SOLID PROPELLANT
ROCKET MOTOR PERFORMANCE
COMPUTER PROGRAMS USING THE
GROUP TRANSFORMATION METHOD

by B. J. Lee and P. B. Burchfield

Manned Spacecraft Center
Houston, Texas

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • OCTOBER 1966
SOLID PROPELLANT ROCKET MOTOR PERFORMANCE COMPUTER PROGRAMS USING THE GROUP TRANSFORMATION METHOD

By B. J. Lee and P. B. Burchfield

Manned Spacecraft Center
Houston, Texas
ABSTRACT

This paper presents a method of evaluating the performance of a solid propellant rocket motor of fixed geometry and given propellant characteristics using the constant K_N (ratio of propellant burning-surface area to nozzle-throat area) process and group transformation method. This method does not require a prior knowledge of the K_N values, but requires only that the parameters to be evaluated be selected at constant regressed distances normal to the original propellant surface. Two computer programs utilizing this method are presented. The first performs the evaluation for general performance parameters over selected time intervals, and the second performs the evaluation for instantaneous performance versus time.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>SYMBOLS</td>
<td>2</td>
</tr>
<tr>
<td>RELATED SOLID PROPELLANT ROCKET MOTOR THEORY</td>
<td>4</td>
</tr>
<tr>
<td>Ratio of Propellant Burning-Surface Area to Nozzle-Throat Area</td>
<td>4</td>
</tr>
<tr>
<td>Burning Rate</td>
<td>5</td>
</tr>
<tr>
<td>PROPELLANT THERMAL SENSITIVITY</td>
<td>6</td>
</tr>
<tr>
<td>Chamber-Pressure Transformation-Equation Derivation</td>
<td>6</td>
</tr>
<tr>
<td>Burning-Rate Transformation-Equation Derivation</td>
<td>10</td>
</tr>
<tr>
<td>Time Transformation Equation Derivation</td>
<td>13</td>
</tr>
<tr>
<td>Thrust Related Calculations and Transformation Equation</td>
<td>14</td>
</tr>
<tr>
<td>STATISTICAL ANALYSIS</td>
<td>15</td>
</tr>
<tr>
<td>Two-Sided Tolerance Limits</td>
<td>17</td>
</tr>
<tr>
<td>One-Sided Tolerance Limits</td>
<td>17</td>
</tr>
<tr>
<td>GENERAL SOLID PROPELLANT ROCKET MOTOR PERFORMANCE</td>
<td>18</td>
</tr>
<tr>
<td>COMPUTER PROGRAM USING THE GROUP TRANSFORMATION METHOD</td>
<td></td>
</tr>
<tr>
<td>General Description</td>
<td>18</td>
</tr>
<tr>
<td>Computer Deck Setup</td>
<td>19</td>
</tr>
<tr>
<td>DRIVER</td>
<td>19</td>
</tr>
<tr>
<td>Subroutine STATS</td>
<td>19</td>
</tr>
<tr>
<td>Subroutine MOTORS</td>
<td>20</td>
</tr>
</tbody>
</table>

iii
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subroutine GLS1</td>
<td>20</td>
</tr>
<tr>
<td>Subroutine MOT2</td>
<td>20</td>
</tr>
<tr>
<td>Subroutine MOT3</td>
<td>20</td>
</tr>
<tr>
<td>Program Restrictions</td>
<td>20</td>
</tr>
<tr>
<td>Output Formats</td>
<td>21</td>
</tr>
</tbody>
</table>

SOLID PROPELLANT ROCKET MOTOR PERFORMANCE VERSUS TIME COMPUTER PROGRAM USING THE GROUP TRANSFORMATION METHOD | 22 |

General Description | 22 |

Computer Deck Setup | 22 |

- MAIN program | 23 |
- Subroutine SRCH1 | 23 |
- Subroutine LSTSQ | 23 |
- Subroutine STATS | 23 |
- Subroutine GLS1 | 23 |
- CURVE FIT routines | 24 |
- Subroutine QUIKMOV | 24 |

Program Restrictions | 24 |

Output Formats | 24 |

CONCLUDING REMARKS | 25 |

REFERENCES | 67 |

APPENDIX A - LISTING OF THE GENERAL SOLID PROPELLANT | 69 |
ROCKET MOTOR PERFORMANCE COMPUTER PROGRAM USING THE GROUP TRANSFORMA- | 69 |
TION METHOD | |

