STATE-OF-THE-ART STUDY FOR
HIGH-SPEED DECELERATION AND
STABILIZATION DEVICES
GER-12616 10 September 1966

William C. Alexander Richard A. Lau
Goodyear Aerospace Corporation, Akron, Ohio
for
National Aeronautics and Space Administration
Washington, D.C.
ABSTRACT

Documented aerodynamic deployable decelerator performance data above Mach 1.0 is presented. The state of the art of drag and stability characteristics for re-entry and recovery applications is defined for a wide range of decelerator configurations. Structural and material data and other design information also are presented. Emphasis is given to presentation of basic aero, thermal, and structural design data, which points out basic problem areas and voids in existing technology.

The basic problems and voids include supersonic "buzzing" of towed porous decelerators in the wake of the forebody, the complete lack of dynamic stability data, and the general lack of aerothermal data at speeds above Mach 5.
Available documented supersonic and hypersonic data (thermodynamic, structures, and materials) have been surveyed and summarized to indicate the state of the art of deceleration and stabilization devices.

Supersonic parachutes that have been successfully flight tested indicate a performance limit of approximately Mach 3. Although parachutes have performed between Mach 3 and 6 in isolated tests, which demonstrates feasibility, the conclusion cannot be made that they can perform satisfactorily throughout the supersonic Mach number range during deceleration. During wind tunnel tests, all parachutes experienced some canopy breathing, even behind payload bodies of revolution, while operating above Mach 2.5. Until a basic aerodynamic supersonic inlet problem, which is further complicated by the payload complex wake, is solved, the possibility of successful parachute operation at high Mach numbers (above supersonic speed) appears remote.

Inflatable decelerators up to five feet in diameter have been successfully flight tested up to approximately Mach 3.8 and dynamic pressures up to approximately 200 psf. Metal cloth decelerators have been tested in the wind tunnel up to Mach 10 and fabric models up to Mach 6. These nonporous, nearly gas-tight towed decelerators were found to be the least sensitive to a forebody wake and therefore performed in a stable and satisfactory manner.

Materials development programs have resulted in finding lighter weight nylon and Nomex woven cloths and webbing for a given structural strength. Flexible coatings also have been developed that not only protect the decelerators from heat but also make a decelerator gas tight at a minimum of weight. Woven stranded wire metal also has been developed. Large gaps exist in the operational temperature ranges due to the lack of proved materials. Higher-strength, more flexible cloths are still needed as well as higher temperature impermeable coatings.
There is very little experimental or analytical aerodynamic, thermodynamic, or structural data available in the supersonic and hypersonic speed range. A general lack of analytical methods exists to describe basic phenomena, including lack of aerodynamic data over a range of Reynolds numbers; a complete lack of quantitative experimental dynamic stability data; and a basic lack of understanding of a forebody wake flow when influenced by a towed decelerator.
FOREWORD

This report was prepared by Goodyear Aerospace Corporation, Akron, Ohio, under Contract NASW-1288 and under the cognizance of J. E. Greene, Office of Advanced Research and Technology (OART), NASA Headquarters, Washington, D. C. J. T. McShera, Jr., Full Scale Division, NASA Langley Station, Hampton, Va., served as contract technical monitor.

Project engineer was W. C. Alexander; assistant project engineer was R. A. Lau - both from Goodyear Aerospace. Other contributing personnel from Goodyear Aerospace were F. R. Nebiker, manager, Recovery Systems Engineering; W. V. Arnold, assistant manager, Recovery Systems Engineering; F. Bloetscher, consultant; I. M. Jaremenko, aerodynamic wakes; H. H. Sheeter, aerodynamic stability; W. W. Sowa, thermodynamics; J. F. Werner, structures; and P. F. Myers, materials. The data gathering cut-off date was 1 April 1966.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Summary</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>Foreword</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>List of Illustrations</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>List of Tables</td>
<td>xv</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I</th>
<th>Introduction</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>General</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>a. Program Objective</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>b. Background and Problem Statement</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>c. Scope and Constraints</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>d. Description of Search</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>e. Historical Summary</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II</th>
<th>State of the Art of Aerodynamic Deployable Decelerators</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>General</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>Design and Performance Requirements</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>Design Concepts</td>
<td>7</td>
</tr>
<tr>
<td>4.</td>
<td>Aerodynamics</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>a. General</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>b. Steady-State Drag of Towed Porous Decelerators</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>c. Steady-State Drag of Towed Nonporous Decelerators</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>d. Attached Nonporous Decelerators</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>e. Transient and Fluctuating Loads</td>
<td>67</td>
</tr>
<tr>
<td>5.</td>
<td>Aerodynamic Stability</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>a. General</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>b. Attached Decelerator System</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>c. Towed Decelerator System</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>d. Wake Effect on the Decelerator</td>
<td>81</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>Aerothermodynamic Loading</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>a. General</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>b. Equations</td>
<td>93</td>
</tr>
<tr>
<td>7.</td>
<td>Structures</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>a. General</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>b. Ballute and Spheres</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>c. Parachutes</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>d. Airmat Cone</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>e. Inflated Skirts (Flares)</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>f. Tension Shells</td>
<td>117</td>
</tr>
<tr>
<td>8.</td>
<td>Materials</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>a. General</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>b. Textile Yarns and Fibers</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>c. Filament Materials</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>d. Woven Fabric Materials</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>e. Fabric Coatings</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>f. Joining Methods</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>g. Material Selection and Qualification</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>h. Current Development in Materials</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>i. Future Development in Materials</td>
<td>162</td>
</tr>
<tr>
<td>III</td>
<td>DESIGN DISCUSSION</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>1. System Designs and Logistics Sequencing Methods</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>2. Design Procedures and Criteria</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>a. General</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>b. Preliminary Design Procedure for Supersonic Decelerator</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>c. Available Design Data for Dynamic Deployment Loads</td>
<td>171</td>
</tr>
<tr>
<td>IV</td>
<td>DATA CONFIDENCE</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>1. General</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>2. Similarity Criteria</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>3. Flexibility and Strength</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>4. Surface Texture</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>5. Dynamics</td>
<td>175</td>
</tr>
<tr>
<td>V</td>
<td>PRESENT HIGH-SPEED RECOVERY TECHNIQUES, PROBLEM AREAS, AND VOIDS</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>1. General</td>
<td>179</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.</td>
<td>Performance Limits</td>
<td>179</td>
</tr>
<tr>
<td>3.</td>
<td>Structures and Materials</td>
<td>182</td>
</tr>
<tr>
<td>4.</td>
<td>Problem Areas and Voids</td>
<td>184</td>
</tr>
<tr>
<td>VI</td>
<td>CONCLUSIONS</td>
<td>187</td>
</tr>
<tr>
<td>1.</td>
<td>General</td>
<td>187</td>
</tr>
<tr>
<td>2.</td>
<td>Aerodynamics</td>
<td>187</td>
</tr>
<tr>
<td>3.</td>
<td>Structures and Materials</td>
<td>188</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>189</td>
</tr>
<tr>
<td>LIST OF REFERENCES</td>
<td></td>
<td>199</td>
</tr>
<tr>
<td>Appendix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>BIBLIOGRAPHY</td>
<td>A-1</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Study Spectrum</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Thermal Performance Spectrum</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Decelerator Configurations</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Miscellaneous Decelerator Concepts</td>
<td>33</td>
</tr>
<tr>
<td>5</td>
<td>Coefficient of Drag vs Mach Number</td>
<td>37</td>
</tr>
<tr>
<td>6</td>
<td>Area Ratio vs Mach Number for Large Supersonic Parachutes</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td>C_D vs Area Ratio for Large Supersonic Parachutes</td>
<td>41</td>
</tr>
<tr>
<td>8</td>
<td>Wind-Tunnel Tested C_D vs Mach Number for Hyperflo Parachutes</td>
<td>43</td>
</tr>
<tr>
<td>9</td>
<td>Guide-Surface Parachute C_D vs x/d</td>
<td>45</td>
</tr>
<tr>
<td>10</td>
<td>Guide-Surface Parachute C_D vs Mach Number at One Towed Condition</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>(with Minimum C_D Variation)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>C_D vs Mach Number for Large-Size Ballutes</td>
<td>48</td>
</tr>
<tr>
<td>12</td>
<td>C_D vs Mach Number for Small-Size Wind-Tunnel Test Ballutes</td>
<td>50</td>
</tr>
<tr>
<td>13</td>
<td>C_D vs Mach Number for 80-Deg Cone</td>
<td>53</td>
</tr>
<tr>
<td>14</td>
<td>C_D vs x/d for 80-Deg Rigid Cone</td>
<td>56</td>
</tr>
<tr>
<td>15</td>
<td>Free-Stream Cone Data vs Mach Number</td>
<td>58</td>
</tr>
<tr>
<td>16</td>
<td>Axial Nose Drag Coefficient vs Mach Number</td>
<td>59</td>
</tr>
<tr>
<td>17</td>
<td>Sphere C_D vs Mach Number (8-In. Model)</td>
<td>60</td>
</tr>
<tr>
<td>18</td>
<td>Sphere C_D vs Mach Number (4-In. Model)</td>
<td>61</td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>19</td>
<td>C_D vs Mach Number for Sphere behind Flared Body</td>
<td>62</td>
</tr>
<tr>
<td>20</td>
<td>C_D vs Mach Number for Sphere behind Cylindrical Body</td>
<td>63</td>
</tr>
<tr>
<td>21</td>
<td>C_D vs Mach-Number for Spheres at Various High Reynolds Numbers</td>
<td>64</td>
</tr>
<tr>
<td>22</td>
<td>Correlation of Sphere Drag Coefficients</td>
<td>65</td>
</tr>
<tr>
<td>23</td>
<td>C_D vs θ_s for Flared Body</td>
<td>66</td>
</tr>
<tr>
<td>24</td>
<td>5.5-Ft D_o Parasonic (Oscillograph - Instantaneous Load vs Time); See Table XI, Item 14.</td>
<td>71</td>
</tr>
<tr>
<td>25</td>
<td>5.5-Ft D_o Parasonic (Instantaneous C_D vs Time); See Table XI, Item 14.</td>
<td>72</td>
</tr>
<tr>
<td>26</td>
<td>4-Ft D_o Hyperflo (Instantaneous C_D vs Time); See Table XI, Item 9.</td>
<td>72</td>
</tr>
<tr>
<td>27</td>
<td>3-Ft Diameter Ballute, Load vs Time (See Table XI, Item 7)</td>
<td>73</td>
</tr>
<tr>
<td>28</td>
<td>C_N vs Mach Number for Cones</td>
<td>77</td>
</tr>
<tr>
<td>29</td>
<td>c_p vs Mach Number for Cones</td>
<td>79</td>
</tr>
<tr>
<td>30</td>
<td>Drag vs x/d, Hyperflo Model 1 behind Forebody Type I</td>
<td>83</td>
</tr>
<tr>
<td>31</td>
<td>Drag vs x/d, Hyperflo Model 1 behind Forebody Types I and II</td>
<td>85</td>
</tr>
<tr>
<td>32</td>
<td>Drag vs Mach Number, Hyperflo Model 2 behind Forebody Type I</td>
<td>86</td>
</tr>
<tr>
<td>33</td>
<td>Heat Flux and Temperature Distribution on a Sphere Laminar Flow</td>
<td>89</td>
</tr>
<tr>
<td>34</td>
<td>Heat Flux and Temperature Distribution on a Sphere Turbulent Flow</td>
<td>90</td>
</tr>
<tr>
<td>35</td>
<td>Laminar Heat Flux and Temperature Distribution on a Blunted Cone</td>
<td>91</td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>36</td>
<td>Turbulent Heat Flux and Temperature Distribution on a Blunted Cone</td>
<td>92</td>
</tr>
<tr>
<td>37</td>
<td>Mach 10 Ballute Heat-Transfer Results</td>
<td>95</td>
</tr>
<tr>
<td>38</td>
<td>Parachute Configuration</td>
<td>98</td>
</tr>
<tr>
<td>39</td>
<td>4-Ft Diameter Decelerators To Be Flight Tested at Mach 5</td>
<td>102</td>
</tr>
<tr>
<td>40</td>
<td>Coated Metal-Cloth, 5-Ft Diameter Ballute</td>
<td>103</td>
</tr>
<tr>
<td>41</td>
<td>Sketches of Sphere, Parachute, Ballute, and Flare</td>
<td>105</td>
</tr>
<tr>
<td>42</td>
<td>4-Ft D<sub>0</sub> Parasonic Parachute</td>
<td>107</td>
</tr>
<tr>
<td>43</td>
<td>TB-1 Ballute Configuration</td>
<td>108</td>
</tr>
<tr>
<td>44</td>
<td>Ballute Weight vs Radius</td>
<td>111</td>
</tr>
<tr>
<td>45</td>
<td>Airmat Cone Dimensions</td>
<td>115</td>
</tr>
<tr>
<td>46</td>
<td>80-Deg Airmat Cone (Preinflated)</td>
<td>115</td>
</tr>
<tr>
<td>47</td>
<td>Airmat Cone Weight vs Radius for Various Values of q</td>
<td>117</td>
</tr>
<tr>
<td>48</td>
<td>Tension Shell Loading System, Assumed</td>
<td>118</td>
</tr>
<tr>
<td>49</td>
<td>Typical Stress-Strain Curves for Dacron, Nylon, and Nomex</td>
<td>131</td>
</tr>
<tr>
<td>50</td>
<td>Strength Retained by Nylon, Dacron, and Nomex Yarns after Exposure to Hot, Dry Air</td>
<td>132</td>
</tr>
<tr>
<td>51</td>
<td>Breaking Tenacity at Various Temperatures</td>
<td>133</td>
</tr>
<tr>
<td>52</td>
<td>Shrinkage of Nylon, Dacron, and Nomex Exposed to Hot, Dry Air</td>
<td>135</td>
</tr>
<tr>
<td>53</td>
<td>Variation of Tensile Strength and Elongation of Nylon Fibers Irradiated in Nitrogen at 244 με, 314 με, and 369 με</td>
<td>136</td>
</tr>
<tr>
<td>54</td>
<td>Variation of Tensile Properties with Incident Energy for Dacron Irradiated in Nitrogen with A-H6 Lamp</td>
<td>137</td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>55</td>
<td>Variation of Tensile Strength and Ultimate Elongation of Nomex Irradiated in Nitrogen with Ultraviolet Light and with Visible Light (437 μm)</td>
<td>138</td>
</tr>
<tr>
<td>56</td>
<td>Degradation of Nomex after Exposure to Ultraviolet Radiation and Elevated Temperatures</td>
<td>139</td>
</tr>
<tr>
<td>57</td>
<td>Effects of Gamma Radiation on Nomex at 400°F (Top) and at 600°F (Bottom)</td>
<td>140</td>
</tr>
<tr>
<td>58</td>
<td>Comparisons of Nylon and Nomex after Outdoor Exposure (Top) and after Accelerated Weathering (Bottom)</td>
<td>143</td>
</tr>
<tr>
<td>59</td>
<td>High-Temperature Tensile Strength of 1.0-Mil Superalloy Wires</td>
<td>144</td>
</tr>
<tr>
<td>60</td>
<td>High-Temperature Tensile Strength of 0.5- and 1.0-Mil Wires as a Function of Exposure Time</td>
<td>145</td>
</tr>
<tr>
<td>61</td>
<td>High-Temperature Tensile Strength of 0.5-Mil Superalloy Wires</td>
<td>146</td>
</tr>
<tr>
<td>62</td>
<td>Creep of 0.5-Mil René 41 Wire at 2000°F (Linear Plot)</td>
<td>147</td>
</tr>
<tr>
<td>63</td>
<td>Strength-to-Weight Ratio of 1.0-Mil Superalloy and Refractory Metal Wires</td>
<td>149</td>
</tr>
<tr>
<td>64</td>
<td>Comparison of Strength-Retention Characteristics of Partially Carbonized, Carbon, and Graphite Fabrics</td>
<td>150</td>
</tr>
<tr>
<td>65</td>
<td>Strength Retention vs Temperature for Present and Future Fibers</td>
<td>152</td>
</tr>
<tr>
<td>66</td>
<td>Typical Recovery-System Deployment Sequence</td>
<td>166</td>
</tr>
<tr>
<td>67</td>
<td>Parameters Affecting Design of Towed Drag Devices</td>
<td>169</td>
</tr>
<tr>
<td>68</td>
<td>Ballute C_D vs Mach Number (Flight Test Data)</td>
<td>176</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>R and D - Cone Decelerators in Free Stream</td>
<td>13</td>
</tr>
<tr>
<td>II</td>
<td>R and D - Towed-Cone Decelerators</td>
<td>15</td>
</tr>
<tr>
<td>III</td>
<td>R and D - Sphere Decelerators in Free Stream</td>
<td>17</td>
</tr>
<tr>
<td>IV</td>
<td>R and D - Towed-Sphere Decelerators</td>
<td>19</td>
</tr>
<tr>
<td>V</td>
<td>R and D - Free-Stream and Towed-Ballute Decelerators</td>
<td>21</td>
</tr>
<tr>
<td>VI</td>
<td>R and D - Flared-Skirt Decelerators</td>
<td>23</td>
</tr>
<tr>
<td>VII</td>
<td>R and D - Hemisflo, Conical, and Standard Flat Ribbon Parachutes</td>
<td>25</td>
</tr>
<tr>
<td>VIII</td>
<td>R and D - Hyperflo, Parsonic, and Supersonic Guide-Surface Parachutes</td>
<td>27</td>
</tr>
<tr>
<td>IX</td>
<td>R and D - Tension-Shell</td>
<td>29</td>
</tr>
<tr>
<td>X</td>
<td>Miscellaneous Configurations</td>
<td>31</td>
</tr>
<tr>
<td>XI</td>
<td>Figures 6 and 7 Data Point Test Conditions</td>
<td>42</td>
</tr>
<tr>
<td>XII</td>
<td>Decelerator Test Results</td>
<td>69</td>
</tr>
<tr>
<td>XIII</td>
<td>Effects of Environment on Natural and Manmade Textiles</td>
<td>123</td>
</tr>
<tr>
<td>XIV</td>
<td>Filament Diameters Required for Flexibility Equivalent to Nylon and Fiberglass</td>
<td>125</td>
</tr>
<tr>
<td>XV</td>
<td>Fiber Tenacities</td>
<td>126</td>
</tr>
<tr>
<td>XVI</td>
<td>Radiation Resistance: Effect of Exposure on Yarn Strength</td>
<td>141</td>
</tr>
<tr>
<td>Table</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>XVII</td>
<td>Relative General Properties of Elastomers</td>
<td>157</td>
</tr>
<tr>
<td>XVIII</td>
<td>Elastomeric Coatings</td>
<td>159</td>
</tr>
<tr>
<td>XIX</td>
<td>Sequencing Hardware</td>
<td>168</td>
</tr>
</tbody>
</table>
SECTION I - INTRODUCTION

1. GENERAL

a. Program Objective

Under Contract NASW-1288 with the National Aeronautics and Space Administration, Washington, D.C., Goodyear Aerospace Corporation has conducted a study program of deployable aerodynamic decelerators for re-entry and recovery applications from Mach 1 to Mach 25. The objective of this program was to survey and summarize available documented supersonic and hypersonic analytical and experimental data to determine the latest state of the art of deceleration and stabilization devices. The findings of this study, presented in this report, summarize the status of high-speed recovery techniques and supplement Reference 1 and other handbook-type reports.

b. Background and Problem Statement

With the advent of the space age, and the general need to provide for successful entry, re-entry, and descent into the atmosphere of the earth and other planets, new and efficient (lightweight, low cost) methods of deceleration and stabilization must be developed to recover payloads such as manned space capsules, emergency escape capsules, instrument data packages, rocket boosters, and nose cones. Before such devices can be developed, additional basic and applied research will be required. This study program was conducted to provide data for an overall "in-house" NASA evaluation study to determine the state of the art of supersonic decelerator systems.

c. Scope and Constraints

The study was performed so system design criteria could be established
for providing supplemental drag area to best meet the needs of the following supersonic-sample, general-recovery applications:

1. Payload stabilization and deceleration to conditions necessary for a satisfactory deployment of a final-stage landing device (conventional parachute, gliding parachute, inflatable wings, paragliders)

2. Payload re-entry to minimize temperature and deceleration environment

3. Initial high-speed stabilization of spacecraft or booster, or both

4. Emergency escape from any flight vehicle (aircraft, space capsule)

5. Highly stable low supersonic descent of instrumented payloads operating at a high altitude in the atmosphere (high-altitude air sampling, infrared payload tracking)

The performance data for these recovery applications include aerodynamic drag and stability characteristics for both steady and unsteady conditions; performance data for both free-stream operations and operations in the wake of a forebody; structural and material design-support data; and basic aerothermodynamic design parameters and their effect on the stowage, deployment, and operation of the decelerator. The study-spectrum limits were as follows:

1. Mach number - 1 to 25 (emphasis on Mach 1.5 to Mach 10)

2. Altitude - below 600,000 ft (emphasis below 200,000 ft)

3. Temperature - below 3000 F (emphasis below 1000 F)
d. Description of Search

The program was initiated with a library search, during which a bibliography of applicable documents (see Appendix A) was obtained from:

1. DDC (Defense Documentation Center)
2. NASA STAR
3. Goodyear Aerospace Library

From these bibliographies applicable reports and other documents were ordered, and their abstracts, results, and conclusions were reviewed. The detailed data presented in this report are based on the list of references on pages 195 through 201. The bibliography of this report groups related publications according to the issuing or authorizing government agencies and other sources.

e. Historical Summary

The concept of aerodynamic decelerators in the form of parachutes dates back at least to DaVinci and probably earlier. Until the balloon flights of the nineteenth century and the heavier-than-air flights of the twentieth, parachutes were of little more than scientific interest. World War I demonstrated their practicality, as had the earlier balloon flights, for safe descent from a disabled aircraft. At that time, development headed toward the modern small packaged canopy and attaching body harness from the noncollapsible canopies and trapeze or open-basket containers of the balloonists. With packaging came the complication of deployment, and various methods were utilized - static lines, pilot chutes, etc. From 1945 to 1955, higher speed (transonic and low supersonic) and higher altitude (up to 100,000 ft) military applications arose.

Between 1955 and 1960, the space-age arrived, bringing with it still higher speed (high supersonic and hypersonic) and higher altitude (orbital and superorbital) applications. The new applications consisted of recovering all types of payloads over a broader flight spectrum. Because of these new recovery requirements, supersonic tests were
conducted; the initial formal documented results of these tests became available about 1960. Goodyear Aerospace Corporation's search revealed that, since 1960, the number and type of experimental tests were greatly increased, and most of the available experimental data presented in this report were generated during this period.
SECTION II - STATE OF THE ART OF AERODYNAMIC
DEPLOYABLE DECELERATORS

1. GENERAL

This section provides a summary and analysis of available data on aerodynamic decelerators that are deployable in the supersonic and hyper-sonic speed ranges. The various decelerators are categorized into aerodynamic shape configurations. Appropriate information on design, aerodynamic performance, structures and materials, and logistics sequencing is presented.

2. DESIGN AND PERFORMANCE REQUIREMENTS

The scope and limitations of deceleration devices included in this study in terms of the flight regime are presented in Figure 1. This figure depicts the desired flight-study spectrum of altitude versus Mach number for general recovery-system applications. The cross-hatched area shows the main emphasis of this study.

Since the main function of a deployable decelerator is to generate a specific amount of aerodynamic drag for deceleration and stabilization with a minimum of weight and bulk, the key design goal is to obtain a maximum value of the square feet of drag area per pound of weight. To predict that a given configuration (a given geometric shape or a composite arrangement of various shapes) will obtain certain values of drag area and hence will perform in a prescribed manner, the effects of high-speed aerothermodynamics and space mechanics performance parameters must be known and understood.

The deployment of a decelerator during a re-entry or recovery operation leads to an increase in the drag forces acting on the vehicle system. As
Figure 1 - Study Spectrum

- Key:
 - MAIN STUDY EMPHASIS
 - TOTAL STUDY SPECTRUM
 - LOAD OR TEMPERATURE LIMIT
 - FREE-STRAIGHT q LEVEL

- Altitude (Thousands of Feet): 0 to 300
- Mach Number: 0 to 30

- Load or Temperature Limits:
 - q = 1 PSF
 - q = 10 PSF
 - q = 100 PSF
 - q = 1000 PSF
 - q = 10,000 PSF

- Temperature: 3000 F
- Minimum Orbital Speed: 1200 F
the drag forces increase and the deceleration rate becomes more acute, the possibility of aerodynamically heating the decelerator also increases. The effect of this aerodynamic heating can be seen more readily by referring to the thermal-performance parameters in Figure 2. Since the major emphasis in this study was on an altitude range from sea level to about 200,000 ft and a Mach range from 1.5 to 10, the parameters in Figure 2 cover only this range. In this figure, lines of constant dynamic pressure and adiabatic wall temperature for turbulent flow are plotted as a function of altitude and Mach number. The lines form boundary conditions for material strength requirements, while the lines of adiabatic wall temperature foretell approximate expectations of material temperature. Thus, decelerators deployed in the Mach 1 to Mach 3 flight regime can sustain a temperature rise of up to 700 F as the deployment Mach number approaches about 3, while those deployed above Mach 3 can expect a temperature rise to above 700 F. Lowering the deployment altitude or increasing the dynamic pressure decreases the time over which deceleration occurs, and thus hastens the temperature rise of the decelerator material toward the appropriate adiabatic wall-temperature line.

3. DESIGN CONCEPTS

To meet the requirements of space-age recovery, various deployable decelerator designs have been proposed, each of which suggests some potential competitive advantage or advantages. Various programs have been conducted to advance the state of the art, and valuable data have been obtained. Some applicable data, especially for configurations of a basic geometrical shape, have been obtained from programs with nonrelated objectives.

By definition, deployable decelerators are devices that are packageable and are capable of being extended or inflated to an enlarged blunt shape. From this definition and based on the degree of completeness of the experimental investigations previously conducted, the main decelerator
candidates are shown in Figure 3. For purposes of terminology, the types of decelerator configurations are further broken down as follows:

1. Two body (towed)
 a. Nonporous
 Forced inflation
 Ram-air inflation
 b. Porous
 Designed for supersonic operation
 Subsonic modified

2. Single body (attached) - nonporous
 a. Basic single shape
 b. Composite shape

In the discussion that follows, the various configuration construction details are presented. The apparent performance and design advantages of each concept in terms of why they are likely decelerator candidates are given.

Of the ten concepts, presented in Figure 3, the cone, sphere, Ballute, and flared skirt are all nonporous types that either can be attached to or towed by a payload. These four concepts have certain desirable performance characteristics in common:

1. They are blunt-body, high drag-producing shapes.

2. They can be inflated to a close, coupled position behind the payload.

3. Since they are nonporous, these decelerators act as pressure vessels and remain fairly rigid when inflated.

In the past the cone, sphere, and flared skirt have been inflated with compressed air or nitrogen. Ballutes have been inflated either with

\[^a \text{TM, Goodyear Aerospace Corporation, Akron, Ohio.} \]
Figure 3 - Decelerator Configurations

(A) CONE
(B) SPHERE
(C) BALLUTE
(D) FLARED SKIRT
(F) CONICAL
(G) STANDARD FLAT
(H) HYPERFLO
(E) HEMISFLO
(K) TENSION SHELL
(I) PARASONIC
(J) SUPERSONIC GUIDE SURFACE
compressed gas or with ram-air. Note the ram-air inlets on the Ballute in Figure 3.

The sphere and Ballute can be made from fabric gores similar to those on the parachute. These gores not only can be sewn together to form the decelerator shape but also can be cemented or welded together, depending on the type of fabric required.

The above-mentioned concepts are coated with various elastomers to obtain gas-tight integrity. In addition, the coating protects the cloth and is less susceptible to temperature, water, and abrasion. The remaining concepts shown in Figure 3 are the porous-type decelerators; namely, parachutes. In all cases, the canopy geometric openness - that is, the porosity - is the prime factor for satisfactory performance (a stable, high drag-producing canopy).

The three ribbon parachutes are named for their shapes: standard flat, conical, and hemisflo. All three chutes are made from fabric gores. Each gore is composed of a given amount of horizontal and vertical ribbons plus radial webs. As the name implies, a standard flat ribbon canopy is made from a number of triangular gores sewn together into a circular constructed shape and is capable of lying "flat" on a work table. The conical ribbon chute is similar to the standard flat with triangular gores, except that a few gores are excluded and thus a constructed shape results in a frustrum of the cone. The hemisflo type is made from "shaped" gores, and the resulting inflated shape is a near hemisphere.

The advantage of the conical over the standard flat is that the same C_D's are attainable with less canopy fabric. The advantage of the hemisflo over the standard flat or the conical is that the portion of the canopy ahead of the canopy equator acts as an extended skirt. Based on test results in general, canopies with skirts have less coning instability. These parachutes were designed originally for subsonic operation and were limited in performance when carried to supersonic speeds.
The final three parachutes, the Hyperflo,a the Parasonic,b and the Supersonic Guide Surface,c are configurations designed for supersonic operation. All of these types in essence have extended skirts. These skirts are essentially nonporous to aid the inflation retention capability. The Hyperflo has a constructed flat top called the canopy roof. This roof can be made either from ribbons or from a mesh or net type cloth structure. With shaped gores, the Parasonic is an evolved canopy configuration that most nearly meets the membrane shape requirements of an isotensoid design from predicted supersonic pressure loadings. Coating of the canopy mesh-type crown provides for not only the proper choked flow but also for thermal protection. The Supersonic Guide Surface configuration is shaped like a supersonic-subsonic diffuser (flow converter). In addition to this convergent, divergent shape canopy (which has a large vent in the crown), a small conical body is suspended ahead of the canopy lip to induce the formation of an oblique shock.

Tables I through X summarize the known pertinent documented analytical and experimental investigations conducted on the candidate configurations. The information is presented with the report (or test) dates in chronologically descending order to indicate the evolution of the various configurations and to suggest the present status of each. The tabulated historical information indicates the type of documented data that is available.

Figure 4 depicts the miscellaneous configurations. These concepts are labeled miscellaneous since little or no experimental programs have been conducted. While some theoretical work has been done, the majority of these concepts are at best only ideas.

