tape offers a solution, 
although accessibility is a problem here also. A 
disk file may turn out to be the answer to the pro
blem, since it can provide rapid access to its stored 
information. Also under investigation is the com
patibility of these approaches with existing checkout 
systems. 

L-J PSv·· ~ 

FIGURE 14. COMPOSITE SCHEMATIC OF AN INTRICATE SYSTEM 

Studies have indicated that it is feasible to pre
sent this type of information on a CRT for trouble
shooting. The launch site display system, for exam
ple, is capable of handling such a presentation in 
some respects. At present, MSFC is investigating 
the feasibility of digital storage in which a ll neces
sary composite schematics and a document "genera
tion" breakdown (by divisions, subdivisions, etc . ) 
could be displayed on a cathode - ray tube . 

One disadvantage of digital storage is the large 
amount of memory required. Other approaches to 
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v. SINGLE PARAMETER TESTING 

Single parameter testing deals with the intro
duction of a single input signal into a device, and the 
observation of all outputs for both normal response 
indications and deviations from normal. The feasi
bility of this technique has been established by two 

studies: one on the stable platform system (Emerson 
Electric, supervised by Astrionics Laboratory), and 
the other on the fundamentals of signals and network 
responses, (General Elec tric , Daytona, supervised 
by Quality and Reliab ility Assurance Laboratory) . 



A variety of input signals, such as a sine wave, 
a complex wave, a step-func tion input, or a growing 
exponential function, may be used. Considerations 
affecting the input signal are magnitude, time dura
tion, necessity for repetition, and shock effect on the 
system under test. As a result of the input signal , 
various output signals from a given device are ob
tained. The best combination of these output signals, 
for a given input, must be chosen to provide a true 
"fingerprint" (i. e. precise identification) of the system 
being tested. The output signals should show a signi
ficant deviation in one or more parameters in the 
presence of an abnormality in order that fault indica
tions may be observed. For maximum benefit, the 
output signal should be capable of computer analysis. 

Achieving the proper balance for solutions of all 
the requirements indicated i s the major problem in
volved. One study has indicated that a growing ex
ponential function is the more desirable input up 

-~-------
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through third-order linear systems. A specific sig
nal input and/or output "fingerprint" will exist for 
each item to be tested; like items should be capable of 
utilizing the same type input signal. 

The advantage to single parameter testing is its 
Simplicity in terms of testing. All that is necessary 
for its use is a capability to provide the input signal 
and to read and analyze the output. The outputs of 
most onboard devices are available, and computer 
analysis capability exists in the ground equipment. 
For each device to be tested in this manner, the only 
additions for existing onboard stage systems would 
be the signal source and input capability require
ments. This could be approached in the same manner 
as the calibration provision in the signal conditioners 
for the instrumentation system. The approach thus 
becomes economical and practical, as well as techni
cally feasible. 

9 
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IMPROVEMENTS IN STRUCTURAL NONDESTRUCTIVE TESTING 

By 

R. w. Neuschaefer 

SUMMARY 

Advanced methods of nondestructive inspection of 
structural materials are described in this report. 

A high-speed radiographic system has been de
signed for inspecting bulkhead welds of Saturn I-C 
propellant-fuel tanks. This system has saved half 
the time formerly used in radiographic inspection and 
has minimized work stoppage by reducing radiation 
hazards. 

An ultrasonic inspection method, complementing 
the radiography method, has been developed for in
specting seam- and spot-weld joints in type 22 19 
aluminum. This is a quick inspection method and it 
provides a permanent, printed record . It also can 
identify spurious weld defects (enigmas) more rap
idly than radiography can. 

The feasibility of identifying various tempers of 
type 2219 aluminum has been investigated through 
application of a technique of eddy-current induction 
and measurement. The "0" condition was found to 
be easily identified, T62 temper the most difficult 
to identify, and T31, T37, T81 , and T87 falling in 
between these extremes. 

Formerly , hydrostatic testing of tapered- wall 
tanks was feasible because flight conditions could not 
be simulated with conventional test methods. To 
solve this difficulty, a zone-gradient pressurization 
system was conceived , and pressure seals and test 
fixtures designed, for testing a model-sized straight
wall tank under accurately simulated flight loading. 
The successful full-scale application of this system 
should significantly affect the future development of 
lightweight tapered-wall propellant tanks . 

I. INTRODUCTION 

In recent years the complexity of manufactured 
items has increased, while design margins have 
been reduced. As a consequence of these changing 
conditions, advancements in inspection techniques 
have been especially necessary . 

The Analytical Operations Division of Quality 
and Reliability Assurance Laboratory has been 
speCifically concerned with improving nondestruc
tive techniques for inspecting structural materials. 
Some of its achievements in improved test or in
spection methods are described in this report under 
investigations in a semiautomatic radicgraphic 
inspection system, ultrasonic techniques for in
specting spot and seam welds, eddy-current tech
niques for sorting tempers of type 2219 aluminum, 
and zone- gradient hydrostatiC testing. 

II. SEMIAUTOMATIC RADIOGRAPHIC 
INSPECTION SYSTEM 

Industrial radiography has been in use since 
the start of the twentieth century for examining 
weldments, castings, and composite structures. 
The Saturn program, with welded tanks and very 
narrow design margins, has required a reevalua
tion of the radiographic methods previously em
ployed. The first radiographic techniques used 
at MSFC possessed a radiation hazard and were 
slow; therefore, the primary consideration was 
given to the design and manufac ture of a safe, high
speed radiographic system to assure the quality of 
S-IC bulkhead welds. 

The system that was developed as a joint MSFC/ 
Boeing Company effort (Fig. 1) uses two 31-meter 

FIGURE 1. SEMIAUTOMATIC X-RAY SYSTEM 
11 
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(iOO-ft) reels of film and a semiautomatic electri
cally controlled advancement of film, a film posi
tioning unit, and an x-ray tube. The operation of 
this system is controlled from a single console. 