APPENDIX B - LISTING OF THE SOLID PROPELLANT ROCKET | 99 |
MOTOR PERFORMANCE VERSUS TIME COMPUTER PROGRAM USING THE GROUP | |
TRANSFORMATION METHOD | |

iv
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>TWO-SIDED TOLERANCE FACTORS FOR NORMAL DISTRIBUTIONS</td>
<td>26</td>
</tr>
<tr>
<td>II</td>
<td>ONE-SIDED TOLERANCE FACTORS FOR NORMAL DISTRIBUTIONS</td>
<td>28</td>
</tr>
<tr>
<td>III</td>
<td>INPUT FORMAT FOR THE GENERAL SOLID PROPELLANT ROCKET MOTOR PERFORMANCE COMPUTER PROGRAM</td>
<td>29</td>
</tr>
<tr>
<td>IV</td>
<td>TYPICAL NONTRANSFORMED DATA OUTPUT FORMAT FOR THE GENERAL SOLID PROPELLANT ROCKET MOTOR PERFORMANCE COMPUTER PROGRAM</td>
<td>37</td>
</tr>
<tr>
<td>V</td>
<td>TYPICAL TRANSFORMED DATA OUTPUT FORMAT FOR THE GENERAL SOLID PROPELLANT ROCKET MOTOR PERFORMANCE COMPUTER PROGRAM</td>
<td>38</td>
</tr>
<tr>
<td>VI</td>
<td>INPUT FORMAT FOR THE SOLID PROPELLANT ROCKET MOTOR PERFORMANCE VERSUS TIME COMPUTER PROGRAM</td>
<td>39</td>
</tr>
<tr>
<td>VII</td>
<td>TRANSFORMED TIME AND CHAMBER-PRESSURE STATISTICAL DATA OUTPUT FORMAT FOR THE SOLID PROPELLANT ROCKET MOTOR PERFORMANCE VERSUS TIME COMPUTER PROGRAM</td>
<td>44</td>
</tr>
<tr>
<td>VIII</td>
<td>TRANSFORMED TIME-AND-THRUST STATISTICAL DATA OUTPUT FORMAT FOR THE SOLID PROPELLANT ROCKET MOTOR PERFORMANCE VERSUS TIME COMPUTER PROGRAM</td>
<td>48</td>
</tr>
</tbody>
</table>
FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Typical solid propellant rocket motor</td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>Longitudinal cross section</td>
<td>52</td>
</tr>
<tr>
<td>(b)</td>
<td>Typical internal-burning six-point star propellant grain configuration</td>
<td>52</td>
</tr>
<tr>
<td>(c)</td>
<td>Burning surface geometry of a typical internal-burning six-point star propellant grain configuration versus regressed distances normal to the original propellant surface</td>
<td>53</td>
</tr>
<tr>
<td>2</td>
<td>Typical variation of propellant performance characteristics over extended burning rate and chamber pressure ranges</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>Typical performance variation of a solid propellant rocket motor of fixed geometry and given propellant that is tested at differing prefire propellant temperatures</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td>Propellant burning surface area versus increasing distance burned normal to the original propellant surface for the six-point star propellant grain configuration shown in figures 1(b) and 1(c)</td>
<td>55</td>
</tr>
<tr>
<td>5</td>
<td>Area ratio of propellant burning surface area to nozzle throat area versus increasing distance burned normal to the original propellant surface for the solid propellant rocket motor shown in figure 1</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>Typical variation of propellant performance characteristics over limited burning rate and chamber pressure ranges</td>
<td>56</td>
</tr>
<tr>
<td>7</td>
<td>Second-order, least-squares curve fit of experimentally determined chamber pressures at the individual regressed distance of interest normal to the original propellant surface versus prefire propellant temperature</td>
<td>57</td>
</tr>
<tr>
<td>Figure</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>

Second-order, least-squares curve fit of experimentally determined burning rates at the individual regressed distance of interest normal to the original propellant surface versus prefire propellant temperature

Second-order, least-squares curve fit of experimentally determined motor operation times to the individual regressed distance of interest normal to the original propellant surface versus prefire propellant temperature