Concepts of interest are listed in the following tables:

bTM, Goodyear Aerospace Corporation, Akron, Ohio.
cRegistered, U. S. Patent Office, University of Minnesota, Minneapolis, Minn.
TABLE I - R AND D - CONE DECELERATORS IN FREE STREAM

<table>
<thead>
<tr>
<th>Reference</th>
<th>Report date</th>
<th>Geometry angle, θ (deg)</th>
<th>Type of data obtained</th>
<th>Purpose and remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC-N-64-251 (Ref 2)</td>
<td>1/65</td>
<td>9 to 50 Sharp and blunt</td>
<td>Newtonian</td>
<td>1 to 6.9 None C_A, C_D, C_M Static</td>
</tr>
<tr>
<td>JPL TR-52-601 (Ref 3)</td>
<td>11/64</td>
<td>10 to 60 Sharp and blunt</td>
<td>Modified Newtonian</td>
<td>1 to 3.9 None C_D Static</td>
</tr>
<tr>
<td>NASA TN D-2261 (Ref 6)</td>
<td>5/64</td>
<td>5 to 50 Sharp</td>
<td>Newtonian</td>
<td>6.8 None C_A, C_D, C_M Static</td>
</tr>
<tr>
<td>NASA TN D-840 (Ref 5)</td>
<td>6/61</td>
<td>6 to 50 Sharp</td>
<td>Newtonian</td>
<td>6.8 None C_A, C_D, C_M Static</td>
</tr>
<tr>
<td>NASA TN D-0 (Ref 9)</td>
<td>5/61</td>
<td>10, 13.3, 25, 50 Sharp and blunt</td>
<td>Newtonian</td>
<td>0.5 to 4.4 None C_A, C_D, C_M Static</td>
</tr>
<tr>
<td>NASA TN D-176 (Ref 9)</td>
<td>1960</td>
<td>0 to 35 Sharp</td>
<td>None Transonic</td>
<td>None</td>
</tr>
<tr>
<td>Kramer (Ref 10)</td>
<td>1959</td>
<td>0 to 90 Sharp</td>
<td>Newtonian</td>
<td>None C_D Static</td>
</tr>
<tr>
<td>NASA TN D-176 (Ref 11)</td>
<td>1958</td>
<td>0 to 10 Sharp</td>
<td>None</td>
<td>1 to 10 None C_D Static</td>
</tr>
<tr>
<td>Convair: IA-7-017 (Ref 12)</td>
<td>1956</td>
<td>30 to 40 Sharp Potential, Newtonian</td>
<td>None</td>
<td>Development of theory and comparison with experimental results</td>
</tr>
<tr>
<td>J. Aeron. Sci., Vol 19 (Ref 13)</td>
<td>1955</td>
<td>20 to 40 Sharp and blunt</td>
<td>Modified Newtonian</td>
<td>Subsonic, 1 to 4 None C_D Static</td>
</tr>
<tr>
<td>J. Math and Phys., Vol 10 (Ref 14)</td>
<td>1952</td>
<td>Sharp</td>
<td>Second-order theory (revised)</td>
<td>None</td>
</tr>
<tr>
<td>NASA Report 1961 (Ref 15)</td>
<td>1952</td>
<td>Sharp</td>
<td>Second-order theory</td>
<td>None</td>
</tr>
<tr>
<td>NASA Report 1945 (Ref 16)</td>
<td>1951</td>
<td>Sharp Corrected first order</td>
<td>None</td>
<td>Development of theory and comparison of theoretical and experimental results</td>
</tr>
<tr>
<td>J. Aeron. Sci., Vol 15 (Ref 17)</td>
<td>1951</td>
<td>Sharp</td>
<td>Second-order theory</td>
<td>None</td>
</tr>
<tr>
<td>MIT TR-1 (Ref 18)</td>
<td>1949</td>
<td>Sharp Stone's and second order</td>
<td>None</td>
<td>Development of theory and tabulation of results ($\theta_0 = 5$ to 15 deg)</td>
</tr>
<tr>
<td>Rand T-1 (Ref 19)</td>
<td>1948</td>
<td>Sharp Stone's and second order (revised)</td>
<td>None</td>
<td>Development of theory and tabulation of results ($\theta_0 = 5$ to 15 deg)</td>
</tr>
<tr>
<td>J. Math and Phys., Vol 17 (Ref 20)</td>
<td>1947</td>
<td>Sharp Stone's second order</td>
<td>None</td>
<td>Development of theory and tabulation of results ($\theta_0 = 5$ to 50 deg)</td>
</tr>
<tr>
<td>MIT TR-3 (Ref 21)</td>
<td>1947</td>
<td>Sharp Stone's second order</td>
<td>None</td>
<td>Development of theory and tabulation of results ($\theta_0 = 5$ to 50 deg)</td>
</tr>
</tbody>
</table>
TABLE II - R AND D - TOWED-CONE DECELERATORS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Report date</th>
<th>Configuration</th>
<th>Test Mach number (wind-tunnel) data</th>
<th>Type of data obtained</th>
<th>Force and moment</th>
<th>Stability</th>
<th>Test purpose and remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTD-TDR-63-4023</td>
<td>1/65</td>
<td>45 2.4 7.89 1.2</td>
<td>0.85 to .2</td>
<td>(C_D, C_L, C_D) (forebody with and without decelerator)</td>
<td>(C_D)</td>
<td>None</td>
<td>Obtain experimental aerodynamic data; solid sting-mounted model used</td>
</tr>
<tr>
<td>RTD-TDR-63-4242</td>
<td>12/64</td>
<td>45 2 to 8 1.2</td>
<td>0.85 to .25</td>
<td>Same</td>
<td>(C_D)</td>
<td>None</td>
<td>Obtain experimental aerodynamic data; solid sting-mounted model used</td>
</tr>
<tr>
<td>RTD-TDR-63-4242</td>
<td>12/64</td>
<td>45 4 to 8 1.2</td>
<td>4.35</td>
<td>None</td>
<td>(C_D)</td>
<td>None</td>
<td>Obtain experimental aerodynamic data; solid sting-mounted model used</td>
</tr>
<tr>
<td>RTD-TDR-63-4246</td>
<td>12/64</td>
<td>45 2 to 8 1.2</td>
<td>0.85 to .25</td>
<td>(C_D, C_p) (decelerator and forebody)</td>
<td>(C_D)</td>
<td>None</td>
<td>Obtain experimental aerodynamic data; solid sting-mounted model used</td>
</tr>
<tr>
<td>RTD-TDR-63-4226</td>
<td>12/64</td>
<td>45 4 to 8 1.2</td>
<td>4.35</td>
<td>(C_D, C_p) (decelerator and forebody)</td>
<td>(C_D)</td>
<td>None</td>
<td>Obtain experimental aerodynamic data; solid sting-mounted model used</td>
</tr>
<tr>
<td>NASA TN D-1789</td>
<td>4/63</td>
<td>40 2 to 15, 9 2.05</td>
<td>2 to 4.65</td>
<td>None</td>
<td>(C_D)</td>
<td>None</td>
<td>Obtain experimental aerodynamic data for solid cones on flexible towlines; three of four cones had disk extensions</td>
</tr>
<tr>
<td>NASA TN D-1789</td>
<td>4/63</td>
<td>40 2 to 15 0.89</td>
<td>2 to 4.65</td>
<td>None</td>
<td>(C_D)</td>
<td>None</td>
<td>Obtain experimental aerodynamic data using an inflatable fabric Airmat cone on a flexible towline</td>
</tr>
<tr>
<td>ASD-TDR-62-702</td>
<td>12/62</td>
<td>40 1 to 13 2.92</td>
<td>2 to 4.65</td>
<td>None</td>
<td>(C_D)</td>
<td>None</td>
<td>Obtain experimental aerodynamic data using a sting-mounted (at base) decelerator</td>
</tr>
<tr>
<td>NASA TN D-994</td>
<td>12/61</td>
<td>30 2 to 7 0.89</td>
<td>2.3 2.96, 3.83 4.65</td>
<td>None</td>
<td>(C_D)</td>
<td>None</td>
<td>Obtain experimental aerodynamic data using a sting-mounted (at base) decelerator</td>
</tr>
<tr>
<td>NASA TN D-994</td>
<td>12/61</td>
<td>40, 45</td>
<td>30 2 to 6 0.86 Biconical (F.R. = 4.75)</td>
<td>(C_D) (decelerator)</td>
<td>(C_D)</td>
<td>None</td>
<td>Obtain experimental aerodynamic data using a sting-mounted (at base) decelerator</td>
</tr>
</tbody>
</table>

\(\theta\) Visual coning observation
TABLE III - R AND D - SPHERE DECELERATORS IN FREE STREAM

<table>
<thead>
<tr>
<th>Reference</th>
<th>Report date</th>
<th>Sphere diam. (in.)</th>
<th>Mach no.</th>
<th>Knudson no.</th>
<th>Reynolds no.</th>
<th>Type of test</th>
<th>Type of data</th>
<th>Test purpose and remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPL-TR 34-160 (Ref 29)</td>
<td>6/61</td>
<td>1/16 to 1/2</td>
<td>3.8 to 4.3</td>
<td>0.25 to 0.107</td>
<td>50 to 1000</td>
<td>Wind tunnel</td>
<td>CD</td>
<td>Obtain drag in low-density supersonic flow</td>
</tr>
<tr>
<td>Rand RM 2678 (Ref 30)</td>
<td>11/61</td>
<td>0.09 to 1.5</td>
<td>11 to 64.7</td>
<td>0.002 to 4</td>
<td>3×10^5 to 2×10^6</td>
<td>Hotshot tunnel</td>
<td>CD</td>
<td>(Data in air and helium) to obtain drag at very high velocities in continuum and near-free molecular flow</td>
</tr>
<tr>
<td>Fl. Dyn. Drag - Hoerner (Ref 10)</td>
<td>1958</td>
<td>...</td>
<td>1 to 10</td>
<td>...</td>
<td>...</td>
<td>Wind tunnel and ballistic</td>
<td>CD</td>
<td>Presentation of experimental data</td>
</tr>
<tr>
<td>J. Aeron. Sci., Vol 24 (Ref 31)</td>
<td>1957</td>
<td>3/8</td>
<td>2.2 to 9.7</td>
<td>...</td>
<td>...</td>
<td>Ballistic range</td>
<td>CD</td>
<td>Obtain supersonic and hypersonic drag data</td>
</tr>
<tr>
<td>J. Aeron. Sci., Vol 20; NavOrd Report 2352 (Ref 32)</td>
<td>1953</td>
<td>1/4, 9/32, 5/16,</td>
<td>0.8 to 4.7</td>
<td>...</td>
<td>1.14×10^5 to 8.4×10^5</td>
<td>Ballistic range</td>
<td>CD</td>
<td>Investigate Mach no. and Reynolds no. effects on drag</td>
</tr>
<tr>
<td>J. Aeron. Sci., Vol 18 (Ref 33)</td>
<td>1951</td>
<td>1/4, 1/2, 1</td>
<td>2.1 to 2.8</td>
<td>...</td>
<td>15 to 500</td>
<td>Wind tunnel</td>
<td>CD</td>
<td>Investigate Reynolds no. effects in a very low density flow</td>
</tr>
<tr>
<td>J. Aeron. Sci., Vol 12 (Ref 34)</td>
<td>1945</td>
<td>9/32, 9/16, 1-1/2</td>
<td>0.29 to 3.96</td>
<td>...</td>
<td>9.3×10^4 to 1.3×10^6</td>
<td>Ballistic range</td>
<td>CD</td>
<td>Investigate Mach no. effects on drag</td>
</tr>
</tbody>
</table>
TABLE IV - R AND D - TOWED-SPHERE DECELERATORS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Report date</th>
<th>Configuration</th>
<th>Type of data obtained</th>
<th>Test purpose and remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTD-TDR-63-4621</td>
<td>1/65</td>
<td>X/d: 2, 4, 7.89; D/d: 1, 2;</td>
<td>None</td>
<td>Ogive-cylinder (F. R. = 4.5)</td>
</tr>
<tr>
<td>RTD-TDR-63-4242</td>
<td>12/64</td>
<td>X/d: 2 to 8; D/d: 1, 2;</td>
<td>None</td>
<td>Hemispherocylinder, flare (F. R. = 1.06)</td>
</tr>
<tr>
<td>RTD-TDR-63-4242</td>
<td>4 to 8</td>
<td>X/d: 1, 2; D/d: 4.35</td>
<td>None</td>
<td>Ogive-cylinder (F. R. = 4.5)</td>
</tr>
<tr>
<td>RTD-TDR-63-4226</td>
<td>12/64</td>
<td>X/d: 1, 2; D/d: 4.35</td>
<td>None</td>
<td>Hemispherocylinder, flare (F. R. = 1.06)</td>
</tr>
<tr>
<td>RTD-TDR-63-4226</td>
<td>4 to 8</td>
<td>X/d: 1, 2; D/d: 4.35</td>
<td>None</td>
<td>Ogive-cylinder (F. R. = 4.5)</td>
</tr>
<tr>
<td>NASA TN D-1789</td>
<td>4/63</td>
<td>X/d: 1.69, 2.55, 3.37; D/d: 1 to 9;</td>
<td>None</td>
<td>Cone-cylinder (F. R. = 18.7)</td>
</tr>
<tr>
<td>NASA TN D-1789</td>
<td>2 to 12</td>
<td>X/d: 0.73, 1.09, 1.45; D/d: 2 to 4.65</td>
<td>None</td>
<td>Cone-cylinder, flare (F. R. = 4.34)</td>
</tr>
<tr>
<td>NASA TN D-1789</td>
<td>2 to 12</td>
<td>X/d: 0.73, 1.09, 1.45; D/d: 2 to 4.65</td>
<td>None</td>
<td>Cone-cylinder, flare (F. R. = 4.34)</td>
</tr>
<tr>
<td>NASA TN D-1789</td>
<td>3/63</td>
<td>X/d: 3.37, 6.25; D/d: 2 to 3.96</td>
<td>None</td>
<td>Cone-cylinder (F. R. = 10.7)</td>
</tr>
<tr>
<td>NASA TN D-1789</td>
<td>1 to 9</td>
<td>X/d: 3.37, 6.25; D/d: 2 to 3.96</td>
<td>None</td>
<td>Cone-cylinder (F. R. = 10.7)</td>
</tr>
<tr>
<td>NASA TN D-1789</td>
<td>9/62</td>
<td>X/d: 8; D/d: 3.9</td>
<td>None</td>
<td>Spiked cone-cylinder</td>
</tr>
<tr>
<td>NASA TN D-1789</td>
<td>11/61</td>
<td>X/d: 8; D/d: 3.9</td>
<td>None</td>
<td>Spiked cone-cylinder</td>
</tr>
<tr>
<td>NASA TN D-919 and ASD-TDR-60-182</td>
<td>11/61</td>
<td>X/d: 0 to 10; D/d: 3, 32</td>
<td>None</td>
<td>None, unsymmetrical capsule, attached spike</td>
</tr>
<tr>
<td>NASA TN D-919 and ASD-TDR-60-182</td>
<td>11/61</td>
<td>X/d: 0 to 10; D/d: 3, 32</td>
<td>None</td>
<td>None, unsymmetrical capsule, attached spike</td>
</tr>
<tr>
<td>NASA TN D-919 and ASD-TDR-60-182</td>
<td>11/61</td>
<td>X/d: 0 to 10; D/d: 3, 32</td>
<td>None</td>
<td>None, unsymmetrical capsule, attached spike</td>
</tr>
<tr>
<td>NASA TN D-919 and ASD-TDR-60-182</td>
<td>11/61</td>
<td>X/d: 0 to 10; D/d: 3, 32</td>
<td>None</td>
<td>None, unsymmetrical capsule, attached spike</td>
</tr>
<tr>
<td>NASA TN D-919 and ASD-TDR-60-182</td>
<td>11/61</td>
<td>X/d: 0 to 10; D/d: 3, 32</td>
<td>None</td>
<td>None, unsymmetrical capsule, attached spike</td>
</tr>
<tr>
<td>NASA TN D-919 and ASD-TDR-60-182</td>
<td>11/61</td>
<td>X/d: 0 to 10; D/d: 3, 32</td>
<td>None</td>
<td>None, unsymmetrical capsule, attached spike</td>
</tr>
<tr>
<td>NASA TN D-919 and ASD-TDR-60-182</td>
<td>11/61</td>
<td>X/d: 0 to 10; D/d: 3, 32</td>
<td>None</td>
<td>None, unsymmetrical capsule, attached spike</td>
</tr>
</tbody>
</table>

*Visual Coning Observation

19-A Preceding page blank 19-B
TABLE V - R AND D - FREE-STREAM AND TOWED-BALLUTE DECELERATORS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Test date</th>
<th>Test configuration</th>
<th>Apex angle (deg)</th>
<th>Diameter</th>
<th>Mach no. (q)</th>
<th>Type of data obtained</th>
<th>Test purpose and remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEDC-TR-65-218</td>
<td>10/65</td>
<td>Blunted ogive</td>
<td>Small rigid model</td>
<td>6.3 ft</td>
<td>1 98 to 1.98</td>
<td>Wind tunnel</td>
<td>Obtain aerodynamic drag in near-forebody wake</td>
</tr>
<tr>
<td>Unpublished data</td>
<td>9/65</td>
<td>Unsymmetrical forebody</td>
<td>Ram-air-inflated nylon model</td>
<td>4 ft</td>
<td>2.6 to 3</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>AEDC-TDR-65-110</td>
<td>6/65</td>
<td>Cone-cylinder, flare-cylinder</td>
<td>Nylon ram-air balloon</td>
<td>7 in.</td>
<td>4 to 6</td>
<td>Wind tunnel</td>
<td>Obtain aerodynamic drag and visual stability in wake of unsymmetrical forebody</td>
</tr>
<tr>
<td>GER-11665</td>
<td>11/64</td>
<td>Unsymmetrical sled</td>
<td>Nylon ram-air model</td>
<td>5 ft</td>
<td>0</td>
<td>Wind tunnel</td>
<td>Obtain towed drag data and visual stability for relatively large model</td>
</tr>
<tr>
<td>GER-11665 S/3</td>
<td>2/65</td>
<td>Cone-cylinder, flare-cylinder</td>
<td>Nylon ram-air model</td>
<td>8 in.</td>
<td>0</td>
<td>*</td>
<td>Track</td>
</tr>
<tr>
<td>GER-11665 S/2</td>
<td>2/65</td>
<td>Cone-cylinder, flare-cylinder</td>
<td>Nylon ram-air model</td>
<td>6 in.</td>
<td>0</td>
<td>*</td>
<td>Free flight</td>
</tr>
<tr>
<td>GER-11665 S/1</td>
<td>2/65</td>
<td>Cone-cylinder, flare-cylinder</td>
<td>Nylon ram-air model</td>
<td>5 in.</td>
<td>1.1 to 2.1</td>
<td>*</td>
<td>Free flight</td>
</tr>
<tr>
<td>AEDC-TDR-64-131</td>
<td>6/64</td>
<td>Tow-strut used</td>
<td>Nylon ram-air model</td>
<td>4 ft</td>
<td>1.92</td>
<td>Wind tunnel</td>
<td>Demonstrate Ballute deployment and obtain drag and stability data</td>
</tr>
<tr>
<td>Unpublished data</td>
<td>4/64</td>
<td>Cone-cylinder, flare-cylinder</td>
<td>Nylon ram-air model</td>
<td>3 ft</td>
<td>2.5, 2.79, and 3</td>
<td>Wind tunnel</td>
<td>Obtain towed drag and stability data</td>
</tr>
<tr>
<td>AEDC-TDR-64-46</td>
<td>12/64</td>
<td>Cone-cylinder, flare-cylinder</td>
<td>Small rigid isoskeletal model</td>
<td>7.5 in.</td>
<td>1.5 to 6</td>
<td>Wind tunnel</td>
<td>Obtain drag and pressure data over a wide Mach-no. range</td>
</tr>
<tr>
<td>GER-11593</td>
<td>1/65</td>
<td>Not towed (no forebody)</td>
<td>Rigid isoskeletal model</td>
<td>9 in.</td>
<td>3 to 2.5</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>AEDC-TDR-63-119</td>
<td>7/63</td>
<td>Biconic</td>
<td>Nylon ram-air model</td>
<td>7.5 in.</td>
<td>4 to 5.5</td>
<td>Wind tunnel</td>
<td>Obtain free-stream drag data</td>
</tr>
<tr>
<td>ASD-TDR-62-762, Part II</td>
<td>6/64</td>
<td>Cone-cylinder, flare-cylinder</td>
<td>Nylon ram-air balloon</td>
<td>7 in.</td>
<td>2.0 to 4.65</td>
<td>Wind tunnel</td>
<td>Obtain towed drag data up to Mach 5.9 and visual stability</td>
</tr>
<tr>
<td>ASD-TDR-62-762, Part II</td>
<td>6/64</td>
<td>Cone-cylinder, flare-cylinder</td>
<td>Dacron ram-air isoskeletal model</td>
<td>8 in.</td>
<td>2.5 to 4.65</td>
<td>*</td>
<td>Initial feasibility tests to demonstrate ram-air inflation (free of "bursting") of textile inflatable models and obtain towed drag data and visual stability</td>
</tr>
<tr>
<td>ASD-TDR-62-762, Part II</td>
<td>11/61</td>
<td>Hemisphere-cylinder, boattail</td>
<td>Flexible, ram-air isoskeletal model</td>
<td>10 in.</td>
<td>0</td>
<td>None</td>
<td>Mach 10 performance tests (same as above) of coated metal-cloth models</td>
</tr>
<tr>
<td>ASD-TDR-62-762, Part II</td>
<td>12/62</td>
<td>Hemisphere-cylinder, boattail</td>
<td>Rigid isoskeletal model</td>
<td>10 in.</td>
<td>4 to 6</td>
<td>Wind tunnel</td>
<td>Obtain towed-model temperature and pressure data</td>
</tr>
<tr>
<td>ASD-TDR-62-182 (Part II, ASD-TDR-64-382)</td>
<td>11/61</td>
<td>Spherical cone-cylinder</td>
<td>Pressurized fabric spherical model</td>
<td>9 ft</td>
<td>1.4 to 2.1</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Visual cones observation.
TABLE VI - R AND D - FLARED-SKIRT DECELERATORS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Date</th>
<th>θ_α (deg)</th>
<th>D/d</th>
<th>Forebody</th>
<th>Theory</th>
<th>Experimental Mach No.</th>
<th>Type of data obtained</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA TN D-2854 (Ref 51)</td>
<td>6/65</td>
<td>0, 10, 20, 30</td>
<td>1 to 2,896</td>
<td>45-deg cone-cylinder (F.R. = 2.21 and 5.21)</td>
<td>Modified Newtonian</td>
<td>6</td>
<td>None C_A^\prime, C_N^\prime, C_M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hemisphere-cylinder (F.R. = 1.6 and 4.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WADC-TR-59-324, Part II (Ref 52)</td>
<td>12/60</td>
<td>30, 50, 70</td>
<td>6</td>
<td>Hemisphere-cylinder (1/d = 6)</td>
<td>None</td>
<td>8</td>
<td>C_P C_A^\prime, C_N^\prime, C_M</td>
</tr>
<tr>
<td>OML Report 6R2P (Ref 53)</td>
<td>6/55</td>
<td>6, 14, 22</td>
<td>3</td>
<td>45-deg cone-cylinder (cylinder: 1, 3, 5 cal.)</td>
<td>1.3, 1.8, 2.5 (linearized theory)</td>
<td>None</td>
<td>None C_M</td>
</tr>
</tbody>
</table>

Preceding page blank
TABLE VII - R AND D - HEMISFLO, CONICAL, AND STANDARD FLAT RIBBON PARACHUTES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Test date</th>
<th>Test configuration</th>
<th>Geometric porosity (percent)</th>
<th>Reeled to 'x' percent of D_0</th>
<th>Mach no.</th>
<th>Type of data obtained</th>
<th>Force and moment</th>
<th>Stability</th>
<th>Type of test</th>
<th>Test purpose and remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEDC-TDR-65-110 (Ref 40)</td>
<td>6/65</td>
<td>Cone-cylinder (F. R. = 6.16)</td>
<td>Reeled hemisflo, 13 and 21.3 in. D_0</td>
<td>16 (13 in.), 17 to 9 (21.3 in.)</td>
<td>1.5 to 3</td>
<td>None</td>
<td>C_D^*</td>
<td>*</td>
<td>Wind tunnel</td>
<td>Demonstrate supersonic feasibility of reefed chutes</td>
</tr>
<tr>
<td>FDL-TDR-64-35 (Ref 54)</td>
<td>7/64</td>
<td>Spiked cone-cylinder</td>
<td>Hemisflo, 4.12-ft D_0</td>
<td>14.3</td>
<td>None</td>
<td>0.18 to 2.35 (deploy $M = 2.4$)</td>
<td>None</td>
<td>C_D^*</td>
<td>*</td>
<td>Free flight</td>
</tr>
<tr>
<td>FDL-TDR-64-35</td>
<td>7/64</td>
<td>Spiked cone-cylinder</td>
<td>Hemisflo, 4.12-ft D_0</td>
<td>14.3</td>
<td>None</td>
<td>2 to 3.39 (deploy $M = 3.44$)</td>
<td>None</td>
<td>C_D^*</td>
<td>*</td>
<td>Free flight</td>
</tr>
<tr>
<td>AEDC-TDR-64-120 (Ref 55)</td>
<td>6/64</td>
<td>Cone-cylinder flare-cylinder (F. R. = 5.82)</td>
<td>Hemisflo, 10-ft D_0</td>
<td>14</td>
<td>20</td>
<td>1.8 to 3.0</td>
<td>None</td>
<td>C_D^*</td>
<td>*</td>
<td>Wind tunnel</td>
</tr>
<tr>
<td>AEDC-TDR-64-120</td>
<td>6/64</td>
<td>Cone-cylinder flare-cylinder (F. R. = 5.82)</td>
<td>Conical, 10-ft D_0</td>
<td>14</td>
<td>20</td>
<td>1.8 to 3.0</td>
<td>None</td>
<td>C_D^*</td>
<td>*</td>
<td>Wind tunnel</td>
</tr>
<tr>
<td>FDL-TDR-64-66 (Ref 56)</td>
<td>5/64</td>
<td>Unsymmetrical test sled</td>
<td>Hemisflo, 4.2-in., 5.44-ft D_0</td>
<td>25 to 27</td>
<td>None</td>
<td>1.29 to 1.46 (deployment)</td>
<td>None</td>
<td>C_D^*</td>
<td>*</td>
<td>Track</td>
</tr>
<tr>
<td>AEDC-TDR-63-263 (Ref 57)</td>
<td>1/64</td>
<td>Cone-cylinder flare-cylinder (F. R. = 7.8)</td>
<td>Hemisflo, 19.3-in. D_0</td>
<td>14</td>
<td>20.7, 23.4</td>
<td>1.48 to 2.98</td>
<td>None</td>
<td>C_D^*</td>
<td>*</td>
<td>Wind tunnel</td>
</tr>
<tr>
<td>AEDC-TDR-63-263</td>
<td>1/64</td>
<td>Cone-cylinder flare-cylinder (F. R. = 7.8)</td>
<td>Conical, 19.3 in. D_0</td>
<td>14</td>
<td>20</td>
<td>1.48 to 2.98</td>
<td>None</td>
<td>C_D^*</td>
<td>*</td>
<td>Wind tunnel</td>
</tr>
<tr>
<td>AEDC-TDR-62-234 (Ref 58)</td>
<td>12/62</td>
<td>Biconic (F. R. = 5)</td>
<td>Conical, 1-ft D_0</td>
<td>20</td>
<td>None</td>
<td>1.48 to 2.98</td>
<td>None</td>
<td>C_D^*</td>
<td>*</td>
<td>Wind tunnel</td>
</tr>
<tr>
<td>NASA TN D-752 (Ref 59)</td>
<td>9/61</td>
<td>Mercury capsule</td>
<td>Standard flat, 9.6 in.</td>
<td>19</td>
<td>None</td>
<td>1.82 to 2.5</td>
<td>None</td>
<td>C_D^*</td>
<td>*</td>
<td>Wind tunnel</td>
</tr>
<tr>
<td>NASA TN X-448 (Ref 60)</td>
<td>11/60</td>
<td>Spiked cone-cylinder</td>
<td>Conical, 6 ft; standard flat, 6 ft</td>
<td>23 to 30</td>
<td>None</td>
<td>1 to 1.5</td>
<td>None</td>
<td>C_D^*</td>
<td>*</td>
<td>Free-flight drop</td>
</tr>
<tr>
<td>AEDC-TN-59-107 (Ref 61)</td>
<td>9/59</td>
<td>B-58 unsymmetrical capsule</td>
<td>Equiflo, 1-ft D_0</td>
<td>Not recorded</td>
<td>None</td>
<td>0.8 to 1.6</td>
<td>None</td>
<td>C_D^*</td>
<td>*</td>
<td>Wind tunnel</td>
</tr>
</tbody>
</table>

Visual coning and inflation observation.
TABLE VIII - 3 AND D - HYPERSONIC, PARASONIC, AND SUPERSONIC GUIDE-SURFACE PARACHUTES

<table>
<thead>
<tr>
<th>Reference</th>
<th>Test data</th>
<th>Test configuration</th>
<th>Operation velocity (km/sec)</th>
<th>Mach No.</th>
<th>Pressure and temperature</th>
<th>Type test</th>
<th>Test purpose and remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unpublished data...</td>
<td>1/55</td>
<td>Capsule-cylinder, flare-cylinder (M. = 3)</td>
<td>Mach 3 hypersonic flight (supersonic)</td>
<td>4.35</td>
<td>None</td>
<td>C-6</td>
<td>Wind tunnel</td>
</tr>
<tr>
<td>Unpublished data...</td>
<td>1/55</td>
<td>Capsule-cylinder, flare-cylinder (M. = 3)</td>
<td>Mach 3 hypersonic flight (supersonic)</td>
<td>4.35</td>
<td>None</td>
<td>C-6</td>
<td>Wind tunnel</td>
</tr>
<tr>
<td>AIDC-TR-64-115</td>
<td>3/55</td>
<td>Capsule-cylinder, blunt, hypersonic, (M. = 3.5)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>AIDC-TR-64-57</td>
<td>3/55</td>
<td>Capsule-cylinder, flare-cylinder, (M. = 3.5)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>AIDC-TR-64-57</td>
<td>3/55</td>
<td>Capsule-cylinder, flare-cylinder, (M. = 3.5)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>FSL-TR-64-35</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>FSL-TR-64-35</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>AIDC-TR-64-120</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>AIDC-TR-64-120</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>AIDC-TR-64-120</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>AIDC-TR-64-120</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>PBL-TR-64-35</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>PBL-TR-64-35</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>AIDC-TR-64-120</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>AIDC-TR-64-120</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>PBL-TR-64-35</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>PBL-TR-64-35</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>AIDC-TR-64-120</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>AIDC-TR-64-120</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>PBL-TR-64-35</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>PBL-TR-64-35</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>AIDC-TR-64-120</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>AIDC-TR-64-120</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>PBL-TR-64-35</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>PBL-TR-64-35</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>AIDC-TR-64-120</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>AIDC-TR-64-120</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>PBL-TR-64-35</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>PBL-TR-64-35</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>AIDC-TR-64-120</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>AIDC-TR-64-120</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>PBL-TR-64-35</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>PBL-TR-64-35</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>AIDC-TR-64-120</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>AIDC-TR-64-120</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>PBL-TR-64-35</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>PBL-TR-64-35</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>AIDC-TR-64-120</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
<tr>
<td>AIDC-TR-64-120</td>
<td>7/55</td>
<td>Stabilized cone-cylinder, flare-cylinder (M. = 3)</td>
<td>Mars re-entry (low altitude)</td>
<td>3.1</td>
<td>2.5</td>
<td>None</td>
<td>C-6</td>
</tr>
</tbody>
</table>

Note: Further development of Supersonic parachutes.
TABLE IX - R AND D - TENSION-SHELL

<table>
<thead>
<tr>
<th>Test date</th>
<th>Report date</th>
<th>Configuration</th>
<th>Theory</th>
<th>Test mach no.</th>
<th>Type of data obtained</th>
<th>Type of test</th>
<th>Reference</th>
<th>Test purpose and remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/65</td>
<td>3/65</td>
<td>Tension shells, $\beta = 15.4$ to 47 deg (α semiaxial angle), Ref 65</td>
<td>Newtonian</td>
<td>3, 7</td>
<td>Local pressure C_D</td>
<td>None</td>
<td>Wind tunnel</td>
<td>AIAA paper, presented 7/26-29/65 Study performed to ascertain aerodynamic characteristics and structural efficiency</td>
</tr>
<tr>
<td>3/65</td>
<td>8/64</td>
<td>Newtonian tension shell, Ref 66</td>
<td>Newtonian</td>
<td>None</td>
<td>C_p C_D</td>
<td>None</td>
<td>None</td>
<td>NASA TN D-2675 Theoretical study to evaluate high-drag low-weight characteristics</td>
</tr>
<tr>
<td>8/64</td>
<td>6/61</td>
<td>25-deg (β) towed tension shell behind X-15 aircraft, Ref 67</td>
<td>None</td>
<td>4.65</td>
<td>None C_D</td>
<td>None</td>
<td>Wind tunnel</td>
<td>Unpublished data (NASA/Langley Unitary W. T.) Obtain performance characteristics behind unsymmetrical forebody</td>
</tr>
<tr>
<td>6/61</td>
<td>12/62</td>
<td>Flexible tension shell (aluminum torus and fabric catenary curtain nose section), Ref 27</td>
<td>None</td>
<td>1.82</td>
<td>None C_D</td>
<td>Coning and fabric flutter</td>
<td>Wind tunnel</td>
<td>ASD-TDR-62-702 (Pt. II) Evaluate potential high-drag low-weight characteristics and qualitatively ascertain stability</td>
</tr>
</tbody>
</table>
Table X - Miscellaneous Configurations

<table>
<thead>
<tr>
<th>Reference</th>
<th>Date</th>
<th>Configuration</th>
<th>Theory</th>
<th>Test mach no.</th>
<th>Type of data obtained</th>
<th>Type of test</th>
<th>Test purpose and remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASD-TR-61-348, AEDC-TN-61-4 (Ref 68 and 69)</td>
<td>1/62</td>
<td>O. M. Mark III-A (launch position) drag brake</td>
<td>Newtonian</td>
<td>Subsonic to 6.0</td>
<td>C_p</td>
<td>Static and dynamic</td>
<td>Wind tunnel Obtain performance data of orbital models at various angles of attack and various environmental conditions</td>
</tr>
<tr>
<td>Same</td>
<td>2/65</td>
<td>0, 10, 20, and 40 deg (rib angle) I.S. Mark I-B drag brake</td>
<td>Newtonian</td>
<td>2, 4, 6, 8</td>
<td>C_p</td>
<td>Static and dynamic</td>
<td>Wind tunnel As above with I.S. models</td>
</tr>
<tr>
<td>Same</td>
<td>3/61</td>
<td>10 deg O. M. Mark III-A drag brake</td>
<td>Newtonian</td>
<td>5, 8</td>
<td>C_p</td>
<td>Static and dynamic</td>
<td>Wind tunnel As above with orbital models</td>
</tr>
<tr>
<td>Same</td>
<td>3/61</td>
<td>F, S F Mark I (fully opened) drag brake</td>
<td>Newtonian</td>
<td>0.3 to 8.0</td>
<td>C_p</td>
<td>Static and dynamic</td>
<td>Wind tunnel As above with F, S. models</td>
</tr>
<tr>
<td>Astro Research Reports ARC-R-177 and ARC-R-176 (Ref 70 and 71)</td>
<td>2/65</td>
<td>Rotor net</td>
<td></td>
<td>8</td>
<td>C_p</td>
<td>Static and dynamic</td>
<td>Wind tunnel Analytical studies - no tests</td>
</tr>
<tr>
<td>AFOSR-104 (Ref 72)</td>
<td>3/61</td>
<td>Flexibrake, inverted drag cone, drag ring, paraflap, paraskirt</td>
<td></td>
<td>8</td>
<td>C_p</td>
<td>Static and dynamic</td>
<td>Wind tunnel Feasibility studies - no tests</td>
</tr>
</tbody>
</table>

* O. M. - Orbital model
+ I. S. - Instrumented satellite (model)
† F. S. - Full scale
Figure 4 - Miscellaneous Decelerator Concepts
1. Blunted and shape free-stream cone configuration, Table I
2. Towed-cone configurations, Table II
3. Free-stream sphere configurations, Table III
4. Towed-sphere configurations, Table IV
5. Free-stream and towed Ballute configurations, Table V
6. Flared-skirt configuration, Table VI
7. Hemisflo-type ribbon parachute configurations, Table VII
8. Conical ribbon parachute configurations, Table VII
9. Standard flat ribbon parachute configurations, Table VII
10. Hyperflo parachute configurations, Table VIII
11. Parasonic parachute configurations, Table VIII
12. Supersonic Guide-Surface parachute configurations, Table VIII
13. Free-stream tension shell (tension shape) configurations, Table IX
14. Towed tension shell (tension shape) configuration, Table IX
15. Miscellaneous configurations, Table X

4. AERODYNAMICS

a. General

A review of the historical data obtained on the type of investigations conducted reveals, as an initial problem area, the general lack of data concerning blunt-body supersonic aerodynamic performance. Previous efforts to obtain performance data of slender bodies emphasized a reduction of drag for supersonic lifting-flight application. Therefore, the basic R and D philosophy for decelerators was to reverse the procedure completely.
and conduct investigations on blunt bodies, using methods to increase the drag.