There are five major groups of equipment in the 
new system: 

12 

1. The film-transfer unit, with reels driven by 
electric motor for rapid loading of x-ray 
film (Fig. 2) 

FIGURE 2. FILM-TRANSFER UNIT 

2. Semiautomatic x-ray equipment consisting 
of several units which position the film and 
welds in correct alignment (Fig. 3) 

3. The semiautomatic film-wrapper stripper 
which strips the lightproof paper wrapping 
from the films so that it may be automati
cally processed (Fig. 4) 

4. The Pako semiautomatic processing equip
ment which develops, fixes, washes, and 
dries the film (Fig. 5) 

FIGURE 3. SEMIAUTOMATIC X-RAY EQUIPMENT 

•• 

FIGURE 4. SEMIAUTOMATIC FILM-WRAPPER 
STRIPPER 



FIGURE 5. PAKO SEMIAUTOMATIC FILM 
PROCESSOR 

5. A semiautomatic film-viewing console, 
which provides optimum film-viewing 
conditions and facilitates the handling of 
film on motor-driven reels (Fig. 6) 

FIGURE 6. SEMIAUTOMATIC FILM-VIEWING 
CONSOLE 

·--l 
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The new radiographic inspection methods have 
several advantages over the previously used ones. 
The total manhours required for exposing, pro
cessing, and reviewing film is approximately 50 
percent less. The savings are not only in inspec
tion time, but in the total time that the work area 
must be cleared. Because the radiation hazard has 
been reduced, personnel may work within 3 meters 
(10 ft) of the unit instead of the previous 15 meters 
( 50 ft) . Therefore, work stoppage has been re
duced to a minimum. The transport fixture, more
over, is adaptable for ultrasonic testing. 

III. ULTRASONIC INSPECTION OF SPOT 
AND SEAM WELDS 

Although ultrasonic inspection equipment has 
been available since the 1940' s, the specifications 
of the Saturn program have required the develop
ment of improved methods and equipment. Ultra
sonic and radiographic inspection methods may be 
used to complement each other in many instances. 
Defects such as cracks, porosity, and inclusions 
in weldments may be detected by both radio-
graphic and ultrasonic inspection methods. Ultra
sonic inspection will locate and describe the serious 
defects (e. g. , fine cracks and crack-like defects 
such as certain types of incomplete penetration 
and lack of fusion) with the highest degree of assur
ance, whereas radiography will more readily de
tect inclusions and small porosity. 

The ultrasonic inspection techniques developed 
and applied by Quality and Reliability Assurance 
Laboratory are a new and important tool for the 
evaluation of spot and seam welds. The two ultra
sonic methods employed consist of, an angle beam
through transmission technique for spot welds, and 
a pulse-echo technique for seam welds. The angle 
beam-through transmission technique uses a trans
mitter and a receiver. 

Research has been conducted principally in the 
field of wave propagation utilizing collimated probes, 
since commercially available ultrasonic equipment 
does not provide high resolution. A through-trans
mission ultrasonic system based on this research 
has been developed using small collimators cap
able of resolution surpassing that of commerically 
available probes. This development (Fig. 7), 
which is available for production use, has been 
engineered for scanning spot welds and for print
ing out the contour of the nugget at the interface. 

For an ultrasonic evaluation of seam welds in 
plate material such as S-IC gores and skins, 
initial testing to determine technique has been per-

13 
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FIGURE 7. ULTRASONIC SPOT-WELD SCANNING 
SYSTEM 

FIGURE 8. PORTABLE ULTRASONIC INSPECTION 
SYSTEM 

formed utilizing an ultrasonic transceiver (the 
Krautkramer USK- 4, Fig. 8). Pulse - echo techniques 
also have been used in this investigation. Internal 
porosity, cracks, incomplete penetration, and lack of 
fusion can be readily detected as a part of production 
inspection. 

It was necessary to develop an automated scan
ning system in order to shorten the inspection time 
and provide a permanent inspection record. The re 
sult of this development was the simulated immer
Sion-probe adapter for use on tooling developed for 
the semiautomatic radiographic system. 
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An ultr asonic automatic scanmng and recording 
system (Fi g. 9) was developed which produces one 

of the fastest "C" scans or facsimile recording of 
any equipment available . 

FIGURE 9. ULTRASONIC HIGH-SPEED SCANNI G 
AND RECORDING SYSTEM 

An example of the savings in money and time 
which can be attributed to ultrasonic testing occurred 
when several gore segment welds were rejected when 
radiography had disclosed what appeared to be a lack of 
sidewall fusion. A subsequent ultrasonic inspection 
revealed the indications to be radiograph enigmas 
(Fig. 10), believed to be caused by metal twinning. 
Although enigmas may be resolved by radiographing 
the material from several angles , ultrasonic in
spection is more rapid; consequently , the technique 
currently is being employed to complement radio
graphic inspection. 

IV. EDDY- CURRENT TECHN IQUES FOR 
SORTING TEMPERS OF TYPE 2219 

ALUMINUM ALLOY 

The temper of fabricated material for incorpo
ration into space vehicles may not be known pre
Cisely because incomplete or erroneous documenta
tion accompanies the material received. The true 
condition of the material in the past could be ascer
tained only by destructive testing methods such as 
tensile-strength and hardness testing. The~ tests 
were time-consuming and difficult to perform be
cause of the large size of some of the material. In 
addition , the destructive techniques are inherently 
undesirable. 



FIGURE 10. ENIGMA IN THE RADIOGRAPH 
OF A WELD 

Because of the disadvantages stated, a research 
project was initiated to determine the feasibility of 
using commercially available eddy-current testing 
instruments to differentiate the various tempers of 
type 2219 aluminum alloy. 

Eddy currents are induced into a metal specimen 
when it is placed in the field of a coil carrying al ter
nating current. The impedance or opposition to the 
flow of induced eddy current is a function of the 
metal's electrical conductivity, which is influenced 
by the temper of the metal. 

