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LUNAR THERMAL ENVIRONMENT 

SUMMARY 

This report  provides current quantitative data on photometric, 
light polarization, luminescence, color, microwave temperature, and 
infrared temperature properties of the moon. 
o r  deductions from them a r e  included; only selected experimental data 
obtained from measurements made from earth a r e  included. 

No theoretical models 

INTRODUCTION 

This report gives scientific guidelines that may be regarded a s  
a definition of the lunar thermal environment as  determined by meas-  
urements made from earth. Specifically, i t  provides current quantita- 
tive data on photometric, light polarization, luminescence, color, mi- 
crowave temperature, and infrared temperature properties of the moon. 

The purpose of the report is to present facts concerning the 
thermal environment of the moon in a handy reference form for design- 
e r s  of equipment to be used in lunar exploration, those trying to estab- 
l ish scientific experiments, and theorists attempting to a r r ive  at  a 
thermal  model satisfying all measured data that enters into an energy 
balance on the moon's surface. 

No theoretical models or deductions f rom them a r e  included and 
neither i s  all experimental data. 
In most cases ,  recently obtained data a r e  used since they have been 
collected with refined instruments having improved resolution. How- 
ever ,  this does not mean that measurements made ear l ier  a r e  of no 
value, but ra ther  that the earlier measurements a r e  more difficult to 

Only experimental data a r e  included. 



interpret. 
neous in its thermal radiation properties and as  the resolution de- 
creases ,  the measurements tend to hide the heterogeneity. This aspect 
notwithstanding, i t  i s  sometimes useful to have such over-all infor- 
mation. For this reason, an attempt i s  made to provide data in each 
of the areas (photometric, etc. ) giving over-all and some detailed 
features. For  example, a single light polarization curve fo r  the 
illuminated portion of the disk i s  given as well as a se t  of graphs show- 
ing polarization of specific local a reas  of the moon. 

The primary reason for this i s  that the moon is heteroge- 

Although a relatively small  number (31)  of references a r e  
cited, stacks of scientific papers were used in the preparation of this 
report. These papers were accumulated systematically for several  
years;  some of them a r e  listed in two bibliographies1,2 which were pro- 
duced by concentrated effort on the part  of the Redstone Scientific 
Information Center in cooperation with the Research Projects Labo- 
ratory of the Marshall Space Flight Center. The data actually chosen 
for this report represent a judgment by the authors, based upon a long 
and continuing review of the l i terature and combined with experience 
obtained over several years in the thermal design of spacecraft. 

It is the present intent to revise this report as  more informa- 
tion becomes available. In addition, a much more comprehensive and 
detailed report i s  in preparation. 
most of the experimental measurements that have been published in 
those thermal physics a reas  without regard to discriminatory judgment 
as to which i s  more accurate o r  more useful. The purpose of the more 
detailed report i s  to provide all experimental data under a single cover 
for easy access to a designer who wishes to dig deeper in order  to make 
his own judgment about the moon's environment for his particular 
application. 
tion which is scattered widely throughout many journals and publications. 
Because of this, the information is essentially inaccessible to a large 
number of persons who need it but do not have the time o r  inclination 
to dig it out. 

The la t ter  wil l  give the results of 

As i t  now stands, there exists a vast quantity of informa- 

'Shenk, C. F., H. P. Eckstein and W. P. McNutt: "Lunar 
Thermophysics, Redstone Scientific Information Center, U. S. Army 
Missile Command, Redstone Arsenal, Alabama, RSIC-419 (June 1965). 

Hoop: 
Arsenal, Alabama, RSIC-462 (Sept. 1965). 

2McNutt, W. P., G. Caras, R. L. Langston, J. Te r ry  and H. 
"Lunar Thermophysics (Supplement to RSIC-419), 'I Redstone 
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The authors would be glad to receive any constructive sugges- 
tions from users  of the report, especially those comments which can 
be taken into account in future revisions. 