Research and development programs in the past have relied upon one of two methods to effect recovery and to obtain data in the development of supersonic high-drag devices.

One method was the "evolution approach," in which existing subsonic parachute designs were modified slightly, models were built (rigid and flexible), and tests above Mach 1 were made in small increasing velocity steps. Based on the results of these tests, additional design modifications were made, models were built and tested at slightly higher Mach numbers, and the cycle was repeated. A significant advantage of this method is that a considerable backlog of knowledge is used to enhance the chance of success. Past experience indicates that this technique has been applied with limited success. Unfortunately, since basic problem areas are not always defined completely, the solutions that are obtained may be unique to a particular operational situation. Hence a "fix" is made, but the general problems often remain unsolved.

The second method initially incorporates performance characteristics of basic blunt-body geometric shapes in the development of supersonic decelerators. Small rigid models (solid or rigidized by internal pressurization) are built and tested without concern, initially, for the method of construction. Once satisfactory performance characteristics have been obtained, subsequent detailed work is warranted to obtain an efficient lightweight deployable system. In addition, desirable characteristics of a wider variety of basic shapes can be incorporated into a design.

The results of the two approaches show the second to be more efficient. This is because, when basic aerodynamic performance problems are solved, subsequent successful, large-scale structure and design investigations are more readily attainable since they clearly are dependent on an accurate definition of the aerodynamic performance. Items b through d, below, present the aerodynamic performance data, interpreted in terms of the knowledge that has been gained, the problems that have been solved, and the problems that remain to be solved.
b. Steady-State Drag of Towed Porous Decelerators

The drag of a towed decelerator depends on the type of flow environment that surrounds it. Since the decelerator is being towed, it must operate in the wake of the towing forebody. In addition, the drag-producing capabilities are dependent on its own size and shape. Because of these facts, dimensionless "towed-condition" parameters x/d and D/d were established to aid in evaluating comparative decelerator test data. x/d (the number of payload calipers aft) describes the decelerator-trailing distance (longitudinal position in the wake); D/d (the ratio of decelerator-to-payload size) indicates the transverse wake size, which - in turn - influences the flow around a given size and shaped decelerator.

Figure 5 indicates the Mach-number limits and the sizes and types of parachutes that have been flight tested. In addition, the track-test Mach number limits are shown. Results of hemisflo and Hyperflo track and wind-tunnel tests are presented to show the limited amount of data for correlation between ground and flight tests of the same configurations. Of all the chute tests, one available data point was found showing wind-tunnel drag results at Mach 2.5 for a 4.12-ft D₀ hemisflo parachute, compared with flight-test results for the same parachute. Significant aspects of the Figure 5 plots are the C_D dispersion between configurations and the apparent inconsistency in drag trends. Physical interpretation of these results cannot be substantiated completely from this limited data. However, the effects of performance due to configuration and test-condition difference can be explained as follows.

It is generally recognized that performance of parachutes operating in the subsonic speed regime is influenced by the degree of canopy porosity. Ribbon parachutes with a known amount of geometric porosity have been used successfully for a wide variety of subsonic applications and at high subsonic and transonic speeds. These parachutes have performed effectively up to a free-stream Mach number of nearly 2; this is because the local flow behind the normal detached-canopy bow shock is still subsonic, and at about Mach 2 portions of the flow in the canopy do become supersonic.
<table>
<thead>
<tr>
<th>REF NO.</th>
<th>TYPE TEST</th>
<th>SYMBOL</th>
<th>PARACHUTE CONFIGURATION</th>
<th>x/d</th>
<th>D/d</th>
<th>MACH (DEPLOY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>1</td>
<td>○</td>
<td>RIBBON ROOF HYPERFLO, 3.69-FT D₀</td>
<td>8.45</td>
<td>5.00</td>
<td>3.22</td>
</tr>
<tr>
<td>54</td>
<td>1</td>
<td>□</td>
<td>RIBBON ROOF HYPERFLO, 3.69-FT D₀</td>
<td>8.45</td>
<td>5.00</td>
<td>3.96</td>
</tr>
<tr>
<td>54</td>
<td>1</td>
<td>△</td>
<td>4.12-FT D₀ HEMISFLO</td>
<td>12.00</td>
<td>4.70</td>
<td>3.39</td>
</tr>
<tr>
<td>54</td>
<td>1</td>
<td>△</td>
<td>4.12-FT D₀ HEMISFLO</td>
<td>12.00</td>
<td>4.70</td>
<td>2.40</td>
</tr>
<tr>
<td>56</td>
<td>2</td>
<td>○</td>
<td>6.77-FT D₀ HEMISFLO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>2</td>
<td>△</td>
<td>6.77-FT D₀ HEMISFLO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>2</td>
<td>△</td>
<td>6.77-FT D₀ HEMISFLO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>2</td>
<td>△</td>
<td>5.54-FT D₀ HEMISFLO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>2</td>
<td>△</td>
<td>6.06-FT D₀ RIBBON HYPERFLO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>2</td>
<td>△</td>
<td>3.69-FT D₀ RIBBON HYPERFLO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>3</td>
<td>○</td>
<td>0.80-FT D₀ STANDARD FLAT</td>
<td>4.30</td>
<td>1.29</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>3</td>
<td>○</td>
<td>1.00-FT D₀ CONICAL RIBBON</td>
<td>8.92</td>
<td>3.22</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>3</td>
<td>○</td>
<td>4.12-FT D₀ HEMISFLO</td>
<td>8.00</td>
<td>2.81</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5 - Coefficient of Drag vs Mach Number

Type Test:
1 - FREE FLIGHT
2 - TRACK
3 - WIND TUNNEL
During the review of the small-scale parachute wind-tunnel tests, the higher-porosity parachutes tested between Mach 1 and 2 had both good coning stability and good inflation stability, while low-porosity parachutes generally had good inflation stability but poor coning stability.

As soon as the local flow into the canopy becomes supersonic, the influence of the amount of geometric porosity (and other factors) on the performance is amplified, since a system of unsteady shock waves results when little or no mass air flow is allowed through the canopy. Under this condition of very low porosity, good inflation and high drag might be obtained, except that the canopy experiences adverse coning oscillation since the low-porosity canopies have basically unstable static-moment derivatives. This coning is considered adverse, because the cyclic breathing that is already present due to the cyclic "source" (high-pressure outer-wake air) and "sink" (low-pressure inner-wake air) phenomenon is amplified by spillage of the canopy captured air.

On the other hand, canopies with higher values of geometric porosity (between 20 and 30 percent) have improved stability characteristics but lower drag-producing characteristics. In this situation a system of more stable shock waves exists. It is further noted, however, that this lower restriction of mass flow will result eventually in the bow shock being attached to the canopy lip with increasing Mach number operation and subsequently being swallowed in the canopy. This shock attachment and swallowing causes the inflated canopy to assume a shape resembling that of a reefed parachute. The drag characteristics are then reduced substantially. Hence, there is a basic mismatch of a number of aerodynamic parameters.

In the specific parachute performance tests documented in Figure 5, some of the above general performance tendencies did occur. It is important to note, however, from the tabular model description and test condition data accompanying the plotted performance data that a straightforward evaluation of the meaning of the steady-state drag variation cannot or should not
be made. This is because (1) the different size parachutes were towed at different locations in the payload wake and (2) the structural integrity of the model, performing for various lengths of time prior to obtaining measured data, was uncertain.

The parachutes (hemisflo and Hyperflo) had extended skirts coned less than the standard flat and conical chutes; since their geometric porosities were less than those of the standard flat and conical ribbon parachutes, their drag-producing characteristics were higher and remained higher at higher Mach numbers.

Figures 6 and 7 present supersonic wind-tunnel data, the test conditions of which are presented in Table XI, for the larger parachutes (2.72 to 5.5 ft in diameter, \(D_0 \)) when the amount of canopy choking was known and recorded. The configurations tested (specifically designed for supersonic velocity) were the Parasonic and the Hyperflo-type canopies. Table XI presents the test conditions and the type parachute for each data point shown in Figures 6 and 7.

Figure 6 shows the model choking ratio versus the Mach number at which the model was tested; the theoretical isentropic \((A/A^*) \) area ratio for increasing supersonic Mach numbers is superimposed. Figure 7 presents the supersonic drag coefficient versus \(A_i/A_e \) (canopy inlet area over canopy exit area) of the models tested. There was an apparent trend that the \(C_D \)'s (coefficients of drag) were larger values when the \(A_i/A_e \) was greater than the isentropic \(A/A^* \); when the \(A_i/A_e \) was less than \(A/A^* \), the \(C_D \)'s were smaller values - that is, the parachute did not take a full-inflated design shape. Figure 6 shows that, to meet the requirement that a parachute have choking greater than its isentropic area ratio, the design of a given parachute for operation at higher Mach numbers would require a decreased porosity. At Mach 5,
Figure 6 - Area Ratio vs Mach Number for Large Supersonic Parachutes
Figure 7 - C_D vs Area Ratio for Large Supersonic Parachutes
TABLE XI - FIGURES 6 AND 7 DATA POINT TEST CONDITIONS

<table>
<thead>
<tr>
<th>Data point</th>
<th>Reference number</th>
<th>q</th>
<th>x/d</th>
<th>D₀/d</th>
<th>Type model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>55</td>
<td>121</td>
<td>8.51</td>
<td>2.72</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>55</td>
<td>119</td>
<td>8.51</td>
<td>2.72</td>
<td>*</td>
</tr>
<tr>
<td>3</td>
<td>55</td>
<td>120</td>
<td>8.51</td>
<td>2.72</td>
<td>*</td>
</tr>
<tr>
<td>4</td>
<td>62</td>
<td>119</td>
<td>9.75</td>
<td>2.72</td>
<td>Parasonic</td>
</tr>
<tr>
<td>4'</td>
<td>62</td>
<td>120</td>
<td>9.75</td>
<td>2.72</td>
<td>Parasonic</td>
</tr>
<tr>
<td>4"</td>
<td>62</td>
<td>120</td>
<td>9.75</td>
<td>2.72</td>
<td>Parasonic</td>
</tr>
<tr>
<td>5</td>
<td>62</td>
<td>120</td>
<td>5.80</td>
<td>2.04</td>
<td>Parasonic</td>
</tr>
<tr>
<td>6</td>
<td>55</td>
<td>120</td>
<td>8.51</td>
<td>2.72</td>
<td>Hyperflo</td>
</tr>
<tr>
<td>7</td>
<td>73</td>
<td>119</td>
<td>8.51</td>
<td>2.72</td>
<td>Parasonic</td>
</tr>
<tr>
<td>8</td>
<td>62</td>
<td>120</td>
<td>9.75</td>
<td>2.72</td>
<td>Parasonic</td>
</tr>
<tr>
<td>9</td>
<td>55</td>
<td>121</td>
<td>7.16</td>
<td>2.72</td>
<td>Parasonic</td>
</tr>
<tr>
<td>10</td>
<td>55</td>
<td>121</td>
<td>8.51</td>
<td>2.72</td>
<td>Hyperflo</td>
</tr>
<tr>
<td>11</td>
<td>62</td>
<td>120</td>
<td>9.75</td>
<td>2.72</td>
<td>Parasonic</td>
</tr>
<tr>
<td>11'</td>
<td>62</td>
<td>120</td>
<td>9.75</td>
<td>2.72</td>
<td>Parasonic</td>
</tr>
<tr>
<td>12</td>
<td>73</td>
<td>120</td>
<td>8.51</td>
<td>3.70</td>
<td>Parasonic</td>
</tr>
</tbody>
</table>

* Exploratory mesh roof models.

for example, the canopy porosity would approach a solid canopy, which would probably develop stability problems when carried to a low Mach number.

Figure 8 presents \(C_{D_C} \) versus Mach number results for both small- and large-scale Hyperflo parachute wind-tunnel model tests. The plots are presented mainly to show the available documented data; a straightforward analysis of the meaning of the drag variation with Mach number cannot be made since design and performance parameters - such as the type of model (line length, canopy porosity), the type of model setup
Figure 8 - Wind-Tunnel Tested CD vs Mach Number for Hyperflo Parachutes

<table>
<thead>
<tr>
<th>REF NO.</th>
<th>WIND TUNNEL</th>
<th>SYMBOL</th>
<th>HYPERFLO CONFIGURATION</th>
<th>x/d</th>
<th>D/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>LRC</td>
<td>○</td>
<td>6-IN. D_c, MESH ROOF</td>
<td>7.00</td>
<td>2.52</td>
</tr>
<tr>
<td>63</td>
<td>LRC</td>
<td>△</td>
<td>6-IN. D_c, ANNULAR MESH ROOF</td>
<td>7.00</td>
<td>2.52</td>
</tr>
<tr>
<td>63</td>
<td>AEDC A</td>
<td>△</td>
<td>8-IN. D_c, MESH ROOF</td>
<td>9.20</td>
<td>2.15</td>
</tr>
<tr>
<td>63</td>
<td>AEDC A</td>
<td>□</td>
<td>8-IN. D_c, MESH ROOF w/2.5-IN. CAP</td>
<td>9.20</td>
<td>2.15</td>
</tr>
<tr>
<td>63</td>
<td>AEDC A</td>
<td>◇</td>
<td>9.4-IN. D_c, MESH ROOF</td>
<td>7.84</td>
<td>1.75</td>
</tr>
<tr>
<td>55</td>
<td>AEDC-PWT</td>
<td>◇</td>
<td>3.69-FT D_c, CONFIGURATION w/CAP, MESH ROOF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(towline length, use of a swivel), and the actual test conditions (dynamic pressure, Reynolds number) vary widely. From a review of the data, the following might be postulated:

1. High C_D's from Mach 1.5 to 2.0 occur because the local flow is subsonic.

2. Peaks in the C_D curves at Mach 3.6 to 4.4 occur because the dynamic pressures are minimum and hence the stiffness of the small models aids in keeping them in their fully inflated shapes.

However, to attribute the higher drag values to material stiffness only is probably not completely valid, since a low q (dynamic pressure) at a given Mach number results in a lower Reynolds number. A change in Reynolds number reflects a change in forebody wake and hence a change in the performance of the parachute. In addition, material fatigue causes deterioration in performance with time in the wind tunnel, and wind-tunnel tests at various temperatures affect performance. Not only does the Reynolds number change, but the material becomes stiffer; this added stiffness influences its inflated shape and hence its performance. Figure 9 gives the average drag results at various towline lengths during Mach 2 to Mach 2.6 wind-tunnel tests of a 4-ft diameter Supersonic Guide-Surface parachute. The plots also show the variation in drag readings, which is believed to be due to canopy breathing. Variation is reduced with increased x/d.

Figure 10 shows the C_D of the guide-surface parachute at three Mach numbers for a towline length that had the least amount of C_D variation. This variation varies between ± 7 to ± 16.5 percent of average value.

Not enough documented data on supersonic tests of solid extended skirt-type parachutes are available to make a data-correlation evaluation between wind tunnel tests and flight tests, since two of the three configurations have not been flight-tested. The only available supersonic flight-test data (above Mach 2) were for the "ribbon-roof" Hyperflo parachute; unfortunately, this parachute did not perform in a similar manner in a wind
Figure 9 - Guide-Surface Parachute C_{Dc} vs x/d
Figure 10 - Guide-Surface Parachute C_D vs Mach Number at One Towed Condition (with Minimum C_D Variation)
tunnel, as evidenced by extremely heavy canopy breathing and the resulting very low drag coefficients in all tests. The "mesh-roof" Hyperflo wind-tunnel tests were more successful than those of the ribbon-roof parachute; however, because of structural failures of the mesh roof during flight tests, no significant flight-test data were available for data correlation. Therefore, the lack of parachute flight-test data must be considered a major void.

Based on available data with respect to porosity conditions (A_i/A_e), no one parachute apparently can be designed to operate successfully over a wide range of supersonic Mach numbers. In addition the amount of breathing that can be tolerated for successful operation remains a void.

c. Steady-State Drag of Towed Nonporous Decelerators

Ballute decelerator representative supersonic drag data are presented in Figure 11. The data are for the largest decelerators tested. Part of the data shows the variation in drag obtained while decelerating during a flight test. Another part shows the drag obtained at the highest Mach number during deceleration in a track test. The remaining data show the drag obtained in wind-tunnel tests during a number of constant Mach-number runs. In summary, the meaning of these data is as follows:

1. A drag coefficient above 1 can be obtained between Mach 1 and Mach 2.

2. At a given set of design conditions, a conventional 10 percent fence model can obtain a drag coefficient from 0.8 to 1.2 between Mach 2 and 3.

The most significant fact concerning the performance results of the Figure 11 data is that the drag coefficient values remain high as the Mach number is increased to 2.5 and higher. This is because the isotensoid design (1) essentially does not change shape, (2) is free of coning instability, and (3) experiences little or no "canopy breathing" as the Mach
Type Test

1 - Track
2 - Wind Tunnel
3 - Free Flight

Note:

All C_D's are based on ballute equator diameter without fence. Fence height (percent) equals height of fence divided by ballute equator diameter $\times 100$.

<table>
<thead>
<tr>
<th>REF NO.</th>
<th>TYPE TEST</th>
<th>SYMBOL</th>
<th>CONFIGURATION</th>
<th>M. DEPLOY</th>
<th>FENCE HEIGHT (PERCENT)</th>
<th>x/d</th>
<th>D/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>1</td>
<td>□</td>
<td>3.75-FT DIAM 80-DEG BALLUTE</td>
<td>...</td>
<td>10</td>
<td>7.2</td>
<td>3.00</td>
</tr>
<tr>
<td>39</td>
<td>2</td>
<td>◇</td>
<td>4-FT DIAM GEMINI BALLUTE</td>
<td>...</td>
<td>10</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>44</td>
<td>3</td>
<td>○</td>
<td>5-FT DIAM ADDPEP TB-1B</td>
<td>2.17</td>
<td>10</td>
<td>7.0</td>
<td>3.40</td>
</tr>
<tr>
<td>47</td>
<td>2</td>
<td>□</td>
<td>3-FT DIAM GEMINI BALLUTE</td>
<td>...</td>
<td>10</td>
<td>3.0</td>
<td>2.04</td>
</tr>
<tr>
<td>43</td>
<td>3</td>
<td>△</td>
<td>5-FT DIAM ADDPEP TB-2</td>
<td>3.25</td>
<td>0</td>
<td>7.0</td>
<td>3.40</td>
</tr>
<tr>
<td>41</td>
<td>2</td>
<td>▴</td>
<td>5-FT DIAM ADDPEP TB-3</td>
<td>NONE</td>
<td>10.2</td>
<td>3.40</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>2</td>
<td>△</td>
<td>4-FT DIAM GEMINI BALLUTE</td>
<td>...</td>
<td>10</td>
<td>6.0</td>
<td>1.23</td>
</tr>
<tr>
<td>38</td>
<td>2</td>
<td>△</td>
<td>22-IN. DIAM ALARR BALLUTE</td>
<td>...</td>
<td>10</td>
<td>6.0</td>
<td>1.23</td>
</tr>
</tbody>
</table>

Figure 11 - C_D vs Mach Number for Large-Size Ballutes

-48-
number approaches Mach 2.5 or higher and with the subsequent attachment of the main bow shock to the decelerator.

The plots are presented primarily to show the available documented data and to give a brief description of their meaning. Here again, as with the parachute data, a straightforward analysis of the drag variation at a given Mach number cannot be made, since design and performance parameters such as type of model (with various fence sizes and locations), various towline lengths, and the actual test conditions vary widely. Other reasons for drag variation are that Reference 42 data present drag results behind an unsymmetrical sled, and Reference 38 data present drag results behind an unsymmetrical lifting body. It is concluded, therefore, that additional study or testing, or both, will be required to define more completely the effects of the various performance parameters.

However, based on the present available small-size wind tunnel model data presented in Figure 12, a partial description of how some of the parameters affect the supersonic and hypersonic performances can be given as follows:

1. The C_D level (see Reference 49) in free stream between Mach 1.5 and Mach 2.5 varies between 1.3 and 1.35. (These results give useful control-type data and, coupled with the towed decelerator data, indicate payload wake effects that lower the C_D values of an 80 deg Ballute to between 0.8 and 1.0.)

2. Theoretical 70-deg and 80-deg apex angle cone-wave drag values are superimposed on the experimental data to show the general drag trend with increasing Mach number. (The general trend of all data can be seen. Note the rapid decay from Mach 1 to Mach 3 - the upper side of the transonic hump - where the detached bow wave becomes an attached and more oblique shock wave with increasing Mach number.)
Figure 12 - C_D vs Mach Number for Small-Scale Wind-Tunnel Test Balloons
3. Data point 4 shows the C_D of the flexible, coated, metal-cloth, 80-deg Ballute without a burble fence to be 0.62 at Mach 10.

Since no explanation of the reverse trend (increasing C_D with increasing Mach number) of the C_D of data groups 5 and 6 is known, this should be a void area for further consideration. Furthermore, the reason for the wide dispersion of the drag values of the (group 5) 60-deg Ballute is not clearly understood. It was clear that at a given Mach number a low q value resulted in higher C_D's than at a high q. This would suggest a shape change, which is supported by the fact that this particular decelerator configuration was not an isotensoid design. While the experimental data obtained to date utilizing Ballute decelerators have been the most extensive, there are still voids in the available data. These voids consist of not completely understanding the effects of varying forebody diameter ratios, of varying towline lengths, and of varying apex angle and fence size (for optimization) over a range of Mach numbers and Reynolds numbers.

Figures 13 through 20 from References 2, 3, 26, and 27 present representative results of wind-tunnel drag tests of basic blunt-body geometric shaped decelerators. This type of data is extremely useful since it is generally for basic shapes (cone and sphere), and other experimental data and analytical work are available to aid in an aerodynamic evaluation. Because of the rigidity and stability of these basic shapes, real steady-state flow conditions exist; therefore, more constant and valid drag level measurements can be obtained. (Validity, here, means that these drag data can be used with a higher level of confidence in evaluating the type of flow that did occur for a given set of test conditions, since such varying parameters as model change in shape or model instability are not present to complicate further an already complex flow pattern.)

Figure 13 shows C_D variation with Mach numbers at various towline lengths.
for the same 4.88-in. diameter, 80-deg apex angle cone behind two differently shaped forebodies. Based on drag values in Figure 13B, Schlieren photographs, and NACA 1135 flow tables, the following postulation is presented as an example of how the local flow affects decelerator performance:

1. The general C_D decrease (at any of the three towline lengths) with increasing Mach number between Mach 2 and Mach 3.5 occurs primarily because the decelerator bow shock becomes attached and more oblique as the Mach number increases. The net result is a lower pressure rise across the shock and hence lower C_D values.

2. At a given Mach number between 2 and 3.5, the C_D's increase with increasing towline length. This can be explained since (1) the cone is positioned in the far wake (from 8D to 12D); (2) the inner viscous core has the same diameter moving aft; and (3) the inner wake is gradually mixing with the outer wake, the farther aft the decelerator is positioned (the closer to free stream conditions exist), the higher the C_D.

3. The general level of drag values in Figure 13 was approximately the same; even though the payload size and shapes were different, the x/d and D/d's were different. The D/d in Curve B was more than twice the D/d of Curve A. An anticipated higher C_D riser with increasing D/d did not occur. However, the physical distance aft of the payload was approximately the same, and the size and shape of the decelerator were identical in each case, which suggests a wake change with payload shape change.
Figure 13 - C_D vs Mach Number for 80-Deg Cone
NOTE

The 8D to 12D location is defined as the "far wake," since at this Mach number range (2 to 3.5), the near wake is between 3D and 5D, which is the portion of the wake immediately aft of the neck and trailing shock location. To complete the definition of the longitudinal wake regions, the base-flow portion of the wake is defined as that region ahead of the trailing shock (in this case, between 0 and 3D aft of the forebody).

Above Mach 3.5, a reverse trend in C_D variation with Mach number and x/d occurs. In fact, at Mach 4.2 and at an x/d of 8, the C_D of 1.0 is obtained, which is the same as the drag of an 80-deg cone in free stream. From a review of the Schlieren movies, the increasing drag with increasing Mach number can be attributed to the following:

1. As the main decelerator bow shock moves aft, the higher local pressure immediately aft of the shock is nearer the cone sides; hence, the higher C_D values are obtained.

2. Boundary layer thickness increases with increasing Mach number; this implies lower local velocities along the cone sides, resulting in higher local pressures and hence increased C_D values. (A quantitative discussion of the boundary layer thickness is not possible because of the complexity of the forebody wake flow that affects decelerator performance. However, qualitatively the combined effects at a high Mach number, which consist of (1) higher energy flow, (2) varying flow angles (which vary

-54-
local Reynolds and Mach numbers) and (3) complex shock-boundary layer interaction (which suggests turbulent boundary-layer conditions along the cone sides) result in higher \(C_D \) values.

The lower \(C_D \) values with increasing towline length above 8D at Mach numbers above 3.5 can be attributed to the divergence of the inner viscous core aft of the near wake region. Although mixing of the inner and outer wake tends to increase the local pressures moving aft, the final result is a decrease in local pressure. One explanation for the lowering of the energy level moving aft is the effect of the core diameter squared. Hence, the transverse growth \(\pi(y)^2 \) of the inner core (with the resulting decreasing local pressures) is a squared function compared to the linear increase in longitudinal position aft (x) - resulting in increasing pressure and the subsequent mixing of the inner and outer wake.

Figure 14 shows the effect of towline length on the \(C_D \) for a greater range of \(x/d \)'s. The sharp drop in the \(C_D \) (see Figure 14) at \(x/d \)'s less than 4 is due to the divergence of the base-flow portion of the forebody wake because of the presence of the decelerator near the forebody. A \(C_D = 0.6 \) is obtained as close as an \(x/d \) of only 1. This was because the diameter of the decelerator was almost three times the diameter of the forebody base, causing the flow over the forebody and decelerator to be approximately the same as a single forebody-flare combination. Unfortunately, since the experimental data in Figures 13 and 14 are limited to one size of rigid cone, experimental data on the effect of size is a void that will require future work. In spite of the data shortage, a review of Figures 13 and 14 reveals that when the diameter ratio is small and the towline length
Figure 14 - C_D vs x/d for 80-Deg Rigid Cone
is short the drag drops off as wake effects of the reverse flow regions appear. Anticipated higher C_D's with larger diameter ratios did not occur consistently, which substantiates the need for more experimental testing.

Figure 15 presents available C_D versus Mach-number data for various half-angle cones in the free stream. These wind-tunnel drag results represent only the nose-pressure portion of the total drag. Superimposed on this figure are the C_D levels obtained from the Newtonian flow theory. These experimental data clearly show the amount of increase in C_D with increasing apex-angle geometry. Here again, the void of data above Mach 5 is evident. Comparing this data with total drag values clearly reveals that the major portion of the total drag is obtained from bow-wave nose drag during operation above Mach 1.