Test specimens were surface treated with coat
ings representative of those employed on space ve
hicle flight hardware for an evaluation of the influence 
of coatings on the instruments' temper-sorting cap
ability. Figure 11 shows some representative surface 
specimens of two tempers which were subjected to 
eddy- current tests. Figure 12 shows the test setup 
using Magnaflux Corporation's eddy-current tester 
(FM-100), which is the most sensitive instrument 
evaluated to date. 

Because there were a limited number of samples 
available, it was decided to conduct this initial sta
tistical analysis to 95-percent confidence limits . A 
further study to refine the data will be conducted when 
more measurements are obtained. 

R.W. NEUSCHAEFER 

FIGURE 11. EDDY-CURRENT TEST PLATES 

FIGURE 12. EDDY-CURRENT TEST SETUP 

The raw data of this study were analyzed sta
tistically for a determination of the following: (1) 
the significance of coating variations as compared 
to random variation together with operator effect 
and instrument error or drift (or both) and (2) the 
95-percent confidence limits for the samples, and 
the number of samples for each temper. 

An analysis of variance test was used to de
termine the significance of temper as compared to 
coating and residual. The F-ratio tests indicated 
that the effect of temper was of extremely high 
significance as compared to residual variation and 
coating. The temper data were analyzed to obtain 
values to be expected from all samples of each 
temper. 

The feasibility of sorting tempers of 2219 
a luminum alloy is summarized in Figure 13. Con
ductivity of the "0" condition or annealed material 
can be readily identified. The conductivity of tem
pers T31 and T37 overlap strongly. Temper T62 
is partially overlapped by tempers T81 and T87 and 
is the mos t difficult to identify. 

15 
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FIGURE 13. CONDUCTIVITY CHART FOR TYPE 
22 19 ALUMINUM ALLOY 

V. lONE-GRADIENT HYDROSTATIC TESTING 

Hydrostatic testing is an important nondestruc
tive tes ting method which is employed to verify 
structural integr ity of S-IC tanks . At times this 
method may be destruc tive, but even in these cases 
worthwhile data are usually obtained from the test. 

Hydrostatically proof testing propellant tanks to 
full operating pressure is customary in the space 
industry . The proof test is necessary because of the 
narrow margins imposed on vehicle design by weight 
considerations . As a result of these narrow m argins, 
tanks have been designed with yield-to-design load 
ratios of 1. 1 to 1. 0, which means that a ny defect in 
raw or fabricated material can result in a catastro
phe. Mos t defects will be revealed by in-process 
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inspection; but only a full -load proof test can give 
the assurance required for a major vehic le , espe
cially a manned vehic le . 

Tapered- wall - thickness designs now used for 
large tanks cannot be tested by conventional means 
because conventional hydrostatic test conditions 
differ from those of flight. For example, water used 
in the test tank differs in density from flight propel
lant, and the test tank is not under the force of flight 
acceleration. (This is not a problem related to 
deSigns for constant wall thickness. ) 

The magnitude of the problem encountered in the 
hydrostatic test of large vehicle tanks can be readily 
seen by the ana lys is of the hypothetical tank shown 
in Figure 14. This tank is 19. 5 meters (64 ft) long, 

(211 70 r----,----,---,------,----,---, 

15 
(103) 

30 45 60 
(2071 (310) (414) 

STATI C PRESSURE, PSI (N/m2) 

75 
(517) 

FIGURE 14. HYPOTHETICAL HYDROSTATIC 
TEST TANK 

90 
(6211 

10 meters ( 33 ft) in diameter, and is s ubj ected to an 
ullage pres sure of 103 kN / m2 (15 psig) and an accel 
eration force of 19.6 m/s2 ( 2 g) . The tank configu
ration and condition are similar to those of a Saturn 



S-IC liquid-oxygen tank, under severe forces, except 
that the values have been rounded and all structural 
loads other than pressure have been ignored. 

The maximum differential pressure of 441 kN/m2 

( 64 psi) at the aft bulkhead is a function of liquid
oxygen density, head, acceleration, and ullage pres
sure. In comparison, the same tank filled with water 
for hydrostatic testing exhibits a maximum differen
tial pressure of 191 kN/m2 (27.7 psi), which is a 
function of water density, acceleration, and head. 
Under this condition, the aft bulkhead is pressurized 
only to 294 kN/m2 (42.7 psig), which is 250 kN/m2 

(36. 3 psig) under test pressure when the forward 
bulkhead is at full load. Conversely, the forward 
bulkhead is overloaded 250 kN/m2 when the pressure 
at the aft bulkhead is at flight pressure. 

The first condition is unacceptable because it 
does not provide the required assurance . The last 
condition, although a usable solution, is also unde
sirable because it imposes a design requirement for 
test that is heavier than needed for flight. In the ex
ample given, the. test load would be 340 percent of the 
flight load, with a significant increase in tank weight. 

The above conditions are delineated as height 
versus pressure plots in Figure 14. The dashed lines 
represent a family of pressure gradients obtained 
with water in a 9.8 m/s2 (1 g) acceleration environ
ment by varying ullage pressure in increments from 
110 kN/m2 to 393 kN/m2 (16 psi to 57 psi). The 
three solid lines represent the design conditions, the 
required test condition, and the yield pressure. The 
extreme left and right gradients illustrate the condi
tions obtained by conventional methods when the test 
requirements of the upper and lower bulkheads are 
met. 

Figure 15 illustrates a conception of the zone 
gradient pressurization. This pressurization method 
consists of applying pneumatic pressure to the ex
terior of the tank to develop an acceptable approxi
mation of the required gradient. This is accom
plished with a dome-head section and a number of 
skirt sections enveloping the tank. The tank is seg
mented into a series of pressure zones isolated from 
each other through the use of inflatable seals . 

Air pressure is applied directly to the external 
surface of the tank to provide infinite conformability, 
thus eliminating the local load discontinuities that 
would result from bladders . The inflatable seals 
(Fig. 16) are suited for zone isolation, they provide 
adequate clearance for fixture placement, and, when 
inflated, have sufficient conformability to adequate ly 
seal around welds and other minor irregularities. 

