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INTERPLANETARY MIDCOURSE GUIDANCE USING RADAR TRACKING
AND ON-BOARD OBSERVATION DATA

By Luigi S. Cicolani
Ames Research Center

SUMMARY

This paper examines the performance of midcourse guidance and navigation
systems for manned interplanetary missions when radar range and range-rate
measurements and on-board theodolite observations are available as sources of
navigation data. Results are given for two Mars missions, one a direct flight
to Mars and back and the other a round trip with return via Venus.

Reasonable observation schedules to refine the miss estimate to the
accuracy required for entry or close approach are found to consist primarily
of radar observations for estimating the greatest part of the miss, plus fre-
guent on-board observations of the target planet during the approach to Mars
or Venus, or radar observations during the approach to the Earth. Additional
on-board observations during the departure from distant planets are usually
helpful in reducing fuel requirements.

The system performance is such that the miss is generally estimated better
than it can be controlled. Consequently, the work of Lawden can be applied to
obtain an analytical solution for the a priori optimum correction schedule.

The minimum fuel requirements, the correction size, and the dependence of
these parameters on the number of midcourse corrections are also determined by
the theory. Results of optimum four-correction schedules used in the simula-
tions on all legs of the two missions agree fairly well with the theory.

The velocity-correction requirements for the various legs range from 18
to 24 m/sec, and the rms miss in pericenter radius at arrival is less than
2.8 xm at Earth and Mars and 6 km at Venus. The downrange miss varies from
2 to 22 km.

INTRODUCTION

In manned interplanetary missions the advantages of a self-contained
on-board midcourse guidance and navigation system independent of communica-
tions with Earth are evident. The performance of such systems is discussed
in reference 1, where it is found that navigation for the entire mission can
be carried out reasonably well with only the on-board system.

Nevertheless, communications will normally be operational and both
ground-based radar tracking and on-board observations will be available as
navigation data sources. Ground tracking is usually superior to on-board
observations in estimating the trajectory, but its ability to establish the



relative motion to the accuracy desired for manned missions during the
approach to distant planets is limited. Consequently, the present study was
initiated to evaluate the performance possible from the use of both tracking
and on-board observational data.

Midcourse guidance and navigation refers to the process of estimating and
controlling the terminal miss at the target planet. This is carried out by a
sequence of observations and trajectory corrections. To determine system per-
formance it is necessary, first, to obtain appropriate observation and cor-
rection schedules. The observation schedules are determined empirically to
utilize the more effective observation type or combination of types in each
region of the mission; sufficient observations are made to determine system
performance near the 1limit of its capability. The correction schedule should
be selected to minimize the fuel requirements and, in this study, a good
approximation to the optimum correction schedule is obtained analytically
using the method of Lawden (ref. 2).

The discussion of system performance considers the accuracy of the miss
estimation, the terminal miss, and the velocity correction requirements.
Results are given from simulation of the system for two reference missions; both
are round-trip missions to Mars, one a direct trip and the other includes a
swing past Venus during the return to Earth. The trajectory estimation is
based on the Kalman filter theory and the results are given in terms of the
standard deviations of the random variables of interest.

SYMBOLS
A(to,t1) transition matrix relating the deviation state at 1t to the
deviation at ti
Aj(tg,tl) j=1, « « +, 4, submatrices of A(to,t1)
B(tF,t) matrix relating miss to current state deviation
C covariance matrix, commanded velocity correction
= trace (C)
e measurement error
H(t) matrix relating observable to current state deviation
T unit matrix
K weighting matrix
M(t) covariance matrix, miss
m(t) miss
2




Mg, rms allowable terminal miss

N nunber of midcourse velocity corrections
P(t) covariance matrix, current uncertainty in state estimate
PAR(t) covariance matrix, current state deviation

Q covariance matrix, measurement error

r range

T range rate

S covariance matrix, velocity-correction error
T sum of rms midcourse velocity corrections

t time

tp reference arrival time

tj time of Jth midecourse velocity correction

Up,U,p,n unit vectors, defined where used

v covariance matrix, velocity correctilon

AV velocity correction

x(t) current state deviation from reference state

y measured value of observable

;E variance, aiming error in velocity correction

5( ) small deviation from reference value of ( )

25 variance, cutoff error in velocity correction

®2 variance, proportional error in velocity correction
Op standard deviation, error in radar range measurement
C., standard deviation, error in radar range-rate measurement
(T transpose of ( )

(M error in estimate of ( )

") estimate of ( )



( )o value of () at injection

( )F value of () at tg
) expected value of ( )
( )p quantities at pericenter

ANATYSIS

The performance of the midcourse guidance and navigation system is
evaluated by simulating its operation. The detailed analysis of this simula-
tion has been discussed extensively in reference 1 and the reports it cites;
thus,only a brief review of the pertinent background is necessary here.

Simulation of the Interplanetary Guidance and Navigation Problem

The following process is to be simulated. A vehicle is injected onto a
reference interplanetary orbit, that is, one with desired end conditions.
Because of random injection errors, the reference orbit is not obtained and
the guildance and navigation system must estimate and control the end condi-
tions. The estimation is carried out by processing observation data. In this
study the data are obtained from on-board theodolite observations of various
planets and Earth-based radar range and range-rate measurements. These obser-
vations are subject to random measurement errors and their processing is based
on the Kalman filter theory. Several times during the flight, impulsive veloc-
ity corrections are made to control the end conditions. These corrections are
determined by means of a guidance law from the estimated end conditions, and
are subject to random execution errors.

In the mathematical analysis of this process two assumptions are made:
(1) all input random variables (injection, correction, and measurement errors)
are gaussian distributed with zero means, and (2) the orbits of interest are
sufficiently near the reference orbit to allow linearization of the eguations
of motion. Consequently, the output random variables (velocity corrections,
terminal miss, miss estimate uncertainty, vehicle state, etc.) are linear com-
binations of the input random variables and, therefore, are gaussian distrib-
uted with zero means. Thus, the simulation need consider only the covariance
matrices of the various quantities of interest.

Reference trajectories.- Two round-trip manned Mars mission trajectories,
including a stopover on Mars, are used as reference trajectories. Both are
taken from reference 1 where they are referred to as the high-speed mission
and the Venus swing-by mission. A brief list of orbital parameters is given
in table I. Reference 1 also gives projections of these trajectories and of
the planetary orbits on the ecliptic plane, which are useful in visualizing
the relative position of the vehicle and planets at various times in the

mission.
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Injection and velocity-correction errors.- The injection errors of
reference 1 are assumed here and are listed in table II. The errors are
assumed to be identical at both Earth and Mars injections and also are identi-
cal to the initial uncertainty in the estimate of the state. The miss and
miss uncertainty at the start of the Venus-Earth leg of the Venus swing-by
mission are also listed in table ITI. These are, of course, obtained from a
particular simulation of the preceding Mars-Venus leg.

For velocity-correction errors, the model of reference 1, appendix B, has
been adopted. Briefly, it includes proportional, aiming, and cutoff errors,
and has the following covariance matrix for the correction error:

— 2 —_— —
S = k3C + %T (BT - 0) + 2 =

o2
where C 1is the covariance matrix of the commanded velocity correction and
c2 its trace. The values of k2, y2, and €2 (variances of the proportional,
aiming, and cutoff errors) are listed in table II.