Example of two-sided tolerance limits for a normal distribution

Example of one-sided tolerance limits for a normal distribution

(a) Upper tolerance limit
(b) Lower tolerance limit

IBM 7094 deck setup for the general solid propellant rocket motor performance computer program using the group transformation method

Example of choosing the output points that will best define the variation of chamber pressure and thrust versus time

Univac 1107 deck setup for the solid propellant rocket motor performance versus time computer program using the group transformation method

Example of choosing the input points that will best define the variation of chamber pressure and thrust versus time

Example of graphical format from the solid propellant rocket motor performance versus time computer program

(a) Typical transformed time and chamber pressure graphed outputs
(b) Typical transformed time and thrust graphed outputs

vi7
SOLID PROPELLANT ROCKET MOTOR PERFORMANCE COMPUTER
PROGRAMS USING THE GROUP TRANSFORMATION METHOD

By B. J. Lee and P. B. Burchfield
Manned Spacecraft Center

SUMMARY

A solid propellant rocket motor of fixed geometry and given propellant will yield different performance with various prefire propellant temperatures. This paper presents two computer programs that transform the test data from as many as three different prefire propellant temperature groups to a like number of common prefire propellant temperatures of interest. Statistical calculations are made on the test data after they have been transformed. A detailed description of these computer programs is presented.

INTRODUCTION

The internal ballistic performance of a solid propellant rocket motor is a function of geometry, propellant temperature, and propellant composition. Therefore, a solid propellant rocket motor of fixed geometry (figs. 1(a) through 1(c)) and given propellant characteristics (fig. 2) will yield different performance with various propellant temperatures (fig. 3 and refs. 1 and 2). This phenomenon is due to the variation of propellant burning rate with propellant temperature (fig. 2) and will be referred to as the thermal sensitivity of the propellant.

By using adequate experimental test data, the variation of motor performance with propellant temperature can be mathematically defined. With proper utilization of this mathematical definition the performance test data (from motor test firings conducted at different propellant temperatures) can be transformed to any common temperature of interest, within the extremities of the test data.

There is generally a limited number of motors allotted to determine the performance variations (performance versus time and product variance) of a
given motor design. The transformation of test data from different prefire propellant temperatures to given temperatures of interest is utilized in this report to obtain greater confidence in the statistical analyses performed on the test data.

This report describes two solid propellant rocket motor performance computer programs that were written at the Manned Spacecraft Center. These programs transform experimental test data from as many as three different prefire propellant temperature groups to a like number of propellant temperatures of interest. The computer program presented in appendix A performs the transformations and calculates general performance parameters over selected time intervals. The computer program presented in appendix B performs the transformation for instantaneous performance versus time.

Statistical analyses are performed on the test data after they have been transformed. The statistical analyses consist of calculating means, standard deviations, one-sided tolerance limits, and two-sided tolerance limits.

SYMBOLS

- **A** area
- **a** burning-rate equation coefficient, \(r = aP^n \)
- **b** \(K_N \) equation coefficient, \(K_N = bP^m \)
- **e** base of natural logarithm, 2.71828...
- **F** longitudinal thrust
- **K** tolerance factor
- **K_N** ratio of propellant burning-surface area to nozzle-throat area
- **ln** natural logarithm
- **m** \(K_N \) equation exponent, \(K_N = bP^m \)
- **N** sample size

2
n burning-rate equation exponent, \(r = aP^n \)

P chamber pressure; percentage of population

\(P_a \) ambient pressure

r burning rate

s estimated standard deviation

T prefire propellant temperature

t motor operating time interval

u tolerance limit

w web thickness

X experimentally determined values that make up a sample

\(\gamma \) probability or confidence level

\(\pi_K \) temperature sensitivity coefficient of chamber pressure

\(\sigma_K \) temperature sensitivity coefficient of burning rate

\(\phi \) nozzle cant angle

Subscripts:

d desired

e exit

f value of the parameter that corresponds to \(T_d \) as determined from a second-order least-squares curve fit of the parameter versus \(T \)

g prefire propellant temperature group whose data are to be transformed
value of the parameter that the explicit motor would be expected to experience if the prefire propellant temperature had been T_d

d value of the parameter experimentally acquired from the explicit motor whose data are to be transformed

ej value of the parameter that corresponds to \bar{T}_g as determined from a second-order least-squares curve fit of the parameter versus T

lower

throat

upper

vacuum

one-sided

two-sided

Operator:

— average (such as \bar{F})

RELATED SOLID PROPELLANT ROCKET MOTOR THEORY

Ratio of Propellant Burning-Surface Area to Nozzle-Throat Area

Solid propellants burn in parallel layers and regress normal to the propellant surface (fig. 1(c)). Therefore, at any increasing distance normal to the original propellant surface, the exposed surface area can be predicted (fig. 4). Assuming that nozzle-throat erosion is reproducible, a geometric relationship can be determined between the ratio of propellant burning-surface area to nozzle-throat area K_N and the distance regressed normal to the original propellant surface (fig. 5).