R. W. NEUSCHAEFER 
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FIGURE 15. ZONE-GRADIENT PRESSURIZATION 
CONCEPT 

r---------'24~1~~M~I~ ... ,-----------l 
INFLATED 

FIGURE 16. INFLATABLE SEAL 

The pressure on the tank skin is the difference 
between internal and external pressure. Any de
sired gradient can be approximated by establishing 
the appropriate pressure in each external zone. The 

desired pressure gradient for testing the hypothet-
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ical tank in Figure 14 and a close approximation of 
this gradient, which can be realized using the zone
gradient method, are shown as the proof pressure 
and the stepped pressure gradients in the figure. 
The pressure, although a function of height, never 
exceeds the yield strength nor goes below the design 
strength. 

Problems were antiCipated in the critical me
chanical handling of the test fixture and in designing 
suitable seals. A model zone-gradient fixture was 
designed and built to prove the feasibility of the 
conception. The model fixture was assembled 
around a 1. 8 m (70 in.) tank (Fig. 17), the infla t
able seals were pressurized, and the zone pressure 
increased in accordance with the sequential pres
surization schedule given in Table 1. The pressure 
increments in all zones were typical of the stepped 
line shown in Figure 14. All pressures were main
tained without difficulty and all seals were satis
factory. 

The technical feasibility of the pressurization 
concept has been demonstrated; its economic feasi
bility now must be determined. This effort will re
quire cost and design studies for a full-size zone
gradient system of a specific stage, cost- and weight
saving studies for the optimum tapered tanks on that 
stage, and a comparison of the two studies to de
termine gain in payload. 

VI. CONCLUS IONS 

No single nondestructive testing method will 
detect all defects in all materials . Radiography had 
been considered by some as a panacea for all in
spection ills when it was first discovered, and ultra
sonic techniques offered similar promise. However, 
each of these methods has been shown to have limi
tations. 
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Promising new technologies under development 
are infrared and microwave inspection methods, 
each system having certain inherent advantages and 
disadvan tages. 

The principal difficulty with inspecting today's 
advanced structures is that testing methods required 
to adequately assure quality require much time for 
their development. Consequently, quality assur
ance engineers are finding it necessary to improve 
and intensify quality-assurance support during ad
vanced structures development. 

FIGURE 17. ZONE-GRADIENT FIXTURE 
ASSEMBLY 

--- -- -- -- - ---- ----' 
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Event 

Fill and pressurize tank 
Install zone 1 fixture 
Inflate seal 1 
Pressurize zone 1 
Raise tank pressure 
Install zone 2 fixture 
Inflate seal 2 increase seal 1 
Pressurize zone 2 
Increase zone 1 
Increase tank pressure 
Install zone 3 fixture 
Inflate seal 3 , increase seals 

1 and 2 
Pressurize zone 3 
Increase zone 2 
Increase zone 1 
Increase tank pressure 
Install zone 4 fixture 
Inflate seal 4 , increase seals 

1, 2 , and 3 
Pressurize zone 4 
Increase zone 3 
Increase zone 2 
Increase zone 1 
Increase tank pressure 

TABLE 1. SEQUENTIAL PRESSURIZATION SCHEDULE 

Seal 1 Zone 1 Seal 2 Zone 2 Seal 3 Zone 3 

no change 
25 

" 5 

" " 
no change 

30 " 25 

" " " 5 

" 10 " " 
" " " " 

no change 

35 " 30 " 25 
" " " " " 5 
" " " 10 " " 
" 15 " " " " 
" " " " " " 

no change 

40 " 35 " 30 " 
" " " " " " 
" " " " " 10 
" " " 15 " " 
" 20 " " " " 
" " " " " " 

Seal 4 Zone 4 

25 

" 5 

" " 
" " 
" " 
" " 

Tank 

15 

" 
" 

20 

" 
" 
" 

25 

" 
" 
" 
" 

30 

" 
" 
" 
" 
" 
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IMPROVEMENTS IN ELECTRONIC COMPONENT TESTING 

By 

M. J. Berkebile 

SUMMARY 

Improved and new methods of inspection screen
ing of basic electronic parts and subassemblies are 
discussed in this report. 

Investigations on monolithic integrated circuits 
have revealed major causes of failures. Quality and 
Reliability Assurance Laboratory has used this in
forma tion in writing a procurement specification for 
an instrument to test AC and DC parameters of 
integrated circuits. When the equipment is in op
eration it will provide much needed standardization 
for reliable acceptance inspection of integrated cir
cuits. 

In the past, hermetically sealed relays which 
passed electrical inspection would fail later because 
of corrosion of relay contacts (atmospheric moisture 
had entered through undetected leaks in the seal). 
The difficulty of finding seal defects in acceptanc~ 
testing has been simplified through the use of a non
destructive radioisotope tracer detection method. 
Current work is attempting to determine whether 
present leakage limits are adequate for extended 
space missions. 

The reliability of soldered and welded electrical 
connections is not easily determined by visual in
spection and often is judged by subjective criteria. 
Investigations were made , through contract support, 
to establish objective and reliable standards for 
verifying the reliability of such electrical connections. 
The solderability of component lead-connection 
material was determined as a basis for establishing 
solderability ratings. Analogous work was done for 
welded connections, and the results, combined with 
pUll-test data, provided the basis for a weld ability 
rating chart. 

Electrical functional tests presently cannot 
indicate certain faults which will affect the operating 
life of a component. An infrared radiation test 
method of incipient failure detection is being investi
gated. With this method, infrared radiation patterns 
of normal and faulty components will be compared 

and, through projection , the operating life of the 
tested component will be calculated. 

I. I NTRODUCT ION 

The evaluation of new technology and its inte
gration into NASA vehicle and space booster designs 
requires the simultaneous development of quality 
assurance requirements. In keeping pace with these 
new and amplified needs, Quality and Reliability 
Assurance Laboratory of MSFC has been undertaking 
projects that should most effectively provide a firm 
theoretical base for quality assurance requirements, 
produce new nondestructive test methods, and es
tablish quality assurance requirements for advanced 
equipment, materials, methods, and processes. 