In addition to their academic value, these basic cone data can be used to evaluate the performance of various decelerator concepts (see Table I) as follows:

1. To forecast the performance of the basic single body attached system
2. To serve as "control" data for towed cones

Figure 16 presents additional C_D data similar to the Figure 15 free-stream cone data, with the added parameter of spherical nose-bluntness variation. The data show the nose radius of between 1/2 and 1.0 of that of the cone base radius. The variation in C_D with nose bluntness is negligible.

One of the obvious uses of these data is to exploit a more rounded decelerator to lower the aerodynamic heating level at a minimum expense of aerodynamic drag and stability. With the exception of a few points of data at Mach 9, the void of hypersonic data in Figure 16 is evident.

Figures 17 and 18 present towed sphere drag data similar to the Figure 13 towed cone data for 8- and 4-in.-diameter spheres. Figures 19 and 20 show the increase in C_D with increasing sphere size versus Mach number.
Figure 15 - Free-Stream Cone Data vs Mach Number
Figure 16 - Axial Nose Drag Coefficient vs Mach Number

MACH NUMBER

R/\(r_b\)
- 0.50 △
- 0.75 □
- 1.00 ○

\(\theta_s = 60\) DEG

- R/\(r_b\) = 0.5, 0.75
- R/\(r_b\) = 1.0

SOURCE-REF 3

GER-12616
Figure 17 - Sphere C_D vs Mach Number (8-In. Model)
Figure 18 - Sphere C_D vs Mach Number (4-In. Model)
Figure 19 - C_D vs Mach Number for Sphere behind Flared Body
<table>
<thead>
<tr>
<th>TYPE TEST</th>
<th>SYMBOL</th>
<th>MODEL CONFIGURATION</th>
<th>x/d</th>
<th>D/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>○</td>
<td>4-IN. DIAM SPHERE, 3.9 PERCENT FENCE</td>
<td>6</td>
<td>1.69</td>
</tr>
<tr>
<td>WT</td>
<td>△</td>
<td>6-IN. DIAM SPHERE, 3.9 PERCENT FENCE</td>
<td>6</td>
<td>2.53</td>
</tr>
<tr>
<td>WT</td>
<td>△</td>
<td>8-IN. DIAM SPHERE, 3.9 PERCENT FENCE</td>
<td>6</td>
<td>3.37</td>
</tr>
</tbody>
</table>

Figure 20 - C_D vs Mach Number for Sphere behind Cylindrical Body
at an x/d of 6. In each figure the expected increase in C_D with increasing D/d did occur. However, the similar C_D levels in each figure, in spite of Figure 20 D/d values being over twice the Figure 19 values, suggest the payload shape also affects the drag-producing capabilities of a given decelerator (see Figure 13). Here again, more detailed work is required on a number of payload and decelerator shapes (cones, spheres, Ballutes) to understand fully how these parameters affect performance.

Figure 21 presents C_D versus Mach-number data for a free-stream sphere. These results were obtained in ballistic-range tests reported in Reference 30, which are in good agreement with wind-tunnel tests reported in Reference 10. The free-stream C_D level in Figure 21 is higher than the towed-sphere C_D level given in Figures 17 through 20.

Figure 22 presents the only C_D data found from the survey of experiments above Mach 10. These super-hyper free-stream sphere drag data were obtained during wind-tunnel tests between Mach 11 and Mach 65. Tests at increasing Mach numbers showed increasing C_D in the transition regime.
Figure 22 - Correlation of Sphere Drag Coefficients

- AIR (9000 DEG K)
- AIR (2500 DEG K)
- HELIUM
- THEORY (EQ 7)

- HYPersonic and Higher
- Continuum Flow
 - Supersonic and Hypersonic
- Transition
- Free Molecular Flow

SOURCE-REF 30
between continuum flow and free molecular flow. The C_D value of more than twice that of a sphere below Mach 10 is significant. This phenomenon should be exploited, not only to forecast a more accurate re-entry trajectory but also to show either a weight saving due to a smaller-size decelerator or improved performance for the same size.

d. Attached Nonporous Decelerators

Figure 23 presents available hypersonic C_D data versus flare angle from wind-tunnel tests of a basic flared-skirt decelerator configuration. The significance of these data can be summarized as follows:

![Figure 23 - C_D vs θ_s for Flared Body](image)
1. It is for a decelerator configuration that has a large base diameter in relation to the payload diameter, which is directly applicable for high drag and stable re-entry and recovery.

2. It can be considered to apply for a zero towline-length decelerator.

The available data found in this survey of the flared-skirt configuration are limited to Mach 8 and to aerodynamic models. Since these data are limited to only one Mach number, three flare angles, and two forebody sizes, additional effort clearly is required over a wider range of flight conditions and configuration sizes.

e. Transient and Fluctuating Loads

Compared with the data presented in Figures 5 through 23, considerably less supersonic experimental data are available to document transient loads during decelerator deployment. This data void can be attributed to a basic lack of understanding of the dynamics of the system as well as to instrumentation limitations. In the past few years, the operation of test facilities has improved because of new equipment and improved operating procedures. Table XI presents data for representative porous and nonporous decelerator transient loads during deployment, inflation loads, and the fluctuating loads after decelerator inflation. The data in Table XI were limited to results of decelerator tests that were representative and performed satisfactorily. Results considered unsatisfactory were those for tests in which the models failed before data could be obtained or the measured oscillating-load variation was near or more than 100 percent of the mean load.

All tests used a tensiometer, located in the riser line between the payload and the towed decelerator, to measure the instantaneous transient and steady-state loads. In each of the 15 tests shown in Table XII, the decelerator was forcibly deployed from its stowed position in a payload by either a pyrotechnic or a spring-thrusting mechanism. For such tests,
the stowed decelerator is held in its packed condition in a deployment bag as it moves aft to the "line-stretch" condition. At this time, the "snatch load" occurs as the fully extended riser line causes the decelerator to slow down to the speed of the payload; the deployment bag is released from the decelerator, and the decelerator being to inflate. Usually at the instant of full inflation, the opening-shock load occurs. If the system operates as designed, the opening-shock load is the peak load that decelerator feels during its operating life. Since this opening-shock load must be known so that structural strength can be designed into a decelerator system, the lack of this type of experimental data is a major void in the state of the art of decelerators.

Table XI shows that the peak load during deployment was the opening-shock inflation load in all but two tests. Of these exceptions (test items 6 and 10), line-first deployment did not occur since the deployment bag inadvertently was released from the decelerator and the decelerator began to inflate before line stretch occurred. This resulted in loads due to snatch that were higher than the opening shock loads.

The significant results of the Table XII test data can be summarized as follows:

1. The Ballutes are essentially free of breathing and coning.
2. The parachutes experience breathing and coning.
3. The decelerators that had longer filling times experienced lower opening-shock loads.
4. Data are available that demonstrate successful deployment and inflation of both textile and metal cloth models.

Wind-tunnel test examples of the levels of parachute and Ballute breathing and coning or the lack of it are given in Figures 24 through 27. Figures 24 and 25 present data obtained with two types of recording equipment.
TABLE XII - DECELERATOR TEST RESULTS

<table>
<thead>
<tr>
<th>Model and test condition</th>
<th>Transient opening conditions</th>
<th>Opening load</th>
<th>Steady-state loads</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Snatch load</td>
<td>Type of reading</td>
<td>Shock factor</td>
</tr>
<tr>
<td>Hyperflo, 4-ft D<sub>0</sub></td>
<td>WT 2.6</td>
<td>120.4</td>
<td>Oscillograph</td>
</tr>
<tr>
<td>Hyperflo, 4-ft D<sub>0</sub></td>
<td>WT 2.6</td>
<td>120.6</td>
<td>Oscillograph</td>
</tr>
<tr>
<td>Hyperflo, 4-ft D<sub>0</sub></td>
<td>WT 2.5</td>
<td>119.7</td>
<td>Oscillograph</td>
</tr>
<tr>
<td>Gemini Ballute, 3-ft diam</td>
<td>WT 2.6</td>
<td>120.0</td>
<td>Oscillograph</td>
</tr>
<tr>
<td>Hyperflo, 2.72-ft D<sub>0</sub></td>
<td>WT 2.6</td>
<td>120.0</td>
<td>Oscillograph</td>
</tr>
<tr>
<td>Hyperflo, 3.69 D<sub>0</sub></td>
<td>WT 2.2</td>
<td>249.0</td>
<td>Oscillograph</td>
</tr>
<tr>
<td>Gemini Ballute, 3-ft diam</td>
<td>WT 2.59</td>
<td>120.7</td>
<td>Oscillograph</td>
</tr>
<tr>
<td>Parasonic, 4-ft D<sub>0</sub></td>
<td>WT 2.2</td>
<td>120.0</td>
<td>Beckman</td>
</tr>
<tr>
<td>Parasonic, 4-ft D<sub>0</sub></td>
<td>WT 2.6</td>
<td>120.0</td>
<td>Beckman</td>
</tr>
<tr>
<td>Parasonic, 4-ft D<sub>0</sub></td>
<td>WT 2.6</td>
<td>120.1</td>
<td>Beckman</td>
</tr>
<tr>
<td>ADDPEP, Ballute, 5-ft diam</td>
<td>WT 3.01</td>
<td>120.5</td>
<td>Oscillograph</td>
</tr>
<tr>
<td>ADDPEP, Ballute, 5-ft diam</td>
<td>FF</td>
<td>1200</td>
<td>Telemetry</td>
</tr>
<tr>
<td>Hemisflo, 4.12 D<sub>0</sub></td>
<td>FFT 3.42</td>
<td>140.0</td>
<td>. . .</td>
</tr>
<tr>
<td>Parasonic, 5.5 D<sub>0</sub></td>
<td>WT</td>
<td>2.8</td>
<td>Oscillograph</td>
</tr>
</tbody>
</table>

*Types of test: FF = free flight; WT = wind tunnel.

1 Filling time accelerated by alcohol and water vapor.
Figure 24 - 5.5-Ft D₀ Parasonic (Oscillograph - Instantaneous Load vs Time); See Table XI, Item 14

Figure 24 data was obtained with an oscillograph record and Figure 25 data obtained with a Beckman instrument. Beckman instruments are more accurate for measuring near instantaneous load values than the oscillograph. However, the Beckman records data for very short periods. The oscillograph can record the data continuously and also indicate such sequences as deployment initiation and movie camera start. The oscillograph record also can be read immediately after it records, while the Beckman data must be reduced. This data reduction takes hours.

These traces of the actual records indicate the degree canopy breathing (amplitude and frequency). In addition, the high peaks that occur every 0.2 sec indicate the relative degree (amplitude) of coning. This data is supposedly "steady-state" data. Figure 26 presents Beckman results of a 4-ft D₀ Hyperflo.
Figure 25 - 5.5-ft D_o Parasonic (Instantaneous C_{D_o} vs Time); See Table XI, Item 14

Figure 26 - 4-ft D_o Hyperflo (Instantaneous C_{D_o} vs Time); See Table XI, Item 9
Figure 27 also presents a trace of the actual oscillograph record of Ballute test loading variation encountered. Note the relatively smooth trace after model inflation indicating negligible breathing and coning. After model inflation, the relatively smooth trace is under a steady-state condition.

5. AERODYNAMIC STABILITY

a. General

For the purpose of determining stability, aerodynamic decelerators can be broadly classified into two categories. The first category includes those that are attached to the payload, the second includes those that are towed behind the payload. For an attached decelerator (flares, extended flaps, etc.), the current airplane-type static and dynamic coefficients are adequate for determining stability; however, these coefficients do
not appear adequate for a towed decelerator, because of the complex flow field that it separates and the towline influence.

b. **Attached Decelerator System**

Goodyear Aerospace's survey determined that there is no documented, quantitative, experimental dynamic-stability data available for any concept shown in Figure 3. The only stability data found were static stability data for a cone or flared skirt.

Extensive wind-tunnel tests have been run on flared bodies; however, most of the data from these tests are applicable only to flares with small flare angles, which are intended to be used to stabilize re-entry bodies and missiles. Most of these experimental data were considered unrelated to flared skirts used as decelerators. Only three wind-tunnel tests (see References 51, 52, and 53) present data for flares of sufficiently large flare angles and frontal area.

Reference 52 shows that static stability is reduced with flare-angle increase and that stability rises with forebody-length increase, as flare-to-forebody frontal area is held constant.

Reference 51 shows that static stability is reduced as flare angle increases, with flare length held constant, for both conical and hemispheric nose forebodies; stability is increased with forebody elongation and flare-angle increase, as flare length is held constant.

Apparently, there is a complete void in experimental dynamic stability data of flared bodies.

c. **Towed Decelerator System**

Information previously has been limited to visual observations of decelerators under towed conditions. The only data available to date on devices that might be considered towed decelerators are dynamic and static coefficients of these devices sting mounted under free-stream conditions (see Figures 28 and 29).
Static stability variation with Mach number for cone semiaxial angles from 20 deg to 50 deg is shown in Figures 28 and 29. These curves are based completely on experimental data at small angles of attack from References 2, 4, 5, 6, 11, 12, and 74 through 77. $C_{N\alpha}$ is shown to be positive and increases with the cone half angle; the static center of pressure moves rearward, indicating that cones with large apex angles are very stable statically. The distance from the cone apex to the static center of pressure from Newtonian theory (see References 11 and 74) is

$$X_{cp} = \frac{2}{3} (1 + \tan^2 \theta_s) L,$$

where L is the cone length.

The damping capability of either a ballistic or lifting vehicle is greatly affected by $C_{L\alpha}$, which is important to the damping of the longitudinal short-period mode (see Reference 5). Both theory and experiment show that, as cones become shorter (high θ_s), the lift-curve slope decreases until it reaches zero at $\theta_s = 45$ deg. At higher semiaxial angles, $C_{L\alpha}$ is negative.

Although stability is well defined statically, little is known from dynamic-stability tests. References 4, 74, and 77 present damping characteristics for cones at very low speeds and at Mach 6.8 (hypersonic).

Reference 74 presents results of comprehensive stability wind-tunnel tests on a cone of $\theta_s = 12.5$ deg at Mach 6.8 and the damping moment coefficient derivative transfer equation

$$(C_{Mq} + C_{M\alpha})_{\alpha_1} = (C_{Mq} + C_{M\alpha})_{\alpha_2} + (C_{Nq} + C_{N\alpha})_{\alpha_2} \frac{X_{1-2}}{L} - C_{M} \alpha_2 \frac{X_{1-2}}{L} - C_{N} \alpha_2 \frac{X_{1-2}}{L}$$

where subscript 1 refers to the longitudinal position about which the damping coefficient derivative is desired, subscript 2 refers to the longitudinal position about which all of the above coefficient derivatives are known, and subscript 1-2 refers to the longitudinal distance between the respective points.
Where

\[C_M = \text{pitching moment coefficient, } M/\dot{q}\infty Sd \]
\[C_{Mq} = \frac{\partial C_M}{\partial \left(\frac{2V}{\dot{q}d} \right)} \]
\[C_{Ma} = \frac{\partial C_M}{\partial \dot{\alpha}} \]
\[C_{Ma} = \frac{\partial C_M}{\partial \dot{\alpha}} \]
\[C_N = \text{force coefficient normal to body axis, } N/\dot{q}\infty S \]
\[C_{Nq} = \frac{\partial C_N}{\partial \left(\frac{2V}{\dot{q}d} \right)} \]
\[C_{Na} = \frac{\partial C_N}{\partial \dot{\alpha}} \]
\[C_{Na} = \frac{\partial C_N}{\partial \dot{\alpha}} \]

\[X = \text{longitudinal distance} \]
\[l = \text{body length and/or reference length} \]
\[q = \text{pitch rate} \]
\[q\infty = \text{free-stream dynamic pressure} \]
\[V = \text{velocity} \]
\[S = \text{projected area (} \pi/4 \text{ } d^2) \]
\[d = \text{reference diameter} \]

Three sets of data were taken about three different centers of moment. Since data from two centers of moment are required, this test provides three sets of moment data for equation (2) for transferring \(C_{Mq} + C_{Ma} \) to any other moment center. These were used to make a triple check of \(C_{Mq} + C_{Ma} \) about the cone base. Correlation was very poor and is not presented here. Either small errors in the test data are magnified by the transfer equation (2) or, as is suspected, the equation is incorrect for large moment-transfer distances because of the assumption that \(C_{Nq} \) is invariant with moment center. A
Figure 28 - C_N vs Mach Number for Cones
Figure 29 - cp vs Mach Number for Cones
brief attempt to verify this latter suspicion failed. The test data derivatives from Reference 5 and the Newtonian expressions for C_{Nq} and C_{Na} from Reference 11 were used to calculate three values for $C_{Mq} + C_{Ma}$ about the base. Correlation was poor.

Reference 11 is a collection of various theories for estimating static- and dynamic-stability derivatives of simple axisymmetric bodies. Potential flow theory, first-order and/or second-order linear theory, slender-body theory, and Newtonian impact theory were all used to determine the stability derivatives.

The cone free-stream static- and dynamic-stability data presented are not representative when the decelerator is trailing the payload and is operating in the flow regime that is generally classified as a wake. The decelerator, being placed in this flow regime, becomes an object of its environment and at the same time by its physical presence influences this very regime. Qualitative and quantitative properties of this regime will completely define the performance and subsequently the design of a decelerator if it is immersed in the flow downstream of the payload. Tests have indicated, for example, that when a towed cone has an apex angle of more than 90 deg, it becomes unstable.

d. Wake Effect on the Decelerator

Essentially, the problem of determining the interaction effects between the wake and a decelerator immersed within it would be no different from any problem of a body immersed in a flow, provided the flow properties are known. Unfortunately, this is not the case, since the wake flow has specific complicated properties. In addition, the proximity to the body creating the wake, plus the fact that the body and decelerator are connected by means that are subject to the laws of rigid mechanics, introduces complexities that require sophisticated and rigorous analysis.

As previously indicated, lack of experimental data make it impossible to verify theoretical wake models by experiment. Thus, the interaction can
at best be described in hypothetical terms. If interaction is approached by the principle of the momentum defect, and the initial conditions at the forebody base are known, it can be postulated that the growth of the wake depends on the skin friction of connector and riser lines.

In accordance with Prandtl's concept of viscous flow, and assuming that local acceleration in the inner wake is more pronounced than acceleration due to an external pressure gradient, the momentum integral equation can be expressed by (see Reference 78)

\[\rho_1 u_1^2 \pi \theta_1^2 = 2\pi \int_{\sigma} \rho u(u_1 - u) r dr \]

\[= C_x, \]

where

\[\rho = \text{air density}, \]
\[\theta_1 = \text{momentum thickness}, \]
\[\sigma = \text{wake thickness}, \]
\[r = \text{radial coordinate}, \]
\[u = \text{velocity in } x \text{ direction}, \]
\[C_x = \text{constant with respect to } x, \text{ and} \]
\[l = \text{wake edge location}. \]

To satisfy the conservation of momentum:

\[\rho B u_B^2 (\pi \theta_B^2 d_B) = \rho_1 u_1^2 (\pi \theta_1^2), \]

where \(B \) equals conditions at the base, and \(d \) equals the body diameter.

If the above postulate is true, a particular decelerator configuration and a particular forebody will exhibit only slight variations in drag coefficient at certain \(x/d \) locations and a constant Mach number. If Figure 30 is considered representative, this concept is apparently valid for
Figure 30 - Drag vs x/d, Hyperflo Model 1 behind Forebody Type I
\[2 \leq M_\infty \leq 4 \]

at

\[7 \leq \frac{x}{d} \leq 11, \]

and for

\[M_\infty = 5 \text{ to } 5.5, \]

at

\[\frac{x}{d} = 9 \text{ to } 11. \]

Figure 31 shows the \(C_D \) variation versus parachute downstream location \(x/d \) at three Mach numbers, due to the momentum "defect" influence of two different forebody shapes.

Figure 32 is representative drag data of another parachute model in a wake that is arranged to show the effects of Mach number on the \(C_D \) at two downstream decelerator locations.

In general, further and more detailed evaluations of the flow field, pressure distribution, etc., are clearly required. Specifically, evaluations of the fluid dynamics properties such as shock-wave/wake interaction, shock/boundary layer interaction (in the wake behind the payload and in front of the decelerator), and separated flow due to the presence of the riser line and attachments in the wake are required.

A detailed discussion of wake data found during the survey is given in Reference 80.

Because of the dynamic time-dependent properties of the forebody wake acting on the towed decelerator in this wake, current acceptable dynamic- and static-stability coefficients do not appear adequate to describe the motion of the decelerator. The only information on stability of towed decelerators is from visual observation of the degree of stability.
Figure 31 - Drag vs x/d, Hyperflo Model I behind Forebody Types I and II
References 27, 40, and 57 use relative descriptive terms such as excellent, good, fair, and poor. Since this type of reporting does not describe adequately the motions that define stability characteristics, more vigorous future test-condition criteria and test-reporting procedures are needed to acquire this necessary experimental information.

The following are examples of the motions that need to be described and have criteria applied to them:

1. Single-mode pendulum motion (rigid towline)
 a. Pitch-angle displacement and pitch rate about attachment point
 b. Roving-angle magnitude (pitch and yaw) and roving rate
 c. Roll angle and roll rate

2. Two-mode motion - combined inflation-shape change and single-pendulum mode (amplitude and frequency)

3. Multimode motion - superimposing flexible towline motion on Items 1 and 2, above
6. AEROTHERMODYNAMIC LOADING

a. General

The types of aerothermodynamic loading and some methods for estimating the heat load are described below.

In general, the use of a decelerator during re-entry or recovery of a system in the flight regime of interest requires a near-instantaneous deployment to augment the system drag characteristics. This deployment usually leads to the exposure of surfaces that are subjected to sudden aerodynamic heating, leading to an immediate buildup of the local heating rates with either (1) a rapid decay from the instantaneous maximum local heating rate or (2) a more gradual decay, depending on the type of device used and the altitude, velocity, and direction of motion at which deployment was initiated. The problem of defining these local heating rates is compounded because some of the more basic decelerators such as parachutes, Ballutes, and inflated skirts generate flow fields that are inherently characteristic of the device itself. Therefore, the determination of the local heating rates and the degree of temperature rise to determine material applicability become a function of the system operation and its deployment requirements, as well as the aerodynamics of the flow field.

The following suggested methods can be and have been used to calculate the local heating loads. For example, the heat-transfer characteristics of an inflatable skirt or flare can be evaluated if the type of flow over these can be predicted. For attached flow, heat-transfer rates for either laminar or turbulent flow can be calculated by using established heat-transfer theory; flat-plate heat-transfer equations using local flow conditions can be used. However, for separated flow, the calculation of the heat transfer rates becomes more complex. In the past, the data in References 52 and 81 have been used to estimate the heat-transfer characteristics for separated flow. When the decelerator is attached or forms an integral part of the re-entry or recovery system, the
prediction of the local heating rates consists of applying usually re-
liable heat-transfer theory to estimate heat transfer coefficient.

Other common types of decelerators are the parachute and, more re-
cently, the Ballute. These devices are usually deployed in the wake of a leading body. The prediction of the heating loads requires an understanding of the wake and its formation. The determination of the properties of the wake behind an object moving in a fluid medium is one of the oldest and most basic problems of fluid mechanics. Al-
though theoretical solutions exist for both laminar and turbulent in-
compressible wakes, the extension of these solutions to high Mach-
number compressible-wake phenomena has not been completely suc-
cessful. As a consequence, little attention has been given to the wake phenomena with regard to aerodynamic deployable decelerators trailing in the wake of a leading body.

Although considerable exploratory work has been performed and document-
ed dealing with the aerodynamic performance of decelerators trailing in the wake of a leading body and associated component per-
formance, such as in References 26, 27, 54, and 82, only limited ef-
fort has been initiated to evaluate the thermal limitations and perfor-
mance of such devices. The data contained in these reports were oriented primarily toward evaluating parachutes and balloon-type aero-
dynamic decelerators, with emphasis on drag characteristics. In particular, Reference 27 documents the initial effort devoted to both theoretical and experimental analysis of the heat-transfer character-
istics of a decelerator trailing in the wake of a leading body. This initial effort terminated with the compilation of a series of design curves (see Figures 33 through 36) that aided in determining heat-
flux-rate distribution over two different decelerator configurations and the corresponding radiation equilibrium-temperature distribution over these bodies. The design curves published in Reference 1 were based on a single experimentally determined heat-transfer distribution over
Figure 33 - Heat Flux and Temperature Distribution on a Sphere Laminar Flow
Figure 34 - Heat Flux and Temperature Distribution on a Sphere Turbulent Flow
Figure 35 - Laminar Heat Flux and Temperature Distribution on a Blunted Cone
Figure 36 - Turbulent Heat Flux and Temperature Distribution on a Blunted Cone
a Ballute body at Mach 10. Apparently, these curves can serve as preliminary design guides for use in recovery-system applications such as those considered in this study.

Additional flight-test data and theoretical approaches were outlined in Reference 80 with limited thermal correlation correspondence. The results of the latter were directed primarily toward decelerators operating in the supersonic flow regime. To gain a better understanding of wake formations and their effect on trailing decelerators, Goodyear Aerospace conducted an in-house study of supersonic wake phenomena associated with Ballute-type decelerators. These studies were primarily concerned with correlating the experimental Mach 10 wind-tunnel results with a theoretical approach of a more exact nature than that used in estimating the design curves shown in Figures 33 through 36. The results of these studies were published in References 83 and 84. In these studies, a simple model of a wake flow based on the interaction between the leading body and the trailing decelerator was formulated, and engineering methods were developed for predicting pressure and heat-transfer distribution over Ballute decelerator surfaces. Both laminar- and turbulent-flow wake phenomena were considered.

b. Equations

At present, the type of wake can be estimated by using the transition data formulated in Reference 85. For laminar flow, a generalized equation developed in Reference 83 for the ratio of the heat-transfer coefficient on a decelerator immersed in a wake to a heat-transfer coefficient for a cone without the presence of a leading body was derived as follows:
\[
\frac{h}{h_{\text{cone}}} = \left(\frac{P'}{P_\infty} \right)^{1/2} \left(\frac{r'}{D} \right)^{0.5} \sqrt{3} \frac{P_{\text{cone}}}{P_\infty}^{1/2} \left[\int_0^S \left(\frac{P'}{P_\infty} \right)^{1/2} \left(\frac{r'}{D} \right)^{2} d\left(\frac{S}{D} \right) \right]^{0.5}
\]

where

- \(h \) = heat transfer coefficient, Btu/hr-sq ft-deg F, or
- \(h_{\text{cone}} \) = equivalent cone heat transfer coefficient, Btu/hr-sq ft-deg F,
- \(c_p \) = specific heat of air (24 Btu/lb/deg)
- \(P' \) = local pressure, psf
- \(P_{\text{cone}} \) = equivalent cone pressure, psf,
- \(P_\infty \) = free-stream pressure, psf,
- \(r' \) = local radial coordinate, ft,
- \(S \) = local distance from apex, ft,
- \(S' \) = local distance along Ballute meridian surface from equator 'diameter, and
- \(D \) = decelerator diameter, ft.

This expression was found generally to be in good agreement with the only experimental data available - that contained in Reference 27. A typical correlation is shown in Figure 37.

The turbulent heat-transfer distribution over a Ballute-type decelerator immersed in the wake of a leading vehicle also was formulated in Reference 83 in a manner similar to that used for the laminar-flow case. The resulting generalized heat transfer coefficient equation was formulated as:

\[
h = \rho' u' c_p Pr^{-2/3} \left(\frac{C_f'}{2} \right) G(S) \left[G(S) \right]^{1/5}
\]

where
Figure 37 - Mach 10 Ballute Heat-Transfer Results
\[\rho' = \text{local density, pcf,} \]
\[u' = \text{local velocity, fps,} \]
\[c_p = \text{specific heat at constant pressure, Btu/lb-deg F,} \]
\[\Pr = \text{Prandtl number,} \]
\[C_f' = \text{local friction coefficient,} \]
\[(S) = \text{local form factor, dimensionless, and} \]
\[h = \text{heat transfer coefficient, Btu/sq ft-sec-deg F.} \]

The primes in this equation indicate that the properties of the flow must be evaluated at the decelerator surface or at the edge of the decelerator boundary layer.

Practically no experimental or flight-test data exist to compare with the theoretically derived expressions. Thus, this largely unexplored area suffers greatly from the lack of high-quality experimental data to verify the prediction methods described in References 83 and 84. However, the use of the developed expressions appears to be justifiable since the flight test data obtained thus far, although of an exploratory nature, have not indicated severe or underpredicted aerodynamic-heating problems.

The expected temperature rise of parachute decelerators in the high supersonic-speed regime is another situation that will require an exploration of the wake and its interaction with the flow field before a prediction can be made. The use of a porous roof, either of a fine mesh or ribbon construction, has presented a flow-prediction problem that has not been resolved in the parachute-design field. Since the individual components of such parachutes can be composed of materials of relatively low mass (and hence, low heat capacity), they are subjected to severe aerodynamic heating. The exploratory flight-test data presented in Reference 54 shows that surface temperatures
of 600 F and above may be encountered by textile materials at
medium altitudes at about Mach 4.

Analyzing the aerodynamic heating characteristics of parachute-
type trailing decelerators has up to the present time been based on
more intuitive principles than actual flow data. One procedure used
now is outlined in Reference 82. A short description of this proce-
dure follows. A schematic of a typical trailing-parachute decelera-
tor is shown in Figure 38. The trailing parachute is assumed to be
preceded by a bow-type shock at the inlet face, and constant stagna-
tion conditions, which are functions of the free-stream flow prop-
erties, are assumed to exist inside the canopy. The pressure ratio
across the roof panel also is assumed to be greater than critical so
the sonic flow exists in the many openings of the roof panel. Using
Bartz's equation for turbulent flow in a nozzle, the heat transfer co-
efficient in a typical orifice can be estimated using the following:

\[h = \left[\frac{0.026}{D_t} \left(\frac{0.2}{Pr} \right)^{0.2} \left(\frac{P_t g}{c^*} \right)^{0.8} \left(\frac{D_t}{r_e} \right)^{0.1} \right] \left(\frac{A^*}{A} \right)^{0.9} \]

(3)

where

- \(D_t \) = orifice throat diameter, ft,
- \(\mu_o \) = viscosity at total temperature, lb/ft-sec,
- \(c_p \) = specific heat, Btu/lb-deg F,
- \(Pr \) = Prandtl number,
- \(P_t \) = total pressure, psf,
- \(g \) = gravitational constant, 32.2 ft/sec²,
- \(c^* \) = characteristic orifice velocity, fps,
- \(r_e \) = radius of roof element, ft,
Figure 38 - Parachute Configuration

\[r_e = \frac{D_e}{2} \]
\[A^* = \text{orifice throat area, sq ft.} \]
\[A = \text{orifice station cross-sectional area, sq ft, and} \]
\[\sigma = \text{dimensionless factor accounting for density and viscosity variation in boundary layer.} \]

The heat transfer coefficient and heat flux rates can be estimated to determine the temperature rise in duration of the heating. Once the heat transfer coefficients have been estimated, the variation in the heat flux rate into the fabric as a function of deceleration time can be calculated using trajectory data for the particular application. In some cases where the decelerator material is of thin gage, it is sufficient to calculate the temperature rise rate using a heat sink type of heat balance such as:

\[
h(T_{aw} - T) = \dot{q} = \rho c \delta \left(\frac{\Delta T}{\Delta \tau} \right) + \epsilon \sigma T_w^4
\]

where

- \(h \) = heat transfer coefficient, Btu/hr-sq ft,
- \(T_{aw} \) = adiabatic wall temperature, deg F,
- \(T_w \) = material temperature, deg F,
- \(\tau \) = time,
- \(\rho \) = density of material, pcf,
- \(c \) = specific heat of material, Btu/lb-deg F,
- \(\delta \) = thickness, ft,
- \(\epsilon \) = emissivity,
- \(\sigma \) = Stefan-Boltzmann constant, and
- \(\dot{q} \) = heat flux rate, Btu/hr-sq ft.