Each midcourse velocity correction attempts to null the miss as computed
from the estimated state. Fixed time-of-arrival (FTA) guidance (see ref. 1 for
the corresponding expression for C) will be used throughout. Miss for FTA
guidance is defined as the position deviation at the reference arrival time,
which corresponds to pericenter on the reference orbit.

Filtering of Measurements

All navigation information is assumed to be processed by a Kalman filter.
Let P(t) be the covariance matrix of the uncertainty in the estimated current
deviation state. Suppose the measurement is

y = Hx + e
where y 1s the measured value of the observable, Hx 1s the true value of
the observable, and e 1is the random error in the measurement. The H
matrix consists of partial derivatives of the observables with respect to the
state variables. After an observation, the new uncertainty covariance matrix
is
P' = (I - KH)P
where K is the filter weilghting matrix
K = pHT(Q + mpHT) 1

and

Q = (ee_T>
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On-board observations.- A number of on-board optical observations can be
considered, for example, planet diameter, sextant, and theodolite measurements.
Reference 1 indicates that planet diameter measurements are inferior and that,
while the sextant is more convenient to operate than the theodolite, a suffi-
cient number of sextant observations with suitably chosen stars will give
results equivalent to those obtained from the theodolite. For these reasons
and for computational simplicity, the on-board measurements of this study are
restricted to theodolite observations.

The theodolite measures the celestial latitude and longitude of the
observed body and thereby determines the vehicle's position deviation normal
to the line of sight to the planet. Its H matrix and error model are dis-
cussed in reference 1. The resulting covariance matrix of measurement errors
is, from reference 1, the diagonal 2 x 2 matrix:

)
- 2 2 p2 S
Q_<qinst+b o= + R2>I

where 6 is the half subtended angle and R 1s the distance to the observed
body. The quantities g, s b, and ®Ry are the random instrument error,
planet radius uncertainty, and planet position uncertainty, respectively.
Their rms values are listed in table II.

Radar observations.- A network of three stations (Goldstone, Johannesburg,
and Woomera) was assumed with the viewing station measuring range and range
rate simultaneously. The (2 x 6) H matrix for these measurements is

— 7
O <I 'urul"> ¥

Uy

ol

where U, 1is a unit vector in the direction of the line of sight from the
station to the vehicle, Vy/g 1s the velocity of the vehicle relative to the
viewing station, and r dis the range. All quantities are evaluated on the
reference orbit. The two columns of HI are the derivatives of range and
range rate, respectively, with respect to the state variables.

Radar measurements are affected by a variety of errors from various
sources including white noise, colored noise (noise with finite correlation
time), bias errors from the radar equipment, and errors from other sources,
such as, station location, station clock, and astronomical unit uncertainties.
A comprehensive list of such errors in a study of guidance and navigation in
the lunar mission is considered in reference 3. For simplicity, the present
study considers only white-ncise errors. The variances of these errors for
the range and range-rate measurements are given below. These were obtained
from reference 3 by combining the white- and colored-noise variances listed
there. This is approximately valid because the time constant of the colored
noise is short compared to time between observations.



Range: 0.2 = a® + a®r® (km?®)
Range rate: 0,% = b ® + b19®r® + bopPr + bo* (m/sec)?®
where
® = 1 + 0.03¢ by = 210713
ag = 0.00525 bs = 6.5x1078
a, = 0.767x1077 bs = 2x107*
by = 0.1

In these expressions the dimensions of r and ¢ are km and km/sec, respec-
tively.

The rms range measurement error increases almost linearly with range
outside the Earth's sphere of influence (fig. 1).

The range-rate measurement error depends on both the range and range
rate. As an example, the time history of the rms range-rate error for the
outbound leg of the high-speed mission is plotted in figure 2.

Velocity-correction measurement.- Accurate accelerometers are assumed to
be on board the vehicle for measuring the executed velocity corrections. The
accelerometer measurement errors are assumed equally likely in all directions
with an rms value of 1 cm/sec.

Velocity-Correction Schedule

With the use of radar the gquestion of an optimum velocity-correction
schedule can be settled analytically from the work of Lawden (ref. 2). The
application of his work to the present problem is discussed in detail in
appendix A, and a brief description of the solution is given below.

The analytical solution is based on three assumptions:

1. At the time of each correction the miss has been estimated better
than it can be corrected.

2. The terminal miss due to current velocity deviations is propor-
tional to the time to go.

3. The miss generated by random errors in each correction is princi-
pally caused by the cutoff error.

The first assumption leads to a velocity-correction schedule independent of
the observation schedule; consequently, the first correction cancels almost
all the miss due to injection errors, and subsequent corrections account prin-
cipally for the miss generated by random errors in the preceding correction.
The problem then becomes mathematically tractable as a result of the second



and third assumptions. In the solution, the optimum timing of each correction
represents a compromise between the fuel cost for subsequent corrections, which
decreases with a delay of the current correction because the post-correction
miss is reduced, and the fuel cost of the current correction, which increases

with a delay.

In the current simulations the three assumptions are generally satisfied.
In all the trajectories examined here, radar observations are sufficiently
effective in estimating the orbit (compared to .the errors in correcting it)
that the first condition is generally satisfied. The second assumption
requires that the matrix AZ(tF,t) (a submatrix from the state transition
matrix which relates position deviations at tp to velocity deviations at t)
be proportional to the time to go, tp-t. For typical interplanetary orbits,
this assumption is satisfied for +tp-t corresponding to somewhat less than
half an orbit. This assumption is commonly violated in the early phase of an
interplanetary orbit. However, no difficulty arises because the optimum tim-
ing of the first correction is determined empirically and, therefore, none of
the three assumptions need be met for the first correction. The remaining
corrections will usually occur much later in the flight, more than halfway to
the target position, where the optimum scheduling of corrections can be
obtained analytically.

The third assumption will be wvalid, for the present error model, for
midcourse correction magnitudes to 5 m/sec. All but the first correction will
usually fall within this range. Again, this presents no difficulty since the
timing of the first correction will be empirically determined.

If the three assumptions are satisfied, the optimum correction schedule
is obtained as follows: Assuming there are N corrections, the optimum tim-
ing of the Jjth correction is .

my Mg\ N-1 .
tF-—tjz r——-é_é_ ml> J—g,...)N
where mg is the allowable rms terminal miss and my; 1s the miss uncertainty
after the first correction. The timing of the first correction is determined
empirically such that the sum of the rms corrections

.
N-1

T=ch=cl<tl)+<N-l)J§‘5[%—:iJ

is a minimum.

Lawden (ref. 2) reports an optimum number of corrections, N¥, which give
the least value of T. The value of N¥ is typically between 8 and 10. How-
ever, the present work will usually use a four-correction schedule since for a
larger number of corrections the individual corrections become small, of the
order of the errors in making corrections, and the time interval between the
last few corrections also becomes small. Appendix A indicates that there is
little fuel penalty for using four or five corrections rather than the optimum

number .



RESULTS AND DISCUSSION

The following discussion considers the nature of reasonable observation
schedules for the combined use of radar and on-board observations, and com-
pares the resulting performance with that theoretically predicted for the
optimum correction schedule and with the performance of the purely on-board
system of reference 1.