A firm theoretical base for quality assurance 
requirements is more important in today's aero
space age than it ever was. This aspect of quality 
assurance was neglected in past years, with the 
result that the quality assurance function became 
very subjective. To remedy this deficiency, there 
has been an especially important need for research 
to determine correlations between primary functions 
and secondary phenomena. An example of such 
research under way at MSFC is the investigation on 
utilization of infrared emission to evaluate electronic 
equipment. 

The cost, complexity, and frequent unavail
ability of space booster equipment generally precludes 
the use of destructive test methods. Consequently, 
the value of nondestructive test methods and equip
ment used to determine defective materials and 
components is incalculable. Work at MSFC on new 
nondestructive testing methods includes the use of 
radioactive tracers and infrared for testing the 
reliability of electronic components. 

Integrating the requirements mentioned and then 
translating them to actual manufacturing conditions 
requires further research and development. This 
is known as manufacturing research. From this 
phase the quality assurance requirements are derived 
for implementation by production organizations. 
Examples of MSFC work leading to such require-
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ments are the programs for defining weldability 
and solderabili ty of materials and for determining 
critical parameters of process equipment such as 
welding machines. 

II. QUALITY ASSURANCE REQU I REMENTS 
FOR INTEGRATED CIRCUITS 

Since MSFC does not have specific quality assur
ance requirements for integrated circuits, require
ments are being established by basing them upon 
manufacturing processes and the electrical para
meters. This is being done by procuring integrated 
circuit devices from various manufacturers and 'sub
jecting these devices to extensive electrical tests in 
order to determine failure mechanisms and the most 
critical electrical parameters. 

An idea as to the complexity of the integrated 
circuit is given by Table I, which lists the evolution 
of electronic packaging techniques beginning in the 
1950's . The vacuum tube was followed by the module 
technique employing semiconductors with either a 
welded or a soldered module . To further increase 
component density, the thick-film and thin- film 
techniques coupled with multilayer interconnection 
boards are being utilized, and the integrated circuit 
packaging concept provides an even greater compo
nent denSity. 

TABLE 1. EVOLUTION OF ELECTRONIC 
CIRCUIT PACKAGING 

Circuit; Component Density, 
Year parts per cubic meter 

(parts per cubic foot) 

Vacuum tube; 35 x 103 

1950 ( 1 x 103 ) 

Printed, transistor; 35 x 104 

1955 ( 1 x 104) 
" 

Welded, transistor; 35 x 105 

1957 ( 1 x 105) 

Thin Film; 35 x 107 

1959 ( 1 x 10
7

) 

Integrated; 35 x 108 

1960 ( 1 x 108) 

The thick-film technique (dating to World War 
II) allows for a high degree of miniaturization at 
relatively low cost. In this technique, commonly 
known as screened circuitry, the electrical elements 
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and conductors are formed by depositing elec
trically conductive pastes or inks onto a suitable 
substrate, producing a functional or partially func 
tional circuit. The conductive pastes or ink are 
forced onto the substrate through a fine mesh screen 
which is imprinted with the desired circuit pattern. 
Only conductors and passive electrical elements can 
be produced by this process (capacitors and inductors 
to a very limited extent). Active elements are add
ed to the circuit by soldering. The production and 
tooling cos ts for screened circuitry are much lower, 
and the process parameters less critical than they 
are for the thin-film and silicon monolithic tech
niques to be discussed. A comparison of these three 
techniques is given in Table II. 

TABLE II. COMPARISON OF THREE 
MICROMINIATURI ZED ELECTRONIC 

CIRCUITS 

Screen Thin Silicon 
Printed Film Monolithic 

F acility medium low high 

Cost Large Lot medium high low 

Small Lot low medium high 
(Custom) 

Reliability unknown unknown unknown 

Isolation good good poor to fair 

Design 
Flexibili ty good good poor 

A second major method of circuit microminia
turization is the thin-film technique . Thin films 
(up to 10,000 A thick) are deposited onto a substrate 
by anyone of several methods, s uch as vapor de
position or sputtering. Although a great deal of 
research is being pursued for a method of deposit
ing active components, at present the deposition of 
components, as with the thick-film technique, still 
is restric ted to passive types . Thin films normally 
are deposited in a high vacuum (0. 13 mN/ m 2 or 
10- 6 torr), which is a disadvantageous feature of 
the process . Thin-film and thick-film techniques 
are applicable to both digital and analog circuitry . 
They are used primarily for linear circuits and 
high-speed digital applications. 

Monolithic integrated circuits are more com
monly used in digital applications than the deposited
film circuits mainly because of their lower cost in 
large quantities . The monolithic technique utilizes 
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a silicon substrate as the basic material, and de
velops a complete circuit within this substrate 
through successive masking, etching, and diffusion 
processes. Hesistance, capacitance, isolation 
regions, and active devices, thus, are encompassed 
in the basic material. Thin films of aluminum are 
used to interconnect the element areas of the sub
strates and to form the bonding pads to which ex
ternal leads are connected. 

Semiconductor integrated circuitry is suscep
tible to several types of failures. These can be 
classified within two groups, quality and time de
pendent. The quality failures are due to faulty work
manship. One of the most common faults, cracks 
and scratches in the circuitry, is caused by the im
proper use of the die-handling tools. 

One of the time-dependent failures results from 
inadequate removal of etchant. When the etchant 
used to etch the aluminum interconnecting paths is 
not removed completely, it continues to erode the 
aluminum, eventually opening the conducting path. 

Another time-dependent failure results from the 
interaction of circuit metals. A vacuum-deposited 
thin film of aluminum forms the interconnections 
for the circuit components (semiconductors, re-
sis tors, etc.). Gold leads, attached to the aluminum 
surface, connect the integrated-circuit chip to other 
circuitry. Interaction between the aluminum and gold 
may result in corrosion, called Purple Plague, 
which alters or opens the circuit. A similar cor
rosion failure, called Black Plague, results from 
the interaction of aluminum, gold, and silicon at 
their interfaces. 

