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WIND-TUNNELFLIGHT CORRELATION O F  

SHOCK-INDUCED SEPARATED  FLOW^ 

By Donald L. b v i n g  
Langley Research Center 

SUMMARY 

A preliminary study i s  made of the discrepancies between wind-tunnel 
predictions and actual  f l i g h t  resu l t s  f o r  conditions of supercr i t ical  sepa- 
ra ted flow. The limited resu l t s  obtained fo r  two combinations of Mach num- 
ber and l i f t ,  both involving supercritical-flow separation, suggest t ha t  the 
problem i s  related t o  Reynolds number and tha t  an improvement i n  the correla- 
t ion  might be obtained by f ixing the t rans i t ion  on a model so  as t o  produce 
a re la t ive  boundary-layer thickness a t  the t r a i l i n g  edge comparable t o  tha t  
calculated t o  ex is t  i n  f l i g h t .  The need f o r  continued research i s  indicated. 

INTRODUCTION 

The purpose of t h i s  discussion i s  t o  caution experimenters concerning 
the use of wind-tunnel resu l t s  i n  predicting f l i g h t  loads and moments when 
supercr i t ical  separated flow i s  present. Whenever separated flow has been 
observed on wind-tunnel models, the extrapolation of these resu l t s  t o  f l i gh t  
conditions has always been subject t o  question. The discrepancies between 
aerodynamic resu l t s  from f l i g h t  and wind-tunnel investigations.disclosed 
herein should not come a s  a surprise.  They a re  merely additional evidence 
of the problem associated with separated flows. 

Two combinations of Mach number and l i f t ,  both involving supercr i t ical  
flow separation, are  examined. One i s  fo r  Mach numbers above cruise a t  
l i f t i n g  conditions near cruise, and the other i s  fo r  Mach numbers near cruise 
a t  l i f t i n g  conditions higher than cruise. 

An example of the d i f f i cu l ty  tha t  might be encountered was observed 
during recent f l i g h t  t e s t s  of a cargo-transport airplane. 
Mach numbers the wing pressures and pitching moments of the airplane were 
considerably different from those predicted i n  wind-tunnel t e s t s .  N o  general 
procedure has been developed f o r  resolving such discrepancies. 
t ions  a re  being conducted, however, t o  provide a be t te r  understanding of the 
factors  involved, and the r e su l t s  herein a re  presented t o  report on the  progress 
of these e f for t s .  

A t  supercr i t ical  

Investiga- 

lpresented a t  the  c lass i f ied  "Conference on Aircraft  Aerodynamics, I' Langley 
Research Center, May 23-25, 1966, and published i n  NASA SP-124. 



SYMBOLS 

drag coefficient, Drag/QS 

lift coefficient, Lift/%S 

pitching-moment coefficient, Pitching moment/LSc' 

local pressure coefficient, 

span of wing, meters 

chord of wing, meters 

mean aerodynamic chord of wing, meters 

free-stream Mach number 

local static pressure, newtons/meter2 

free-stream static pressure, newtons/meter2 

free-stream m m i c  pressure, newtons/meter2 

total area of wing, meters2 

longitudinal distance, measured from wing leading edge, meters 

angle of attack of fuselage, degrees 

(p, - pm)/s, 

DISCUSSION 

An indication of the differences between wind-tunnel and flight data is 
shown by the pressure distributions in figures 1 and 2. 
a coqarison of the chordwise pressure distributions on the upper surface of 
a cargo-transport wing at a Mach number of 0.73, for a fuselage angle of attack 
of -0.6', where the lift coefficients for the complete configurations are 
slightly less than 0.3 and the wing pressures are all subcritical. 
was fixed near the 1,eading edge of the wind-tunnel model by the method dis- 
cussed in reference 1. The data are for the approximate 40-percent-s&span 
station. The chordwise trend of the pressures shows good agrement in shape 
between the wind-tunnel and flight results, although a small increase in the 
negative pressure-coefficient level is noted for the flight results. 

In figure l i s  shown. 

Transition 

In figure 2 is 
Mach number of 0.85 
ficients associated 

shown the same type of comparison at a higher-than-cruise 
for an angle of attack of approximately Oo. 
with these wind-tunnel and flight conditions are 0.24 and 

"he lift coef- 
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0..34, respectively. 
c r i t i c a l .  
associated with the f l i g h t  peak pressure. A s  may be seen, the pressure dis- 
t r ibut ions obtained i n  the wind tunnel and i n  f l i gh t  a r e  markedly dissimilar 
i n  shape. The adverse pressure gradients i n  t h i s  p lo t  indicate tha t  the  loca- 
t ion  of the f l i g h t  shock and attendant separation i s  rearward of that i n  the 
wind tunnel by about 20 percent chord. Associated with t h i s  s h i f t  i n  shock, of 
course, i s  a rearward s h i f t  of the center of pressure and therefore more nega- 
t i v e  pitching moments re la t ive  t o  values predicted from the wind-tunnel tests. 