PHOTOMETRIC ALBEDO 

The albedo for prominent features on the lunar surface i s  p re-  
sented in Table I [l] and Figure 1. Table I data a r e  for  f u l l  moon, 
while the data in Figure 1 a r e  fo r  a nearly full moon (7' phase). 
The columns in the table give: (1) the c ra te r  number and name, (2) 
the value of p, (3)  the value of A, (4) the value of a, and (5) the value 
of p, as measured by Markov and by Sytinskaya. The figure gives p, 
obtained by Saari  and Shorthill, from a calibration of their voltage 
values against the albedo data of Sytinskaya. 

The factor p was originally defined by Russell [3 1 for a planet 
as: the ratio of the actual brightness of the planet at full phase to 
that of a self-luminous body of the same size and position, which 
radiates as much light from each unit of its surface as the planet re- 
ceives f rom the sun under normal illumination. 
of p (except for the whole moon), since they a r e  for local regions, would 
require that this definition be altered from the entire planet viewpoint 
to that of the local regions for which the value applies. 
fraction of light reflected toward the earth and is, therefore, a direc- 
tional albedo. 

The tabular values 

p is the 

Russell gives p in equation form: 

M, R2 A2 
r 2  P =  

where, 

M, = ratio of radiation from full moon ( g = 0) 
at distance A from earth to radiation of 
sun at 1 A. U. 

R = distance from moon to sun 

A = distance from moon to earth 

r = moon's radius 

The factor A is the albedo originally defined by Bond given in 
Van Diggelen's paper [l]. If a sphere is exposed to parallel l ight,  
i t s  albedo A is the ratio of the whole amount of light reflected f rom 
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the sphere to the whole amount incident on it. 
of A in the table a r e  f o r  local regions, the above definition requires 
a slight change of viewpoint. In equation form,  Russell gives A as  

Again, since the values 

where, 

sin g dg ; g = phase angle. 

Expressed verbally, this function indicates how many times more 
light i s  reflected in all directions other than in the direction of the 
earth. Van Diggelen [ l ]  uses the value 0.578 (after Rougier) for q. 

LIGHT POLARIZATION 

Some of the sunlight reflected from the moon is partially 
polarized. 
cise analysis of the polarization of light from the whole disk of the 
moon, primarily because of the high sensitivity of his polarimeter. 
Lyot concluded that the direction of polarization was always exactly 
perpendicular o r  exactly parallel to the plane of vision. 
a positive (t) sign to the portion of polarized light that i s  perpendic- 
ular  to the plane of vision and a negative ( - )  sign to that portion that 
i s  parallel to the plane of vision. By plotting the phase angle along 
the abscissa and the proportion of polarized light, together with i ts  
sign along the ordinate, Lyot obtained a single curve describing the 
properties of the polarization of light from the whole disk of the moon 
(Fig.  2). 

Lyot [4 ] i s  credited with making the f i r s t  detailed and pre-  

He assigned 

Gehrels, Coffeen, and Owings [ 5 ] made some photoelectric 
measurements of polarization on various lunar regions at various 
wavelengths, using diaphragms about 10 sec  of a r c  in diameter. 
polarization measurements obtained during three runs, April 1959, 
August 1959, and November 1963, with the McDonald 82 -inch telescope 
a r e  shown in Figure 3. The per cent polarization of the regions shown 
is plotted as a function of phase f o r  observations with ultraviolet 
(3600 A), green (5400 A), and infrared (9400 A) fi l ters.  
squares, and crosses  a r e  for observations made in April 1959, August 
1959, and November 1963, respectively. The phase dependence of 

The 

The circles,  
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" 
polarization with the green (5400 A) fi l ter  agrees with that found by 
Lyot (1929), but with the ultraviolet (3600 A) filter the polarization 
generally was greater,  and with the infrared (9400 1 1  filter, smaller.  

Figure 4 is included to illustrate the percentage polarization, 
percentage geometrical albedo, and scattering efficiency of particles 
with radius 0 . 8 ~  and refractive index 1. 34 - 0.01 i a s  a function of 
the reciprocal of the wavelength in microns. In the figure, the solid 
line is for the percentage geometrical albedo of Mare Crisium for 
zero phase. The observed data are  shown by dots, and the probable 
e r r o r s  a r e  indicated with vertical lines. The dashed line represents 
the scattering efficiency of particles with radius 0.8 p and refractive 
index 1. 34 - 0.01 i , as  calculated from Mie theory. 