A procurement specification has been written for 
an instrument that will test the various static or DC 
parameters and the dynamic or AC parameters of 
integrated circuits. This equipment is scheduled for 
delivery in October 1966. At present, there appears 
to be no other commercially available equipment 
that will handle the dynamic characteristics. The 
procurement of this equipment for use in MSFC 
acceptance testing will contribute greatly to the 
acceptance of reliable integrated circuits and assist 
in providing much needed standardization. 

---~ -- -- -------
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III. LEAK DETECTION TECHN IQUES FOR 
HERMETICALLY SEALED DEVICES 

In the latter part of 1959 and the early 1960's, 
relays in electrical ground support equipment used 
at Kennedy Space Center (KSC) often failed early in 
operation, and supplying replacements became a 
major problem. The cause of failure was traced to 
inadequate protection of the electrical contacts. 
Acceptance functional testing of relays at MSFC in
dicated that the electrical parameters were accept
able . However, when the relays were in the humid 
environment at KSC, defective hermetiC seals allowed 
moisture to enter the relay and deposit on the relay 
contacts. In time, the contact resistance increased, 
and eventually the relay ceased to function properly. 

A nondestructive method for testing the hermetic 
seal of the relay was sought. After several methods 
were investigated, a radioisotope-tracer method was 
selected. It uses commercially supplied equipment 
called Radiflo (Fig. 1). 

FIGURE 1. RADIFLO INSTALLATION 

The Radiflo system operates in two phases. The 
first phase is the soak period in which the relays are 
pressurized in radioactive Krypton-85 within the 
activation chamber (Fig. 2). While in the activation 
tank, the parts are subjected to a pressure of ap
proximately 300 kN/m2 (3 atmospheres) for a de
signated period. At the end of the soak period, the 
parts are removed from the activation area and are 
allowed to degas for approximately one hour. 
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PRESSURE GAUGE 

RAD IFlO INSTALLATI ON 
(A CTIVATION UNIT) HYDRAULIC ACTIVATED LID 

\ 
ATMOSPHERE 1======>1 

STORAGE 1 ANK 

KR-85 AND N2 

ELECTRICAllY 
CONTROLLED VALVES 

VACUUM PUMPS 

AND COMPRESSOR 

PRESSURE 

GAUGE 

DEVICE UNDER TEST 

FIGURE 2. RADIFLO SYSTEM, SOAK PHASE 

Oounting is the second phase of the Radiflo op
eration. The parts are placed on a scintillation 
crystal electrically attached to a ratemeter (Fig. 3) 
which measures the counts per minute for the part 
under test. The basic leakrate formula, based on 
Poiseuille flow, is used to calculate the leak rate 
for the device . The MSFC acceptance criterion i s 
1 mN/m2-cc per second (1 x 10-8 atm- cc per sec). 
All relays that leak in excess of this amount are 
rejected. 

SCINTILLATION CRYSTAL RATEMETER 

FIGURE 3. RADIFLO SYSTEM, COUNT PHASE 

Experienced gained by using the Radiflo system 
for checking hermetic seals indicated that the re
sults were frequently inconsistent with other her
metic-seal testing systems and Radiflo systems 
employed by industry. To obtain a better under
standing of this inconsistency, MSFC awarded a con
tract to Mississippi State University in 1963 to in
vestigate the irregularities in test data. As a result 
of this study, it was clearly shown that the basic 
concept using Poiseuille flow was not correct. 
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Molecular flow occurs at 1 mN/ m 2-cc per second 
( 10- 8 atm-cc per sec) and is the leak-mode range 
which is of interest to MSFC . The difference be
tween the Poiseuille flow and the molecular flow is 
due to the relationship between t:re size of the cap
illary diameter and the mean free path of the gas 
molecules involved. Poiseuille flow occurs when 
the diameter is considerably greater than the mean 
free path of the gas molecules. Molecular flow 
occurs when the diameter is conSiderably less than 
the mean free path of the gas molecules (Fig. 4). 

D»MEAN FREE PATH 

(POISEUI LLE FLOW) 

" ", 
I 

MEAN I 
FREE ----t-_/ 
PATH I 

I 
I 

I 

- ..... , D 

D«MEAN FREE PATH 

(MOLECULAR FLOW) 

FIGURE 4. LEAK MODE 

As shown in the following leak- rate equations, the 
pressure terms (in the denominators) are squared 
only in the Poise uille equation: 

Poiseuille: Leak Rate = RI [KST(Pe2 - Pi2 ) ] 

Molecular: Leak Rate = RI [KST(Pe - Pi)] 

An alternate method used by manufacturers of 
electronic parts to verify hermetic seals is the 
he lium mass spectrometer technique. Figure 5 
illustrates the mass spectrometer device which 
employs a bell jar, a vacuum pump, and an elec

tronic velocity filter. The hermetically sealed elec
tronic component, which previously had been filled 

by the manufacturer with 5- to 10- percent helium, 
is placed under the bell jar and a vacuum is pro
duced. After sufficient vacuum has been obtained, 
an electronic velocity filter is operated. This de
vice deflects the helium ions, by means of a mag
netic field , into a predetermined slot. As the 
helium ions are deflected, they produce a current 
which is amplified and electrically measured. 
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BELL JAR VELOCITY FILTER 

FIGURE 5. MASS SPECTROMETER HELIUM 
TRACER METHOD 

Most vendors use the mass spectrometer for 
verifying hermetic seals, whereas MSFC uses the 
Radiflo system. The use of the two different 
systems results in conflicting and inconsistent test 
results. To resolve the problems of inconsistent 
test results, a mass spectrometer was obtained and 
used to test incoming parts . However, testing at 
this point did not reproduce the results obtained by 
the vendors employing the same technique . After 
an extensive study of this problem it was concluded 
that the use of the mass spectrometer could not 
effectively be employed in the MSFC acceptance 
testing. One reason is that the relays are filled 
with helium by the manufacturer, and there is no 
assurance that the helium is present within the 
part when it is checked at the receiving area. If 
the part leaked, tests using the mass spectrometer 
could not determine whether all the gas had leaked 
out before arrival or that none had leaked because 
of a good hermetic seal. 