Observation Schedules

The observation schedules are determined empirically. A schedule is
sought that satisfies the condition that the miss can be better estimated than
it can be corrected at the time of each correction. When this goal is
approached, the fuel requirements will be near the minimum and the terminal
miss performance can then be improved somewhat by increases in the number of
observations. The initial choice of schedule and further adjustments to this
schedule need not be made arbitrarily; past studies, such as references 1
and 3, have already indicated that radar provides superior information in most
regions of the missions and that on-board observations are most effective dur-
ing approach and passage near the planets. Thus, an initial schedule might
consist entirely of radar measurements. The number of measurements is then
increased, and on-board observations are added and increased where effective
until further adjustments show very little improvement in performance.

More organized empirical approaches, such as the method of steepest
descent employed in reference 4, can be used to generate the most economical
schedule. However, economical schedules are not of interest here since ground
tracking normally generates and processes data in large quantities. Rather,
this study seeks sample schedules which demonstrate the performance possible
when both on-board observational and radar-tracking data are used.

Observation schedules for each leg of both reference missions are dis-
cussed below. The observation and correction schedules are listed in table III,
and the corresponding time histories of rms miss uncertainty are plotted in
figures 3 and 4. It should be noted that, although these curves are drawn
smoothly, the rms miss uncertainty is a decreasing step function with step
changes occurring at each observation. In addition, accelerometer measurement
errors introduce a comparatively minute step increase in rms miss uncertainty
at the time of each correction, although this effect is usually not visible at
the scale of the figures.

High-speed mission, Earth-Mars leg.- The reference trajectory for this
case is type I (trajectories will be classed as type I if the total heliocen-
tric angle from injection to arrival is less than 180°, and type II otherwise)
with a total flight time of 112.5 days.

The navigation schedule (table III(a)) and the resulting time history of
the miss uncertainty (fig. 3(a)) show that a modest number of radar observa-
tions can rapidly reduce the miss uncertainty to several hundred kilcmeters.
This accuracy will satisfy the minimum fuel condition until the second
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midcourse correction; therefore, no observations are made during most of the
heliocentric phase of the flight. During the approach to Mars, radar observa-
tions alone are inadequate; however, frequent theodolite observations give a
sufficiently accurate determination of the miss.

The range-rate measurements provide very little information on the miss
due to the large measurement errors postulated. Simulation without range-rate
measurements (results not shown) shows virtually the same performance as that
obtained for the system with both range and range rate. Thus, the performance
obtained here for the radar system would apply as well if only range measure-
ments were made. Similar remarks apply to the remaining legs of the two
missions.

The approach-phase schedule can be examined in greater detail to illus-
trate the capabilities of on-board and radar measurements in this region. The
approach phase refers to the 3-day interval from 109.3 to 112.32 days which
includes the last two velocity corrections and ends at the final correction.
For the reference navigation schedule, the rms miss uncertainty at the begin-
ning of the approach phase is 36.6 km, which, after 42 theodolite observations
of Mars, reduces to 4.9 km.

The capabilities of theodolite observations during the approach phase are
illustrated in figure 5. The data show the variation in the downrange, cross-
range, and radial components of the terminal miss uncertainty for (1) differ-
ent numbers of observations in the approach phase, and (2) three initial
levels of miss uncertainty. The approach-phase schedules used here consist of
a sequence of theodolite observations with twice as many between the third
and fourth corrections as in the segment prior to the third correction. In
each case the observation rate is uniform in each of the two segments of the
approach phase. The minimum number of observations considered is 12 and the
maximum 99, and the corresponding maximum observation rate is once each half
hour. The three levels of initial miss uncertainty resulted from the omission
of various blocks of observations from the reference schedule prior to the
approach phase.

Two fundamental differences are seen between the estimation of the down-
range component of miss uncertainty and the crossrange and radial components.
First, the performance in the downrange component is dependent upon and
approximately proportional to the initial uncertainty; whereas, in the other
components, performance is independent of the initial values. Second, the
minimum number of observations gives nearly as good results for the downrange
component as the maximum number, while in the radial and crossrange components
performance is significantly improved when the number of observations is
increased. This suggests an inherent limit on the ability of theodolite
observations in this interval to resolve the downrange component of miss.

To obtain comparable data on the usefulness of radar data during the
approach phase, additional simulations were run (results not shown) which
indicated that even very accurate radar observations in the approach phase
(1 ¥m in range and 0.5 m/sec in range rate) cannot reduce the downrange,
crossrange, and radial components of terminal miss uncertainty much below the
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initial values. Apparently, for the particular reference trajectory used
here, none of these components of miss uncertainty correspond very closely to
that component which can be resolved by radar data.

High-speed mission, return leg.- The reference trajectory is type II with
a flight time of 190.77 days.

With radar (table III(b), fig. 3(b)) no on-board observations are neces-
sary. The schedule consists of radar measurements at 4-day intervals until
the first correction and at 10-day intervals thereafter until the last 15 days
of the flight when more frequent observations are made. Relatively few obser-
vations were required during the entire flight.

It may be noted that observations of Mars during departure from that
planet are omitted from the schedule. Reference 1 indicates that, even with
an entirely on-board system, cobservations of Mars at this time are ineffective
in estimating the miss compared to observations of the Earth, despite the
large distance to the Earth.

Since the reference trajectory is type II, there is a guidance singular-
ity which, in this case, occurs at 43 days. The first correction cannot be
made near this time. For the present reference trajectory there is no per-
formance advantage in making the first correction as early as possible after
departing Mars. Thus, the first correction occurs at 84 days, providing the
estimation system with a very long time to determine the miss. It should be
noted that a somewhat different reference orbit may require an early first
correction and, hence, an early determination of the miss. A case of this
type occurs in the return leg of the Venus swing-by mission discussed below.

Venus swing-by mission, Earth-Mars leg.- The reference trajectory is
type I with a flight time of 170 days. Table III(c) lists the navigation
schedule used to generate the data for this leg, and figure 4(a) shows the
resulting miss uncertainty. The results are generally similar to those for
the outbound leg of the high-speed mission and will not be considered further.

Venus swing-by mission, Mars-Venus leg.- The type I reference trajectory
for this leg has a flight time of 185 days and remains at distances of the
order of 108 km from the Earth throughout the flight. The observation sched-
ule (table III(d)) consists of some observations of Mars early in the flight,
radar observations at l/2—day or l-day intervals up to the time of the first
correction and at 10-day intervals thereafter, and frequent observations of
Venus during the final 20 days. Figure L(b) shows the resulting time history
of the rms miss-estimation error.

1The guidance singularity occurs because Ag(tF,t) becomes singular when
the heliocentric angle to the target position is 180°. In this case, the out-
of -plane component of the miss is uncontrollable by velocity corrections and
is poorly controllable in the region near the singularity. This does not pre-
clude the possibility of correcting only the controllable components, but such
sophistication of the guidance system is not within the scope of this study.
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Radar measurements are very effective up to the approach to Venus, and
are capable of reducing the miss-estimate error to several hundred kilometers.
However, prior to the first correction (at 30 days), the most effective sched-
ule combined both Mars and radar observations. Figure 4(b) compares the
results for this region of the mission for three schedules: only on-board
observational data, only radar data, and both radar and Mars observations.

