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A MODIFIED-STRTP-ANALYSIS METHOD FOR PREDICTING WING
FLUTTER AT SUBSONIC TO HYPERSONIC SPEEDS

By E. Carson Yates, Jr.*
NASA Langley Research Center

— ' eVAl 7

The modified-strip-analysis method of flutter prediction, which was orig-
inally presented in NACA Research Memorandum L57L10O, is reviewed briefly, some
cf its limitations are examined, its relations to some other strip methods are
indicated, and some results of its use are shown in comparison with experimental
flutter data and with results of other analytical methods for Mach numbers up
to 15.3. Tﬁe modified strip analysis is formulated from Theodorsen's method
and employs distributions of aerodynamic parameters which may be evaluated from
any suitable linear or nonlinear steady-flow theory or from measured steady-

¥

flow load distributions for the undeformed wing. The method has been shown to

give good flutter results for a broad range of éﬁept and unswept wings at speeds

up to hypersonic. The method, however, is not suitable for application to wings

of very low aspect ratio nor to unswept wings at Mach numbers near)l.o.{/zgzii[,>

‘ 4,
INTRODUCTION e

In subsonic and supersonic flutter analyses for finite wings, evaluation
of the required oscillatory aerodynamic loads by rigorous methods usually
entails extensive computation. Even with tkhe aid of high-speed computing machin-
ery, Tlutter analyses by some of the moré involved methods are arducus and time-

consuming. Some of these procedures, therefore, have not been widely used.
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' Consequently, approximate methods, ﬁotably strip methods, are frequently

employed for trend studies, for preliminary design work, and for examining the
mechanism of flutter, while the more erudite methods are frequently reserved
for checking final designs. o

Strip-type adaptations of two-dimensional methods to three-dimensional
flutter problems, moreover, often require extensive tabulations of loading
parameters or rather ‘complicated expressions programed for their generation.
Exceptions to this statement are the strip-type application of Theodorsen's
method (ref. 1) to unswept wings (see also ref. 2) and the adaptation of that
method for swept wings by Barmby, Cunningham, and Garrick (ref. 3). Although
these methods are based on two-dimensional incompressible flow, they can be
modified to take into account the aerodynamic effects of finite span and
compressibility.

NACA Research Memorandum L57L10 (ref. 4) presented a simple, approximate
modified-strip-analjsis method for rapid flutter prediction, which was essen-
tially a generalization of the metiod of Barmby, Cunningham, and Garrick in
order to account for the aerodynamic effects of finite planform and compressi-
bility. The purpose of the present report is to review this method briefly,
to examine some of its limitations, to indicate its relation to some other strip

methods, and to summarize some of the results obtained with it.

SYMBOLS
A aspect ratio of full wing including fuselage intercept
a nondimensional distance from midchord to elastic axis measured

perpendicular to elastic axis, positive rearward, fraction of

semichord b
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M

v

nondimensional distance from midehord to local aerodynamic center
(for steady flow) measured perpendicular to elastic axis, posi-
tive rearward, fraction of semichord b

semichord of wing measured perpendicular to elastic axis

streamwise semichord at wing root

complex ci}culation function

local lift-curve slope for a section perpendicular to elastic axis
in steady flow

local verticalvtranslational displacement of wing at elastic axis,
positiﬁe downward

Mach number

oscillatory moment about elastic axis per unit length of wing,
positive leading edge up

oscillatory lift per unit length of wing along elastic axis,
positive downward

downwash expression defined by equation (3)

free-stream speed

component of free-stream velocity normal to elastic axis

local torsional displacement of wing measured about elastic axis,

positive leading edge up

_quarter-chord sweep angle, positive for sweepback

elastic-axis sweep angle, positive for sweepback




R ! . ~
i
A ' taper ratio of full wing including fuselage intercept
M mass ratio of wing panel
o) fluid density
g - local bending slope of elastic axis
T local rate of change of twist along elastic axis
w flutter frequency
Uy, frequency of first uncoupled torsional vibration
mode
Subscripts:
C denotes gquantities associated with compressible flow
I denotes quantities associated with incompressible flow