Most of the problems associated with Radiflo 
system have been solved and the system appears to 
be the optimum method for in-house verification of 
hermetic seals . There still are a few considerations 
which need attention; these are being investigated 
under a contract with Mississippi State University. 
The contract has two major objectives : 

1) To find a correlation between the Radiflo 
and the mass spectrometer methods by 
envolving a factor that would correlate the 
two results and then specify a leak rate for 
the mass spectrometer method that wo uld 
pass the Radiflo test. 

M. J . BERKEBILE 

2) To determine whether the present reject 
point of 1 mN/m2-cc per second at a differ
ential of 100 kN/ m 2 (i atmosphere) is 
adequate for extended space missions. 

IV. SOLDERAB I LlTY AND WELDAB I LlTY 
VERIFICATION TECHNIQUES 

One of the problems of electronic assembly in
spection is the determination of whether a particular 
solder joint or weld module joint is a reliable con
nection. 

This verifieation problem is exemplified by 
work such as soldering to a gold-plated printed cir
cuit board. The gold combines with the solder and 
a gold/tin system results. The solder joint is dis
colored, and sometimes appears to be unsound due 
to porosity and discoloration. If the joint is welded 
instead of soldered, it is even more difficult to in
spect visually. The answer to these problems would 
be to verify the solderability or weldability of 
electronic parts prior to the assembly operation at 
the receiving inspection level. 

At times it appears that more concern is given 
to the e lectrical parameters of a device than to the 
compatibility of the lead material. Nevertheless, 
compatibility is essential : the lead material must be 
suitable to the soldering or welding operation re
quired to connect the part to the next assembly, or 
an unacceptable assembly will result. 

Contracts were awarded to the Martin- Marietta 
Corporation, Aerospace Division, and to the 
Lockheed Aircraft Corporation, Missile and Space 
Division, to establish standards of solderability 
and weldability of component lead materials and to 
provide an acceptable lead-material test for accept
ance testing. 

As a result of these contracts, a solderability 
test has been defined which closely simulates the 
production mode of flow soldering. The test, as 
shown in Figure 6, consists of several steps and the 
application of the solderability formula, (KL1 + ~) 
/ (D - d) = solderability rating. The first step is to 
bend the component lead around a 7. 9 mm (5/16-
inch) mandrel. The lead is then fluxed, dipped into 
molten solder, and finally submerged into a hot-oil 
bath. The lead is then removed, and after it has been 
cooled and c leaned, it is subjected to optical meas
urements and the dimensions, L 1, L2 , D and d, are 
obta ined. In the formula shown, K is associated with 
Ll as a weighing factor, Ll is the inner length of the 
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solder area, L2 is the outside length of the solder 
area, D is the diameter of the solder area, and d 
is the diameter of the lead. 

cbW •• 
5/16 IN . MANDREL FLUX SOLDER HOT Oil 

SOLDERABILITY Kll +l2 
=~ 

- WEIGHTING FACTOR 

FIGURE 6. SOLDERABILITY TEST 

The solderability-rating technique was employed 
for materials used in the fabrication of electronic 
assemblies to obtain the solderability test results 
shown in Figure 7. 
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A similar analysis has been performed for 
welded modules . The welding test apparatus con
sists of a power supply with two electrodes . The 
component lead and interconnecting nickel ribbon are 
placed between the two electrodes and pressure is 

26 

applied. The subsequent release of electrical energy 
welds the two materials. 

To determine the quality of the weld produced, 
a pull test is employed which is essentially a ten
sile-shear force applied until the breaking strength 
of the weld is reached. By expanding this operation 
with variations of pressure and energy, a weld 
schedule is obtained. Figure 8 shows a weld
schedule chart with the weld pressure on the ordinate 
and the weld energy on the abscissa. When welds 

25 wELDS PRODUCED: 
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FIGURE 8. WELD SCHEDULE 

are made with various pressures and energies, and 
this information is plotted on the chart, a weld
ability pattern is obtained . (The patterns will vary, 
depending upon the type and s ize of the material: 
some may be circular, others oblong.) The larger 
the area encompassed by this pattern, the better is 
the weldability of the material being tested. The 
optimum pressure/energy setting is determined from 
this weld schedule. In testing, 25 welds are pro
duced from the optimum setting. The 25 welds are 
pull-tested and the results recorded. A weldability 
rating then is obtained from the weldability formula 
(Fig. 8) and the values obtained in the pull test. 

This sequence has been used to obtain a weld
ability-rating chart, illustrated by Table III, which 
lists the basic parameters for weldability of the 
materials tested. 
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TABLE III. BASIC PARAMETERS FOR WELDABILITY RATING OF 
MA TERIALS JOINED TO NICKEL "A" RIBBON 

MATERIAL /::,. PRESSURE, 

PLATING, /::,. JOULES, Newtons 

SERIAL NO. TYPE (watt-sec) (1bf) 

BARE 

109 S.s. pins 5. 25 62 
( 14) 

114 Tantalum 3 •. 29 53 
(12) 

107 Nickel "A" 4.17 45 
( 10) 

108 Kulgrid 28 5. 67 18 
( 4) 

GQLD PLATED 

104 Durnet 3. 83 27 
( 10) 

112 Alloy 152 3.88 62 
( 14) 

105 Kovar 2.86 5~ , 
( 12) 

111 Copperweld 4.00 45 
( 10) 

113 Alloy 90 3.00 27 
( 6) 

110 Alloy 180 2.33 18 
( 4) 

TIN PLATED 

106 Cu OFHC 4.67 45 
( 10) 

117 Nickel "A" 3.43 53 
(12) 

118 Durnet 4.00 53 
( 12) 

119 Kovar 2.63 62 
(14) 

It is believed that with the development of these 
two major techniques, the determination of solder
ability or weldability will be simplified. 