The schedules with radar data give a much better estimate of the miss than
does the schedule with only on-board observations and the combined schedule
does somewhat better than the radar-only schedule. This occurs because the
radar is unable to estimate the crossrange miss during the early part of this
leg. Figure 6 compares the early time history of the error in estimating the
crossrange miss for both the combined and radar-only schedules, and shows the
importance of the Mars observations for an early determination of this com-
ponent. However, in the present simulation, this component is only a small
fraction of the initial miss (cf. table II), and the radar alone is able even-
tually to make a good estimate of the crossrange miss. Thus,the principal
effect of the early Mars observations is a small saving in the total velocity
correction (about 1 m/sec). Of course, if the initial crossrange miss were
larger, the Mars observations would give a correspondingly more significant

fuel saving.

Venus swing-by mission, Venus-Farth leg.- The type II reference trajec-
tory for this leg has a guidance singularity at 28 days, and a total flight
time of 125 days. The distributions of initial deviations and the uncertainty
in estimating these deviations are obtained from simulation of the preceding
Mars -Venus leg of the mission and are given in table II.

The observation schedule (table III(e), fig. 4 (c)) consists of frequent
observations of Venus while in the immediate vicinity of that planet and radar
observations throughout the flight.

The fuel requirements for this leg are decreased 1f the first correction
is made prior to the guidance singularity, within the first 10 days. The most
effective schedule for an early determination of the miss combines information
from both the radar and observations of Venus. Figure 4(c) compares the time
histories of miss uncertainty during the first 10 days of this leg for three
schedules using, respectively, only observations of Venus, only radar data,
and both radar data and observations of Venus. It is seen that the combined
schedule does better than either of the schedules with only one type of obser-
vation. Of course, on the return leg the miss can be estimated very accu-
rately with the radar alone and there would be no reduction in terminal miss
performance if the Venus observations were deleted. The principal effect of
the Venus observations in the combined schedule is then a modest reduction in
velocity-correction requirements (about 3 m/sec in the present example).

Comparison With Performance Predicted by the
Optimum Correction-Schedule Theory

The optimum correction schedule and corresponding minimum fuel
requirements are computed, as described in appendix A, after an empirical

12



determination of the optimum timing of the first correction. The timing of
the final correction is determined by a specified rms allowable terminal miss
which, in the present case, is 2 km.

Performance data from simulation and from the theory are compared in
tables IV and V for all legs of both reference missions. Data for three-,
four-, and five-correction schedules for both legs of the high-speed mission
are contained in table IV and data for four-correction schedules for all legs
of the Venus swing-by mission in table V. The specified terminal miss per-
formance is generally not achieved, principally because the miss has not been
determined with sufficient accuracy at the time of the final correction. How-
ever, performance is generally good because the largest component of the miss
is oriented in the downrange direction. This affects only the arrival time as
discussed later.

In general, the predicted fuel requirements are optimistic. This is
because the theoretical model neglects the uncertainty in the miss estimate
at the time of each correction and the miss generated by correction errors
other than the cutoff error. Both of these approximations cause the size of
the third and subsequent corrections to be underestimated by the theory. The
total velocity correction shows good agreement for the four- and five-
correction schedules, being within L m/sec in every case. Table IV also
illustrates the decrease in velocity-correction requirements and the size of
each correction with an increase in the number of corrections.

Thus, because of the accuracy achileved with radar observations, the
theory of Lawden (ref. 2) gives an adequate Tirst approximation to the optimum
correction schedule, velocity-correction requirements, correction size, and
their dependence on the number of corrections.

Comparison With Performance of the On-Board Navigation System

The rms total velocity-correction requirements and terminal miss for the
system of this report and a system using only on-board observations are com-
pared in table VI. Data for the on-board system are taken from reference 1
and correspond to schedules using four midcourse corrections on each leg with
variable time-of-arrival (VTA) guidance corrections where indicated. Data for
the present system correspond to the navigation schedules of table III and use
fixed arrival-time guidance for all corrections.

The results show a varying amount of fuel saving with the inclusion of
ground-based radar data; for the return leg of the high-speed mission there is
almost no reduction, but for the outbound leg of the Venus swing-by mission
the velocity-correction regquirements are cut in half.

Table VI shows a large reduction in downrange miss with the use of radar.
Navigation data from on-board observations generally give limited information
on the downrange miss until late in the mission, where the fuel required to
correct this miss is large. This deficiency of the on-board system made it
advisable to utilize VTA guidance for the final one or two corrections in ref-
erence 1 in order to reduce the fuel requirements substantially. This type of
guidance corrects only the lateral miss and ignores the downrange miss
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remaining from earlier fixed time-of-arrival corrections; hence it produces
the large downrange miss seen in table VI for the on-board system. On the
other hand, the system of this study improves the estimate of all components
of the miss everywhere in the flight; consequently, only minor fuel saving
would occur if VTA corrections were made during the approach phases.

The principal effect of the downrange miss is a change in the time of
pericenter. This is seen from the following linearized equations for the
errors in pericenter position and time (see ref. 5):

} B Rp -
of, = (G + AAY)OF(tg) - oo PO OT(te)
Vp

>y}

N P P P e
8t = - v;—p 8r(te) - —= U oV(te)

6<

where U, P, and n form an orthonormal vector triad with U along the ref-
erence pericenter position (radial) and P along the reference pericenter
velocity (downrange). To first order, the downrange miss, ﬁTS?(tf), affects
only the time of pericenter. The reduction in downrange miss shown in table VI
corresponds to a reduction in the rms pericenter time error from several min-
utes for the on-board system to several seconds. However, the timing error
associated with the on-board system requires only modest adjustments in entry
range for landing at a fixed site on Earth.

Of particular interest in manned missions is the control of pericenter
radius to lie within a safe entry corridor both at Mars and at the critical
return to Earth. It can be seen from the above equation that the error in
pericenter radius, ﬁTSFb, is simply the radial miss, which, in table VI, is
generally cut in half when radar data are included.

CONCLUDING REMARKS

This paper examines the performance of midcourse guidance and navigation
systems for manned interplanetary missions when both radar and on-board obser-
vational data are available.

The investigation of appropriate observation schedules for such systems
shows that radar generally provides superior data and will be sufficient for
best performance during most of the mission. However, during the approach to
distant planets on-board observations are essential to improve the miss esti-
mate to the accuracy required for entry or for close approach of manned
vehicles. In addition, on-board observations during departure from distant
planets will usually reduce fuel requirements.

It may be noted that the amount of radar data assumed in this study is

gquite small compared to what would be available in the real case. More inten-
sive use of radar data would improve performance somewhat over that shown in
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this report, but the improvement would be limited because the trajectory is
already estimated with the minimal data nearly as accurately as 1t can be
controlled.

When the trajectory is estimated more accurately than it can be
controlled, as in the present study, the optimum correction schedule is inde-
pendent of the observation schedule. This feature, together with several sim-
plifying assumptions, allows application of the work of Lawden (ref. 2) to the
a priori computation of an optimum correction schedule. The minimum velocity
correction requirements, correction size, and the dependence of these param-
eters on the number of corrections are readily determined by the theory. An
optimum nunmber of corrections, on the order of 8 to 10 for the cases studied
here, is given by the theory. However, this can be reduced to 4 or 5 cor-
rections without significant fuel penalty. Results from simulation of the
system gave fair agreement with the theory.

The combined radar and on-board data are shown to give fair improvement
in both fuel requirements and miss performance over a purely on-board system.
However, it should be noted that the on-board system for which the comparison
was made used a minimal amount of data and sufficient additional data could
be expected to improve its performance.