As the figure shows, the polarization r ises  as the albedo drops. 
Gehrels, et  al., found no rotation of the polarization position angles; 
neither did they find the polarization position angles to be wavelength 
dependent. From Mie scattering by particles, the polarization position 
angles a r e  either 90" o r  1800 with respect to the plane of scattering. 
Except for regions close to the limb (Lyot, 1929), the polarization 
position angles a r e  always observed close to either 90" o r  180 ". This 
infers that multiple scattering is absent on the lunar surface. 

LUMINESCENCE 

Lunar luminescence is a confirmed phenomena. In the obser- 
vation of Gehrels, et  al. [5] , luminescense w a s  detected in the 
photometry and independently confirmed by the polarimetry. Their 
observations revealed that the lunar surface was 10 to 20% brighter 
in visible light in 1956/1959 near the maximum of the las t  solar-  
actii5ty cycle than in 1963 November / 1964 January when solar activity 
w a s  near its minimum. The effect, being localized and fair ly  constant 
f rom day to day, probably varies with the solar cycle. The lumines- 
cence effects appear to be similar a t  various wavelengths, but the 
amount of luminescence appears to vary appreciably with time, indi- 
cating some possible connection with the solar  cycle as indicated above. 
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Since light tends to become polarized when it is reflected, the obser- 
vation that the light of the moon is polarized to a greater extent when 
i ts  brightness is  at a minimum than when it is at a maximum suggests 
that moonlight at i ts  brightest includes some light that is not reflected 
sunlight. 

Figure 5 shows an  example of the "line-depth" method employed 
to detect lunar luminescence [ 6 3 .  
of profiles of absorption lines in the spectrum of the sun (left) and 
moon (right). 
buted to lunar luminescence (arrow) is given by the increase in the 
residual intensity (brackets) of the profile for the moon. 

This method utilizes a comparison 

A measure of the per cent of the total moonlight attri- 

Figure 6 gives the profiles of the H and K lines of Ca II in the 
I ultraviolet part of the moon's spectrum [7 1. The lunar H and K lines 

a r e  not as dark (their t races  a r e  not as deep) as the solar H and K 
lines because of luminescence from the moon. 

Figure 7 compares the contours of the line H (3968.6 A) of the + Ca spectra of Aristarchus (circles) on October 4, 1955, and the sun 
(solid line) [8 1. 
in spectra of the Crater Aristarchus ( IC) on October 4, 1955, and the 
sun I,. Using the "line-depth" method, Kozyreu obtained a value of 
13% for the percentage of luminescence in relation to the intensity of 
the constant spectrum which is reflected by Aristarchus. According 
to Kozyreu, the luminescence of Aristarchus i s  stronger after a full 
moon. 

Figure 8 compares the intensity of the H line (3968.6 A) 

COLOR 

Observations of the color of the moon provide data for additional 
information on which to form an acceptable model of the lunar surface. 
The color-phase observations of Gehrels, et  al. 
reddening of the moon with phase regardless of its color. The reddish 
color is a uniform, not a local, effect of the moon. This effect appears 
to have a linear dependence on phase of the moon (Y over the range 
-45'<a< +35O ; typical color-phase relations fo r  the whole moon over 
this range are: 

[5 1, show a definite 

I 

(G - I) = t 0.251 (L.007) -t 0.0028 (k.0002) /a/ 

. 

(U - G) = t 0.386 (2.007) t 0.0036 (i.0004) / (Y/ 
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assuming that the observed regions a r e  an average sample fo r  lunar 
colors. 
based upon Mie theory indicates that particle scattering i s  r e -  
sponsible for the reddening of the moon with phase (Fig. 4). 

The agreement of the colors of the moon with calculations 

In addition to the reddening -phas e relation, the moon exhibits 
Figure 9 shows the distribution of the certain other different colors. 

most distrinctly reddish (shaded) and greenish (dotted) region on the 
moon (according to Barabashev and to Tchekirda) [ 9 ] .  The reddish 
details a r e  more pronounced in  the mountainous regions (e. g., Tycho 
and the Wood Spot). The greenish a reas  a r e  more pronounced in the 
dark region near Kepler and the region to the west of Plato. The 
more pronounced bluish a reas  are Mare Frigoris  and the floor of 
Grimaldi. 
entire lunar surface appear nearly the same color. 