Dot over a quantity indicates differentiation with respect to time.
DESCRIPTION OF THE MODIFIED STRIP ANALYSIS

In the modified strip analysis as presently formulated the oscillatory
aerodynamic loads are evaluated in terms of wing sections oriented normal to
the wing elastic axis as in the method of Barmby, Cunningham, and Garrick
(ref. 3), although an analogous procedure would apply for streamwise sections.
The fundamental concept underlying this modification of the method of Barmby,
Cunningham, and Garrick may be stated as follows: For the oscillétory as well
as for the steady-flow condition, the dominant aercdynamic effects of finite
planform and compressibility are considered to be indicated by the 1lift- and
pitching-moment-producing capacity of each wing section as reflected by the
steady-state section lift-curve slope and aerodynamic-center position for the

undeformed wing.

L1



' The nature of the present modification may be more clearly indicated by
illustrating the relation of the modified strip analysis to the methed of
Barmby, Cunningham, and Garrick (or to the method of Theodorsen) and to the
steady-state condition. For this purpose, consider the 1ift force scting on a
streamwise secticn of a wing which for simplieity is assumed to be unswept.

For the steady-state condition in three-dimensional compressible flow,

P = -cza,ne(% V2>(2b) (1)

—cza’ndVbQ

where Q 1is the downwash such that the effective angle of attack is given by
Q/V. Theodorsen in reference 1 effectively modified this expression (and the
corresponding expression for pitching moment) for application to a thin wing

oscillating in two-dimensional incompressible flow. For this case, = 2x,

c
lo,n

and

P = -2xpVbQC + noncirculatory terms (2)

where @Q dis now the effective downwesh associated with the oscillation,

C = C(k) = Fr + iGy is a complex "circulation function" which accounts for the

effect of the oscillatory motion on the magnitude and phase angle of the 1lift
vector, and the noncirculatory terms account for the air forces associated with
the up and ¢own pumping action of tﬁe wing as distinguished from the circulatory
or induced forces represented by the first term of equation (2). 1In formulating

the corresponding pitching moment My, the section aerodynamic center is located

at the quarter chord for two-dimensional incompressible flow. The method of
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Barﬁby, Cunningham, and Garrick is in turn a stripwise adaptation of
Theodorsen's equations for application to swept wings. TFor unswept wings the
twoc methods coincide.

In the analogous expressions for the modified strip analysis, the section
lift-curve slope and aerodynamic center remaln arbitrary and thus may vary from
section to section across the span and may also vary with Mach number. Thus

for oscillatory three-dimensional compressible flow,
P= ¢y anbQC + noncirculatory terms (3)
2

The values of section lift-curve slope and of section aerodynamic center may be
evaluated from any suitable linear or nonlinear steady-flow aerodynamic theory
(as in refs. 4 to 10) or from measured load distributions (as in refs. 8 to 11},
in other words, from any method considered to give accurate steady-state loads.
For nonzero Mach numbers the complex circulation function of Theodorsen is
mddified in magnitude only by utilizing aerodynamic coefficients given by Jordan
'(ref. 12) for a two-dinensional thin airfoil oscillating in sﬁbsonic or super-

sonic flow. Thus

[7e? + 6° :
C = C(k,M) = } ——-2——2<FI + lGI>

y Frm *+ Gg

L
or for moderately small reduced frequencies,

¥c .

C = '—(FI + lG_{)
Fr -

Here subscript I designates values associated with incompressible flow;