The performance obtained from simulation of the guidance and navigation
system of this study gave velocity-correction requirements ranging from 18 to
2k m/sec on the various legs of the two missions. The rms miss in pericenter
radius was less than 2.8 km at Farth and Mars and 6 km at Venus. The rms
downrange miss varied from 2 to 22 km.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., June 13, 1966
125-17-05-08
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APPENDIX A

DERIVATION OF OPTIMUM VELOCITY-CORRECTION SCHEDULE

The correction schedule is designed to null the miss. The optimum
schedule is one which accomplishes this end at least cost, that is, for the
least amount of corrective fuel. In general, the fuel requirements vary with
the observation schedule as well as the correction schedule, and the general
problem is of such complexity that no analytical solution has thus far been
given. However, because of the inclusion of radar data in this study, the
miss is generally estimated better than it can be controlled. Consequently,
certain simplifications can be made. First, the optimum correction schedule
will, for the most part, be independent of the observation schedule. Secondly,
the first midcourse correction will null almost all the miss generated by
injection errors, and subsequent midcourse corrections will correct principally
for miss generated by random errors in the preceding correction. Of course, if
the estimation and correction systems are so accurate that the miss following
the first correction is acceptable, then the scheduling problem will be tri-
vial. But for the assumed state of the art, the miss generated by errors in
each correction is significant. This miss has a lower bound determined by the
thrust cutoff error and is approximately proportional to the time to go.

In the following, the general equations for the statistical properties of
the velocity corrections are derived and a statement of the optimum scheduling
problem is given. DNext, a list of simplifying assumptions is discussed and,
with these assumptions, an optimum correction schedule is derived. The sim-
plified problem has been solved by Lawden (ref. 2), and the principal features
of that solution and its application to the present simulations will be

discussed.

General Problem

Velocity corrections.- The guidance correction is an attempt to null the
miss. For fixed btime-of-arrival (FTA) guidance, the miss is the position
deviation from the reference position at the reference time of arrival, tp.
If the quantities of interest are assumed to be adequately represented by the
linearized equations of motion, the miss is related linearly to the current

state deviation:

m(t) = B(tp,t)x(t) (A1)

where, for FTA guidance, B is the 3 x 6 matrix taken from the upper half of
the transition matrix (ref. 1):

B(tp,t) = [Ax(tp,t) Ax(tw,t)] (a2)
More generally, for arbitrary linear guidance laws, the miss can be expressed
as in equation (Al), but with different expressions for B (ref. 5).

The current state, x, can be given in terms of its estimated value, X,
and the error in the estimation, X, as
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x(t) = %(t) + x(t)
Similarly, (A3)
m(t) = A(t) + m(t)

J
where

f(t) = B(typ,t)%(t)

(Ak)

m(t) = B(tF,t)i(t) )

The commanded velocity correction is computed from the estimated miss.
(A justification for this procedure is given in reference 6.) For FTA guid-
ance, the correction is

AV, = A5t (tp,t)R(t7) (A5)

where the symbol +t~ refers to time just prior to +. This velocity correc-
tion is carried out with random error, mn, so that the actual correction is

AV = AV, + 7 (A6)
The miss vector.- The actual miss is a step function with changes at each

correction. Its initial value is specified by the injection errors, xq;
hence, prior to the first correction, the miss is

m(t) = B(tp,to)%g s to <t <ty (A7)

After each correction, the miss is given by the miss prior to the correction
and the change due to the correction. In the interval (t-,t. ) between the
. . X . . J? it
jth and j+lst correction, the miss is:

m(t) = m(tg) + Ao(tp,t5)AV

3=

From equations (A3) and (A6), this becomes

m(t) = ﬁ(tj} + Aa(tp,tyiny s Py <t <ty (A8)

That is, the miss following a correction is due to the miss uncertainty prior
to the correction and the error in making the correction.

Statistical properties.- The navigation and guidance process is subject
to random errors, so that the parameters which give the performance of the
system - the final-miss and total-fuel - are random variables that must be
dealt with statistically. All input random variables - injection, measure-
ment, and correction errors - are assumed to be gaussilan distributed with
zero means. Since the equations of motion have been linearized, the random
vectors of interest are linear combinations of the input random variables and
are, therefore, gaussian distributed with zero means. 1In that case, their
statistical properties are specified by their covariance matrices.
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Assuming the state estimate has been made using the Kaiman filter, then
x and ¥ are uncorrelated and, consequently, m and i are also uncorrelated.
The covariances M, M, and M are defined by:

M = E[mmT], etc.

where E is the expectation operator. These are positive definite matrices
related by

M=M+M (A9)

From equations (A7) and (A8), one can obtain

B(tp,t)PARSBI (tp,t) = My,  to <t < t

- T
M(tJ) + Az(tF:t)SjAz(tF;t) P) 'tj <t < tj+l

M(t)
(A10)

M(t)

where PAR, and Sj are the covariance matrices, respectively, of the injec-
tion errors and the errors in making the Jth correction, The second of
these equations uses the independence between correction errors, UEE and

estimation errors, ﬁ(tj).

Define the covariance matrix, Cj, as E[AN@ AVE]. This can be written,
from equations (A5) and (A9), as

Gy = AZ(bpyby)(M(E]) - H(£3)145Y (tp,ty) (a11)

.The actual correction (eq. (A6)) then has the covariance

Vy = Cj + S; (A12)

where statistical independence between the commanded correction and the cor-
rection error has been assumed.

Problem of the optimum correction schedule.- If N midcourse velocity
corrections are made between injection, iy, and arrival, typ, their execution
times, {ti, - - ., ty}, are called the correction schedule. The optimum
scheduling problem to be discussed is stated as follows:

Given that N corrections are made in (to,tF),find the sequence of
execution times

to <t1 <. . . <ty<ty

such that the sum of the rms velocity corrections,
N
Y )
J=1

18



is a minimum, and the rms miss following the last correction is

J%race[M(tE)] = my
Here, m, 1is some acceptable numerical value of the rms final miss.

The parameter m, represents the desired terminal miss performance and
affects velocity-correction requirements. A lower value of mgy (i.e., better
terminal miss performance) increases the required total correction; that is,
the choice of my involves a trade-off between fuel and terminal miss. It
should also be recognized that, regardless of the choice of my, the terminal-
miss performance can be limited by other factors inherent in the navigation
system.

The choice of cost function T, as given above, is motivated by the need
for mathematical tractability. A more appropriate criterion would be the
minimization of expected fuel requirements which, for a vehicle of constant
mass, 1s given by the sum of the expected velocity-correction magnitudes
rather than the sum of rms values:

N

=

T =ZE {|Avj|}

J=1

However, if the magnitudes of the several corrections are similarly distri-
buted (i.e., the distribution curves have the same shape and differ only in
scale), then the rms and mean magnitudes of each correction are always in the
same ratio. Previous experience shows that such prorortionality is a fair
approximation in actual practice. Thus, minimizing the sum of rms correction
magnitudes is sufficiently close to minimizing the fuel requirements to Jus-
tify the choice of the former as the optimality criterion.

Simplifying Assumptions

Independence of correction and cobservation schedules.- For convenience,
equations (A10), (All), and (Al2) are repeated:

For j=1,2, . . ., N
_ _ N 1T
Mg to <t <ty
M(t) =

o~ T

M(tj) + Az(tF,tj)SjAg(tF,tj) ty <t <ty
In general, the total fuel depends on the performance of the estimation system
through the terms M(tj), jJ=1,2, . . ., N. The analytical problem pre-
sented by the general case 1s unsolved, but adequate schedules can be obtained
empirically (e.g., ref. L).
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On the other hand, if the term M(t:) can be neglected, then the correc-
tion schedule is independent of the observation schedule for the interval
(tj-1,t5). Further, if all the terms M(t;) =1, - . ., N can be neglected,
the correction schedule is entirely independent of the observation schedule.