V. METALLIC COATING TECHNIQUES FOR 
MAINTAINING SOLDERABILITY 

Recent laboratory tests and hardware evaluations 
have shown that present industrial techniques for 
silver-plating copper conductors are inadequate for 
preventing Red Plague. Copper is exposed to the 
atmosphere because of imperfections in the silver 

AVG. TENSILE 
MIN. PULL, STRENGTH WELD-

VARIATION, Newtons OF WEAKER ABILITY 

Percent (1bf) MATERIAL RATING 

15.6 72 20. 54 3.7 
(16.1) 

14. 1 68 20.54 2.2 
(15.3) 

17.8 67 19. 8 1.8 
(15.0) 

15.4 45 15.1 1.0 
(10 .1) 

11 73 20. 54 2. 8 
(16 . 4) 

18. 6 67 20. 54 2.2 
(15.1) 

17.9 69 20.54 1.4 
(15. 4) 

20 28 13. 1 1.3 
( 8. 5) 

22. 6 46 16.9 0.5 
(10.4) 

116 15 18. 9 0.014 
( 3.4) 

10.4 40 12.44 3.2 
( 9) 

16.9 67 19. 6 1.9 
( 15) 

23. 5 67 20. 54 1.5 
(15.1) 

21. 1 63 20. 54 1.2 
(14.2) 

plating; in the presence of moisture and oxygen, a 
galvanic couple between the silver and copper is 
produced which eventually reduces the wire to powder. 

Since this type of corrosion recently appeared 
on the guidance and control platform being produced 
by Bendix Corporation, an agreement was made to 
change from silver-plated wire to nickel-plated wire 
for work under this contract. 

Various wire manufacturers are studying the 
silver-plating problems in an effort to improve the 
plating techniques. In addition, studies are under 
way to determine whether an underlay of nickel will 
prevent the Red Plague. 
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VI. INFRARED TESTING OF 
ELECTRON I C PARTS 

Infrared testing of electronic parts will detect 
incipient failures that are not normally discovered 
by routine electrical functional testing. The objective 
of this new testing technique is to complement the 
electrical functional testing by scanning the electronic 
part during the functional test to determine the 
amount of infrared radiation emanating from the part 
under test. 

In 1964, a procurement specification was writ
ten for obtaining an infrared test station to be in
stalled by Boeing Company. The equipment (Figs. 
9 and 10) was fabricated, and has been in operation 

.. . - .. 
J :. .. l' 

----
FIGURE 9. INFRARED TEST STATION 

since September 1964. Current operations are aimed 
toward establishing a normal pattern for selected 
hardwarE{ configurations. Once a normal pattern is 
obtained for a device, subsequent testing can de
termine how far others deviate from the norm. With 
this information, the projected operating life of a 
particular device under test can be obtained. 

One problem encountered is the variable emis
sivity of component surfaces, resulting from changes 
made by the vendor in the pigment or other character
istics of the paint or other protective coatings used on 
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the device s . Because of the different surface
emissivity ratings, the infrared-radiation readout 
must be modified for each variable . 

I R 

RADIOMETER 

_ _ "~WlTS 

POSITION OF SCAN SHOT 

PROGRAM 
INFORMATION 

I R AND SCAN 
LIMITS 

FIGURE 10. OPERATIONAL SEQUE CE OF 
INFRARED TEST STATION 

The Martin Marietta Corporation, Aerospace 
Division, has a contract to develop a constant
emissivity coating that can be used on all components, 
thus making infrared measurements independent of 
the various coatings used on the devices. As shown 
in Figures 11 and 12, this test station provides a 
thermal profile of components placed on the x-Y 
table and in the operating mode. 

I 3 ~ 7 9 II 13 15 17 19 21 23 2S 2 

POSITION ON RESISTOR 

FIGURE 11. THERMAL PROFILE (END TO END) 
OF A CARBON COMPOSITION RESISTOR 

It is too early to say that the infrared-radiation 
detection and recording system, currently under 
evaluation, will complement the present reliability 
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program. However, the test results are encour
aging, and if the development of an emissivity coating 
to solve the surface variance problem is successful, 
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then this system should provide a method of predict
ing the successful operating life of electronic parts 
and subassemblies. 

3 5 7 9 II 13 15 17 19 21 2 27 

POSITION ON RESISTOR 

FIGURE 12. THERMAL PROFILE (END TO END) 
OF A WIRE-WOUND RESISTOR 
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UNITS OF MEASURE 

In a prepared statement presented on August 5, 1965, to the 
U. S. House of Representatives Science and Astronautics Committee 
(chaired by George P. Miller of California). the position of the 
National Aeronautics and Space Administrationon Units of Measure 
was sta ted by Dr. Alfred J. Eggers. Deputy Associate Administrator, 
Office of Advanced Research and Technology: 

"In January of this year NASA direc ted that the international 
system of Wlits should be considered the preferred system of units, 
and should be employed by the research centers as the primary 
system in all reports and publications of a technical nature. except 
where such use would reduce the useful,ness of the report to the 
primary recipients. During the conversion period the use of cus
tomary units in parentheses following the SI units is permissible, 
but the parenthetical usage of conventional units will be discontinued 
as soon as it is judged that the normal users of the reports would 
not be particularly inconvenienced by the exclusive use of SI units. " 

The International System of Units (SI Units) has been adopted 
by the U. S. National Bureau of Standards (see NBS Technical News 
Bulletin, Vol. 48. No.4. April 1964). 

The International System of Units is defined in NASA SP-7012, 
"The International System of Units, Physical Constants, and 
Conversion Factors." which is available from the U. S. Government 
Printing Office, Washington. D. C. 20402. 

SI Units are used preferentially in this series of research re
ports in accordance with NASA policy and following the practice of 
the National Bureau of Standards. 