The chamber pressure of a solid propellant rocket motor, with fixed geometry and given propellant characteristics at a known propellant
temperature, is a function of K_N. The relationship between K_N, chamber pressure, and propellant temperature is generally determined experimentally and can, in some cases, be quite complex (fig. 2). However, the relationship between K_N and motor chamber pressure for limited chamber-pressure ranges can be approximated for a given propellant at a known propellant temperature by the following empirically determined relationship (fig. 6)

$$K_N = bP^m$$

(1)

where

$$b = K_N$$ equation coefficient.

$$P = \text{chamber pressure}.$$

$$m = K_N$$ equation exponent.

Burning Rate

Burning rate r is the rate at which a solid propellant is consumed. It is measured in a direction normal to the propellant surface and expressed by in./sec. The burning rate of a specific propellant is a function of chamber pressure and propellant temperature. The complex relationship between burning rate, chamber pressure, and propellant temperature (fig. 2) can be approximated for a given propellant at a known propellant temperature for limited chamber pressure ranges by the following empirically determined relationship (fig. 6)

$$r = aP^n$$

(2)

where

$$a = \text{burning-rate equation coefficient}.$$

$$n = \text{burning-rate equation exponent}.$$
PROPELLANT THERMAL SENSITIVITY

Data obtained from test firings, conducted at different propellant temperatures, can be transformed to any common temperature of interest within the extremities of the available test data by any one of three processes. These processes are constant pressure, constant burn rate, and constant K_N. Compensations must be made for factors such as erosive burning and pressure losses along the length of the grain perforation during motor operation. The constant K_N process presented in this report is based on a constant geometric configuration at specifically regressed distances normal to the original propellant surface that compensates for the above mentioned factors. The actual regressed distance need not be known as long as the transformations are conducted at a constant regressed distance. This transformation method is also valid for the average geometric configuration during a time interval corresponding to a specific regressed distance (such as burn time, action time, and tail-off time).

Chamber-Pressure Transformation—Equation Derivation

The chamber-pressure transformation equation can be derived by first taking the natural logarithm of equation (1) giving

$$\ln K_N = \ln b + (m) \ln P$$ \hspace{1cm} (3)

Taking the partial derivative of equation (3) with respect to the propellant temperature T at a constant K_N, and assuming m is independent of temperature, yields

$$\frac{\partial}{\partial T} \left(\ln K_N \right)_{K_N} = 0 = \frac{\partial}{\partial T} (\ln b)_{K_N} + (m) \frac{\partial}{\partial T} (\ln P)_{K_N}$$ \hspace{1cm} (4)
Therefore,

\[
\frac{\partial}{\partial T} (\ln P)_{K_N} = - \frac{\frac{\partial}{\partial T} (\ln b)_{K_N}}{m}
\]

(5)

The expression \(\frac{\partial}{\partial T} (\ln P)_{K_N} \) is defined as the temperature sensitivity coefficient of chamber pressure (ref. 1) and is expressed as \(\pi_K \).

Performing the indicated differentiation of equation (5) yields

\[
\pi_K = \left[\frac{1}{P} \left(\frac{\partial P}{\partial T} \right) \right]_{K_N}
\]

(6)

Integrating equation (6) yields

\[
\int_{\overline{T}_g}^{T_d} \pi_K dT = \left[\int_{P_j}^{P_f} \frac{dP}{P} \right]_{K_N}
\]

(7)

where

\(\overline{T}_g \) = mean propellant temperature of the motors in the propellant temperature group whose data are to be transformed.

\(T_d \) = desired propellant temperature or the propellant temperature to which the experimental test data are to be transformed.