whereas, subscript C denotes values calculated from Jordan's coefficients for



compressible flow. The underlying idea here is that if the reduced fréquency is
noderately small, the G values remain relatively small, and the calculated
flutter speed is not very sensitive to changes in G. Furthermore, the magni-
tude of G assumes less significance as M increases into the supersonic range
because the reduced frequency at flutter generally decreases as supersonic Mach
number increases so that C(k) approaches 1 + i0. The objective was to try
a minimum modification of the existing methoddsyThe noncirculatory terms are
retained in the incompressible-flow form for the following reason: The pumping
or noncirculatory effect of the wing oscillation depends on the velocity com-
ponent perpendicular to the wing surface and not on the stream velocity as such.
(See refs. 1, 3, and 4.) This contribution to the section aerodynamic loading
decreases as reduced frequency decr=ases and in most flutter analyses appears
to be small though not negligible. Use of steady-flow aerodynamic parameters
in the present method probably makes it suitable only for cases involving low
to moderate reduced frequencies so that the velocity component perpendicular to
the wing surface will in general be small. Therefore, the effect of compressi-
bility on the noncirculatory flow associated with this small normal velocit&
component, is ignored.

The complete expressions thus obtained for the oscillatory section lift

and pitching moment on a section of a swept wing are (ref. 4)

P = -npb2[i{ + Vpb + Vpo tan Acq - ba(b' + VT tean Aea)] - ¢y, ,PVnbC
2

(4)



“and

My = -npb’*% + a2> (Ea' + Vgt tan Aea> + ﬂpb2vn<ﬁ + Vpo tan Aea>

+ :tpb3a(ﬂ + Vpo tan Aea) + ﬁpbevng(e - abt tan Aea)

“la,n
2n

- 2npVgbR _;-; - (a - ac,n>C Q . (3)

where the downwash expression @ is given by

c
. la,n .
Q =h + Vpb + Vpo tan Aegg + b<. 2; +ac,n - & <9 + VpT tan Aea) (6)

Equations for flutter analysis employing these expressions are given in ref-
erence 4.

To review briefly, if aerodynamic parameters for two-dimensional incom-
pressible flow are employed, the modified strip analysis reduces to the method
of Barmby, Cunningham, and Garrick (ref. 3). In addition, if the elastic axis
is unswept, both methods become identical with that of Theodorsen (ref. 1). On
the other hand, if the flow is steady, the modified strip analysis reduces to
the conventional steady-state form (eq. (1)) which itself is employed in the
simplified steady-state flutter-analysis method of Pines. (See refs. 8 and 13

to 16.)

The principles of the modified strip analysis may be summarized as follows:

Tn the method of Barmby, Cunningham, and Garrick (ref. 3), variable lift-curve

slope is substituted for the two-dimensional incompressible-flow value 2w, and
variable aerodynamic center is substituted for guarter chord. Spanwise distri-
butions of these steady-flow section aerodynamic parameters which are pertinent

to the desired planform and Mach number are used. Appropriate values of

8
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" ¥ach number-dependent circulation functions are obtained from two-dimensional

unsteady compressible-flow theory.

Use of the modified strip amalysis avoids the necessity of reevaluating a
vumber of locading parameters for each value of reduced frequency since only the
modified circulation funetions, and; of course, the reduced frequency itself,
vary with frequency. It is therefore practical to include in the digital com-
puting program a very brief logical subroutine which automatically selects
reduced-frequeucy values that converge on a flutter solution. The problem of
guessing suitable reduced-frequency values is thus eliminated, so that a large
nuzber of flutter points can be completely determined in a single brief run on
the computing machine. If necessary, it is also practical to perform the cal-

culations manually.
RESULTS AND DISCUSSION

Numerical Results

Flutter characteristics have been calculated by the modified strip analysis
and compared with results of other caleulations and with experiments for Mach
numbers up to 15.3 and for wings with sweep angles Irom 0° to 52.59, aspect
ratios from 2.0 to 7.4, taper ratios from 0.2 to 1.0, and center-of-gravity
positions between 34 percent chord and 59 percent chord. (See refs. 4 to 11.)
These ranges probably cover the great majority of wings that are of practical
interest with the exception of very-low-aspect-ratio surfaces such as delta
wings and missile fins.