The absolute color differences a r e  very small, making the 

MICROWAVE TEMPERATURES 

Temperatures derived from microwave thermal emission 
measurements may be compared with temperatures at various depths 
below the lunar surface. Some measurements a r e  presented by the 
investigator as  averaged over the entire lunar disk. Others a r e  pre- 
sented as  average central brightness temperatures, depending upon 
the resolution (beam-width between half -power points) of the apparatus 
used in taking the measurements. 
in recent years, particularly at the shorter wavelengths, although it 
i s  far from that obtained with infrared systems. 

The resolution has been improving 

Data of Salomonovich [lo ] ; Salomonovich and Losovskii [ll ] ; 
Gibson [12 ] ; Piddington and Minnett [13 ] ; Zelinskqya, Troitskii, and 
Fedoseev [14] ; Salomonovich and Koshchenko [I51 ; Mayer, McCullough, 
and Sloanaker [16 ] ; Troitskii and Zelinskaya [ 17 1 ; and Akabane [18 ] 
for the central brightness temperature a r e  given in Table I1 as  a 
function of wavelength. The columns in the table correspond to factors 
in  the te rms  of a truncated Fourier se r ies  representation of the meas- 
ured data points of the following form 

7 



where, 

e = S2t 

P = 2.55144 x lo6 seconds (the lunation period) 

T = central brightness temperature 

To = constant component of temperatures 

T and T = f i r s t  and second variational components of temperature 

B and B = phase angles of the fundamental heat wave (with respect 

1 2 

I 1 2 to the solar insolation at the surface). 
c 

In addition, the constant temperature as determined by Greben- 
kemper [19], Medd and Broten [20] , and Mezger and Strassl  E21 ] 
i s  given in Table III. 

Central brightness microwave temperatures (as a function of 
fraction of lunation period) a r e  tabulated in Table IV using the above 
equation and the data from Table 11. In Table 11, zero time is  at new 
moon; whereas, in Table IV, zero time is at full moon. Graphs of 
the data in Table IV a r e  shown in  Figures 10 - 19. I 

Recent central brightness temperatures for a lunation at 3.2-mm 
wavelength as measured by Tolbert and Coats [22  ] a r e  shown in Figure 
20. The resolution w a s  9' of a r c  using a Dicke-type radiometer. 

Theoretically, the constant component of temperature, To , 
should be the same for all wavelengths. 
a number of considerations, among which are: method of antenna 
calibration, reduction of the data (especially corrections for earth 
atmospheric effects), and apparatus performance (especially resolu- 
tion). These data, together with the IR data of Sinton [ 23 1, Murray 
and Wildey [.24 3 ,  and Shorthill and Saari  [25I compared with calcu- 
lations made in Research Projects Laboratory, yield a recommended 
value for  this constant component of 220'K 30°K. This tolerance 
i s  necessary because of the wi'de spread in  its measured value in the 
microwavelength and the uncertainty regarding the IR measurements of 
the lunar nighttime temperatures. 

They a r e  not the same due to 

? 

c 
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The f i r s t  and second variational components of temperature, 
T, and T, , and the phase angles, B, and B, , a r e  dependent upon 
wavelength. 

Measurements at the longer wavelengths have usually shown 
little change in the temperature during lunar eclipses due to lack of 
sensitivity and resolution, as  well as the fact that the radiation meas-  
ured comes from below the lunar surface. However, Epstein, et  al. 

In fact, a difference between mountainous and maria  regions was observed 
at the resolution attained (2.8' at 70' elevation and 3.1' at 15' elevation.). 
The data a r e  shown in Figure 21. 

[26I, have made measurements at 3.2 mm during the total lunar eclipse. 