The flow over the wing fo r  these conditions i s  super- 
For example, a l oca l  supercr i t ical  Mach number of about 1.32 i s  

Because of the possible impact of t h i s  discrepancy on the  satisfactoTy-.pre- 
diction of loads, s t ab i l i t y ,  and performance of a i r c r a f t  of t h i s  type, an 
investigation has been undertaken t o  resolve t h i s  d i f f icu l ty .  

A wind-tunnel investigation of several twist  dis t r ibut ions indicated tha t  
differences i n  wing f l e x i b i l i t y  did not greatly contribute t o  the differences 
between wind-tunnel and f l i g h t  resul ts .  It then w a s  assumed tha t  the  problem 
might be associated with Reynolds number or scaling effects .  Consideration of 
various factors  suggested tha t  the d i f f icu l ty  might be caused by differences i n  
the boundary-layer conditions tha t  a f fec t  shock-induced flow separation. A t  a 
given free-stream Mach number, the parameter that has the largest  effect  on 
shock-boundary-layer interact ion i s  the boundary-layer thickness. For the 
par t icular  problem of supercritical-flow separation the " re la t ive  thickness" 
was presumed t o  be a major factor .  Relative thickness i s  defined a s  the r a t i o  
of the absolute thickness a t  any s ta t ion  t o  chord length. A study of these 
e f fec ts  was thus considered a reasonable approach. 

Figure 3 i l l u s t r a t e s ,  i n  an exaggerated manner, the re la t ive  thickness 
effect .  Since the re la t ive  thickness of the turbulent boundary layer varies 
inversely with a power (l/5) of the Reynolds number, the re la t ive  thickness a t  
any given percent chord s ta t ion  would be greater on a small-scale wind-tunnel 
model with t rans i t ion  fixed near the leading edge than on a similar ful l -scale  
wing with natural  t rans i t ion  i n  f l i gh t .  When the loca l  flow becomes sonic fo r  
both of these configurations, the displacement of the  separated flow would tend 
t o  push the shock and accompanying separation fa r ther  forward on the wind-tunnel 
model. 

It appeared, therefore, t ha t  the solution t o  the problem might be t o  develop 
a method tha t  would provide a turbulent boundary layer near the t r a i l i n g  edge of 
the wind-tunnel model with the same re la t ive  thickness as would be encountered 
i n  actual  f l i gh t .  

With t h i s  objective as a goal, a t rans i t ion  s t r i p  was moved progressively 
rearward on a model during t e s t s  conducted i n  the Langley 8-foot transonic pres- 
sure tunnel. Theoretically, a s  the s t r i p  i s  moved downstream the  extent of 
laminar flow ahead of the  s t r i p  w i l l  increase, and the  distance over which the 
turbulent layer can build up w i l l  be reduced. A s  a resu l t ,  a t  any given posi- 
t ion  downstream of the s t r i p ,  the turbulent layer w i l l  become thinner and tend 
t o  approach the re la t ive  thickness of the  boundary layer i n  f l i gh t .  It then was 
reasoned that when supercritical-flow conditions w e r e  reached on the two con- 
figurations, the shock posit ion on the model would tend t o  approach the same 
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posit ion a s  on the airplane. 
of course, with the  s t r i p  removed. 

The thinnest turbulent layer would be attained, 

Figure 4 shows the  e f fec t  on the  chordwise supercritical-pressure distri- 
bution of moving the  t rans i t ion  s t r i p  on the model. 
the wing are  the same as  those u s e d t o  obtain the previously presented pressure 
data ( f ig .  2 ) .  However, f o r  these resu l t s ,  the  model was tes ted  with the  t a i l  
o f f ,  and the  fuselage w a s  somewhat different .  The changes should not have any 
ef fec t  on the basic phenomena under discussion. A s  the s t r i p  was moved from 
7.5 percent chord t o  50 percent chord, the shock position moved rearward. 
observations of the  flow pattern,  obtained by the fluorescent-oil f i l m  method 
(ref. 2 ) ,  indicated tha t  a number of isolated roughness par t ic les  present on the 
surface of the  wing produced wedges of turbulent flow i n  the predominantly l a m i -  
nar flow ahead of the s t r i p ,  so  t ha t  the average location of t rans i t ion  f o r  the 
s t r i p  a t  50 percent chord was actually near 40 percent chord. 
removed, visual observations of t h e  flow patterns fo r  t h i s  natural-transit ion 
condition indicated that the  average location of t rans i t ion  was near 50 percent 
chord, which means tha t ,  along with turbulent wedges i n  the  laminar boundary 
layer  over the forward portion of the wing, some laminar flow extended behind the 
50 percent chord; and the shock moved fa r ther  rearward t o  the downstream posit ion 
shown i n  this figure. When the f l i gh t  data points from'figure 2 a re  compared 
with these natural  t rans i t ion  model resul ts ,  the  shock positions appear t o  be, 
f o r  a l l  p rac t ica l  purposes, the same. For this par t icular  natural  t rans i t ion  
location, calculations w e r e  made and indicated tha t  the  re la t ive  thickness of the 
boundary layer a t  the t r a i l i n g  edge of the model was  the  same as  tha t  of the 
ful l -scale  airplane i n  flight. 