In other cases where a generous amount of heating is applied to the load carrying material, it is necessary to use a transient heat conduction type of solution.
For such a case, the decelerator materials usually form a nonhomogeneous layer that can be classed as a poor conductor. It is then appropriate to consider the heating of this type of material based on transient, one-dimensional heat conduction. The partial differential equation for heat conduction in a one-dimensional slab is

\[\frac{\partial T}{\partial \tau} = \alpha \frac{\partial^2 T}{\partial y^2} \]

where (for Equations 5 through 8)

\[\tau = \text{time, sec,} \]
\[y = \text{depth, ft,} \]
\[k = \text{thermal conductivity, Btu/ft-hr-deg F,} \]
\[\alpha = \text{thermal diffusivity, sq ft/hr,} \]
\[h_{aw} = \text{adiabatic wall enthalpy, Btu/lb,} \]
\[h_{cw} = \text{cold wall enthalpy, Btu/lb,} \]
\[h_w = \text{wall enthalpy, Btu/lb,} \]
\[\dot{q}_w = \text{wall heat flux rate, Btu/sq ft per sec, and} \]
\[\dot{q}_{cw} = \text{cold wall heat flux rate, Btu/sq ft per sec.} \]

Additional equations for the outer and inner surface boundary conditions must also be stated to augment the solution of equation (3). The outer surface boundary equation can be written as

\[h(T_{aw} - T_w) - \epsilon \sigma T_w^4 = -k \left[\frac{\partial}{\partial y} [T(0, \tau)] \right] \]

At the inner wall, the surface will be assumed to be an adiabatic wall

\[\frac{\partial T}{\partial y} \bigg|_{y=0} = 0 \]
These equations were then converted to finite-difference form and solved on a digital computer as a function of the heat flux rates evaluated and presented previously. The cold wall aerodynamic heating rates presented earlier were coupled to the transient heat conduction solution by the following relationship:

\[
\dot{q}_w = \dot{q}_{cw} \left(\frac{h_{aw} - h_w}{h_{aw} - h_{cw}} \right)
\]

Thus, the decrease in the heating rates is compensated for by the enthalpy ratio.

7. STRUCTURES

a. General

Present-day high-speed recovery operations are generally quite severe in weight and stowage-space requirements and in the hostile aerothermodynamic environment in which the decelerator must operate. It is usually of primary interest to design the lightest decelerator that can fulfill the system requirements. From this general specification, it is necessary to choose a material that can sustain the aerodynamic load at the potential temperature level. In terms of deployment conditions in the flight regime of interest, this type of criteria is available in the form of the data presented in Figure 2. For instance, the particular adiabatic wall-temperature lines have been drawn to correlate with the nominal maximum working temperature level of state-of-the-art fabric materials. Thus, a nylon fabric usually can operate up to about 350 F, a Nomex fabric up to about 700 F, and metal fabrics like stainless steel and René 41 up to 1200 F. Material capabilities can be extended by using heat-resistant coating. Coatings and their effects are discussed in more detail in Item 8, below.
Several different decelerator configurations (see Figures 39 through 42) have been investigated experimentally; applicable structural design parameters generally have been established. Configurations for which documented structural design data are available include Ballutes, spheres, parachutes, cones, inflated skirts, and tension shells. Each of these structural types is discussed in more detail in Items b through f, below.

b. Ballute and Spheres

(1) Description

Ballutes illustrated in Figure 43 are woven-fabric ram-air-inflated pressure vessels of isotensoid design. The inflated structure is primarily pear-shaped, except for the large circumferential burble fence at, or just aft of, the maximum diameter. Ram air enters through a series of symmetrically located side inlets or through a single large nose inlet. The fence is inflated through numerous small ports located around the decelerator proper and beneath the envelope of the fabric fence. The inflated height of the fence is up to 10 percent

Figure 39 - 4-Ft-Diameter Decelerators To Be Flight Tested at Mach 5
Figure 40 - Coated Metal-Cloth, 5-Ft-Diameter Ballute
of the maximum inflated diameter of the model. This conical model is a gore construction, fabricated from base materials such as nylon or Dacron or from heat-resistant materials such as Nomex.

Reference 27 considers a fabric sphere as one limiting case; thus, the discussions below can be applied to that configuration as indicated.

(2) Components

The principal components of the Ballute include the fabric covering, the meridional webs, and the fabric coating. The fabric covering is a high-strength material that forms the envelope of the structure. The meridional webs help to support the load by continuing around the structure and passing through the apex at the back. The webs may terminate on a nose fixture at the front of the model, or they may extend out to become the suspension lines. The heat-resistant coating applied to the envelope makes it nonporous and helps to provide thermal protection for the structure.

(3) Weights and Volume

The weight of a Ballute, \(W_B \), is the sum of the weight of its components. Therefore,

\[
W_B = W_f + W_m + W_c
\]

where

\[
W_f = \text{fabric weight,}
\]
\[
W_m = \text{meridian weight, and}
\]
\[
W_c = \text{coating weight.}
\]
Figure 41 - Sketches of Sphere, Parachute, Ballute, and Flare
Figure 42 - 4-Ft-D_o Parasonic Parachute
Figure 43 - TB-1 Ballute Configuration
The weight then becomes

\[W_B = \frac{A_f f_f (D. F.)}{K_f} + \frac{h L T (D. F.)}{K_m} + A_f (C. F.), \]

where

- \(A_f \) = surface area of the decelerator,
- \(f_f \) = design stress due to the design inflation pressure and the decelerator radius,
- \(D. F. \) = total fabric design factor, which is the product of safety factor, dynamic loading, seam efficiency, temperature, etc.,
- \(K_f \) = envelope fabric strength-to-weight ratio,
- \(h \) = number of meridians (webs),
- \(L \) = length of each meridian,
- \(T \) = meridian design tension load,
- \(D. F.' \) = total meridian design factor,
- \(K_m \) = meridian strength-to-weight ratio, and
- \(C. F. \) = unit coating weight (weight/area).

Since the Ballute is an isotensoid structure, the discussion of Reference 27 applies and can be used to determine the necessary values. For preliminary considerations, the required weight for a steady-state (ram-air inflated) condition is approximated by

\[W_B = \Delta P R \pi R^3 \left[\frac{4(1-K_\rho)}{K_f} + 2 \left(\frac{1.2 \rho + \pi K_c}{K_c} \right) \right] + 4 \pi R^2 (C. F.). \]

This equation uses a safety factor of two and does not include the weight of the burble fence or the riser line. The meridian length and fabric area are approximately \(2\pi R\) and \(4\pi R^2\), respectively.
For a 10-percent fence, the fabric weight is increased by approximately 30 percent.

Figure 44 presents the results of the above equation for various values of \[\frac{\Delta P_R}{q} \].

The following has been determined experimentally.

1. \(\frac{\Delta P_R}{q} = 1 \) was sufficient for full decelerator inflation.
2. \(\frac{\Delta P_R}{q} = 2 \) to 4 was obtained in the supersonic speed regime.

Hence, the weight of a presently designed Ballute is based on a \(\frac{\Delta P_R}{q} \) of between two and four. However, subsequent effort to lower the resulting internal pressure for design optimization is feasible. One method is to relocate the ram-air inlets to a location of lower local pressures.

Ballute stowage-volume requirements are dependent on its weight and packing density. Typical packing-density values range from 20 to 30 pcf for handpack and 30 to 40 pcf for a pressure pack.

c. **Parachutes**

(1) Description

The basic parachute is a well-known configuration used almost exclusively in subsonic recovery operations. The tendency toward an evolution of supersonic-type decelerators resulted in the early consideration of parachutes for high-speed applications. To date, various configurations have been tested supersonically, including some comparatively recent high-speed designs. Subsonic canopies tested supersonically include the hemisflo, the
Figure 44 - Ballute Weight vs Radius

\[C_B = 0.75 \quad \frac{\Delta P_R}{q} = 2 \text{ TO } 4 \text{ (PRESENT BALLUTE WEIGHTS)} \]

\[\text{SAFETY FACTOR} = 2 \quad \frac{\Delta P_R}{q} = 1 \text{ (FUTURE BALLUTES)} \]

\[\frac{\Delta P_R}{q} = 4 \]

\[\frac{\Delta P_R}{q} = 2 \]

WEIGHT (POUNDS)

WEIGHTS BASED ON \(W_B = \Delta P_R R^3 \left(\frac{4(1-K)}{K_f} + \frac{2\pi K}{K_C} \right) \).

WHERE \(K_f = 1.37 \times 10^4 \text{ FT} \) (600 FT COATED FABRIC VALUE), \(K_C = 2.3 \times 10^4 \text{ FT}, K = 0.865, \text{ AND } \rho = 0. \)
standard flat, the conical, and the equiflo. Notable supersonic canopy designs are the hyperflo, the Parasonic, and the supersonic guide surface.

(2) Components
The basic components of a parachute are its drag-producing canopy and suspension lines. The former can be further subdivided, for most supersonic configurations, into a crown, a roof, and a skirt. Each section may be either porous or nonporous, but generally the crown and roof are porous (either mesh or ribbon) and the skirt is relatively nonporous.

(3) Weights and Volume
Past reliance on parachute-type recovery has resulted in the documentation of various methods of weight and volume analysis. Reference 1 indicates several of these methods including the one discussed below, which is frequently used for preliminary calculations. The principles applied are applicable, in theory, at any Mach number. The desired maximum loading, F_0, is determined from overall program requirements, usually a maximum g-load specification. The equation on page 378 of Reference 1 gives

$$\text{individual line strength} = \frac{F_0 \times J \times c}{Z \times u \times o \times e \times k},$$

where F_0 is maximum opening shock, J is a safety factor, Z is the number of suspension lines, c is a factor related to suspension-line confluence angle, u is a factor for strength loss at connection points, o is a factor related to strength loss in material from water and water-vapor absorption, e is a factor related to strength loss from abrasion, and k is a factor related to strength loss from fatigue. Once the F_0 axial design load level has been established ($F_0 = \text{opening shock factor times } C_D A_q$), the strength of each line is obtained with the above equation.
The strength requirements of the individual lines can be determined by the judicious selection of these factors. In general, Z (the minimum number of suspension lines extending from the canopy) is picked to be numerically equal to $D_0 + 4$; however, more lines are usually selected since a number divisible by four should be used for loading attachment symmetry.

To determine the suspension-line weight, a material weight per unit of length corresponding to the strength requirement of the lines and the suspension-line length must be found. In supersonic operations, the length of each line from the canopy to the confluence point is approximately $2D_0$. Thus, the length of each line loop ($Z/2$), accounting for its continuation on around the canopy through the apex at the back, is $5D_0$. The weight of the suspension lines then becomes

$$W_M = \left(\frac{\text{line weight}}{\text{unit length}} \right) \frac{(Z)}{(2)} \times (5D_0) .$$

The strength requirements of the canopy material are found from the relative suspension-line strength requirements by using the tables on page 376 of Reference 1. The canopy weight can then be estimated by

$$W_{\text{surf}} = \left(\frac{\text{weight surf material}}{\text{unit area}} \right) \times (A - \lambda A) ,$$

where λ is the geometry porosity (openness) and A is determined from terminal-velocity requirements using the equation

$$A = \frac{W}{qC_D} ,$$

where $W = D$. The parachute weight then becomes

$$W_f = W_{\text{surf}} + W_M .$$
An approximation of the parachute weight, which has been obtained empirically from many tests, is given by the equation

\[W_f = \left(\frac{\text{line weight}}{\text{unit length}} \right) (Z) \left(\frac{5D_o}{2} \right) \frac{1}{0.4} \]

That is, the suspension line weight comprises approximately 40 percent of the parachute weight. For isotenoid designed parachutes, the methods of Reference 81 can be used for more accurate results.

Example weights of these drogue-type parachutes can be obtained from Reference 1. For example, on page 89 of Reference 1, the weights of ribbon drogue parachutes from two feet to seven feet in diameter that are capable of withstanding "q's" between 135 to 794 psf (below Mach 2) vary from 2 to 20 lb. These ribbons weigh between 0.5 to 1.0 oz per linear yard. It is important to note that these weights are based on nylon material that is designed to take the "q" load but not capable of withstanding temperatures above 250 F. Based on this survey, there was no documented data found of high-speed (above Mach 2.5) parachutes that were capable of withstanding 600 F, as was the case of the coated, nonporous decelerators.

d. **Airmat Cone**

(1) Description

The Airmat cones shown in Figures 45 and 46 are composed primarily of two cone-shaped layers of fabric, between which are many thin fibrous strands called drop threads. When the volume enclosed by the fabric layers is pressurized, the fabric is constrained by the drop threads to form the desired shape. The cone thickness (depth between layers) increases with the distance from the apex; this is done to maintain structural rigidity while the diameter increases.
Figure 45 - Airmat Cone Dimensions

Figure 46 - 80-Deg Airmat Cone (Preinflated)
Since fabric is not effective in compression, the internal pressure must be sufficient to ensure only tension loadings. Reference 27 shows that the theoretical internal pressure must be at least 4.52 times the free-stream dynamic pressure to obtain tension loadings in the fabric. Wind tunnel tests (see References 27 and 48) supported this theory. It is important to note that this configuration requires pressurization from an additional source such as an air bottle. There is no documented evidence clearly showing ram-air inflation design feasibility, although this type of inflation method would indeed reduce the overall system weight.

(2) Weight and Volume

An analytical method of predicting the weight of the Airmat cone is given in Reference 27. This method is predicated on the assumption that the net external pressure over the face of the cone is constant and is given by \(P = C_D q \). The internal pressure must be sufficient to counter the compressive loading of this external pressure. Accounting for both meridional and hoop stresses, the total cone weight, with an included safety factor of 2, is given as

\[
W = \frac{17.4C_D q R^3}{K_f}
\]

This does not include the weight of the drop threads, which is approximately an additional 30 percent by comparison. A plot of weight versus radius for various values of \(q \) is given in Figure 47.

e. Inflated Skirts (Flares)

At present, inflated skirts that have been built are comprised of coated fabric compartments formed by several right circular cone frustums with a common theoretical apex as shown in Figure 41. Each adjacent
Figure 47 - Airmat Cone Weight vs Radius for Various Values of q

A pair of cone frustrums intersects along two straight lines that must be connected by an internal fabric web to satisfy equilibrium of the hoop stresses at the intersection. Longitudinal meridian straps are placed along the outside intersection (gore seam) to withstand the longitudinal reaction forces. In addition to the fabric structure, a metal retaining ring connects the inner and outer surfaces of the compartments. While no single weight equation has been derived, procedures shown in Reference 27 can be used to determine weight.

f. Tension Shells

(1) Description

A tension-shell configuration (see Reference 66) is shown in Figure 48. The tension shell or tension shape is a concept in which aerodynamic surface loads are carried in tension. Since compression and buckling effects are eliminated, the full strength of the construction material can be utilized, and decelerators of
Figure 48 - Tension Shell Loading System, Assumed
potentially high structural efficiency are possible. The candidate deployable configuration can be either a semirigid or inflatable structure.

The tension shell, shown in Figure 48, is basically a cone-shaped structure with a blunted nose. The generated shell surface, however, is a concave surface of revolution. To eliminate hoops stresses, a catenary of revolution was chosen for analysis in Reference 65. It is feasible that this inflated base ring (torus) can be an inflated structure.

(3) Weight and Volume

Reference 65 presents a method for estimating the weight of the individual components and the total weight of the tension shell. This method assumes a variable thickness in the material, so that the membrane stress is constant and equal to the allowable value. Circumferential stresses are assumed to be negligible. For the upper shell and nose cap, the mass is estimated to be

\[m_{SH} = \frac{2\pi \rho}{\sigma_a} R_b^3 \frac{(q)}{(K^*)} \frac{1_s}{R_b} \]

where

\[1_s = e^{\frac{K^2}{4K^*}} \left[\text{erf}(K) - \text{erf}\left(\frac{KR_T}{R_b}\right) \right] e^{-K^2} \frac{\phi(K)}{2K} \left[\text{erf}\left(\frac{KR_T}{R_b}\right) \right] \]

For the ring, a uniformly distributed load is assumed. The mass of the ring is estimated in Reference 66 to be

\[m_R = 18 \times 27\rho R_b^3 \left(\frac{N_o}{ER_b} \right)^{\frac{2}{3}} \]

where
\[\sigma_a = \text{allowable stress}, \]
\[\rho = \text{material density}, \]
\[q = \text{dynamic pressure}, \]
\[K' = \text{shape parameter associated with Newtonian pressure}, \]
\[qR_b \over N_0, \]
\[l_s = \text{shell length in meridional direction}, \]
\[R = \text{radius perpendicular to axis}, \]
\[R_b = \text{radius of model base}, \]
\[R_T = \text{radial distance to point of tangency of nose cap and tension shell}, \]
\[N_\phi = \text{meridional stress resultant, positive in tension}, \]
\[N_0 = N_\phi \text{ evaluated at } R = R_b, \]
\[\text{erf}(K) = \frac{2}{\sqrt{\pi}} \int_0^A e^{-x^2} \, dx \text{ - error function}, \]
\[E = \text{modulus of elasticity}, \text{ and} \]
\[\phi(K) = \int_0^A e^{x^2} \, dx. \]

Stowage and deployment of this configuration have not been documented.

8. MATERIALS
 a. General

Material information in this report is limited essentially to (1) woven fabrics of synthetic fibers and metal filaments and (2) a variety of coating materials for porosity reduction and heat protection of woven
fabrics. Decelerator structure requirements of small predeployment volume, low weight, and high strength indicate that flexible structures are the most feasible. Of the flexible materials, woven fabrics are the most applicable for the majority of the decelerator performance requirements.

In general, the evaluation of woven fabrics is most conveniently accomplished by the analysis of the basic unit of fabrication - that is, fibers, yarns, or filaments. This is due to the myriad of variables involved in the direct analysis of a woven fabric, including those of the same basic units arising from the various weave patterns, fabrication techniques, cloth variations, nonhomogeneity of the cloth, etc. Thus, to provide a comparatively easy yet relatively effective method of woven cloth evaluation, attention is given to the basic units from which the characteristics of the fabric material (woven cloth) are largely dependent.

In addition, experimental data of various types of woven fabric (unit weights and strengths) tests over a wide range of loading conditions (and at various temperatures) are not available. Hence, material test data descriptions and discussions that follow are limited to the basic fibers, yarns, or filaments.

Important fiber qualities or characteristics for deployable decelerator materials include the following: (1) high strength, (2) temperature resistance, (3) high modulus of elasticity, (4) flexibility, (5) abrasion resistance and (6) chemical stability. A review of these basic properties as related to use in flexible structures shows that the desired high modulus of elasticity and flexibility characteristics are contradictory and are difficult problems for textile technology and production. Currently available fibers with good temperature-resistance qualities also tend to have high modulus characteristics, making temperature resistance and flexibility difficult to attain in a single fabric.
Table XIII summarizes the effects of various environmental conditions on the manmade and natural textiles that have been used in aerodynamic decelerators. Table XIV gives the modulus of elasticity and filament size relative to nylon and fiberglass for organic, synthetic, and metallic materials.

b. Textile Yarns and Fibers

(1) General

To date, most decelerator applications are filled by woven fabrics of nylon, Dacron, or Nomex. Thus, the proponderance of data available, appropriate for decelerators, are associated with these three yarns. In the following discussion, various properties of these yarns will be described and their use in terms of environmental and manmade conditions will be analyzed.

As is the custom with all engineering materials, fiber-breaking strengths can be listed on a psi basis. More commonly, however, the textile trade uses the term "tenacity" to describe strength on gram per denier\(^a\) (gpd) basis since (1) a fiber's or yarn's weight per length can be determined easier than its cross-sectional area and since (2) yarn weight is an important textile physical and economic factor. Since denier is based upon weight per unit length, tenacity obviously is influenced by the specific gravity of the fiber, while strength per unit area is not. Relationship between these two properties is:

\[
\text{Tensile strength (psi)} = 12,800 \times \text{specific gravity} \times \text{tenacity (gpd)}
\]

Consequently, strength relationships of the yarns will, in the following discussion, often be measured in terms of tenacity. Fiber tenacity for various textiles is listed in Table XV.

\(^a\)Denier is defined as the weight in grams of 9000 m of yarn.
TABLE XIII - EFFECTS OF ENVIRONMENT ON NATURAL AND MANMADE TEXTILES

<table>
<thead>
<tr>
<th>Environment</th>
<th>Cotton</th>
<th>Silk</th>
<th>Viscose Rayon</th>
<th>Fortisan</th>
<th>Nylon</th>
<th>Orlon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat</td>
<td>Highly resistant to dry heat; yellow at 240°F; decomposes at 350°F; burns readily</td>
<td>Begins to decompose at 270°F; rapid disintegration above 300°F; burns readily</td>
<td>Loses strength above 300°F; decomposes at 250°F to 400°F; burns readily</td>
<td>Scratches in ironing at about 200°C higher than cotton; otherwise like cotton, viscose rayon</td>
<td>Yellow slightly at 300°F when exposed for 5 hr; melts at 462°F</td>
<td>Sticks at 655°F; slight loss in strength after 32 days in air at 270°F</td>
</tr>
<tr>
<td>Age</td>
<td>Little or none</td>
<td>Slight yellowing and loss of tensile strength</td>
<td>Loses tensile strength after prolonged exposure; very little discoloration</td>
<td>Losses strength tends to color</td>
<td>Little or none</td>
<td>Virtually none</td>
</tr>
<tr>
<td>Sunlight</td>
<td>Losses strength; formation of precipitates; tendency to yellowing</td>
<td>Loses tensile strength, affected more than cotton</td>
<td>Loses tensile strength</td>
<td>Disintegrates in hot dilute or cold concentrated acids. Strong caustic shrinks, bleaches, and dissolves in strong bases.</td>
<td>Disintegrates in hot dilute or cold concentrated acids. Strong caustic shrinks, bleaches, and dissolves in strong bases</td>
<td>Good to excellent resistance to mineral acids. Fair to good resistance to weak alkalis. Not harmed by oils, greases, neutral salts and some acid salts</td>
</tr>
<tr>
<td>Chemicals</td>
<td>Disintegrates by hot dilute or cold conc. acids. Shells (nuclei) are caustic damaged by prolonged exposure in presence of air. Bleached by hypo-chlorites and peroxides, oxidized into oxycellulose by strong oxidizing agents.</td>
<td>Fairly resistant to weak acids; dissolved by strong acids except nitric. Incompatible to dilute alkalis unless hot; dissolves in strong alkalies. Above pH 11 and below pH 3 stability decreases rapidly</td>
<td>Strong alkali causes swelling and reduces strength. Attached by strong oxidizing agents; not damaged by hypo-chlorite or peroxide bleaches</td>
<td>Dissolves in hot dilute or cold concentrated acids. Degraded by strong oxidizing agents and reduces strength. Strong alkali; bleaches, phenols, and dyehouse reagents</td>
<td>Boiling in 5% HCl ulti- mately causes disinte-gration; dissolves in cold conc. sulfuric or nitric acids. Substantially inert to alkali. Generally good resistance to other chemicals</td>
<td>Good to excellent resistance to mineral acids. Fair to good resistance to weak alkalis. Not harmed by oils, greases, neutral salts and some acid salts</td>
</tr>
<tr>
<td>Organic solvents</td>
<td>Resistant</td>
<td>Resistant</td>
<td>Generally insoluble; soluble in some phenolic compounds</td>
<td>Unaffected</td>
<td>Insoluble except in some phenolic compounds and conc. formic acid</td>
<td>Unaffected by common solvents</td>
</tr>
<tr>
<td>Moths</td>
<td>Not attacked</td>
<td>Attacked slightly</td>
<td>Not attacked</td>
<td>Not attacked</td>
<td>Not attacked</td>
<td>Not attacked</td>
</tr>
<tr>
<td>Mildew</td>
<td>Poor resistance unless</td>
<td>Attacked</td>
<td>Attacked</td>
<td>Same as for cotton</td>
<td>Good resistance</td>
<td>Good resistance (rotting may be attacked)</td>
</tr>
</tbody>
</table>

Source: Reference 1.
TABLE XIV - FILAMENT DIAMETERS REQUIRED FOR FLEXIBILITY

EQUIVALENT TO NYLON AND FIBERGLASS*

<table>
<thead>
<tr>
<th>Material</th>
<th>Modulus of elasticity (psi \times 10^{-6})</th>
<th>Diameter required for same flexibility</th>
<th>19 u nylon</th>
<th>15 u fiberglass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nylon</td>
<td>0.4</td>
<td>19.0</td>
<td>31.7</td>
<td></td>
</tr>
<tr>
<td>Silk</td>
<td>2.1</td>
<td>12.8</td>
<td>21.0</td>
<td></td>
</tr>
<tr>
<td>Carbon</td>
<td>0.7</td>
<td>16.8</td>
<td>27.5</td>
<td></td>
</tr>
<tr>
<td>Viscose rayon</td>
<td>1.6</td>
<td>13.7</td>
<td>22.4</td>
<td></td>
</tr>
<tr>
<td>Fiberfrax</td>
<td>6.8</td>
<td>9.5</td>
<td>15.7</td>
<td></td>
</tr>
<tr>
<td>Fiberglass</td>
<td>8.0</td>
<td>9.1</td>
<td>15.0</td>
<td></td>
</tr>
<tr>
<td>Fused silica</td>
<td>10.0</td>
<td>8.6</td>
<td>14.2</td>
<td></td>
</tr>
<tr>
<td>Gold</td>
<td>.12.0</td>
<td>8.2</td>
<td>13.5</td>
<td></td>
</tr>
<tr>
<td>Columbium</td>
<td>22.7</td>
<td>7.1</td>
<td>11.2</td>
<td></td>
</tr>
<tr>
<td>Platinum</td>
<td>25.0</td>
<td>6.9</td>
<td>11.2</td>
<td></td>
</tr>
<tr>
<td>Iron, nickel, copper</td>
<td>30.0</td>
<td>6.6</td>
<td>10.8</td>
<td></td>
</tr>
<tr>
<td>Aluminum oxide</td>
<td>34.0</td>
<td>6.4</td>
<td>10.4</td>
<td></td>
</tr>
<tr>
<td>Tungsten, molybdenum</td>
<td>50.0</td>
<td>5.8</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>Iridium</td>
<td>75.0</td>
<td>4.8</td>
<td>8.6</td>
<td></td>
</tr>
</tbody>
</table>

*Source - Reference 86.
TABLE XV - FIBER TENACITIES*

<table>
<thead>
<tr>
<th>Material</th>
<th>Dry tenacity</th>
<th>Wet tenacity Percent of dry tenacity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grams per denier (gpd)</td>
<td>Pounds per square inch (psi)</td>
</tr>
<tr>
<td>Asbestos</td>
<td>2.5 to 3.1</td>
<td>80,000 to 300,000</td>
</tr>
<tr>
<td>Cotton, raw</td>
<td>3.0 to 4.9</td>
<td>59,500 to 97,000</td>
</tr>
<tr>
<td>Cotton, mercerized†</td>
<td>3.4</td>
<td>67,000</td>
</tr>
<tr>
<td>Flax</td>
<td>2.6 to 7.7</td>
<td>50,000 to 148,000</td>
</tr>
<tr>
<td>Hemp</td>
<td>5.8 to 6.8</td>
<td>110,000 to 129,000</td>
</tr>
<tr>
<td>Henequen</td>
<td>3.0 to 3.5</td>
<td>57,000 to 72,000</td>
</tr>
<tr>
<td>Jute</td>
<td>3.0 to 5.8</td>
<td>57,000 to 110,000</td>
</tr>
<tr>
<td>Manila abaca</td>
<td>6.0 to 7.5</td>
<td>115,000 to 155,000</td>
</tr>
<tr>
<td>Ramie</td>
<td>5.5</td>
<td>106,000</td>
</tr>
<tr>
<td>Silk</td>
<td>2.4 to 5.1</td>
<td>38,500 to 88,000</td>
</tr>
<tr>
<td>Sisal</td>
<td>4.0 to 5.0</td>
<td>64,000 to 89,000</td>
</tr>
<tr>
<td>Wool</td>
<td>1.0 to 1.7</td>
<td>16,500 to 28,000</td>
</tr>
<tr>
<td>Acrilan acrylic</td>
<td>2.0 to 2.7</td>
<td>30,000 to 40,500</td>
</tr>
<tr>
<td>Creslan acrylic</td>
<td>2.5</td>
<td>38,000</td>
</tr>
<tr>
<td>Orlon acrylic</td>
<td>2.2 to 2.6</td>
<td>32,000 to 39,000</td>
</tr>
<tr>
<td>Zefran acrylic</td>
<td>3.5</td>
<td>53,000</td>
</tr>
<tr>
<td>Acetate</td>
<td>1.3 to 1.5</td>
<td>20,500 to 26,000</td>
</tr>
<tr>
<td>Arnel triacetate</td>
<td>1.2 to 1.4</td>
<td>20,000 to 23,000</td>
</tr>
<tr>
<td>Arnel 60 triacetate</td>
<td>2.0 to 2.3</td>
<td>33,000 to 38,000</td>
</tr>
<tr>
<td>Teflon fluorocarbon</td>
<td>1.7</td>
<td>50,000</td>
</tr>
<tr>
<td>Glass</td>
<td>6.0 to 7.3</td>
<td>195,000 to 237,500</td>
</tr>
<tr>
<td>Dynel modacrylic</td>
<td>3.0</td>
<td>50,000</td>
</tr>
<tr>
<td>Verel modacrylic</td>
<td>2.5 to 2.8</td>
<td>44,000 to 49,000</td>
</tr>
</tbody>
</table>

*Source - Reference 88.

†Compared with an unmercerized cotton control value of 2.8 gpd.