\(P_j \) = chamber pressure that corresponds to \(\overline{T}_g \) as obtained from a second-order least-squares curve fit of the experimentally
determined chamber pressures, at the specific regressed distance of interest normal to the original propellant surface, versus propellant temperature (fig. 7).

\[P_f = \text{chamber pressure that corresponds to } T_d \text{ as obtained from a second-order least-squares curve fit of the experimentally determined chamber pressures, at the specific regressed distance of interest normal to the original propellant surface, versus propellant temperature (fig. 7).} \]

All least-squares curve fits are of the form \(\ln x = a + by + cy^2 \) where \(x \) is the dependent parameter, \(y \) is the independent parameter, and \(a, b, \) and \(c \) are constants.

The mean value theorem permits writing equation (7) as

\[
\pi_K^* \int_{T_g}^{T_d} \frac{dT}{T_g - T} = \left[\int_{P_f}^{P_j} \frac{dP}{P} \right]_{K_N}
\]

where \(\pi_K^* \) is the average value of \(\pi_K \) over the path of constant \(K_N \) from \(T_g \) to \(T_d \). This quantity \(\pi_K^* \) will hereafter be referred to as \(\pi_K \).

Performing the indicated integration of equation (8) yields

\[
\pi_K \left(T_d - T_g \right) = \left[\ln P_f - \ln P_j \right]_{K_N}
\]

8
Therefore,

$$\pi_K = \left[\frac{1}{(T_d - \bar{T}_g)} \right] \left[\ln \frac{P_f}{P_j} \right] K_N$$ \hspace{1cm} (10)

By rearranging equation (10), the chamber pressure for each motor in the prefire propellant temperature group T_g (experimentally determined at the specific regressed distance for which π_K was calculated) is transformed to the chamber pressure corresponding to the desired prefire propellant temperature

$$P_h = P_i e^{\pi_K(T_d - T_i)} K_N$$ \hspace{1cm} (11)

where

$P_h =$ expected chamber pressure (at the specific regressed distance of interest normal to the original propellant surface) of the explicit motor if the propellant temperature had been T_d.

$P_i =$ chamber pressure experimentally determined at the specific regressed distance of interest normal to the original propellant surface of the explicit motor whose data are to be transformed.

$T_i =$ actual propellant temperature of the explicit motor whose data are to be transformed.
Burning-Rate Transformation-Equation Derivation

Reference 1 presents a relationship between m and n, \(m = 1 - n \), thus equations (1) and (2) may be combined and rearranged to give

\[
P = \left(\frac{K_N}{b} \right)^{\frac{1}{1-n}}
\]

(12)

Then, substituting equation (12) in equation (2) yields

\[
r = a \left(\frac{K_N}{b} \right)^{\frac{n}{1-n}}
\]

(13)

Taking the natural logarithm of equation (13) gives

\[
\ln r = \ln a - \left(\frac{n}{1-n} \right) \ln b + \left(\frac{n}{1-n} \right) \ln K_N
\]

(14)

Partial differentiation of equation (14) with respect to the propellant temperature \(T \) at a constant \(K_N \), and assuming \(n \) is independent of temperature, yields

\[
\frac{\partial}{\partial T} (\ln r)_{K_N} = \frac{\partial}{\partial T} (\ln a)_{K_N} - \frac{n}{1-n} \frac{\partial}{\partial T} (\ln b)_{K_N} + \frac{n}{1-n} \frac{\partial}{\partial T} (\ln K_N)_{K_N}
\]

(15)

The expression

\[
\frac{\partial}{\partial T} (\ln r)_{K_N}
\]

is defined as the temperature sensitivity coefficient of burning rate (ref. 1) and is expressed as \(\sigma_K \).

Performing the indicated differentiation of equation (15) yields

\[\sigma_K = \left[\frac{1}{r} \frac{\partial r}{\partial T} \right] K_N \]

(16)

Integrating equation (16) yields

\[\int_{\bar{T}_g}^{T_d} \sigma_K \, dT = \left[\int_{r_j}^{r_f} \frac{dr}{r} \right] K_N \]

(17)

where

\[r_j = \text{burning rate that corresponds to } \bar{T}_g \text{ as obtained from a second-order least-squares curve fit of the experimentally determined burning rates, at the specific regressed distance of interest normal to the original propellant surface, versus propellant temperature (fig. 8).} \]

\[r_f = \text{burning rate corresponding to } T_d \text{ as obtained from a second-order least-squares curve fit of the experimentally determined burning rates, at the specific regressed distance of interest normal to the original propellant surface, versus propellant temperature (fig. 8).} \]