It is clear that if the miss were perfectly estimated at the time of the
jth correction then M(tJ) would be zero, In general, M(tJ) is not zero and

it is of %pterest to state how well the miss must be estimated in order to
neglect M(tj).

Assumption 1.
ﬂRtg) can be neglected if

(2) tr [M(t})] < < tr [M(t])]

(b) tr [ﬂ(tj)] < < tr [AZ(tF,tj)SjAg(tF,tj)]

The first condition states that the miss uncertainty is small compared to the
miss, from which

vy = Agl(tF,tj)M(tj)[Agl(tF,tj)]T + 8 (413)

The second condition states that the miss has been estimated better than it
can be corrected, that is, the miss following the jth correction is due
almost entirely to errors in making the correction,

. [ M, By <t < 1 ()
M(t) = Al
T
AZ(tF,tj)SjAg(tF,tj) ty <t <tgy,

Simplified correction-error model.- The covariance matrix, Sj, is an
important parameter when the correction and observation schedules are inde-
pendent. The error model, already discussed in the text, is taken from ref-

erence 1, appendix A.

—_ S —_— [ —
) [S] 1°5 2
s = RIS . = c<T - C.
SJ K EE Cjy + 5 7 [ 3 JJ
J

where Kz, yZ, and €2 are the variances, respectively, of the proportional,
aiming, and cutoff errors, and c? is the mean-square correction, tr(Cj).

If the commanded correction is almost spherically distributed so that
¢. 2 % E?f[, then S can be approximated by

3 =
~ 2 2y.2 2| 1
8y = [(K +y )cj + € } 3I
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For the present Mars mission studies, the rms errors are assumed to be

\/_K‘.—Z = 0.01, \/7_'é = lo, \/e=2 = 0.2 m/sec

— In this case, the cutoff error is the dominant error, statistically, when
JZ; is about 5 m/sec or less. The first correction is usually large, statis-
tically, but the remaining corrections are usually small, allowing the follow-
ing approximation:

Assumption 2.

For each correction except the first, the commanded velocity
correction is distributed almost spherically and the cutoff error
is, statistically, the dominant error in making the correction:

2
(S
55 =3

I

I j=2, ..., N (A15)

Approximation of Vj".The actual correction consists of the commanded

velocity correction and the errors in executing the correction (eq. (A12)).
The error term is usually small by comparison, so that one can assume:

Assumption 3.
The errors in making a correction are small compared to the
actual correction

) << e
tr(SJ) c5

In this case, equation (Al2) becomes
vy = Cy (A16)

The first correction is usually large and assumption 3 readily applies.
For the remaining corrections, in view of assumption 2, assumption 3 is satis-
fied if e2 << c¢c2. For the assumed value e2 = 0.2 m/sec, assumption 3 is

valid when the rﬂs correction, Jc?, is 1 m/sec or greater. This should nor-

mally be the case, since the operation of thrust devices near the level of the
errors in thrusting is generally avoided.

Approximation of Az(tF,t).— The columns of this matrix are the deriva-

tives.of pbsition at tf with respect to the components of velocity at t,
evaluated on the reference orbit.

If the gravitational acceleration on the deviated path is identical to
the gravitational acceleration on the reference path at every time, then the
deviation equations of motion are those of a straight line; therefore

Ao(tp,t) = (tp - t)I (A17)
For the heliocentric orbits occurring in interplanetary missions, the differ-

ence in gravitational acceleration on nearby orbits is very small so that
equation (A17) remains a fair approximation over extended periods of time.
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The maximum interval for which this approximation remains valid is not pre-
cisely known, but an absolute upper limit is given by the fact that As(tp,t)
becomes singular in Keplerian motion when the interval +tp-t corresponds to
a difference of 180° in true anomaly.

Equation (A17) is used in the remainder of this analysis in the equations
governing the second and later corrections, which normally occur when much
less than half an orbit remains to be traversed to the target position. How-
ever, equation (Al7) is often a poor approximation at the time of the first
correction: The matter of approximations to the transition matrix is dis-
cussed at length in reference 7.

Simplified Problem and Its Solution

Optimum correction schedule for the simplified problem.- In the simpli-
fied problem only assumption 3 is applied for the first correction. All three
assumptions and the approximation given in equation (Al7) are used for the
remaining corrections.

If ci(t1), m1(ty) are the rms first correction and miss following the
first correction, then

Nir(vi) = ca(ta)

Jer(v2) = my(t1)/(tp-tz)

./tr(Vj) = A»/ez(‘tF—tj_l)/(tF-tj) J=23, ..., N
The dimensionless time to go is defined as

(tp - t3)/(tp - to) -

T35

The sum of the rms corrections is then:

N
m_(t — T
T = cp(ty) + __L(_l)__l_ + /622 _J-1 (418)
tp-t, T2 £ T3
J=38

From equations (Alk), (A15), and (Al7) the rms final miss is entirely deter-
mined by the cutoff error in the last midcourse correction,

n(ty) = (tp - tN)Je=2

Since the rms final miss is specified to be equal to mg, then the timing of
the final correction is specified by

Mgy

= == (A19)
k. ng(tF-to)
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It should be noted that the simplified equation for the final miss accounts

only for the miss generated by the cutoff error in the final correction and

therefore underestimates the true value of the final miss to the extent that
the miss estimate uncertainty at ty contributes to the terminal miss.

The independent parameters of the correction schedule are now ti,

Toy + + +3 Ty, @nd T has an extreme (minimum) at
T _ 4
oty
T
a——T—: =0 Jd = 2, 9 N-1
J
From equation (A18)
ar de, 1 dm, )
= + =0
dty  dty  tp-tz dta
T m =)
—é—':———l_iz'f' €2L=O (AEO)
ATz tp-to T2 T3
— T s
iT—':,,’Ez(——u-‘-F_l—_ =0 j:3, o e ey N-1
a’l'j sz Tj+l J

Except for the first, these equations are readily solved (algebra omitted),
giving J-1

N-1
2 M -
Ts = — j=2, ..., N (A21)
L ./eZ(tF-to)
That is, the optimum schedule for tgo, . . ., ty depends on the timing of the

first correction only through the rms miss, mj;, inherited from the first
correction. The sum of the rms velocity corrections is now

R
T = cq + E(N—l)(%) (A22)

where T is given as a function of +t; only. If t3; can be determined
(empirically) such that T is @ minimum, then all of equations (A20) are
satisfied and the entire schedule {ti, . . ., tN} is the solution of the
optimum scheduling problem.

Several consequences of equation (A21) should be noted. The timing of
the jth correction is a fixed fraction of the timing of the preceding
correction: L

-1
Ts m, .
Tjil = m—§ =2, . . ., N (A23)
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For all corrections after the first, the rms miss is reduced by a fixed

fraction:
m(t )
J =2, -, N (AE)-I-)
m(t )
and the rms correction is constant:
L
N-1
[—— my .
¢y = oy J=2, ..., N (A25)

Equation (A18) and its solution are given in reference 2. The optimum
schedule represents a compromise between two opposing effects. If the jth
correction is delayed, the miss generated by random errors in the jth cor-
rection will be less and subsequent corrections will require less fuel. On
the other hand, a delay increases the fuel required for the jth correction.