INFRARED TEMPER AT URES 

Temperature Variations About the Subsolar Point. The bright- 
ness temperatures along concentric circles about the subsolar point 
(SSP) have been determined from the infrared data of Saari  and Short- 
hill [27I .  
locations of the SSP phase angles -113O 20' to +135O 40'. Figures 
22 through 39 a r e  used to locate the coordinates at a given feature for 
a given phase. The coordinate system has as an axis the line connecting 
the SSP and the antisolar point. 
necting the SSP and the center of the visible disc as seen from the ear th  
when the measurement was made. 
by the arrow. Zero degrees latitude i s  the terminator; 90" is the SSP. 
With the coordinates of this system and the phase angle, the temper- 
ature of any lunar feature can be obtained from Figures 40 through 57. 
In these figures the brightness temperature is plotted against longitude 
for constant latitudes (concentric circles about the SSP). 
a r e  given for the illuminated and visible surface only. 

The temperatures were determined for 18 successive 

The prime meridian is the line con- 

Positive longitudes a r e  as indicated 

Temperatures 

The coordinate system is  superimposed on a lunar photograph 

The photograph is for  no libration, whereas the 
which uses the USAF convention, i. e . ,  the moon as  viewed f rom ear th  
with the naked eye. 
heavy grid lines used in the coordinate system a r e  fo r  the libration at 
the particular phase angle and date shown. 
inaccuracies when correlating a given lunar feature with a temperature, 
especially near the limbs, and also explains the mismatch around the 
edge between the photograph and the superimposed grid lines. 

This introduces some 
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Eclipse Temperatures. Investigations of brightness temper- 
a ture  during eclipse of the moon have shown that certain local regions 
are ,  in general, thermally enhanced; that is, their temperatures a r e  
higher than their environs. 
temperatures which were taken f rom various publications of Saari  and 
Shorthill [28, 29, 301 . 
been shown to be very reproducible with the fast scans and comparisons 
of the data in repeats every 6 minutes, both during full moon and total 
eclipse. 
point i s  374'K. 
readily adjusted a s  better measurements a r e  made of the subsolar 
point temperature. 
adjustments. 
well be revised, and recent suggestions for the temperature at the sub- 
solar point have ranged from 374OK to above 400°K. 

Figures 58 through 70 give brightness 

The resolution i s  about 10" of a r c  and has 

The assumption was made for all of these that the subsolar 
However, the absolute values of temperature may be 

The relative value will  remain the same with such 
The black body assumption (emissivity of 1) may very 

Figures 58 through 67 present isotherms for several  regions 
where a temperature comparison can be made of the same region be- 
fore and during an eclipse [31] . Figures 60 and 61 show the anom- 
alous temperature behavior for  the c ra te r  Aristarchus; immediately 
before (Fig .  59), the entire region was  at approximately the same 
temperature. This effect i s  clearly demonstrated for the regions 
around Copernicus and Tycho in Figures 69 and 70. 
the hot spots for the entire surface. 

Figure 68 shows 

Antisolar Point Temperature. The lunar midnight o r  antisolar 
point temperature has been estimated from the data of Shorthill and 
Saari [25] and Murray  and Wildey, whose data a r e  given in Figure 71. 

t 
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TABLE I 

ALBEDO FOR VARIOUS FEATURES 

(After Van Digglen) 
nr name d the crab P I .  w. 
1 mbategniua 
2 NphOnNa 
3 Archimedes 
4 Ariatarchua 
S Metotelea 
6 Matyllua 
7 Anachel 
8 Autolycua 
0 Biw 

LO Bonpland 
11 Bulliddun 
12 Campanu# 
13 CassM 
14 Catharina 
15 ClaVIua 
16 Cleomedea 
17 Copemicum 

I O  Flrmicua 
20 Fracastorlu8 
21 Gaesendi 
22 Crimaldi 
23 Hevellua 
24 Hipparchum 
25 Julius Caaau 
26 Kepler 
27 Landsberg 
26 Langrcnua 
20 Lcmonnier 
30 Lubiniezcb 

32 Macrobiua 
33 ManiUua 
34 Maraldi 
35 M u l u a  
36 Menclaoa 
37 Mcrcator 
36 Pctaviua 
30 Pltatua 
10 Plat0 
11 Posidoniua 
42 Proclur 
13 Ptolemaeua 
14 Fuccioli 
15 Schickard 
46 Theophilu8 
47 Tycho 
I8 Vcndellrma 