-126-
TABLE XV - FIBER TENACITIES*(Continued)*

<table>
<thead>
<tr>
<th>Material</th>
<th>Dry tenacity</th>
<th>Wet tenacity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grams per denier (gpd)</td>
<td>Pounds per square inch (psi)</td>
</tr>
<tr>
<td>Nylon 6, regular</td>
<td>4.5 to 5.8</td>
<td>66,000 to 86,000</td>
</tr>
<tr>
<td>Nylon 6, high tenacity</td>
<td>6.8 to 8.6</td>
<td>99,000 to 125,500</td>
</tr>
<tr>
<td>Nylon 66, regular</td>
<td>4.6 to 5.9</td>
<td>67,000 to 86,000</td>
</tr>
<tr>
<td>Nylon 66, high tenacity</td>
<td>5.9 to 9.2</td>
<td>86,000 to 134,000</td>
</tr>
<tr>
<td>Darvan nitril</td>
<td>2.0</td>
<td>30,000</td>
</tr>
<tr>
<td>Polyethylene, low density</td>
<td>0.5 to 2.0</td>
<td>5,900 to 23,500</td>
</tr>
<tr>
<td>Polyethylene, high density</td>
<td>4.5 to 8.0</td>
<td>55,000 to 98,000</td>
</tr>
<tr>
<td>Polypropylene</td>
<td>4.0 to 7.0</td>
<td>46,000 to 81,500</td>
</tr>
<tr>
<td>Polyvinyl alcohol</td>
<td>4.5 to 6.0</td>
<td>91,000 to 122,000</td>
</tr>
<tr>
<td>Dacron polyester, regular</td>
<td>4.4 to 5.0</td>
<td>78,000 to 88,000</td>
</tr>
<tr>
<td>Dacron polyester, high tenacity</td>
<td>6.3 to 7.8</td>
<td>111,000 to 138,000</td>
</tr>
<tr>
<td>Fortrel polyester</td>
<td>4.0 to 4.3</td>
<td>71,000 to 76,000</td>
</tr>
<tr>
<td>Kodel polyester</td>
<td>2.5 to 3.0</td>
<td>39,000 to 47,000</td>
</tr>
<tr>
<td>Vycron polyester</td>
<td>5.6 to 6.3</td>
<td>97,500 to 110,000</td>
</tr>
<tr>
<td>Saran</td>
<td>1.1 to 2.3</td>
<td>24,000 to 50,000</td>
</tr>
<tr>
<td>Lycra spandex</td>
<td>0.6 to 0.8</td>
<td>9,000</td>
</tr>
<tr>
<td>Vyrene spandex</td>
<td>0.5 to 0.6</td>
<td>9,000</td>
</tr>
<tr>
<td>Steel</td>
<td>3.5</td>
<td>512,500</td>
</tr>
<tr>
<td>Vinyon</td>
<td>0.7 to 2.4</td>
<td>12,000 to 43,000</td>
</tr>
<tr>
<td>Viscose rayon, regular</td>
<td>1.5 to 2.4</td>
<td>28,000 to 47,000</td>
</tr>
</tbody>
</table>

Source - Reference 88.
TABLE XV - FIBER TENACITIES (Continued)

<table>
<thead>
<tr>
<th>Material</th>
<th>Dry tenacity</th>
<th>Wet tenacity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grams per denier (gpd)</td>
<td>Pounds per square inch (psi)</td>
</tr>
<tr>
<td>Viscose rayon, intermediate tenacity</td>
<td>2.4 to 3.2</td>
<td>45,000 to 62,000</td>
</tr>
<tr>
<td>Viscose rayon, high tenacity</td>
<td>3.0 to 5.0</td>
<td>56,000 to 97,000</td>
</tr>
<tr>
<td>Cuprammonium rayon</td>
<td>1.7 to 2.3</td>
<td>33,000 to 45,000</td>
</tr>
<tr>
<td>Fortisan saponified acetate</td>
<td>6.0 to 7.0</td>
<td>117,000 to 136,000</td>
</tr>
<tr>
<td>Fiber 40 (Avril) rayon</td>
<td>5.0</td>
<td>96,000</td>
</tr>
<tr>
<td>XL (Avron) rayon</td>
<td>4.1</td>
<td>80,000</td>
</tr>
<tr>
<td>Corval rayon</td>
<td>2.0 to 2.2</td>
<td>37,000 to 43,000</td>
</tr>
<tr>
<td>Zantrel rayon</td>
<td>3.8 to 4.0</td>
<td>73,500 to 77,000</td>
</tr>
</tbody>
</table>

Source - Reference 88.
(2) Effects of Sterilization and Vacuum

The state of the art relating to the effects of biological sterilization and vacuum soaking on silk, nylon, Dacron, and Nomex material is adequately described in Reference 87. Major conclusions of the reference are discussed below.

Silk was immediately eliminated, and nylon was so seriously degraded by thermal sterilization that further testing was not considered. If the thermal sterilization could be mitigated, nylon probably would withstand the chemical sterilization without serious degradation. Du Pont reports that nylon has been subjected to ethylene oxide and to Freon 12, separately, at temperatures higher than the 104 F called for in Reference 86 without serious degradation. Therefore, the combination probably would not be seriously harmful. The nylon, after thermal cycling, was markedly stiffer and less flexible. No adhesion of the nylon to itself or to the stainless steel plates was observed (in contrast to the preliminary tests where adhesion of unscoured materials was observed). No adhesion was observed with either Dacron or Nomex. Thus, long-time, packed storage at elevated temperature with or without vacuum should not be a serious concern for fabric structures of nylon, Dacron, or Nomex. Dacron is a promising candidate material for a sterilizable retardation system. Average strength losses of all dacron material configurations resulting from both sterilization and vacuum exposures did not exceed 20 percent. Nomex is also a promising candidate material for the Mars entry retardation system. Average strength losses of all Nomex material configurations resulting from both sterilization and vacuum exposures did not exceed 5 percent.

Depending on the specific material and the temperature-vacuum envelope, some stiffening and heat setting of folds and wrinkles
could occur with possible adverse effects on deployment. Negligible effects due to folding and compacting were observed.

(3) Effects of Temperature and Sustained Loadings

Figures 49 and 50 present typical strength relationships for nylon, Dacron, and Nomex under various conditions. These curves indicate that optimum strength-to-weight characteristics for undegraded materials at room temperature are obtained with nylon, Dacron, and Nomex, respectively. Figure 50, however, indicates that these yarns appear in the same order when listed by their sensitivity to initial elevated temperature values and sustained loads applied at room temperature. Thus, after exposure to a preload temperature of 350 F, for example, Dacron is superior to scoured nylon after a loading time of 5 hr and Nomex is superior to Dacron after a loading time of 100 hr. These effects become more pronounced with exposure to higher preload temperatures, with Dacron having almost twice the tenacity of scoured nylon after exposure to 425 F and a relatively short 1-hr loading. Nomex, on the other hand, remains usable after exposure to preload temperatures up to 580 F and a continuous loading time of 200 hr.

Figure 51 indicates the relative performance of nylon, Dacron, and Nomex when subjected to a sustained load at an elevated temperature. At a temperature of about 400 F, nylon, Dacron, and Nomex, respectively, exhibit the best initial properties. Above 400 F, Nomex is the only one of the three that will withstand a sustained load.

Somewhat less temperature sensitivity was observed with unscoured nylon as opposed to scoured nylon, which resulted - apparently - from the protection of the manufacturing oils. No difference between scoured and unscoured Dacron is indicated in Reference 86.
Figure 49 - Typical Stress-Strain Curves for Dacron, Nylon, and Nomex
Figure 50 - Strength Retained by Nylon, Dacron, and Nomex Yarns after Exposure to Hot, Dry Air

Ref. E. I. Du Pont Brochures NP-33 (October 1963) and X-188 (April 1964)
Figure 51 - Breaking Tenacity at Various Temperatures
(4) Stiffness

At room temperatures, nylon is more flexible than Dacron, and both are more flexible than Nomex for elongations below approximately 6 percent (see Figure 49). When stressed to break, however, Nomex is the most flexible, with Dacron and nylon both being approximately 50 percent stiffer.

(5) Shrinkage

The heat shrinkage of virgin fiber is presented in Figure 52. Dacron reaches about 25 percent shrinkage at about 440 F; nylon reaches 16 percent at the same temperature and Nomex only 4-1/2 percent at 600 F. These shrinkages occur in about 30 sec from the time the yarn reaches temperature. While nylon will start shrinking from temperatures above 75 F, Dacron does not start until temperatures above 140 F are obtained. The crossover is at 4 percent shrinkage at 225 F. A heat-setting process obviously must be called out in the procurement of nylon and Dacron before patterns are cut.

(6) Radiation Resistance

Nylon, Dacron, and Nomex are all degraded in tensile strength and elongation by irradiation with ultraviolet. Their responses, maximum and minimum, are not necessarily to the same wavelengths (see Figures 53 through 55). Nylon is least affected by 369 μm and most degraded by 244 μm; Dacron least by 369 μm and most by 314 μm; Nomex least by 314 μm and most by 369 μm. Nomex has the best long-range resistances. Bar graphs (see Figure 56) show how ultraviolet radiation and elevated temperatures affect Nomex.

Gamma radiation results are presented for Nomex in Figure 57. Radiation resistance of Nomex, Dacron, and nylon 6-6 is presented in Table XVI with respect to various radiation sources.
Figure 52 - Shrinkage of Nylon, Dacron, and Nomex Exposed to Hot, Dry Air
Figure 53 - Variation of Tensile Strength and Elongation of Nylon Fibers Irradiated in Nitrogen at 244 μm, 314 μm, and 369 μm
Figure 54 - Variation of Tensile Properties with Incident Energy for Dacron Irradiated in Nitrogen with A-H6 Lamp
Figure 55 - Variation of Tensile Strength and Ultimate Elongation of Nomex Irradiated in Nitrogen with Ultraviolet Light and with Visible Light (437 μm)
Figure 56 - Degradation of Nomex after Exposure to Ultraviolet Radiation and Elevated Temperatures
Figure 57 - Effects of Gamma Radiation on Nomex at 400 F (Top) and at 600 F (Bottom)
TABLE XVI - RADIATION RESISTANCE: EFFECT OF EXPOSURE ON YARN STRENGTH*

<table>
<thead>
<tr>
<th>Dosage</th>
<th>Tenacity retained (percent)</th>
<th>Nomex</th>
<th>Dacron</th>
<th>66 Nylon</th>
</tr>
</thead>
<tbody>
<tr>
<td>β - Van de Graaf</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 mega reps</td>
<td>81</td>
<td>57</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>600 mega reps</td>
<td>76</td>
<td>29</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>X-rays (50 kv)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 hr</td>
<td>85</td>
<td>22</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>100 hr</td>
<td>73</td>
<td>0</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>250 hr</td>
<td>49</td>
<td>0</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Brookhaven pile (50 C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 mega reps</td>
<td>70</td>
<td>45</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>1000 mega reps</td>
<td>55</td>
<td>Radioactive</td>
<td>Crumbled</td>
<td></td>
</tr>
<tr>
<td>2000 mega reps</td>
<td>45</td>
<td>Radioactive</td>
<td>Crumbled</td>
<td></td>
</tr>
</tbody>
</table>

*Source - Reference 87.

(7) Weathering

The effects of outdoor exposure on a candidate decelerator material is an important consideration for determining both preoperative and postoperative requirements. Prior to operations, for example, exposure effects may indicate the sensitivity of the fabric to various types of stowage and handling. This, in turn, dictates the type and duration of the preoperative environment and indicates the general acceptability of fabric for various applications. In addition, the ability of decelerator materials to withstand the outdoor environment following operations may be critical in the success of the mission. For example, degradation of the fabric due to weathering may be critical if, following a test, the decelerator is not immediately located.
Figure 58 indicates the relative resistance of nylon and Nomex fabrics to a weathering environment. No generally clear superiority to weathering is exhibited by either, with nylon 330 being the least affected and nylon 300 being the most affected.

(8) Yarn-to-Fabric Strength Correlation

No simple and universal ratio exists between yarn and fabric material strengths and/or elongations. Fabric strength will invariably be less than the sum of its yarns, and fabric elongation will be greater. Many factors are involved including thread count in warp and fill; basic elongation characteristics of material; tension maintained during weaving (always greater in warp than in fill); rate of loading; uniaxial or biaxial stressing; yarn twist; and type of weave (basket, plain, flat duck, drill, twill, satin, herringbone, rip-stop, and others). Obvious weaving considerations are the mechanical effect of warp and fill threads on each other and the zig-zag geometry pattern mutually enforced, contrasted with an individually tested filament that would naturally be straight.

c. Filament Materials

Fabrics of woven metal strands show promise for future application. Fabrics of stainless steel and superalloy metals are obtainable (at considerable expense) and have temperature resistance and strength characteristics that are suitable for use in temperature environments up to 1800 F, provided that oxidation-prevention and thermal-insulating coatings are used. Figures 59 through 62 present strength data for various superalloy metal wires. To obtain comparative and meaningful data, the tests were performed under the same laboratory conditions. Test results (see Figures 60 and 62), for example, were conducted at a crosshead speed (rate of specimen elongation) of 2.0 in. per minute. Each specimen was exposed for one minute to the indicated pretest temperature level to ensure that the proper
Figure 58 - Comparisons of Nylon and Nomex after Outdoor Exposure (Top) and after Accelerated Weathering (Bottom)
Figure 59 - High-Temperature Tensile Strength of 1.0-Mil Superalloy Wires
Figure 60 - High-Temperature Tensile Strength of 0.5- and 1.0-Mil Wires as a Function of Exposure Time
Figure 61 - High-Temperature Tensile Strength of 0.5-Mil Superalloy Wires
Figure 62 - Creep of 0.5-Mil René 41 Wire at 2000 F (Linear Plot)
value had been obtained. Wires of refractory metals (tungsten, molybdenum, tantalum) have the temperature-resistance characteristics needed for temperature environments in the upper ranges if (1) rapid oxidation of the metals at high temperatures and (2) producing and weaving fine filaments are overcome. Figure 63 shows a strength-to-weight ratio comparison of refractory and superalloy metal wires.

Available fiberglass yarns as a material for woven fabrics have serious deficiencies in flexibility and abrasion resistance. However, the high strength, modulus of elasticity, and temperature-resistance characteristics of fiberglass make it a potential material for use in a temperature-environment range of 600 to 1000 F, if the flexibility and interfilament abrasion deficiencies can be overcome in the development of new fibers.

Other materials with good potential as fibers or filaments for woven fabrics are boron filaments and carbon or graphite filaments. Since these materials are in the research and development phases, no specific data are available. Preliminary information on boron filaments shows a high modulus-to-density ratio, good temperature-resistance characteristics, and good strength characteristics. Carbon and graphite cloths have good temperature resistance but need improvement in strength-to-weight ratio and abrasion resistance. Figure 64 shows the strength-retention characteristics of graphite, carbon, and partially carbonized materials at lower temperatures.

d. Woven Fabric Materials

(1) General

Available woven fabric materials that have been or are applicable for deployable decelerator construction are listed below in order of increasing strength and temperature resistance:

1. Nylon
Figure 63 - Strength-to-Weight Ratio of 1.0-Mil Superalloy and Refractory Metals Wires

Strength-to-Weight Ratio

\[
\frac{\text{Tensile Strength in Pounds per Square Inch}}{\text{Density in Pounds per Square Inch}} \times 1000
\]

- Temperature (Fahrenheit)
- Source: Cowper, 90
- Inconel 702
- Tungsten
- Molybdenum
- René 41
- KW Molybdenum

Section II - Aerodynamic Deployable Decelerators

GER-I2616
Figure 64 - Comparison of Strength Retention Characteristics of Partially Carbonized Carbon and Graphite Fabrics.
2. Dacron
3. Nomex
4. Fiberglass
5. Superalloys (René 41, Elgiloy, Inconel 702)

Most present applications are filled by woven fabrics of nylon, Dacron, or Nomex with or without coatings. Plastic film is suitable only for low-load, low-temperature applications. Although fiberglass has high basic strength, modulus, and temperature resistance, it is notoriously vulnerable to folding damage and interfilament abrasion. Fiberglass has been used very successfully in rigid applications but has been disappointing in flexible-fabric applications.

Fabrics of woven superalloy metal filaments and refractory metal filaments show much promise for future application but are at present in the early stages of development and are extremely expensive. The major expense involved is due to the high cost of drawing the metal wire down to the proper filament size. Evaluation costs also may be high because they cannot be directly related among themselves (see Items 1 through 5, above). However, when woven into cloth, each type will still have qualitative performance relative to each other, as do the filaments.

(2) Operational Temperature Ranges

Potential decelerator materials are available for operation from 300 to 1500 F (see Figure 65). The substrate material recommended from 300 to 600 F is Nomex (Du Pont's high-temperature polyamide) coupled with silicone or fluoroclastomers. Between 1000 to 1500 F, substrates of stainless steel or René 41 woven cloth coated with a high-temperature coating, such as CS-105 (Goodyear Aerospace), can be used.
Figure 65 - Strength Retention vs Temperature for Present and Future Fibers.
In other operational temperature ranges, proved materials are not now available. One of the most obvious areas for development of suitable materials lies between 600 to 1000 °F. At temperatures above 600 °F, the strength of Nomex drops rapidly; below 1000 °F, the penalty in strength-to-weight ratio paid in the use of stainless-steel cloth is too severe.

A potential material to fill this void is fiberglass (see Figure 65). However, because of its self-destructive nature under flexing of pulsating loads, fiberglass does not lend itself to this application. Efforts have been underway for some time to minimize the abrasive nature of fiberglass, with moderate success. One approach to this problem has been to impregnate the yarns with elastomers to prevent adjacent filaments in the yarn from rubbing one another. Another approach has been the development of Beta glass fiber by Owens-Corning. The Beta fiber is an extremely fine filament. Both of these methods have resulted in some improvement in the performance of fiberglass in flexible applications; however, this work must be continued to realize the full potential of fiberglass.

Another possibility of filling the substrate-material void from 600 to 1000 °F is to extend the capability of Nomex. Obviously, the most practical way to extend the capability of Nomex is to protect the substrate so its temperature never exceeds 600 °F. One way to do this is to coat the substrate with ablative material; the thickness required and the associated rigidity of thermal insulators as they are now known make their use prohibitive.

Relatively speaking, the development of low-temperature ablators has lagged the development of high-temperature ablators considerably. To obtain ablative materials that will satisfy the requirements for use on decelerators is a definite problem area that warrants considerable research and development.
Superalloy metal fabrics such as woven stainless steel and René 41 cloths provide substrate material capability to 1800°F. Goodyear Aerospace was instrumental in the first weaving of René 41 wire into a cloth having an end count of 200 × 200 and in weaving seven-strand 0.0016-in. René 41 wire into a cloth having a count of 100 × 100. However, there is room for improvement in woven metal cloths of stainless steel and René 41. Higher-strength, more flexible cloths are needed. Higher strength can be achieved by tighter packing of the metal filaments during the weaving operation, and increased flexibility can be obtained by using smaller diameter filaments. The feasibility of fabricating such cloths with textile stranding and weaving equipment has been demonstrated (see Reference 27). The resulting prototype cloths were highly flexible, high-strength cloths having a "hand" comparable to a textile. These cloths were woven on a prototype basis. Additional effort will be required to establish production methods and to improve the fabrics further.

e. Fabric Coatings

Coatings are applied for one or both of two primary reasons: (1) reduction of fabric porosity and (2) protection of the basic fabric from high temperatures of aerodynamic heating or other heat load. No rigid line of demarcation exists between coatings that are solely for gas tightness and those that are for heat protection. The urethane and silicone rubbers have higher temperature resistance than neoprenes; however, any coating with a low thermal conductivity can render a limited heat protection. The formation of an insulating char is sometimes a usable mechanism. For transients, an aluminum metalizing can be adequate, but when temperature requirements are high and of fairly long duration, coating performance can become quite sophisticated. Heat protection can be afforded by combining mechanical and chemical reactions to the temperature through char formation, sublimation, and ablation.
Coating materials are available that perform satisfactorily up to 1500 °F. Up to 600 °F, fluoroelastomers perform quite well for short periods of time. Up to 1000 °F, silicones are available. Beyond this point and up to 1500 °F, CS-105, high-temperature flexible coating is recommended. This coating consists of a silicone binder with a glass frit filler and has been used up to 1500 °F.

The CS-105 coating acts and feels like a silicone elastomer at room temperature. As the temperature is raised, a thermal decomposition of the elastomer and fusing of the glass frit occur. The weight of decomposition is a time-temperature phenomenon that progresses slowly at 800 °F and increases as the temperature rises. The glass frit does not fuse until 1100 to 1200 °F has been reached. Hence, there is a range of temperatures (approximately 800 to 1100 °F) where the elastomer is decomposing and the glass frit does not fuse. This represents a transition phase during which the coating is most susceptible to damage and the gas permeability increases. When the coating is subjected to a heat flux of such a magnitude, it must traverse the critical temperature range in a relatively short time. The glass frit fuses before the silicone elastomer decomposes excessively, provides a carrier for the silicone residue, and forms an adequate gas barrier.

Elastomer coating materials that are applicable for reducing porosity in decelerator structure fabrics are listed and described in Table XVII. Each material is evaluated in terms of its performance in a variety of environmental conditions so the limitations of the material are readily apparent.

Some typical coatings described by trade number and name that have been used or have been investigated for possible use in decelerators are shown in Table XVIII, along with typical thermal properties of these materials. Neoprene, DC-131, and Viton have been used satisfactorily on flight-tested decelerators in the low-to-medium temperature regime - that is, up to about Mach 2 and at altitudes above
70,000 ft. The remainder of the listed coatings are potential candidates to extend the operating capability of the state-of-the-art fabrics. In many applications, it may be appropriate to use ablative coating materials, which - because of the short deceleration times characteristic of deployable decelerators - need to function only over a limited time period.

The approach used to increase the temperature capability of the coating between the thermal degradation temperature of the elastomer and the desired operational temperature is to load the elastomer with a low-melting point inorganic material. As the temperature rises, a thermal decomposition of the elastomer occurs, and the inorganic material changes to a very viscous fluid. The viscous fluid is to have a high-surface tension that will hold the residue of the elastomer in suspension and maintain a continuous film. Upon cooling, the material is to solidify and form a solid gas barrier that has a certain amount of flexibility, although much less than the original unfired coating.

f. Joining Methods

The construction of foldable, packageable structures involves the classic problem of building compound shapes from plane material. Aerospace decelerators are assembled by sewing a multitude of individually patterned pieces of a plane fabric material. These pieces are seamed together, usually by sewing with threads of material similar to the fabric filaments. Ballute gore patterns, for example, are cut on the bias from "square" cloth - that is, cloth that has equal or nearly equal strength and elongation in warp and fill. Gores are alternated right and left bias to balance out differences in elongation in the warp and fill directions. So far, Ballutes and parachutes are of single-ply construction.

Joining methods include sewing, cementing, and - in the case of metal fabrics - spot welding. With plastic film material, cementing
TABLE XVII - RELATIVE GENERAL PROPERTIES OF ELASTOMERS

<table>
<thead>
<tr>
<th>Elastomer types</th>
<th>Tensile</th>
<th>Tear</th>
<th>Abrasion (fatigue)</th>
<th>Impact</th>
<th>Flame</th>
<th>Heat (F)</th>
<th>Cold (brittle) (F)</th>
<th>Ozone</th>
<th>Radiation</th>
<th>Gas retention</th>
<th>Resistance - oil, weather, chemical</th>
<th>Unsuitable for</th>
<th>Specific gravity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural rubber</td>
<td>AB</td>
<td>B</td>
<td>AB</td>
<td>AB</td>
<td>D</td>
<td>CD</td>
<td>+250</td>
<td>B</td>
<td>B</td>
<td>D</td>
<td>BC</td>
<td>Highly resilient, low hysteresis, general aging</td>
<td>0.93</td>
</tr>
<tr>
<td>Styrene butadiene rubber (Buna S or GRS)</td>
<td>B</td>
<td>BC</td>
<td>AB</td>
<td>AB</td>
<td>D</td>
<td>C</td>
<td>+275</td>
<td>BC</td>
<td>B</td>
<td>D</td>
<td>BC</td>
<td>General purpose rubber, better resistance to aging</td>
<td>0.94</td>
</tr>
<tr>
<td>Isobutylene isoprene rubber (Butyl or GR-1)</td>
<td>C</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>BC</td>
<td>+500</td>
<td>C</td>
<td>BC</td>
<td>AB</td>
<td>D A</td>
<td>Weather, heat, ozone, chemical, and solvent resistance, low air permeability</td>
<td>0.92</td>
</tr>
<tr>
<td>Chloroprene rubber (Neoprene or GR-M)</td>
<td>B</td>
<td>B</td>
<td>AB</td>
<td>B</td>
<td>B</td>
<td>C</td>
<td>+300 F</td>
<td>C</td>
<td>BC</td>
<td>AB</td>
<td>CD AB</td>
<td>Weather resistant, fair oil resistance</td>
<td>1.24</td>
</tr>
<tr>
<td>Polyurethane elastomers (Adiprene, Chemigum SL, CX-1046)</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>CD</td>
<td>C</td>
<td>+250</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>B A</td>
<td>Superior abrasion resistance, sunlight and ozone resistance, good oil resistance</td>
<td>1.05 to 1.17</td>
</tr>
<tr>
<td>Nitrile butadiene rubber (Buna N)</td>
<td>BC</td>
<td>BC</td>
<td>AC</td>
<td>C</td>
<td>D</td>
<td>B</td>
<td>+275</td>
<td>BC</td>
<td>BC</td>
<td>D</td>
<td>BC</td>
<td>Medium to good oil resistance, fair fuel resistance</td>
<td>0.99</td>
</tr>
<tr>
<td>Silicone rubbers</td>
<td>D</td>
<td>CD</td>
<td>CD</td>
<td>D</td>
<td>C</td>
<td>A</td>
<td>+550</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>D B</td>
<td>Resistant to temperature extremes, fair oil resistance, properties constant from 60°F to 500°F</td>
<td>1.25</td>
</tr>
<tr>
<td>Chlorosulfonated polyethylene (Hypalon)</td>
<td>BC</td>
<td>BC</td>
<td>AB</td>
<td>BC</td>
<td>B</td>
<td>BC</td>
<td>+325</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>BC AB</td>
<td>Weather, heat, ozone, and moderate oil resistance, good color possibilities</td>
<td>1.10</td>
</tr>
<tr>
<td>Fluorinated elastomers (Fluorel, Kel-F, Viton)</td>
<td>BC</td>
<td>BC</td>
<td>B</td>
<td>BD</td>
<td>A</td>
<td>A</td>
<td>+550</td>
<td>D</td>
<td>BC</td>
<td>A</td>
<td>BC</td>
<td>Resistant to oxidizing acids, fuels containing up to 30 percent aromatics, ozone, weather; excellent oil resistance</td>
<td>1.40 to 1.85</td>
</tr>
<tr>
<td>Organic polysulfide rubbers (Thiokol, GR-P)</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td>+200 to +275</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td>BC</td>
<td>Excellent oil resistance, good resistance to aromatic fuels, excellent weather and ozone resistance</td>
<td>1.25 to 1.40</td>
</tr>
</tbody>
</table>

*Source - Reference 93.

A = exceptional, outstanding, or excellent; B = good; C = fair; D = poor.
<table>
<thead>
<tr>
<th>Coating</th>
<th>Vendor</th>
<th>Specific gravity</th>
<th>Specific heat</th>
<th>Thermal conductivity</th>
<th>Emissivity</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neoprene</td>
<td>Goodyear</td>
<td>1.30</td>
<td>0.35 Btu/lb-deg F</td>
<td>0.14 Btu/hr-ft-deg F</td>
<td></td>
<td>Low temperature coating</td>
</tr>
<tr>
<td>1137-C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC-131</td>
<td>Dow-Corning</td>
<td>0.94</td>
<td>0.3-0.35 Btu/lb-deg F</td>
<td>0.167 at room temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Btu/hr-ft-deg F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viton</td>
<td>Du Pont</td>
<td>1.85 to 1.90</td>
<td>0.395 Btu/lb-deg F</td>
<td>0.117 at 300 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Btu/hr-ft-deg F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS-105</td>
<td>Goodyear</td>
<td></td>
<td></td>
<td></td>
<td>0.92 at 1000 F</td>
<td>High temperature coating</td>
</tr>
<tr>
<td>D-65</td>
<td>Dyna-Therm</td>
<td>1.1</td>
<td>0.25 (68 to 150 F Btu/lb-deg F)</td>
<td>0.053 at 150 F Btu/hr-ft-deg F</td>
<td></td>
<td>Ablator</td>
</tr>
<tr>
<td>RTV-88</td>
<td>General</td>
<td>1.48</td>
<td>0.35 Btu/lb-deg F</td>
<td>0.18 at 200 F Btu/hr-ft-deg F</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electric</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTV-560</td>
<td>General</td>
<td>1.42</td>
<td>0.35 Btu/lb-deg F</td>
<td>0.19 at 315 F Btu/hr-ft-deg F</td>
<td></td>
<td>Ablator</td>
</tr>
<tr>
<td></td>
<td>Electric</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVCOAT II</td>
<td>AVCO</td>
<td>1.0</td>
<td>0.43 (65 to 240 F Btu/lb-deg F)</td>
<td>0.10 at 250 F Btu/hr-ft-deg F</td>
<td></td>
<td>Ablator</td>
</tr>
<tr>
<td>DC-325</td>
<td>Dow-Corning</td>
<td>0.87</td>
<td>0.32 (77 to 200 F Btu/lb-deg F)</td>
<td>0.08 at 200 F Btu/hr-ft-deg F</td>
<td>0.90 at 70 F</td>
<td>Ablator</td>
</tr>
</tbody>
</table>
is almost invariably involved - either a heat-sealing or solvent-sealing cementing or adhesive application. With soft fabrics, sewing is usual but cementing is sometimes practical, especially with an elastomer-coated cloth, and frequently results in higher joint efficiencies. Combinations of cementing and sewing have been used. Cementing has been for secondary purposes, such as sealing holes made by sewing or preventing the slippage of stitching. As earlier mentioned, joining of metal cloth has been by multiple staggered row spot welding. The Air Force has reported sewing such fabric successfully with wire thread (see Reference 94).

The development of the optimum seam for a specific application is a matter of design and test development. Factors involved are the cloth and its basic strength to be developed; the coating, if any; with an orthogonal or biased seam, etc. Variations possible include number of parallel rows of stitches, number of stitches per inch, type of stitch, presence or absence of reinforcing tapes or webs, types of seam, possible overlay of elastomeric coating, etc. The final bulkiness of the seam is a consideration with its consequent influence on packageability and deployment.

Seams are invariably a problem area. Seaming represents a sizable part of construction cost and contributes significantly to the variation in quality of the finished article. The seam adds bulk and weight, reduces flexibility, adds distortions when the structure is loaded, and almost never can be designed to develop 100 percent material strength. Seam design and material selection go hand in hand. While cementing can generally develop a structurally more efficient joint, it also is more adversely affected by elevated temperature.

g. **Material Selection and Qualification**

Materials selected for use in a particular decelerator structure are the result of analyzing both design factors and fabrication technology. Design factors such as static and dynamic loading, thermal loading,
maximum size and weight of structure, and aerodynamic drag requirements dictate the requirements for strength and temperature resistance. The material selected must meet these requirements after fabric strength-to-weight ratio, thickness, porosity, flexibility, and coatings have been considered. The selection of material usually will involve determination of the fiber or filament material and size, weave, seam construction, production sequence, and other production techniques. Different materials and fabrication techniques may be required for the components of the structure.

h. Current Development in Materials

Anticipated future materials are conventionally woven fabrics from exotic, high temperature-resistant fibers. Developments to be expected include entirely new fibers, improvements in properties of existing fibers, and development of finer filamentation and tighter weaving of the newer materials, such as the superalloys.

Glass fabrics, as mentioned earlier, require vastly improved inter-filament abrasion resistance. Since the glasses have been subject to considerable research and development, much improvement in this basic characteristic is difficult to foresee. Possibly a surface coating, compatible with other requirements, may yet make possible the wide use of foldable, flexible glass fabrics.

The development of extremely thin surface coatings for oxidation prevention in refractory metal cloths is expected, enabling exploitation of these materials at high temperatures.

Other new fiber materials currently undergoing development are alumina/calcia, silicon carbide, boron, carbonized and graphitized yarns, and quartz. Development of these and other materials will yield some usable filaments.

The superalloys, such as Rene 41 and other proprietary formulations, are very much in a research and development phase. Wire
cloth of filaments are fine as 0.5 mil has been woven at considerable expense. Problems include drawing a much finer filament and weaving very dense fabrics without excessive filament breakage.

The technology of "whiskers" has been of scientific interest for some time. Whiskers are pure substances formed from single crystals. Therefore, they are free from impurities and grain boundary defects and represent the theoretical ultimate in strength characteristics. They also have stress levels far in excess of their standard material counterparts. Materials approaching the extreme stress levels of whiskers are not soon to be expected.

Elastomeric coatings of fabrics can be expected to improve. The urethanes and silicone rubbers are very promising at elevated temperatures. New combination coatings such as the CS-105 or Dynatherm D-65 coatings, which protect for a limited time by chemical and/or mechanical responses to temperature, can be expected.