Figur; 1 shows some initial flutter data measured in the Langley transonic
dynamics tunnel in air and in Freon-12 for a 45° swept wing with taper ratio 0.6

and aspect ratio 4 (ref. 10). The open circular symbols indicate flutter points

9



) measﬁred in air, and the open square symbols indicate data measured in Freon-12.
The results of an attempt to duplicate this set of data by the modified strip
analysis are indicated by the corresponding solid symbols. Flutter speeds cal-
culated by use of steady-flow aerodynamic parameters obtained from linearized
lifting-surface theory are represented by plain symbols, and values calculated
bty use of experimentally determined steady-state pressure distributions are
irndicated by flagged symbols. Note first that the flutter data measured in air
ere duplicated quite satisfactorily in bbth subsonic and transonic ranges. In
particular, the transonic minimum flutter speed is accurately predicted. Next
observe that the levels of flutter-speed index obtained with Freon-12 in the
transonic range are about 70 percent higher than corresponding values for air.
This difference is also predicted by the modified strip analysis and is associ-
ated with the large differences in mass ratio between tests in air and in
Freon-12. Mass ratios for the tests in Freon-12 were of the order of 8 to 12,
whereas mass ratios for the transonic tests in air were as high as 260. Agree-
ment between calculated and measured flutter frequencies is also quite satis-
factory. (See ref. 10.)

Figure 2 shows flutter data obtained in the Langley transonic blowdown tan-
rel for a 45° swept wing with taper ratio 0.2 and aspect ratio 4 (ref. 6). In
the subsonic range, the modified strip analysis is in good agreement with results
of the kernel-function method (ref. 17) and with experiment. Note the abrupt
rise of flutter speed near Mach number 1.07. This rise was accompanied by a
corresponding increase of flutter frequency and thus indicated an abrupt change
of flutter mode. In the low supersonic range, the modified strip analysis indi-
cated two flutter solutions having essentially the same flutter speed but dif-

ferent flutter frequencies. One of these calculated frequencies was near the
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levél of experimental subsonic flutter frequency, whereas the other was higher
and close to supersonic measured flutter frequencies. Thus, the modified strip‘
analysis also predicted a sudden change in flutter mode.

Figure 3 shows these same results from the transonic blowdown tunnel (TBT)
in compérison with flutter data for the same wing measured in the Langley super-
sonic aeroelasticity tunnel (SAT) (ref. 6). In the “iow supersonic range, the |
apparent discrepancy in flutter speed levels obtained in the two tmméls is also
predicted by the modified strip analysis and is caused primarily by differences .
-in mass ratio for the two sets of tests. This figure also shows one of the diffi-
culties that may be ‘encountered when linearized aerodynamic theo:;'y is used in |
the modified strip analysis. Calculated flutter speeds relating to the data
from the supersonic aerocelasticity tunnel turn sharply upward and become highly
unconservative after the wing leading edge becomes supersonic and the local
aerodynamic centers move rearward to the vicinity of the local centers of
gravity. When the local aerodynamic centers lie close to the local centers of
gravity, the flutter speeds calculated by the modified strip analysis become
quite sensitive to small changes in the aerodynamic-center positions. Under
these circumstances, which generally occur in the supersonic range, the combina-
tion of linearized aerodynamic theory and the modified strip analysis may yield
highly unconservative flutter results because, as in the present case, linearized
supersonic aerodynamic theory characteristically predicts aerodynamic centers
that are too far rearward. It is spparent that under such circumstances adequate
flutter prediction will re-quire aserodynamic parameters to be determined by
methods more accurate than linearized aerodynamic theory, for example, from non-

linear aserodynamic theories which include the effects of finite wing thickness

or from measured steady-state loads. In figure 3, use of aerodynamic parameters

11
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" obtained from the Busemann second-order theory ylelded quite accurate flutter

speed at M = 2.0.
Figure 4 contains flutter data for a rectangular wing of aspect ratio 2
(refs. 8 and 18). This wing was not cantilever mounted as were the previously

mentioned wings. Instead, the root of this rectangular wing was attached to a

. flexible arm which permitted the wing panel to roll and pitch almost as a rigid