18 Cyrillua 

51 Lyell 

0.111 
0.101 
0.081 

0.101 
0.080 
0.112 
0.082 
0.063 
0.087 
0.114 
0.088 
0.110 
0.11s 
0.137 
0.000 
0.114 
0.110 
0.060 
0.102 
0.091 
0.063 
0.106 
0.109 
0.073 
0.102 
0.113 
0.110 
0.062 
0.102 
0.067 
0.007 
0.081 
0.066 
0. 010 
0.085 
0.095 
0.114 
0.066 
0.068 
0.077 
0.142 
0.095 
0.071 

0. 152 

0.963 
0.062 
0.047 
0.088 
0.061 
0.041 
0.06s 
0.048 
0. OS? 
0,050 
0.060 
0.052 
0.063 
0.061 
0.071 
0.05I 
0.068 
0.063 
0.040 
0.050 
0.053 
0.037 
0.063 
0.063 
0.043 
0.059 
0.061 
0.063 
0. OM 
0.050 
0.038 
0.056 
0.047 
0.038 
0.034 
0.040 
0.05s 
0.066 
0.040 
0.040 
0.044 
0.082 
0.055 
0.041 

0.042 
0.084 

e. os4 

0.026 

0.020 

0.078 
0.043 

0.112 

0.088 
0.176 
0.110 

o b  120 

0.082 

0.100 

0.144 

0.122 

0.158 

0.068 

0. lob 
0;087 0.050 0.012 

0.154 
0.106 0.003 
0.131 0.076 0.018 
0.105 0.061 

henma Yama a8h 

whole moon 
I 

U a n  Crlsium I I I 0. 

I I 1:: M.n Foecunditatls 
hemum Procelluunr 

0.062 
0; 069 

0.081 - 0.0'10 
Hnus Irldum 0.030 0.065 
U P T ~  Tranquillitatla 0.066 
Bare Serenitatir 0.070 

Hare hbr lum 0.054 - 0.014 
N a n  vaponlm 0.000 

Nu-e Frigorla 0.060 

t 

C 



TABLE 11 
SUMMARY O F  MICROWAVE CENTRAL BRIGHTNESS TEMPERATURES 

Wavelength (cm) Temp., KO Author 

2.20 200 f 10" Grebenkemper 

9 .37  2 2 0 k  5% Medd & Broten 

20 .11  2 5 0 t  5' Mezger & Strass l  
r 

Wavelength 
(cm) 

Resolution 

6' 

140' 

- 

~ ~~~ 

0.80 

0.80 

0 .86  

1 .25  

1 .25  

1 .63  

2 .00  

3. 15 

3 .20  

10.00 

\ 

197 

21 1 

225 

149 

115 

224 

190 

195 

223 

315 

- 

1 
T 

- 32 

-40 

-45 

-52 

- 34 

-36 

-20 

-12 

-17 

-44 .: 

2 
T 

0 

t.14 

0 

0 

0 

0 

0 

0 

0 

0 

- 

1 
B 

? T I 9  

2 n / 9  

7r / 4  

7T 14 

2 n / 9  

2 7r/9 

11 45 

3 ~ 1 1 6  

= 14 

2 
B 

0 

1 1  d 9 C  

0 

0 

0 

0 

0 

0 

0 

0 

Author 

Salomonovich 

Salomonovich & 
Lo s ovskii 

Gibson 

Piddington & 
Minnett 

Piddington & 
Minnett * 
Zelinskaya, - e t  a: 

Salomonovich & 
Koshchenko 

Mayer, et  al 

Troitskii & 
Zelins kaya 

Akabane 

~~ ~ 

<e s olution 

18' 

2' 

12' 

32' 

32 ' 

26' 

4 '  

9'  
6 . 3 '  

- 

.*Salomonovich's [ 11 ] analysis of Piddington and Minnett's data. 

TABLE 111 

CONSTANT MICROWAVE TEMPERATURES 
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FIGURE 27 - THERMAL COORDINATES 

41 



I 

FIGURE 28 - THERMAL COORDINATES 

42 

. 

. 

. 



1 .  

. 

N 

. 

I 

I rn 

FIGURE 29 - THERMAL COORDINATES 

43 



W 

FIGURE 30 - THERMAL COORDINATES 

44 

. 



N 

W- 

L 

FIGURE 31 - THERMAL COORDINATES 

45 
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