Fine metal filamentation by electroforming, plastic metalizing, vapor deposition, and cold-drawing is being investigated experimentally (see Reference 90) and appears promising.

i. Future Development in Materials

Woven cloths of Rene 41 provide a substrate-material capability to 1800 F. However, to obtain a capability beyond this point, efforts must be directed toward the weaving of cloths of the refractory metals. Until recently, this has appeared to be a very difficult problem; however, developmental work in weaving metal fabrics using textile methods and equipment provides a sound basis from which this work can be carried on. Many of the problems encountered and the solutions evolved under Contract AF33(616)-7854 (see Reference 93) are applicable to the weaving of refractory metal fabrics.

One problem encountered with refractories involves their rapid oxidation at elevated temperatures. Rapid oxidation becomes especially
critical when the basic structural element is a filament with a diameter of 0.5 mil. To overcome this problem, oxidation-resistant coatings are required. Although considerable effort is being expended in this area, it is being directed primarily toward the protection of sheet stock, castings, and the like. Some of the coatings developed for gross parts can be adapted to the protection of filaments, but specific research for the protection of fine refractory metal filaments is needed. Processing and fabrication techniques for treated or coated refractory metal cloths also must be established.

Another possibility for extending the substrate-material temperature resistance capability above 1800 F lies in the use of carbon or graphite cloths. Recent efforts show marked improvements in fabrics woven from these materials; however, considerable research and development are required to improve the strength-to-weight ratio, abrasion resistance, and handling capabilities of these materials. Unfortunately, most of the research and development effort expended on these materials is directed toward their use in rigid laminations. Such effort does not tend to solve the peculiar problems attendant on their use as a flexible material.

Basic materials for use in the substrates at temperatures above 1800 F are available. The primary problem in the use of these materials involves working and fabricating them into basic structural elements from which decelerators can be fabricated.

Coating materials present another problem. There are no flexible coating materials that have temperature-resistance capabilities above 1500 F. As previously stated, CS-105 coating is operational to 1500 F within certain limits. Under Contract AF33(616)-7853, efforts to improve this coating and extend its capability were undertaken. It was found that some of the coatings developed had superior characteristics over very limited ranges, but that CS-105 was superior overall.
Research is being conducted under an Air Force contract to extend the capability of CS-105 to 2000 F and to examine other concepts for high-temperature coatings. This area of investigation requires considerable future effort, since the development of satisfactory flexible, high-temperature, impermeable coatings lags the development of substrate materials that can be used in the same temperature range.

Although cemented seams in decelerator structures can be very efficient, especially with elastomer-coated fabrics, no cements are available that have acceptable creep and strength characteristics beyond 180 to 200 F. The development of high-temperature cements with the proper bonding characteristics would provide increased latitude in design and fabrication of structures.
SECTION III - DESIGN DISCUSSION

1. SYSTEM DESIGNS AND LOGISTICS SEQUENCING METHODS

Exclusive of obtaining design criteria to define design requirements for specific high-speed recovery applications, all previous first-stage recovery systems have the following sequencing methods in common:

1. Automatic initiation
2. Deployment preparation, which consists of automatic canister opening; canister opening consists of sequencing disconnects (latches, cutters, pin-pullers), which void the canister exit of all restrictions
3. Automatic deployment initiation (utilizing either a thruster, mortar, or drogue-gun system)
4. Automatic decelerator inflation
5. Automatic decelerator release in preparation for final-stage system deployment

Figure 66 shows a typical deployment sequence. These components are interconnected and energized either electrically or mechanically.

Experience has proved that the use of ordnance devices such as thrusters, drogue guns, mortars, and ballistic disconnects was the best method to obtain adequate system operation. The pyrotechnic devices have met the following requirements:

1. Lightweight
2. Function in a high-g environment
A. FORCIBLE DEPLOYMENT INITIATION
DROGUE-GUN SLUG
DEPLOYMENT BAG AND STOWED DECELERATOR

B. AT LINE STRETCH, BAG PEELS OFF DECELERATOR

C. DECELERATOR INFLATED WITH RAM AIR, BEGINS TO SLOW THE VEHICLE

D. DECELERATOR RELEASED IN PREPARATION FOR FINAL-STAGE LANDING-DEVICE DEPLOYMENT

Figure 66 - Typical Recovery-System Deployment Sequence
3. Function positively and forcibly

4. Function in extremely short periods of time

Basic problems with pyrotechnics are their sensitivity to heat and their dependence on small variation in power supply electrical current requirements. The major problem is the stringent minimum weight and stowage space requirements. Additional standardization of component design also would aid in easing system design problems.

Table XIX summarizes the type of hardware, function, and method of operation.

The inflation mechanisms described in Table XIX are required when self-inflation is not feasible. For example, closed pressure vessels such as spheres or flared skirts require some type of inflation device at any deployment altitude; even ram-air-inflated devices such as parachutes and Ballutes may require supplemental inflation devices at extremely high altitudes (above 200,000 ft).

2. DESIGN PROCEDURES AND CRITERIA

a. General

The available decelerator-system design criteria, which are a measurement of the state of the art, are clearly dependent on available performance and design parametric data.

b. Preliminary Design Procedure for Supersonic Decelerator

Figure 67, taken from Reference 27, shows the significant parameters that are evaluated to obtain a preliminary design.

The major design effort consists of an operational computer trajectory study, an aerothermal parametric analysis, and a structures and weight study to meet these aerothermal performance requirements. Examples of key design parameters that must be evaluated and how they are interdependent on each other follow.
<table>
<thead>
<tr>
<th>Item no.</th>
<th>Function</th>
<th>Type of hardware</th>
<th>Method of operation to obtain electric signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>System initiation</td>
<td>"O" sensor</td>
<td>Measures a given pressure difference between static and total head.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barometric sensor</td>
<td>Measures a given pressure difference between static and sea level atmosphere.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"G" sensor</td>
<td>Measures a given amount of strain in a cantilever deflected under the inertial loads.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Timer</td>
<td>Mechanical or electrical clock.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Telemetry</td>
<td>Telemetry signal from external source.</td>
</tr>
<tr>
<td>2</td>
<td>Deployment preparation</td>
<td>Release mechanics such as explosive bolts, cutters, pin pullers, latches, clamps, etc., and arming devices</td>
<td>Pyrotechnic charge provides energy to sever bolts or retaining straps, or to unlatch canister doors, or to arm subsequent sequencing devices.</td>
</tr>
<tr>
<td>3</td>
<td>Forcible deployment of the decelerator</td>
<td>Mortar</td>
<td>Pyrotechnic charge burns and provides high pressure gas to fill a blast bag beneath the stowed decelerator. The decelerator is displaced and ejected out and aft of the canister.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drogue gun</td>
<td>Pyrotechnic charge burns inside the gun and ejects a slug aft. The slug is bridled to the decelerator, and the kinetic energy of the slug pulls the decelerator from its canister.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thruster</td>
<td>Pyrotechnic charge burns inside the thruster ejecting the thruster cylinder, canister, and decelerator aft.</td>
</tr>
<tr>
<td>4</td>
<td>Decelerator inflation</td>
<td>Nitrogen bottle</td>
<td>High pressure nitrogen gas is released by a pyrotechnic valve inflating the decelerator.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gas generator</td>
<td>Pyrotechnic charge burns and provides high pressure gas to fill the decelerator.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sublimating powder</td>
<td>Solid powder sublimates, upon experiencing the extremely low static pressures at high altitude, and gases are generated to inflate the decelerator.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vaporizing liquids</td>
<td>Liquids such as alcohol vaporize, which provides the gases to inflate the decelerator.</td>
</tr>
</tbody>
</table>
1. The descent initial conditions (altitude, velocity, $W/C_D A$, flight angle)

2. The ballistic coefficient after decelerator deployment ($W/C_D A$)

3. The drag area, which is influenced by the size and drag coefficient (efficiency)

4. The drag coefficient (C_D), which is influenced by x/d (towline length divided by the payload diameter), D/d (decelerator diameter divided by the payload diameter), and the decelerator nose shape

The problems of accurately forecasting drag due to the forebody wake flow around the towed decelerator and the importance of the towed parameters x/d and D/d have been discussed in detail. Because of this, and until such time as more basic research is conducted, experimental tests, if for no other reason, are required to obtain a given amount of steady-state drag for a given high-speed application.

The following factors affect the structural and weight design:

1. The peak loading condition, which is influenced by all performance parameters

2. The peak stress condition, which is influenced by the loading, size, and shape of the decelerator

3. The stress-to-weight ratio, which is influenced by the aerodynamic-heating temperatures and the type of materials selected

4. The weight of the decelerator, which is influenced by the design parameters plus the miscellaneous hardware weights such as the inflation system, if required
Available Design Data for Dynamic Deployment Loads

It is evident that the decelerator must be designed to support all adverse loading conditions that occur during its period of operation. In most applications, this load is the opening-shock load that occurs during deployment. As was indicated in the discussion of Table XI, the available dynamic shock-load data from supersonic demonstrations are extremely limited. However, despite this limitation, these data show that a satisfactory design is a compromise between (1) short decelerator-inflation times that minimize fabric-flutter loads during inflation at the expense of higher shock load levels and (2) long decelerator inflation times that minimize shock load levels at the expense of longer-duration fabric-flutter loading.

As is shown in Reference 1, subsonic-flight-regime parachute design and test experience have proved that the peak opening-shock load can be related to dynamic pressure. In this case, it is called the "canopy loading" and is the product of dynamic pressure and opening-shock factor. This opening-shock factor varies with type of canopy, altitude of deployment, and weight of the payload. However, even in this well-known area of subsonic parachute applications, shock-factor data are limited to "infinite-mass" conditions, where for all practical purposes the payload does not slow down during parachute opening.

In summary, to fill these voids, it is recommended that a design evaluation consider the following procedures to determine the peak design loads:

1. Utilize subsonic opening-shock factors as partial evidence to forecast supersonic deployment loads.

2. Obtain transient-load experimental data from tests similar to new applications.
3. Evaluate inflated-decelerator steady-state loads along the required trajectory.

As Table XI shows, available documented dynamic-load data are limited to deployments below Mach 4.

Even though a procedure is set up to determine the peak design load, better experimental information is still needed for a more accurate definition of peak loads.
SECTION IV - DATA CONFIDENCE

1. GENERAL

Confidence in previous test data to be used for any reason is mandatory. In lieu of the user finding complete data for subsequent utilization in a new design application, the following evaluation procedures that have been used in the past will aid in increasing the level of confidence that specific aerodynamic data are valid. Some of the problems of similarity and model design also will be discussed.

2. SIMILARITY CRITERIA

The prime requirement for any trailing drag device that depends on dynamic pressure for inflation is that it opens or inflates and remains open and maintains its geometric shape over the full range of operational conditions. Unfortunately, the opening tendency of a parachute depends on a complex of variables that cannot be completely reproduced in the wind tunnel. Although scale is the main factor, Reynolds number alone does not appear to be an adequate criteria of similarity. Based on very limited free-flight data, it is believed that successful operation of a small scale model in the wind tunnel gives no assurance that the full scale model will also open and remain open at the same Reynolds number. For this reason, scaling effects must be determined from wind tunnel testing to ascertain the effect of various parameters on the successful operation of the full scale configuration in free flight.

Apart from differences in relative flexibility of structure, surface roughness, and effective porosity, it is also believed that the behavior of the model is different from full scale because of the strong effect of small differences in local flow along the canopy of a parachute. Combined
canopy pulsing and longitudinal vibration have been encountered in both wind tunnel and free flight but may be magnified in the wind tunnel.

Inflatable decelerators that are dependent on self-contained pressure systems or are ram-air inflated do not have the same inflation problems as parachutes that are dependent on the magnitude and stability of the dynamic pressure of the surrounding fluid. Absent from these configurations are the problems of local flow perturbations, which can cause squidging or violent fluttering.

3. FLEXIBILITY AND STRENGTH

Small scale wind tunnel models are likely to be relatively less flexible than the full scale prototypes unless special precautions are taken in detail design. As a minimum for approximation of aeroelastic similarity, the unit strengths of the textile used should be at the same ratio to applied loads as to those of the full scale decelerator. Therefore, it is necessary either to establish full scale loading criteria or to define clearly the full scale loading criteria represented by the models. The strength of materials to be used in the models will depend on the dynamic pressure range of the wind tunnel as well as that on a scale of the model.

The scaled-down, wind-tunnel inflated models will not likely have fabric texture, thickness, cell structure, and smoothness in proportion to the full scale device. The wind tunnel models will probably retain a stiffer or relatively more solid shape. No analysis of the effects of relative solidity of shape appears to be available, but it is estimated that this effect would be quite small.

4. SURFACE TEXTURE

Surface roughness, pores, and crimp ridges of textiles usually cannot be scaled down to small model dimensions and so may influence aerodynamic properties resulting from skin friction and boundary layer considerations. Within limits, the models can be assembled with scaled seams
and proportionately finer threads, but narrow hems and seams generally tend to be relatively coarse and rough. Surface texture and roughness affect the nature of the boundary layer and location of boundary layer transition. Depending on known differences between wind tunnel model and full scale device surface conditions, a drag correction for relative grain size may have to be made in conjunction with the Reynolds number drag corrections. This correction would be similar to that applied to missile models.

5. DYNAMICS

Unstable model configurations are difficult to measure not only because of their effect on the tunnel balance system but also because they tend to disintegrate in a very short run time. Means of effectively damping model vibrations without otherwise affecting performance are greatly to be desired. Another restriction that has yet to be evaluated from a dynamics point of view is the infinite payload mass condition usually associated with wind tunnel testing versus the finite conditions of flight.

The above discussion is mainly concerned with the correlation between wind tunnel data and free flight data. Equally important is to be able to correlate between theory, wind tunnel, and flight. Theoretical verification has again been greatly neglected.

Until statistical type flight data are accumulated and better means of recording and reducing flight data are available, engineering judgment must be employed. An example of relying on one system for obtaining final results is shown in Figure 68. Here, curve "A" represents the drag coefficient data obtained by radar tracking and curve "B" the drag coefficient data obtained by telemetry. The data shown in this figure were reduced from the results of two Ballute flight tests. In the case of curve "A," small errors in displacement measurements were magnified in the different integration processes for determining the velocities and acceleration. Errors are further magnified when these calculated velocities...
Figure 68 - Ballute C vs Mach Number (Flight Test Data)
(which must be squared to obtain the dynamic pressure) and acceleration values are used to calculate drag coefficient. Curve B data are believed valid since the drag results in wind tunnel tests of basic similar cone models showed similar drag coefficient values. This example is not shown to indicate that radar tracking is a poor method of obtaining drag coefficient results but only to point out the need for careful data reduction procedures.
SECTION V - PRESENT HIGH-SPEED RECOVERY TECHNIQUES,
PROBLEM AREAS, AND VOIDS

1. GENERAL

The discussion up to this point has dealt with the available data in the different categories of aerodynamics, thermodynamics, and structural design. The intent of this section is to discuss and to correlate this data in light of present-day requirements for supersonic decelerators, thus pointing out the basic problem areas and voids in the existing technology. These general flight spectrum requirements and associated general aerothermal loading levels resulting are shown in Figures 1 and 2.

2. PERFORMANCE LIMITS

A review of Tables I through X reveals that common research objective to find decelerator system configurations that will meet a broad recovery flight spectrum (see Figure 1); namely, recovery of heavier payloads from higher speeds (and/or higher aerothermal loadings) and altitudes.

Towed nonporous textile decelerators up to five feet in diameter have been successfully flight tested up to deployment speeds of nearly Mach 4. In this case, a successful test means that the decelerator performed in a stable manner and produced high drag without structural failure. The implication of the high drag-producing flights without failure is as follows:

1. Models were fully inflated.
2. Models did not experience any significant cycle breathing (buzzing) after deployment and inflation.
3. Temperatures encountered were less than 600 °F design condition limit (of coated textile fabrics).
Prior to these flight test demonstrations, metal cloth nonporous blunt body models were successfully tested in wind tunnels up to Mach 10 and textile models up to Mach 6. These tests indicate that satisfactory aerodynamic performance can be obtained. Since wind tunnel reservoir air is cooled and dried, these past wind tunnel tests do not demonstrate the decelerator's capability to withstand thermal environments anticipated above Mach 3 for more than a few seconds. Track tests have been accomplished using approximately four-foot models with deployments at Mach 1.4 and q's up to 2400 psf. This Mach 3 value, as a limit, is mentioned since equilibrium stagnation temperatures that would be encountered if the system is allowed to travel at that speed for any length of time is above the structural limit of textiles. Hence, a textile decelerator system for deployment above Mach 3 must be designed either to slow the payload down quickly to prevent overheating or to provide the fabric structure with additional protective devices so the basic fabric does not exceed the allowable 600°F limit. In the above mentioned flight test, the former condition existed where the decelerator was of sufficient size to slow the payload and itself down to Mach 3 in a few seconds to avoid the excessive heat.

Successful supersonic performance of porous decelerators - namely, parachutes - has been limited. While small wind tunnel models (less than one foot in diameter) did develop drag up to Mach 6 and four- to six-foot wind tunnel and flight models developed drag up to and between Mach 3 and 4, model coning instability and canopy inflation instability were encountered when operating above Mach 2.5. Evidence that this deterioration in aerodynamic performance during increasing Mach-number tests of the better-performing geometric openness parachutes was as follows:

1. Transonic steady-state drag coefficient (C_{D_o}) was between 0.4 and 0.5.

2. Above Mach 2.5, the drag coefficient (C_{D_o}) was between 0.2 and 0.35.
Section II detailed the possible reasons for this performance variation. In summary, parachutes were extremely sensitive to the changeable wake of the towing forebody. Based on this survey data, the better-performing models were the Parasonic and the reefed ribbon configurations. These data were limited to wind tunnel results only. In this case, better performance is defined as minimizing coning instability and canopy breathing and also obtaining a more fully and more constant inflated shape. The combined effect of providing a known (calibrated) amount of choking plus the isotensoid membrane design shape is believed to be the reason for the improved performance. The Parasonic canopy crown was coated to obtain the proper porosity. Thus, coating also has extended the thermal environment capability by one order of magnitude.

The other configuration that performed up to Mach 3 with a minimum of canopy breathing and coning instability was a reefed ribbon configuration (either the hemisflo or the conical ribbon type). The combined effect of lowering the geometric porosity more than 1/2 of that of the previous ribbon parachutes, plus the reef shape being a stable conical configuration, was believed to be the reason for the improved performance. It is important to note that the Mach 3 condition was the highest speed tested and in this case not necessarily the performance limit.

In summary, the survey found considerable experimental aerodynamic steady-state drag results that did indicate the aerodynamic capability of deployable decelerators performing satisfactory in the supersonic and hypersonic speed ranges. However, to say that the state of the art is such that there is adequate performance in design information available to design a lightweight system for future application is not the case. Even in the Mach 1 to 5 speed range, the more easily obtained steady-state drag information is fragmentary. For example, there is no one configuration or even a class of configurations that has been tested over a complete range of Mach numbers and Reynolds numbers. Above Mach 5, with few exceptions, the available drag data are a complete void. In
addition to lack of data, a basic phenomenon not yet completely understood is how the forebody wake flow affects the towed decelerator that must operate in that wake. When this flow is more fully understood in the wake, not only will the design have better forecast aerodynamic performance but also will have better forecast thermodynamic performance. Other areas that the survey showed as problem areas and voids are as follows:

1. Extreme shortage of cyclic steady-state data
2. Extreme shortage of transient deployment data
3. Extreme shortage of dynamic stability data

Because of the dynamic time dependent properties of the forebody wake acting on the towed decelerator in this wake, current acceptable dynamic and static stability coefficients do not appear adequate to describe the motion of a decelerator (see Section II, Item d).

3. STRUCTURES AND MATERIALS

The vast majority of supersonic decelerators that have been tested have been made of woven nylon or Nomex (high temperature nylon) fabrics. The selection of these fabrics was due to previous usage, cost, and because these fabrics had the physical properties that best matched the operational requirements. These requirements were lightweight, packageability, severe dynamic transient deployment loadings, and high level steady state inflation loading (under hostile temperature environment).

Because textile materials - namely, Nomex - have a temperature resistance structural limit of slightly higher than 600 F and because flight temperature requirements are increasing considerably beyond 600 F, additional research and development material investigations have been and are being conducted.

Two basic methods of attack are being used. One method, which will hopefully aid in solving the immediate needs for higher operational
temperatures, is to protect the basic substrate (Nomex) with silicon or fluoro-elastomer coatings plus providing a coating additive that would increase the operating temperature limit to about 1000 F. The other method is to develop new coated material fabrics such as fiberglass, stainless steel, and superalloys. The apparent potential of the materials is as follows:

1. Fiberglass operating range - 600 to 1000 F
2. Stainless steel and René 41 - above 1100 to 1800 F
3. Refractory metals - above 1800 F
4. Carbon or graphite - above 1800 F

The most advanced of these newer materials are stainless steel and René 41. René 41 decelerators have been fabricated and tested in the wind tunnel at Mach 10 and at temperatures up to 1500 F.

Increasing temperatures above the present-day textile design limits will present the following major problem areas:

1. Higher heat resistant material has a high modulus that results in less flexibility and creates weaving problems plus lower foldability and lower dynamic structural loading capability.
2. The abrasive characteristics of fiberglass yarns cause self-destruction on the flexing and pulsating loads.
3. Refractory metals experience rapid oxidization at high temperatures and hence oxidization resistance coatings are required.
4. There is a near void in the development of low temperature - 600 to 1200 F - ablators (coatings).

In addition to the proper selection of the basic decelerator fabric, the
operational requirement for providing a lightweight decelerator can be achieved with the proper structural design. As new materials are developed, design parameters will have to be re-evaluated as to the overall shape and size, the selection of structural seams, attachments, fittings, and inflation methods.

4. PROBLEM AREAS AND VOIDS

There is very little experimental or analytical aerodynamic, thermodynamic, or structural data available in the supersonic and hypersonic speed ranges. There is a general lack of analytical methods to describe basic phenomena, including lack of aerodynamic data over a range of Reynolds number; a complete lack of quantitative experimental dynamic-stability data; and a basic lack of understanding of forebody wake flow when influenced by a towed decelerator. Specific problem areas are described below:

1. The aerodynamic and thermodynamic performance of promising decelerator configurations has not been investigated from the transonic regime to the hypersonic regime. Analytical techniques have not been verified experimentally in the areas listed below:
 a. Drag correlation, Mach number, and Reynolds number
 Shock and boundary layer interaction
 b. The effects of geometry and size

2. Performance and load density flow
 a. Applicable similarity parameters have not been established
 b. The effectiveness of free-stream Reynolds number, Knudsen number, etc., has not been determined

3. The formation and development of the wake have not been thoroughly investigated
Decelerator performance in compressible turbulent wakes has not been determined, the effects of Mach number and free-stream Reynolds number have not been determined, and payload signatures need to be defined. The effects of payload geometry, boundary layer, and separation on the correlation parameters have not been defined. Complete effects of D/d and x/d on performance are lacking. The effects of the decelerator itself on the wake interaction have not been studied completely, and the local flow thermal properties have not been completely defined.

4. The stability of various fundamental decelerator shapes is not known
 a. Static stability and dynamic stability derivatives need to be determined
 b. The stability of towed body systems needs to be studied
 c. Quantitative stability standards need to be established
 d. Inflation and breathing stability have not been adequately described

5. Heat transfer characteristics in complex decelerator shapes are an unknown

6. Methods of determining heat transfer in textile decelerators need to be investigated
 a. Low temperature ablative material for application to textile decelerators from 600 to 1500 F is missing
 b. Various methods of cooling and evaluating the relative merits of each have not been investigated

7. Lack of experimental data of resistance to abrasion from high-speed flutter

8. Lack of experimental data of resistance to shock loading
9. Lack of high temperature cements
10. Lack of high temperature coatings
11. Gaps in available materials between Nomex and superalloys
12. Lack of methods of fine wire drawing and weaving

The results when obtained to satisfy these voids (both experimental and analytical) need then to be correlated with free-flight results.
SECTION VI - CONCLUSIONS

1. GENERAL

The state-of-the-art survey considering the operational performance limits demonstrated by tests indicated the following conclusions:

1. Towed nonporous textile decelerators up to 5-ft in diameter have been successfully flight tested up to deployment speeds of nearly Mach 4; 10-in. diameter metal fabric models have been wind tunnel tested successfully up to Mach 10.

2. Four- to six-foot wind tunnel and flight parachute textile models developed drag up to Mach 4, although some instability was encountered above Mach 2.5.

The state-of-the-art survey of the individual disciplines affecting these operational performance limits described major problem areas, which are given in Items 2 and 3, below.

2. AERODYNAMICS

The state-of-the-art survey discussed these problems pertaining to aerodynamics:

1. There is a general lack of drag data above Mach 5 and incomplete data below Mach 5.

2. The basic wake flow phenomenon is not completely understood.

3. There is a complete lack of dynamic stability data.
3. STRUCTURES AND MATERIALS

The state-of-the-art survey described these problems pertaining to structures and materials:

1. Textile material models have a proved structural resistance to a temperature limit of 600 F.

2. Metal fabric models have been tested in the wind tunnel up to 1500 F.

3. Proved materials are available for future model developments from 300 to 600 F (textiles) and from 1000 to 1500 F (superalloys). There is a complete void for suitable proved materials between 600 to 1000 F and above 1500 F.
LIST OF SYMBOLS

Aerodynamic

\[A(S) = \text{reference frontal area} \]
\[A_i = \text{parachute canopy open inlet area} \]
\[A_e = \text{parachute canopy open exit area} \]
\[A/A^* = \text{cross-sectional area of stream tube divided by critical choked flow (nozzle) area} \]
\[S = \text{reference surface area} \]
\[S_o = \text{parachute canopy total enclosed surface area} \]
\[D = \text{decelerator reference diameter} \]
\[d = \text{forebody reference diameter} \]
\[D_c = \text{parachute constructed diameter} \]
\[D_p = \text{parachute inflated diameter} \]
\[D_o = \text{parachute nominal diameter based on } S_o \]
\[C_D = \text{drag coefficient, } F/qA \]
\[C_{D_c} = \text{parachute drag coefficient based on } D_c \]
\[C_{D_f} = \text{drag coefficient resulting from pressure drag on the body forward of the body base} \]
\[C_{D_o} = \text{parachute drag coefficient based on } D_o \]
\[C_{D_p} = \text{parachute drag coefficient based on } D_p \]
LIST OF SYMBOLS

\(F \) = drag force
\(L \) = lift force, normal to wind
\(\ell \) = representative body length
\(N \) = normal force
\(M \) = moment
\(M_\infty \) = free-stream Mach-number
\(q \) = dynamic pressure
\(q(q_\infty) \) = free-stream dynamic pressure
\(C_A \) = axial force coefficient
\(C_L \) = lift coefficient, \(L/qA \)
\(C_N \) = normal force coefficient, \(N/qA \)
\(C_M \) = moment coefficient, \(M/qA \ell \)
\(C_P(C_{PL}) \) = pressure coefficient, \(C_P = p_L/p_\infty/q_\infty \)
\(p \) = pressure
\(p_L \) = local pressure
\(p_\infty \) = free-stream static pressure
\(C_{PB} \) = base pressure coefficient
\(C_{Pc} \) = surface pressure coefficient
\(C_{Ma} = \partial C_M/\partial \alpha \)
\(C_{Ma} = \partial C_M/\partial \dot{\alpha} \)
LIST OF SYMBOLS

\[C_{Mq} = \frac{\partial C_M}{\partial (2V/q'd)} \]
\[C_{N\alpha} = \frac{\partial C_N}{\partial \alpha} \]
\[C_{N\dot{\alpha}} = \frac{\partial C_N}{\partial \dot{\alpha}} \]
\[C_{Nq} = \frac{\partial C_N}{\partial (2V/q'd)} \]

\(q' = \) pitch rate
\(R = \) body nose radius
\(r_b = \) body base radius
\(u = \) velocity in \(x \) direction
\(V = \) velocity
\(x = \) tow-line length between forebody and trailing afterbody

\[X_{cp} = \text{longitudinal distance from apex to center of pressure} \]
\(cp = \) center of pressure

\(FR = \) fineness ratio, body length divided by body diameter

\(Re = \) Reynolds number \(\rho \ell V/\mu \)
\(\lambda_s = \) mean free path behind shock wave

\(\rho(\rho_\infty) = \) free-stream air density
\(\rho_s = \) density behind shock wave

\(\alpha = \) angle of attack
\(\dot{\alpha} = \frac{d\alpha}{dt} \)
\(\theta = \) pitch angle
\[\dot{\theta} = \frac{d\theta}{dt} \]

\[\theta_l = \text{momentum thickness} \]

\[\theta_s = \text{cone semiaxep angle, flare angle} \]

\[\mu = \text{fluid dynamic viscosity} \]

\[\sigma = \text{wake thickness} \]

Thermodynamic

\[A = \text{orifice status cross-sectional area} \]

\[A^* = \text{orifice throat area} \]

\[C_f = \text{local friction coefficient} \]

\[c^* = \text{characteristic orifice velocity} \]

\[c = \text{specific heat of material} \]

\[c_p = \text{specific heat of air at constant pressure} \]

\[D = \text{decelerater diameter} \]

\[D_t = \text{orifice throat diameter} \]

\[G(S) = \text{local form factor} \]

\[g = \text{gravitational constant} \]

\[h = \text{heat-transfer coefficient} \]

\[h_{aw} = \text{adiabatic wall enthalpy} \]

\[h_{cw} = \text{cold wall enthalpy} \]

\[h_w = \text{wall enthalpy} \]

\[k = \text{thermal conductivity} \]

\[P = \text{pressure} \]
\[P_t = \text{total pressure} \]
\[P' = \text{local pressure} \]
\[P_\infty = \text{free-stream static pressure} \]
\[\dot{q} = \text{heat flux rate} \]
\[\dot{q}_C = \text{heat flux at } S/R_0 = 1 \text{ without forebody} \]
\[\dot{q}_o = \text{heat flux at stagnation point without forebody} \]
\[\dot{q}_w = \text{wall heat flux} \]
\[\dot{q}_{cw} = \text{cold wall heat flux} \]
\[R_o = \text{decelerator nose radius} \]
\[r' = \text{local radial coordinate} \]
\[r_e = \text{radius of roof element} \]
\[S = \text{surface distance with meridional direction from the stagnation point} \]
\[S' = \text{local surface distance from the decelerator equator} \]
\[T = \text{local temperature} \]
\[T_C = \text{temperature at } S/R_0 = 1 \text{ without forebody} \]
\[T_o = \text{temperature at the stagnation point} \]
\[T_w = \text{material temperature} \]
\[T_{aw} = \text{adiabatic wall temperature} \]
\[u' = \text{local velocity} \]
\[y = \text{depth} \]
\(Pr = \) Prandtl number
\(a = \) thermal diffusivity
\(\delta = \) thickness
\(\varepsilon = \) emissivity
\(\rho = \) density of material
\(\rho' = \) local air density
\(\mu = \) viscosity
\(\mu_0 = \) viscosity at total temperature
\(\sigma = \) dimensionless factor accounting for density and viscosity in boundary layer
\(\tau = \) time

Structures and Design

\(A = \) forebody or decelerator reference area
\(A_f = \) surface area of decelerator
\(A_p = \) payload reference area
\(A_D = \) decelerator reference area
\(c = \) factor related to chute suspension line confluence angle
\(C_D = \) drag coefficient
\((C_D A)_T = \) total drag area of forebody and decelerator
\(D = \) decelerator diameter
\(D_p = \) parachute inflated diameter
\(d = \) forebody diameter
\(e = \) factor related to the strength loss from abrasion
LIST OF SYMBOLS

\(E = \) modulus of elasticity

\(F_0 = \) peak decelerator design load

\(f_f = \) design stress

\(h = \) number of meridian webs

\(J = \) safety factor

\(K = \) reacting load distribution factor

\(K_c(K_m) = \) meridian cable or web strength-to-weight ratio

\(K_f = \) decelerator envelope fabric strength-to-weight ratio

\(K^2 = \) shape parameter

\(k = \) factor related to strength loss from fatigue

\(L = \) length of each meridian

\(L_S = \) chute suspension line length

\(l_S = \) shell length in meridian direction

\(m_p = \) nose-cap mass

\(m_R = \) mass of ring

\(m_{SH} = \) mass of shell

\(N_\phi = \) meridian shell resultant

\(N_\phi = N_\phi \) evaluated at \(R = R_b \)

\(o = \) factor related to strength due to strength loss in material from water and water vapor absorption

\(P = \) pressure

\(\Delta P_R = \) pressure differential across decelerator envelope fabric

-195-
\(\mathbf{P}_T \) = total pressure

\(p \) = pressure acting on the shell

\(q \) = dynamic pressure

\(R \) = decelerator radius

\(R_b \) = shell radius at the base

\(R_T \) = radial distance to point of tangency of nose cap and shell

\(T \) = meridian design tension load

\(t \) = thickness

\(u \) = factor for strength at connecting points

\(W \) = weight

\(W_B(W_D) \) = decelerator weight

\(W_c \) = decelerator fabric coating weight

\(W_f \) = decelerator fabric weight

\(W_m \) = decelerator meridian weight

\(W_T \) = total weight of forebody and decelerator

\(W_P \) = payload (forebody) weight

\(Z \) = number of chute suspension lines

D. F. = total fabric design factor, the product of safety factor, dynamic loading, seam efficiency, temperature, etc.

D. F. ' = median design factor

erf(K) = error function

C. F. = unit coating weight
\[\beta = \text{angle between axis and tangent to surface} \]

\[\lambda = \text{chute geometric porosity} \]

\[\rho = \text{material density} \]

\[\rho' = \text{applied load distribution factor} \]

\[\sigma_a = \text{allowable stress} \]

\[\phi = \text{angle between flow and normal to surface} \]
LIST OF REFERENCES

12. Gendtner, W. J.: Sharp and Blunted Cone Force Coefficients and Centers of Pressure from Wind Tunnel Tests at Mach Numbers from 0.50 to 4.06. Convair Report ZA-7-017, June 1955.