body. Although the experimental data do not extend into the subsonic range,

the subsonic flutter speeds given by the strip method appear reasonable in com-

parison with the transonic data. At Mach numbers above 1.0, the strip calcula-

tions (ref. 8) compare favorably with experiment and with calculations by the
quasi-steady second-order theory of Van Dyke (refs. 19 and 20) which is closely
comparable to piston theory and includes the effects of finite wing thickness.
Agreement with experiment is good up to hypersonic speeds. In the modified
strip analfsis, the compressibility modification employed in the circulation
function becomes zero as the component of Mach number normal to the leading
edge approaches 1.0. Hence the modified strip analysis is not suitable for
application to ﬁﬁswept wings in the near-sonic range unless measured aerody-
namic parameters or empirical modifications are employed in the computation of
the circulation. functions. However, the simplified steady-state method of
Pines (ref. 13), which is the zero-frequency limiting case of the modified

strip analysis, may be used transonically for unswept wings.

Limitations of the Modified Strip Analysis
The modified strip analysis it, of course, subject to the usual planform
limitations that apply to strip metbods in general; that is, it is not considered

suitable for application to wings of low aspect ratio. BSatisfactory results

12
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" have been shown herein for an unswept wing with a panel aspect ratio of 1.0.

(See elso ref. 8.) (ood results have also been obtained for a 45° swept wing
with a panel aspect ratio of 0.9 (ref. 4). These aspect ratios, however, are

probably close to the lower limit for which the modified strip analysis or any

. strip method would be suitable. In addition, the modified strip analysis as

rresently formulated does-not perﬁit camber deformations of wing sections normal
to the elastic axis, although a camber mode could be introduced without great
difficulty. Note that even with the present formulation, however, camber of
streanwise sections may be represented for swept wings.

Use of aerodynamic parameters associated with steady-flow conditions implies
that suitability of the method for high reduced freguencies may be questionable.
However, good flutter results have been obtained with reduced frequencies as
high as 0.3 (ref. 6). None of the numerous flutter calculations which have been
made by the modified strip analysis have been limited by this condition.

Because of the nature of the compressibility modification applied to the
circulation function, the modified strip analysis is not applicable when the
compeonent of Mach number normal to the wing leading edge is near 1.0. For swept
wings this condition occurs in the supersonice range and does not constitute a
serious limitation because calculated flutter boundaries generally vary smoothly
with Mach number in this region. Curves may therefore be faired through cal-
culated flutter characteristics with confidence. For unswept wings, however,
this limitation precludes application of the modified strip analysis in the
traensonic range unless measured aercdynamic parameters or empirical modifications
are employed in the computation of the circulation functions. Nevertheless,
<he zefo—frequency limiting case of the modified strip analysis may be employed

<ransonically for these wings.

13
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.Finally, in ceses for which the local aerodynamic centers lie close to the
lcecal centers of gravity the aerodynamic parameters employed in the modified
strip analysis should be determined by the most accurate means available since
in these cases The calculated flutter speeds are cquite sensitive to small
changes in the locations cf the local aerodynamic'centers. Tonis limitation
does nof seem to be -peculiar to the modified strip analysis but appears to apply

to other flutter-analysis methods as well. (See ref. 8.)
CONCLUDING REMARXS

A modified strip analysis has been developed for rapidly predicting flutter

' of finite span swept or unswepl wings at subsonic to bypersonic speeds. The

method employs distributions of aerodynamic parameters which may be evaluated

Trom any suitable linear or nonlinear steady-flow theory or from measured steady-
flow load distributions for the undeformed wing. The method has been shown to o

give good flutter results for a broad range of wings at Mach numbers from O

to as high as 15.3.
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FIGURE CAPTIONS

Figure 1.- Flutter characteristics cf swept wing in eir and in Freon-12.

Ag/y = 4%, A=0.6, 4 =Lko0.

Figure 2.- Flutter characteristics of highly tazpered swept wing.
Ac/l: = 1‘50, 7\ = 002, A. = 1"’-0-

Figure 3.- Flutter characteristics of highly tapered swept wing.
Acfy = 459, A= 0.2, A =L.o0.

Figure &4.- Flutter characteristices of rectangulsr wing.

Ag/h = 0, A=1.0, A=2.0.
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