The mean value theorem permits writing equation (17) as

\[\sigma_K^* \int_{\bar{T}_g}^{T_d} dt = \left[\int_{r_j}^{r_f} \frac{dr}{r} \right] K_N \]

(18)
where σ_K^* is the average value of σ_K over the path of constant K_N from $\overline{T_g}$ to T_d. This quantity σ_K^* will hereafter be referred to as σ_K. Performing the indicated integration of equation (18) yields

$$
\sigma_K \left[T_d - \overline{T_g} \right] = \left[\ln r_f - \ln r_j \right] K_N
$$

(19)

Therefore,

$$
\sigma_K = \frac{1}{(T_d - \overline{T_g}) \left[\ln \frac{r_f}{r_j} \right]} K_N
$$

(20)

By rearranging equation (20), the burning rate for each motor in the propellant temperature group T_g (experimentally determined at the specific regressed distance for which σ_K was calculated) is transformed to the burning rate corresponding to the desired propellant temperature

$$
r_h = \left(r_i e^{\sigma_K (T_d - T_i)} \right) K_N
$$

(21)

where

r_h = expected burning rate (at the specific regressed distance of interest normal to the original propellant surface) of the explicit motor if the propellant temperature had been T_d;

r_i = burning rate experimentally determined at the specific regressed distance of interest normal to the original propellant surface of the explicit motor whose data are to be transformed.
Time Transformation Equation Derivation

Since burning rate is the rate at which a solid propellant is consumed,

\[\bar{r} = \frac{w}{t} \] \hspace{1cm} (22)

where

\[\bar{r} = \text{average burning rate during time interval } t. \]

\[w = \text{propellant thickness consumed (measured normal to the original propellant surface) during time interval } t. \]

Assuming that the thermal expansion of the propellant is negligible and substituting equation (22) in equation (20)

\[\sigma_K = \left[\frac{1}{T_d - \bar{T}_g} \right] \left[\ln \frac{t_j}{t_f} \right] K_N \] \hspace{1cm} (23)

where

\[t_j = \text{estimated motor operating time interval at temperature } \bar{T}_g \] (fig. 9).

\[t_f = \text{estimated motor operating time interval at temperature } T_d \] (fig. 9).
By rearranging equation (23), the measured operating time interval for each motor in the propellant temperature group T_g is transformed to the operating time interval corresponding to the desired propellant temperature

$$t_h = \frac{t_i}{\sigma K (T_d - T_i)} e^{K N}$$ \hspace{1cm} (24)

where

- t_i = measured operating time interval of interest of the explicit motor whose data are to be transformed.
- t_h = estimated operating time interval of each motor at propellant temperature T_d.

Thrust Related Calculations and Transformation Equation

In order to transform longitudinal thrust in the simplest manner and also to provide the capability of handling motors that utilize as many as four nozzles (with equal or unequal expansion ratios) and with a nozzle cant angle (such as the Apollo launch escape motor), the thrust measurements are first corrected to vacuum pressure altitude

$$\overline{F}_{vi} = \overline{F}_i + P_a A_e \cos \phi$$ \hspace{1cm} (25)

where

- \overline{F}_{vi} = measured average longitudinal thrust of each motor during the time interval of interest corrected to vacuum pressure altitude.
- \overline{F}_i = measured average longitudinal thrust of each motor during the time interval of interest.
\(P_a \) = ambient pressure experienced by each motor during the time interval of interest.

\(A_e \) = total nozzle-exit area.

\(\phi \) = nozzle cant angle from the longitudinal centerline of the motor.

Equation (25) can also be used to correct thrust data to any pressure altitude of interest; however, it should be noted that there has been no attempt to evaluate the performance data during the time interval of nozzle flow separation.

The average longitudinal thrust for each motor in the propellant temperature group \(T_g \) (experimentally determined at the specific regressed distance for which \(\pi_K \) was calculated) is transformed to the average longitudinal thrust corresponding to the desired propellant temperature

\[
\bar{F}_{vh} = \bar{F}_{vi} \left(\frac{P_h}{P_i} \right)
\]

(26)

where

\(\bar{F}_{vh} \) = average expected thrust of the explicit motor if the propellant temperature had been \(T_d \).