The tes t  conditions and 

Visual 

When the s t r i p  w a s  

These recent r e su l t s  appear t o  give evidence tha t  the re la t ive  bounda-ry- 
layer thickness a t  the t r a i l i n g  edge may be a primary parameter i n  determining 
the shock location and resul tant  pressure distribution. Additional experimen- 
t a t ion  i s  necessary, of course, t o  validate t h i s  tentat ive conclusion. The 
resu l t s  thus f a r  obtained, however, do indicate tha t  the discrepancies between 
wind-tunnel and f l i g h t  data a re  a re la t ive  boundary-layer thickness effect ;  
that is ,  a scale e f fec t .  

The changes i n  aerodynamic forces tha t  occurred as  the t rans i t ion  s t r i p  was 
moved are  presented i n  figure 5 f o r  a near-cruise angle of a t tack of 2 O  and a 
Mach number of 0.85. 
of l i f t ,  drag, and pitching-moment coefficients a s  a function of the t rans i t ion-  
s t r i p  location. The short-dash l i nes  indicate the leve l  of the forces and 
moment with the t rans i t ion  s t r i p  removed. The difference between the l i f t  and 
drag for  the usual forward posit ion of a t rans i t ion  s t r i p  and the values 
obtained'with natural  t rans i t ion  i s  indicative of an increase i n  l i f t -drag  r a t i o  
of about 20 percent. 
variation of pitching moment i s  representative of a rearward shift i n  the cen- 
ter  of pressure of 11 percent. 

Plot ted i n  t h i s  f igure as so l id  l ines  a re  the variations 

O f  even more importance f o r  the same t e s t  conditions, the 

The resu l t s  of t h i s  wind-tunnel investigation on a high-aspect-ratio sub- 
sonic wing a t  above-cruise Mach numbers, near cruise l i f t ,  provide evidence tha t  
the discrepancy between wind-tunnel and f l i g h t  pressure and force data apparently 
resu l t s  from a re la t ive  boundary-layer-thickness effect  on supercritical-flow 
separation. It would be expected tha t  the same phenomena a l so  would exist near 
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the cruise Mach number, but a t  higher-than-cruise lift, since shock-induced sep- 
aration a l so  occurs for  these conditions. 
pitching-moment coefficients a s  a function of l i f t  fo r  the  same model j u s t  dis- 
cussed with two extreme boundary-layer t e s t  conditions a t  a Mach number of 0.75. 
For the  configuration with t rans i t ion  fixed near the leading edge (x/c = 0.075) a 
reduction i n  s t a b i l i t y  occurs a t  lift coefficients s l igh t ly  above cruise. When 
the s t r i p  i s  removed, not only a re  the pitching-moment coefficients more nega- 
t ive ,  but the  t rend toward in s t ab i l i t y  i s  delayed t o  a higher l i f t  coefficient.  
An examination of the wind-tunnel pressure data (which a re  not presented) indi-  
cated tha t  t h i s  difference i s  associated with the  same separation phenomena 
ju s t  described f o r  the  subsonic wing operating beyond i t s  cruise Mach number; 
with the  t rans i t ion  s t r i p  removed, shock-induced separation occurred fa r ther  
rearward along the chord. A s  was indicated i n  the previous discussion, it i s  
probable tha t  the natural-transit ion configuration more nearly simulates f l i g h t  
conditions than the fixed-transit ion configuration. Available f l i g h t  data do 
not go up t o  the point of divergence, so they have not been included i n  the 
figure. 

I n  figure 6 a re  plotted the wind-tunnel 

CONCLUDING REMARKS 

Because, a t  supercr i t ical  speeds, pressure dis t r ibut ions obtained from 
model and ful l -scale  flight t e s t s  may be different ,  a study has been made for 
the purpose of improving t h i s  correlation. 

On the basis of t h i s  study, a reasonable assumption appears t o  be tha t  the 
problem i s  one of a Reynolds number e f fec t  on shock-induced boundary-layer 
separation. This e f fec t  appears associated with differences between the  re la -  
t i v e  thickness of the boundary layer on models and ful l -scale  airplanes. 

A t  the present time no conclusive means a re  established f o r  exactly simu- 
la t ing  the supercritical-flow phenomena on models as they ex is t  i n  f l i g h t .  On 
the basis of present knowledge, however, it does appear t ha t  ful l -scale  charac- 
t e r i s t i c s  may be obtained, a t  l eas t ,  on subsonic wings by locating t rans i t ion  
on a model so as  t o  produce the same re la t ive  boundary-layer thickness a t  the  
t r a i l i n g  edge a s  has been calculated t o  ex i s t  i n  flight. 

Unti l  t h i s  or other methods can be more def ini te ly  established, it i s  sug- 
gested as an interim recommendation t h a t  wind-tunnel studies be made with 
t ransi t ion occurring a t  various locations. In  t h i s  manner, a t  l ea s t ,  the  
sens i t iv i ty  of shock-induced separation t o  modification of the boundary-layer 
conditions can be determined. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Ijangley Station, Hampton, Va. ,  May 23, 1966, 
126-13-03-22-23. 
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EFFECT OF BOUNDARY LAYER ON SHOCK-INDUCED SEPARATION 
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