Computation of *ti.- The timing of the first corrections is left to
empirical determination. Hence, only assumption 3 need apply at t..

It is not difficult to determine +t, empirically if one assumes a
reasonable observation schedule for the initial part of the flight and then
uses a computer program which simulates the statistical performance of the
guidance and navigation system, obtaining mi(t%) and ci(t). These parameters
are, respectively, the rms postcorrection miss and velocity correction if a
correction is made at t. Equation (A22) can be used to compute the total
velocity-correction requirements as a function of the time of the first
correction, from which the optimum time, t;, is selected.

Number of corrections.- An optimum value of N, found by minimizing T

(eq. (22)) with respect to N, is reported in reference 2. The optimum N
is one of the neighboring integers of

m
W* = 1+ 1 {)
g,

For typical values of the ratio m;/mg found in this study, 10° to 10%, we
have

= 8.1 to 10.2

However, practical difficulties, which will be discussed below, arise with
such a large number of corrections, and the fuel saved by using 8 or 10 cor-
rections rather than, say, 4 or 5 may not be significant.

Data illustrating the dependence of fuel requirements and correction
magnitudes on the number of corrections are given in sketches (a) and (b).
The first correction, which accounts principally for injection errors, is very
nearly independent of the number of corrections, but fuel requirements for the
remaining corrections depend on N (see eq. (A22)). Sketch (a) gives the sum
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of the rms velocity corrections for all
corrections except the first versus the
parameter m3/mg; for various values of
N. It is seen that the fuel required
decreases with increases in the number
of corrections, but for large N the
advantage of further increases in N
diminishes.

Sketch (b) shows that the size of
individual corrections also decreases
with increasing N and soon approaches
the size of the cutoff error. Note
also that for the low values of N the
individual corrections can be large
enough that significant miss may be
generated by correction errors cther
than the cutoff error. In this case,
poorer agreement with the theoretical
fuel requirements is expected.

A final point of interest is that
the time interval between the last few
corrections becomes small as N
increases. This can be seen from equa-
tion (A23).

In the simulations of this study,
N = 4 was selected as a compromise
between total fuel and correction size.

Off -optimum timing.- It is of
interest to determine how critical the
timing is of each correction.

Usually, the fuel requirement per
unit miss rises very slowly with time
in the region of the first correction
(although this is not always the case).
In the present simulation, the miss is
determined at the time of the first
correction to the order of the miss
generated by errors in the first cor-
rection or better. In this case, there
is very little penalty assoclated with
delays in the first correction. In
some cases, a guidance singularity
occurs soon after injection so that
delays beyond the optimum timing of the
first correction may cause more sig-
nificant penalties.
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On the other hand, if the first correction is made earlier than the
optimum time, the principal penalty arises from a poorer estimation of the
miss. For instance, if the correction is made early enough that the post-
correction miss is twice the value for the optimum timing, the fuel for the

remaining corrections will be increased by a factor of ot N-1 , while the
fuel for the first corrections will remain very nearly the same; that is,

2(em) = (m) + (25D ay(a(m) - o)
where m; refers to the miss following the optimally timed first correction.

For corrections 2, . . ., N-1 (tyy remains fixed to satisfy the miss
performance criterion), let the timing of the Jjth correction be changed from
the optimum time, tg, by the amount At:. This yields the change in the sum
of rms velocity cortections (algebra omitted)

=2

AT _ [Atj/(tF—’C?)]
1 - *
ngtml/ma)N—l 1- Atj/(tF'tj)

In this equation the penalty, AT, has been made dimensionless by a factor
recognized as the rms size of the individual corrections. The penalty is
greater for a delay (positive Amj) than for correcting early by the same
amougt, and, of course, it becomes arbitrarily large as Amj approaches
tF—tj. A penalty of 1 percent of the individual correction is obtained for an

off -optimum timing of

Similarly, a 10-percent penalty is incurred for timing errors of

J
—x = +0.2 -0O.
Ty = 10:2T, 0.37

This is considered a small penalty for fairly large percentage changes in
timing and the correction schedule appears to have a broad optimum.
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TABLE I.- REFERENCE TRAJECTORY PARAMETERS

Departure conditions

Arrival conditions

Trajectory Date Velocity, | Altitude, | Trip time, Date Velocity, | Altitude,
and leg km/sec km days km/sec km
High speed May 31.57, 1971 11.761 160.00 112.43  |8ept. 21.00, 1971 8.49 -3.54

Farth to Mars

High speed Sept. 27.22, 1971| 9.813 300.32 190.77 |April 4.98, 1972 1h.26 -2.96
Mars to Earth

Venus swing-by [Sept. 9.49, 1975 | 12.020 159.27 170.01 |Feb. 26.49, 1976 7.76 26.43
Earth to Mars

Venus swing-by |March 27.55, 1976| T7.097 499.90 185.54 |Sept. 29.10, 1976 14.69 3363.59
Mars to Venus

Venus swing-by |Sept. 28.54, 1976| 14.992 3349.96 124.94 |Jan. 31.48, 1977 13.91 -11.06
Venus to Earth

Velocity and altitude are at periapse of the vacuum hyperbola. Dates are given in universal time.




TABLE II.- RMS INJECTION, CORRECTION, AND MEASUREMENT ERRORS™

Injection errorg_(Marsrand Farth injection)2

Altitude  3.2187 km (2 miles) L4.47 m/sec (10 mph)
Downrange 4.8285 km (3 miles) 1.788 m/sec (4 mph)

Crossrange 1.60935 km (1 mile) 1.341 m/sec (3 mph)

Corresponding initial miss, km

Mission Leg Altitude Downrange Crossrange Total
High speed Outbound 62,000 170,000 27,600 183,000
Return 104,000 114,000 9,200 155,000

Venus swing-by  Outbound 193,000 198,000 79,400 288,000
Mars -Venus 122,000 107,000 5,940 163,000

Initial Qiss?_’_-;retu_rnwlegz Venus swing-by mission, km

Altitude Downrange Crossrange Total
Miss 187,000 172,000 8,260 255,000
Miss uncertainty 164,000 146,000 2,840 219,000

Errors in making velocity corrections

Magnitude, Jr?2 1 percent
Direction, VyZ 1°
Cutoff, Ve® 0.2 m/sec

Errors in measuring velocity corrections

1 cm/sec rms equally likely in all directions

Theodolite observation errors

Instrument error, Vg2 10 seconds of arc

inst —
Radius uncertainty/planet radius, Jp2  0.001

Position uncertainty, 5§§ 1 km

1.4 . s N
All errors are assumed gaussian distributed with zero means.

®The initial uncertainty is identical to the injection errors except on
the return leg of the Venus swing-by mission.

SThese values are obtained from simulation of the preceding Mars-Venus
leg, using the navigation schedule of table III(d).
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TABLE III.- NAVIGATION SCHEDULE'

(a) High-speed mission, outbound leg

Tnitial  Observation  Grouwp _______ Observation o
time, interval, interval, Number Group Type
days deys days (2)
o1 o2 s &
1.10 Velocity correction
1.50 .5 2.0 15 5 R,2E
93.50 Velocity correction
94 .00 .1 1.0 75 15 2R,3M
109.0 1 2 R
109.3 .123 1L M
110.95 Velocity correction
111.00 .0L8 28 M
112.32 Velocity correction
112.432 Pericenter (Mars)

Total observations- 42 radar, 10 Earth, 87 Mars

lThe table is read as follows: line 3, for éxample, specifies that each
group of observations consists of one radar and two theodolite observations
separated by 0.5-day intervals. This group is repeated 10 times, beginning
every second day.