38. Uselton, J. C.; and Hahn, J. S.: Drag Characteristics of Three Ballute

42. Unpublished Holloman AFB Ballute sled test conducted November 1964.

47. Unpublished data of tests at AEDC wind tunnel, April 1964.

1 - NASA REPORTS

Study of the Stabilization and Drag at Mach Numbers from 4.5 to 13.5 of a Conical Venus Entry Body. NASA TN D-2877.

Nichols, J. and Nierengarten, E.: Static Aerodynamic Characteristics of Blunted Cones and Round-Shouldered Cylinders Suitable for Planetary Entry Vehicles at a Mach Number Range 1.65 to 9.00. NASA CR-58666, N64-29212, February 1964

Smedal, H. A., Capt. USN(MC), and Creer, B. Y.: Physiological Effects of Acceleration Observed during a Centrifuge Study of Pilot Performance, NASA TN D-345, December 1963

Brooks, C. W., Jr. and Trescot, C. D., Jr.: Transonic Investigations of the Effects of Nose Bluntness, Fineness Ratio, Cone Angle, and Base Shape on the Static Aerodynamic Characteristics of Short, Blunt Cones at Angles of Attack to 180 Degrees. NASA TN D-1926, August 1963

Shaw, D. S.; Fuller, D. E.; and Babb, C. D.: Effects of Nose Bluntness, Fineness Ratio, Cone Angle, and Model Base on the Static Aerodynamic Characteristics of Blunt Bodies at Mach Numbers of 1.57, 1.80 and 2.16 and Angles of Attack up to 160 Degrees. NASA TN D-1781, May 1963

Charczenko, N.: Aerodynamic Characteristics of Towed Spheres, Conical Rings, and Cones Used as Decelerators at Mach Numbers from 1.57 to 4.65. NASA TN D-1789, N63-15308, April 1963

Coltrane, L. C.: Stability Investigation of a Blunted Cone and a Blunted Ogive with a Flared Cylinder Afterbody at Mach Numbers from 0.30 to 2.85. NASA TN D-1506, October 1962 (Supersedes NASA TM X-199)

Treon, S. L.: Static Aerodynamic Characteristics of Short Blunt Cones with Various Nose and Base Cone Angles at Mach Numbers from 0.6 to 5.5 and Angles of Attack to 180 Degrees. NASA TN D-1327, 1962

Stivers, L. S., Jr. and Levy, L. L., Jr.: Longitudinal Force and Moment Data at Mach Numbers from 0.60 to 1.40 for a Family of Elliptic Cones with Various Semi-apex Angles. NASA TN D-1149, December 1961

Charczenko, N. and McShera, J. T., Jr.: Aerodynamic Characteristics of Towed Cones Used as Decelerators at Mach Numbers from 1.57 to 4.65. NASA TN D-994, December 1961

Aerodynamic Characteristics of Spherically Blunted Cones at Mach Numbers from 0.5 to 5.0. George C. Marshall Flight Center, Report MTP-AERO-61-38, May 1961

APPENDIX A

Fletcher, H. S. and Wolhart, W. D.: Damping in Pitch and Static Stability of Supersonic Impact Nose Cones, Short Blunt Subsonic Impact Nose Cones, and Manned Re-entry Capsules at Mach Numbers from 1.93 to 3.05. NASA TM X-347, November 1960

Lockwood, V. E. and McKinney, L. W.: Lift and Drag Characteristics at Subsonic Speeds and at a High Mach Number of 1.9 of a Lifting Circular Cylinder with a Fineness Ratio of 10. NASA TN D-170, December 1959

Grant, F. C.: Importance of the Variation of Drag with Lift in Minimization of Satellite Entry Acceleration. NASA TN D-120, October 1959

Trout, O. F., Jr.: Experimental Investigation of Several Copper and Beryllium Hemisphere Models in Air at Stagnation Temperature of 2000 F to 3600 F. NASA TM X-55, September 1959

A-6

Letko, W.: Experimental Investigation at a Mach Number of 3.11 of the Lift, Drag and Pitching-Moment Characteristics of a Number of Blunt, Low-Fineness-Ratio Bodies. NASA Memo 1-18-59L, 1959

Fletcher, H. W. and Wolhart, W. D.: Damping in Pitch and Static Stability of a Group of Blunt-Nose and Cone-Cylinder-Flare Models at a Mach Number of 6.83. NASA Memo 5-6-59L, 1959

Coltrane, L. C.: Stability Investigation of a Blunt Cone and a Blunt Cylinder with a Square Base at Mach Numbers from 0.64 to 2.14. NACA RM L58G24, September 1958

Speegle, K. C.; Charvin, L. T.; and Heberlig, J. C.: Heat Transfer for Mach Numbers up to 2.2 and Pressure Distributions for Mach Numbers up to 4.7 from Flight Investigation of a Flat-Face-Cone and a Hemisphere-Cone. NACA RM L58B18, May 1958

Beckwith, I. E. and Gallagher, V. V.: Heat Transfer and Recovery Temperatures on a Sphere with Laminar, Transitional, and Turbulent Boundary Layers at Mach Numbers of 2.00 and 4.15. NACA TN 4125, December 1957

Allen, H. Julian: Motion of a Ballistic Missile Angularly Misaligned with the Flight Path upon Entering the Atmosphere and its Effect upon Aerodynamic Heating, Aerodynamic Loads, and Miss Distance. NACA TN 4048, October 1957

Carter, H. S. and Bressette, W. F.: Heat-Transfer and Pressure Distribution on Six Blunt Noses at a Mach Number of 2. NACA RM L57C18, April 1957

Love, E. S.: Base Pressure at Supersonic Speeds on Two-Dimensional Airfoils and on Bodies of Revolution with and without Fins having Turbulent Boundary Layers. NACA TN 3819, January 1957

Bromm, A. F., Jr. and Goodwin, J. M.: Investigation at Supersonic Speeds of the Variation with Reynolds Number and Mach Number of the Total, Base and Skin-Friction Drag of Seven Boattail Bodies of Revolution Designed for Minimum Wave Drag. NACA TN 3708 (supersedes RM L53129b), June 1956

Reller, J. O., Jr. and Hamaker, F. M.: An Experimental Investigation of Base Pressure Characteristics of Non-lifting Bodies of Revolution at Mach Numbers from 2.73 to 4.98. NACA TN 3393, March 1955

Chapman, D. R.: An Analysis of the Corridor and Guidance Requirements for Supercircular Entry into Planetary Atmospheres. NASA TR R-55

Messing, W. E.; Rabb, L.; and Disher, J. H.: Preliminary Drag and Heat Transfer Data Obtained from Air-Launched Cone-Cylinder Test Vehicle over Mach Number Range from 1.5 to 5.18. NACA RM E53104, November 1953

Robins, A. W.: Preliminary Investigation of the Effects of Several Seeker-Nose Configurations on the Longitudinal Characteristics of a Canard-Type Missile at a Mach Number of 1.60. NACA RM L53I18, 1953

Equations, Tables and Charts for Compressible Flow. NACA Report 1135, 1953

Ehret, D. M.: Accuracy of Approximate Methods for Predicting Pressures or Pointed Non-lifting Bodies of Revolution in Supersonic Flow. NACA TN 2764, August 1952

Dennis, D. H. and Cunningham, B. E.: Forces and Moments on Pointed and Blunt-Nosed Bodies of Revolution at Mach Numbers from 2.75 to 5.00. NACA RM A52F22, August 1952

Hart, R. G.: Flight Investigation of the Drag of Round-Nosed Bodies of Revolution at Mach Numbers from 0.6 to 1.5 using Rocket-Propelled Test Vehicles. NACA RM L51E25, 1951

Alexander, S. R.: Flight Investigation at Low Supersonic Speeds to Determine the Effectiveness of Cones and a Wedge in Reducing the Drag of Round-Nose Bodies and Airfoils. NACA RM L8L07a, March 1949

II - WRIGHT FIELD DOCUMENTS

Heinrich, H. G.; Hess, R. S.; and Stumbris, G.: Drag Coefficients of Several Bodies of Revolution at Transonic and Supersonic Velocity. ASD-TDR-63-663, AD-608303, N65-12138, September 1964

Petersen, P. E.: Study of Parachute Performance and Design Parameters for High Dynamic Pressure Operation. FDL-TDR-64-66, May 1964

Kaman Aircraft Corporation: Investigation of Stored Energy Rotors for Recovery. ASD-TDR-63-745, December 1963

Epting, J. L., Jr.: Silicone Finished Glass Fiber Tapes and Webbings for Decelerators. ASD-TDR-63-808, AD-422524, September 1963

A-12
Neff, R. J.: Development of HT-1 Materials for Personnel Parachute Packs and Harnesses. ASD-TDR-63-312, April 1963

APPENDIX A

Investigation of Landing Point Control of Re-entry Vehicles Utilizing Variable Area Aerodynamic Decelerators Incorporating Lift. ASD-TDR-62-287, June 1962

A-14

Study of a Drag Brake Satellite Recovery System. Results of Phase I, WADD-TR-60-775, January 1961, AD254673

Coats, J. D.: Static and Dynamic Testing of Conical Trailing Decelerators for the Pershing Re-entry Vehicle. AEDC-TD-60-188, October 1960

Walcok, W. S.: Deterioration of Textile Materials by Ultraviolet Light. WADD-TR-60-510, AD249237, October 1960

Lamberton, W. A.; et al.: Continuous Filament Ceramic Fibers. WADD-TR-60-244, June 1960

Controlled Burn-Through of Re-entry Drag Chutes. Submitted to WADC on 7 December 1959 by Materials Technology, Inc.

Chu, C. C.; et al.: Development of Improved Nylon Webbings. WADC-TR-58-509, AD211911, April 1959

Little, C. O., Jr.: Amount of Deterioration Present in Parachutes Manufactured over 15 Years Ago, WADC-TN-59-30, February 1959

Drag Parachute Retracting System. WADC-TR-57-57, January 1959

Theoretical Parachute Investigations. Progress Reports, WADC Contract AF33(615)-3955, September 1958

Krizik, J. G.; et al.: Design Data on Biaxial Forces Developed in Parachute Fabrics. WADC-TR-57-443, AD142208, December 1957

Hartnett, J. P.; et al.: Values of the Emissivity and Absorptivity of Parachute Fabrics. WADC-TN-57-443, AD151072, December 1957

Ruoff, Sin, and Frank: Aerodynamic Heating of Parachutes. WADC-TR-57-157

Bomb Stabilization by Parachute. WADC-TR-54-4, AD110584, November 1956

Wiant, H. W.; and Fredette, R. O.: A Study of High Drag Configurations as First Stage Decelerators. WADC-TN-56-320, July 1956

Thomson, G.; et al.: Research and Development of Abrasion Resistant Treatments for Nylon Webbings. WADC-TR-56-151, AD103961, June 1956

Lavrakas, V.: The Effect of Fabric Structure on the Frictional Fusion of Parachute Materials. WADC-TR-54-570, AD90859, August 1955

Graham, C. R.: 56-Ft Nominal Diameter Parachute with 10 Percent Extended Skirt. Technical Note FTL 54-17, August 1954

Daniels, L. E., Capt. USAF: Effects of the Upstream Influence of a Shock Wave at Separated Boundary Layer. WADC-TR-54-31, January 1954

Berndt, R. J.: Force Distribution in a Parachute Harness. TMR WCLE-53-292, November 1953

Bickford, H. J.: Development of 0.9-Oz. Nylon Parachute Cloth. WADC-TR-53-351, AD26850, September 1953

Ewing, E. G.: A Study to Establish a Parachute Research and Development Program. Vol III, Summary and Analysis of Existing Knowledge, WADC-TR-53-78, AD110453, August 1953

Ewing, E. G.: A Study to Establish a Parachute Research and Development Program. Vol II, Summary and Analysis of Existing Knowledge, WADC-TR-53-78, AD110452, August 1953

A Study to Establish a Parachute Research and Development Program. Vol I, Bibliography and Collection of Extracts, WADC-TR-53-78, August 1953

A-24
III - AEDC DOCUMENTS

Knapp, H.: Gemini Ballute Structural Test at Mach Numbers 0.55 and 1.92. AEDC-TDR-64-131, June 1964

Lowry, J. F.: Aerodynamic Characteristics of Various Types of Full Scale Parachutes at Mach Numbers from 1.8 to 3.0. AEDC-TDR-64-120, June 1964

Bell, D. R.: Pressure Measurements on the Rigid Model of a Balloon Decelerator in the Wake of a Simulated Missile Payload at Mach Numbers 1.5 to 6. AEDC-TDR-64-65, April 1964

Deitering, J. S.: Wind Tunnel Investigation of Flexible Parachute Model Characteristics at Mach Numbers 1.5 to 5. AEDC-TDR-63-263, January 1964

Deitering, J. S.: Performance of Flexible Aerodynamic Decelerators at Mach Numbers from 1.5 to 6. AEDC-TDR-63-119, July 1963

The Drag of Spheres in Rarefied Hypervelocity Flow. AEDC-TDR-62-205, December 1962

Deitering, J. S.: Investigation of Flexible Parachute Model Characteristics at Mach Numbers 1.5 to 6. AEDC-TDR-62-185, X63-13449, October 1962 (CONFIDENTIAL)

Herron, R. D. and Binion, T. W., Jr.: Tests of the Kaman KRC-6M Rotochute at Transonic Speeds. AEDC-TN-61-60, N-96964, May 1961

Coats, J. D.: Static and Dynamic Testing of Conical Trailing Decelerators for the Pershing Re-entry Vehicle. AEDC-TN-60-188, October 1960

Persh, J.: Advanced Re-entry Programs. Vol III-Summary, AD-355931, X65-13792, December 1964 (SECRET)

Persh, J.: Advanced Re-entry Programs. Vol II-Materials and Systems Studies, AF-04/694/-486, X65-13791, December 1964 (SECRET)

Moulin, L.: A Possible Compromise between Rocket and Atmospheric Braking, VK1-TN-17: AD-602391, NS4-25796, June 1964

NavWeps Report 1488 (Vol 3): Handbook of Supersonic Aerodynamics. Section 8, Bodies of Revolution, October 1961

Berger, S. A.: Hypersonic Flow over Cones. AFOSR TN 60-1214, September 1960

Downing, Dr. J. R.; Hawkins, Dr. H. V.; McClow, P. W., Jr.; and Petersen, P. E.: Recovery Systems for Missiles and Target Aircraft. AF Technical Report 5853

Trajectory Study of Parachute Test Vehicles. AD-243876, AFFTC TR 60-37, N-93096, July 1960

Kahl, G. D.: Supersonic Drag and Base Pressure of a 70-Degree Cone Cylinder. BRL Memo Report 1178, N-68696, November 1958

Aerodynamic Heating of Parachutes. SN-52823

Recovery Systems for Missiles and Target Aircraft. SN-45004

Sabin, C. M.: The Effects of Reynolds Number, Mach Number, Spin Rate, and Other Variables on the Aerodynamics of Spheres at Subsonic and Transonic Velocities. Memorandum Report No. 1044, Ballistic Research Lab., November 1956

Martin, G. E.: Aerodynamic Phenomena for Bodies of Revolution in Supersonic Motion. NAFI TP-7, N-53536, September 1956

Liccini, L. L.: Hypersonic Tunnel No. 4 Results IX: The Development of a Water-Cooled Strain-Gage Balance (Including Sting Effects) and its Application to a Study of Normal Force and Pitching Moments of a Cone and Cone-Cylinder at Mach Numbers 5 to 8. NavOrd Report 4334, U.S. Naval Ordnance Lab., August 1956

Downing, Dr. J. R.; McClow, J. H. Jr.; Hawkins, Dr. H. V.; and Fredette, R. O.: Recovery Systems for Missiles and Target Aircraft, Subsonic Free Flight Validation Test Phase. AF TR 5853 Part II, March 1955

Buford, W. E.: Magnus Effect in the Case of Rotating Cylinders and Shell. BRLM 821, July 1954

Stimler, F. S.; and Ross, R. S.: Drop Tests of 16,000 Sq In., Model Parachutes. Vol VIII, AF TR 5867, May 1954

Buford, W. E.; and Shatunoft, S.: The Effects of Fineness Ratio and Mach Number on the Normal Force and Center of Pressure of Conical and Ogival Head Bodies. BRL Memo Report No. 760, February 1954

Cone Static Stability Investigation at Mach Numbers 1.56 through 4.24. NavOrd Report 3584, AD-28203, 7 December 1953

Lenert, R.: Base Pressure of Spheres at Supersonic Speeds. NavOrd Report 2774, February 1953

Hoerner, S.: Drag Characteristics of Parachutes. USAF AFTR 6201, AT1-92530, October 1950

USAF Handbook ATI No. 35532, April 1947 (revised March 1951)

Buford, W.: Comparison of the Theoretical Aerodynamic Characteristics of a Series of Cones with the Results Found by Supersonic Wind Tunnel Experiments. SSWTL Memorandum to Director, BRL 23, 1948

Knacke, T.: Reefing Methods, Parachute. TSEPE 672-25D, October 1947

Harris, P.: Separation of Shock Wave from the Nose of a 40-Degree Cone. BRL 651, 1947

Eckert, E.: Calculation of the Temperature which a Parachute Canopy Attains at High Altitude. AMC TR F-TR-2133-WD, December 1946

Kane, E. D.: Sphere Drag Data at Supersonic Speeds and Low Reynolds Number. BRL 514 TN 4125, January 1945

Henn: Descent Characteristics of Parachutes. USAF Translation of German Report ZWB/WM/6202, October 1944

Duncan, W. J.: The Cause of the Spontaneous Opening and Closing of Parachutes. ARC RM No. 2119, 1943

Miller, Lt. A. P.: The David Taylor Model Basin. Dept. of the Navy

Whicker, E.; and Lum, F.: Stability, Strength, and Opening Characteristics of Parachutes in Water. David Taylor Model Basin, Dept. of the Navy

Results of incomplete unpublished GAC In-House drop test program

Results of unpublished Snakeye II (NOTS funded) analytical and test study program

GAC Memorandum, ARD-7538, dated December 30 1964, entitled Estimate of Ballute Weight

Ahart, A. P.: Stress Analysis - Gemini Ballute System GA526, GER-11936, Goodyear Aerospace Corporation, Akron, Ohio, in press

Investigation of Recovery Techniques Applicable to the Terminal Portion of the Sleigh Ride MK-12 R/V Descent Trajectory (unclassified title), Goodyear Aerospace Corporation, GER-11826, November 1964 (SECRET).

Nerem, R. M.: An Approximate Method for Including the Effect of the Inviscid Wake on the Pressure Distribution on a Ballute Type Decelerator, GER-11824, Goodyear Aerospace Corporation, Akron, Ohio, November 1964

Nerem, R. M.: Supersonic Wake Phenomena with Application to Ballute-Type Decelerators, GER-11820, Goodyear Aerospace Corporation, Akron, Ohio, November 1964
GER-11806: Aerodynamic Deployable Decelerator Performance Evaluation Program, Parachute Test Items LP-3 and LP-4, Goodyear Aerospace Corporation, Akron, Ohio, 30 November 1964

GAP-2974: Proposal for Aerodynamic Deployable Decelerator Performance Evaluation Program - Phase III, Goodyear Aerospace Corporation, Akron, Ohio, 23 November 1964

GER-11672, S/1: Aerodynamic Deployable Decelerator Performance Evaluation Program (ADDPEP), Goodyear Aerospace Corporation, Akron, Ohio, October 1964

GAP-2456: Proposal for Aerodynamic Deployable Decelerator Performance Evaluation Program - Phase II. Goodyear Aerospace Corporation, Akron, Ohio, 5 February 1964

APPENDIX A

GER-11279: Analysis and Design of Ballute Test Item B-1 (ADDPEP). Goodyear Aerospace Corporation, Akron, Ohio, 10 October 1963

Gebhardt, J. E. and Sheeter, H. H.: Series II Test Program on Full-Scale Gemini Astronaut Ballute in AEDC Supersonic Propulsion Wind Tunnel, GER-11276, Goodyear Aerospace Corporation, Akron, Ohio, October 1963

Gross, F. R.: Orbital Recovery with Expandable Pressurized Drag Bodies, GER-11124, Goodyear Aerospace Corporation, Akron, Ohio, 1 July 1963

N-114,601: General Electric Co., R62SD63

Karaffa, N. T.: High-Density Disk Samples, Deployment and Ballute Recovery, Description. Goodyear Aerospace Corporation, Akron, Ohio, GER-10753, 15 June 1962

Aebischer, A. C.: Design Test Harness and Field Test Stellar Guidance System. Goodyear Aerospace Corporation, Akron, Ohio, GAP-1378, 3 April 1962

A-38
APPENDIX A

AAD-408: Four-Degrees-of-Freedom Equations of Motion for Re-Entry Vehicles. 18 October 1961

An Inflatable Balloon-Type Deceleration and Stabilization System for Recovery of Space Vehicles. GER-9774, Rev. A, Goodyear Aerospace Corporation, January 1961

GER-10239: Study of Inflatable Balloon Type Drag Devices for Mach 10 Flight Regime. Goodyear Aerospace Corporation, Akron, Ohio, 1961

GAP-9517: Inflatable Balloon-Type Drag Devices for Mach 10 Regime. Goodyear Aerospace Corporation, Akron, Ohio, 13 December 1960, Rev. A

Stimler, F.; and Ross, R.: Drop Tests of 16,000-Sq-In Model Parachutes. AFTR-5867, Vol 8, April 1960

GER-8978: Monthly Progress Reports on AF33(616)-6010 Drag Balloon Study Program. Goodyear Aerospace Corporation, Akron, Ohio, Rev. A through S, 6 August 1958 to 15 April 1960

Kane, M. T.: Test Results of the First Two Supersonic Parachute Test Vehicle Firings. Sandia Corporation Report SCTM 329-59(51), 15 October 1959

AAD-214: Drag and Pressure Distribution Coefficients of Spheres, Spike Spheres, and Spheres in the Wake of Various Bodies at Mach Numbers of 1.5, 2.0 and 2.5 and Dynamic Stability of Tethered Spheres and Balloons. Goodyear Aerospace Corporation, September 1959

Drag Re-entry Body Study. (Illustrated brochure). Convair, ZP-268, CN-79561, April 1959

Sandgren, F. B.; Belfiglio, R. A.; and Romick, D. C.: "Recoverable Boosters are Studied to Cut Manned Space Flight Cost," Missiles and Rockets. April 1959

Heiser, G. D.: Results from Wind Tunnel Tests of the GE-Mark 2 Nose Cone Data Capsule with Modifications Designed to Improve the Aerodynamic Stability. General Electric Company, R59SD334, CN-71135, March 1959

0-1,850,000 Ft, Table of Dynamic Pressures at a Mach Number of One for Altitudes from 0-150,000 Ft. Goodyear Aerospace Corporation Memorandum DAD 428, Rev. A, April 1958

Linnell, D.: Vertical Re-entry of Very Lightweight Bodies into the Earth's Atmosphere. Research Note 9, Convair Scientific Research Lab., A Division of General Dynamics Corporation, October 1957

GER-8265: Supplementary Aerodynamic Analysis of Cockpit Capsule Concept for Multiplace Aircraft Escape Study. Goodyear Aerospace Corporation, Akron, Ohio, July, Contract AF33(616)-5017

Gendtner, W. J.: Sharp and Blunted Cone Force Coefficients and Centers of Pressure from Wind Tunnel Tests at Mach Numbers from 0.50 to 4.06. Convair Report ZA-7-017, June 1955

GER-4552: Ejectable Seat Capsule Final Report, Task I. Goodyear Aerospace Corporation, Akron, Ohio, December 1951, Contract NOa(s)-51-292-C

Rantzsche, W.; and Wendt, H.: Cones in Supersonic Flow. RAND T-8, January 1948
McConnell, D. G.: An Investigation of Transient Melting Ablation at the Surface of a Decelerating Spherical Body. Case Institute of Technology, Cleveland, Ohio, N65-16341, 1964

Glauz, W. D.: Aerodynamic Forces on Oscillating Cones and Ogive Bodies in Supersonic Flow. Purdue University (Thesis - Ph. D.) CN-116-592, January 1964

Heinrich, H. G.; and Monson, D. J.: "Stress Analysis of Parachutes." Chapter VI of Aerodynamic Deceleration, Minneapolis, Minn., University of Minnesota Center of Continuation Study in Cooperation with the Department of Aeronautics and Engineering Mechanics, July 1961

Sreekanths, A. K.: Drag Measurements on Circular Cylinders and Spheres in the Transition Regime at a Mach Number of 2, Institute of Aerophysics, University of Toronto, Aeronautical Research Laboratory, UTIA Report 74, ARL-53, N-98428, April 1961

Wegener, P. P.: A New Method to Measure Sphere Drag in Rarefied Supersonic Gas Flows and Some Results. JPL-TR-34-44, N-81857

Heinrich and Riobokin: Analytical and Experimental Considerations of the Velocity Distribution in the Wake of a Body of Revolution. Department of Aeronautical Engineering, University of Minnesota, December 1959

MIT-DSR No. 5-7426: Textile Division, Mechanical Engineering Department, MIT, August 1957, AD-139272, Materials and Parachutes and Retardation Devices. Notes on Special Summer Program, MIT, 20-31 July 1959

Miele, A.; and Cappellari, J. O.: Effect of Drag Modulation on the Maximum Deceleration Encountered by a Re-entering Ballistic Missile. Purdue University School of Aeronautical Engineering, N-73265, June 1959

Bobrovnikoff, N. T.: Natural Environment of the Planet Mars. Ohio State University Research Foundation, TN 847-1, AD-242177, February 1959

Shaw, J. H.; and Bobrovnikoff, N. T.: Natural Environment of the Planet Venus. Ohio State University Research Foundation, TN 847-2, AD-242176, February 1959

Materials for Parachute and Retardation Devices. MIT, Lecture Notes, Summer Sessions, 1959

A-46
Machell, R. M.; and O'Bryant, W. T.: An Experimental Investigation of the Flow Over Blunt-Nosed Cones at a Mach Number of 5.8. GALCIT Memorandum No. 32 (Contract No. DA-04-495-Ord-19), June 1956

Moore, R. G.: "Radar Reflectivity of Metallized Parachutes." Paper presented at Parachute Engineering Short Course at Purdue University, June 1956

Ashley, H.: Dynamic Stability of a Body Moving through the Air. MIT Parachute Technology Notes, June 1955

Oliver, R. E.: An Experimental Investigation of Flow Over Simple Blunt Bodies at a Nominal Mach Number of 5.8. Guggenheim Aeronautical Laboratory, California Institute of Technology, Wind Tunnel Memorandum No. 26, June 1955

Foote, J. R.; and Scherberg, M. G.: Dynamics of the Opening Parachute. Ohio State University Engineering Experimental Station Bulletin, September 1952, 149: 131-143

Hodges, A. J.: The Drag Coefficient of Very High Velocity Spheres. New Mexico School of Mines, Research and Development Division, October 1949

Staff of the Computing Section, Center of Analysis (under direction of Zdenek Kopal): Tables of Supersonic Flow around Cones of Large Yaw, Technical Report No. 5, MIT, 1949

Staff of Computing Section, Center of Analysis (under direction of Zdenek Kopal): Tables of Supersonic Flow around Cones, Technical Report No. 1, MIT, 1947
Staff of the Computing Section, Center of Analysis (under direction of Zdenek Kopal): Tables of Supersonic Flow around Yawing Cones, Technical Report No. 3, MIT, 1947

Stewart, H. J.: Theoretical Lift and Drag of Cones at Supersonic Speeds. JPL Memorandum 4-14, N63-83866, November 1946

VII - SYMPOSIUMS AND PAPERS

Roberts, L.: "Entry Into Planetary Atmospheres." Astronautics and Aeronautics, October 1964

Topping, A. D.: "Shear Deflections and Buckling Characteristics of Inflated Members." Journal of Aircraft, Vol 1, September-October 1964

APPENDIX A

French, K. E.: "Inflation of a Parachute." AIAA Journal, November 1963

Hamilton, J. S.: "Large Booster Recovery Techniques." Presented at ARS Space Flight Report to the Nation, N-105-706, October 1961

Maynard, J. D.: "Aerodynamics of Decelerators at Supersonic Speeds." NASA/Langley Research Center (for presentation at the Symposium on Recovery of Space Vehicles in Los Angeles, Calif. from August 31 to September 1, 1960)

Romick, D. C.; Belfiglio, R. A.; and Sandgren, F. B.: "Recoverable Boosters are Studied to Cut Manned Space Flight Cost." Missiles and Rockets, April 1958

Ehrincke, K. A.; and Pence, H.: "Re-entry of Spherical Bodies into the Atmosphere at Very High Speeds." Presented at ARS Spring Meeting, ARS 428-57, N-60902, April 1957

Foote, J. R.; and Scherberg, M. G.: "Dynamics of the Opening Parachute." Proceedings of the Second Midwestern Conference on Fluid Dynamics, Ohio State University, 1952

VIII - MISCELLANEOUS

A-58

Hoerner, S. F.: Fluid-Dynamic Drag. Published by author, 1958

Ketschin; Kibel; and Rose: Theoretische Hydromechanik. Akademi Verlag, Berlin, 1954