2R - radar; E, M, V - theodolite observations of Earth, Mars, or Venus.
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Initial
time,
days

3.0
84.0
101.0
172.0
174.0
189.0
189.3
189.4
189.5
190.65
190.765

1,23ee footnotes page 30.

TABLE III.- NAVIGATION SCHEDULEY- Continued

(b) High-speed mission, return leg

Observation ~ Observation
interval,

days Number Type

o , . (2)

4.0 20 R
Velocity correction

10.0 8 R
Velocity correction

2.0 8 R

.1 3 R
Velocity correction

.2 6 R

.05 3 R

Velocity correction
Perigee

Total - 48 radar observations
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TABLE III.- NAVIGATION SCHEDULE'- Continued

(c) Venus swing-by mission, Earth-Mars leg

Initial Observation  Group “Observation B
time, interval, interval,
days days days Number Group Type
. i _(2)
0.1 0.1 8 R
.9 Velocity correction
1.0 -5 > R
3.0 1.0 T R
100.0 10.0 5 R
143.6 Velocity correction
145.0 1.0 L 16 L R,3M
165.0 1.0 T M
168.76 Velocity correction
168.28 .02 31 M
169.0 .02 Ll M
169.90 Velocity correction
170.008 Pericenter (Mars)

Total - 29 radar, 94 Mars
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T Tnitial

time,
days
1.0

3.0

22.5

27.0

30.0
100.0
160.0
160.1
160.5
161.0

170.0

183.85
183.9
185.4
185.45
185.545

" 1,25ee footnotes page 30.

TABLE IIT.- NAVIGATION SCHEDULE®- Continued

(d) Venus swing-by, Mars-Venus leg

" Observation  Group ~ Observation
interval, interval,
days days Number Group Type
_ (2)
0.5 Y R
.5 2 30 10 2R,M
1 R
1 2 L 2 M,R
Velocity correction
1 10 14 T R,M
1 10 12 6 R,V
R
Velocity correction
1 5 v
> 16 \
2 1 R
63 \4
1 R
Velocity correction
.05 30 v
Velocity correction
1 v

Pericenter (Venus)

Total - 43 radar, 19 Mars, 121 Venus
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TABILE IIT.- NAVIGATION SCHEDULE' - Concluded

(e) Venus swing-by mission

Initial Observation Group ’ “Observation
time, interval, interval,
days days days Number Group e
0.2 0.02 30 v
.62 .03 2 R
T .1 13 3V,R,9V
2.0 Velocity correction
2.5 1 R
3.0 1.0 2.0 10 5 v,R
20.0 10.0 8 R
95.0 1 R
97.-75 Velocity correction
100.5 1.5 15 . R
123.0 1 R
123.17 Velocity correction
123.2 .2 9 R
124.83 Velocity correction
124.945 Perigee

Total - 49 Venus, 42 radar

1;25ee footnotes page 30.

3k



TABLE IV.- COMPARISON WITH PREDICTED PERFORMANCE (RMS)

(a) High-speed mission, outbound leg; flight time

112.432 days

N =3 N = L N=35
t 5 3 % ty %5
Theory |Simulation Theory |Simulation Theory |Simulation
0.55 10;77 10.77 .10} 11.03 11.03 0.24} 10.37 10.37
107.00 9.20 8.93 50| 2.56 2.42 71.00| 1.38 1.19
112.32 9.20 17.00 110.95 2.56 3.60 106.50) 1.38 1.46
112.32) 2.56 3.41 111.60] 1.38 1.45
112.32| 1.38 1.66
Total AV
m/sec 7| 29.17 36.72 18.70 20.48 15.90 16.19
Terminal
miss, km 2.0 h.2 2.0 5.4 2.0 3.4
(b) High—speed mission, return leg;.flight time = 190.765 days
8ﬁ.o 10.15 io.ls A84.o 10.15 i6.15 84.0 | 10.15 10.15
185.5 9.10 T.94 M172.0 2.55 2.28 155.30 | 1.35 1.19
190.65 9.10 12.43 189.30| 2.55 2.67 185.50] 1.35 1.41
190.65 | 2.55 5.36 190.00| 1.35 1.86
190.65| 1.35 1.64
Total AV
m/sec 71 28.35 30.52 17.80 20.48 15.55 16.30
Terminal
miss, km 2.0 4.5 2.0 3.8 2.0 3.1
Nofe: N = number of corrections
tj = time of Jjth correction
c: = rms value of Jjth correction

J
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TABLE V.- COMPARISON WITH PREDICTED PERFORMANCE - VENUS SWING-BY MISSION

0
(s
o

time of jth
rms value of

correction

jth

correction

Leg Outbound Mars - Venus Return
Flight
time, 170.008 185.545 12L.945
days
N L L
C. C s C s
t3 J b3 J t; J
Theory Simulation Theory Simulation | Theory Simulation
0.90 10.09 10.09 27.0 | 7.56 7.56 2.0 | 10.48 10.48
143.60 3.02 3.32 | 160.10 | 2.90 2.85 L 97.75 3.0L 3.71
'168.26 3.02 3.20 183.851 2.90 3.81 L 123.17| 3.0k L.16
;169.89 3.02 4.18 | 185.40 | 2.90 4.13 - 124.83| 3.0k 5.09
| Total AV, . | |
| n/sec 7] 19.15 20.82 16.26 18.37 19.70 23.45
' Terminal
miss, 2.0 17.6 2.0 22.1 2.0 3.2
- ;
Note: N = number of corrections
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TABLE VI.- COMPARISON OF PERFORMANCE WITH ON-BOARD SysTEM™

Mission High speed Venus swing-b
] 8 Sp y ]
Leg | Outbound Return Outbound ’ Mars - Venus Return )
A X | On- On- | On- | On- | A . On- |
Navigation board On-board | boara | Redar | board | On-board | board On-board board On-board
data and radar | ' and radar and radar and radar
(2) (2) (2) (3) - (3) |
Total AV 28.86 20.48 20.84 | 20.84 | 41.61} 20.82 34.30| 18.37 29.75 23.45
Radial 4.8 2.8 5.0 | 2.2 4.6 2.1 9.6 5.6 b2 1.8
miss
Dowiizgge 1173 4.0 Thl 2.2 | 590 17.4 540 21.3 518 2.1
Total
miss 5.3 3.8 17.6 22.1 3.2

lFour midcourse corrections on each leg

2last two corrections use variable arrival-time guidance

Slast correction uses variable arrival-time guidance
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Figure 1l.- Radar range measurement error.
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Figure 2.- RMS range-rate measurement error, high-speed mission,
outbound leg.
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28 Miss uncertainty at start of approach phase:
Total Radial Crossrange Downrange
O 366 21.0 164 25.1
A 1004 504 47.0 73.1
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Figure 5.- Miss performance variation with approach phase
schedule, high-speed mission, outbound leg.
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conducted so as to contribute . . . to the expansion of human knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the vesults thereof.”
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