STATISTICAL ANALYSIS

When parameters are experimentally determined, it is desirable for design, performance, and reliability evaluations to establish limits or bounds which contain a desired percentage of a specific parameters population, with a confidence or probability that the intended condition is satisfied. The bounds thus established are called tolerance limits.

To determine these tolerance limits, a frequency distribution must be assumed. This paper assumes normal distribution since experience has
shown that the majority of experimental data is approximately normally distributed. Although a check for normality may be performed, moderate departure from the assumed distribution will not seriously affect the tolerance limits computed.

Given a sample of data, the mean is estimated by

$$\bar{X} = \frac{\Sigma X}{N}$$ \hspace{1cm} (27)

and the standard deviation is estimated by

$$s = \sqrt{\frac{N\Sigma X^2 - (\Sigma X)^2}{N(N-1)}}$$ \hspace{1cm} (28)

where

- N = the number of points in the sample.
- X = experimentally determined values that make up the sample.

Now that estimates of the mean and standard deviation are known, tolerance limits may be determined. The tolerance limits are the bounds which with probability γ contain at least P percent of the population.

The tolerance limits are of the form

$$u = \bar{X} \pm Ks$$ \hspace{1cm} (29)

where

- K = tolerance factor.
Note:

\[K_1 = \text{tolerance factor for one-sided tolerance limits.} \]

\[K_2 = \text{tolerance factor for two-sided tolerance limits.} \]

This equation may be applied in two different ways. It can be used to determine the two-sided tolerance limits (fig. 10), or for determining either the upper or the lower one-sided tolerance limit (fig. 11).

Two-Sided Tolerance Limits

The two-sided tolerance limits are the upper and the lower bounds that will enclose at least the desired percentage of the expected population with a preselected confidence. The tolerance factors required in equation (29) are given in table I with confidence \(\gamma \) for \(P \) percent of the expected population and \(N \) data points.

Example: A sample of 25 points with \(\bar{X} = 10.02 \) and \(s = 0.13 \).

Two-sided tolerance limits for 90 percent of the population with 95 percent confidence are desired. From table I, for \(P = 0.90 \) and \(\gamma = 0.95 \), \(K = 2.208 \).

\[
u = \bar{X} \pm K_2 s = 10.02 \pm (2.208)(0.13) = 10.02 \pm 0.29
\]

Therefore, with 95 percent confidence, at least 90 percent of the population lie between 9.73 and 10.31.

One-Sided Tolerance Limits

The one-sided tolerance limit is the upper or the lower bound below which or above which at least the desired percentage of the population can be expected to lie with a preselected confidence. The tolerance factors required in equation (29) are given in table II with confidence \(\gamma \) for \(P \) (where \(P = 1 - \alpha \)) percentage of the expected population and \(N \) data points.
Example: Find the one-sided tolerance limit for the preceding example. From table II, $K = 1.838$

$$u = \bar{X} \pm K_1 s = 10.02 \pm (1.838) (0.13) = 10.02 \pm 0.24$$

Therefore, with 95 percent confidence, at least 90 percent of the population lies either above 9.78 or below 10.26.

The computer program presented in appendix A calculates estimated standard deviation, one-sided tolerance limits, and two-sided tolerance limits for both physical data and transformed general performance parameters over selected time intervals. The computer program presented in appendix B calculates estimated standard deviation and one-sided tolerance limits or two-sided tolerance limits for transformed instantaneous performance data versus time.

GENERAL SOLID PROPELLANT ROCKET MOTOR PERFORMANCE COMPUTER PROGRAM USING THE GROUP TRANSFORMATION METHOD

General Description

This computer program was written at the Manned Spacecraft Center in Fortran IV for the IBM 7094 computer with 32K storage. The program transforms general performance parameters for selected time intervals acquired from as many as three different propellant temperature groups to a like number of propellant temperatures of interest for a solid propellant rocket motor of fixed geometry and a given propellant. The transformations are performed for the average geometric configuration during the time intervals that correspond to the specific regressed distances of interest (such as burn time, action time, and tail-off time).

The actual regressed distances need not be known as long as the transformations are conducted at the average geometric configuration for the specific regressed distances. Statistical calculations are performed on both physical data and general performance parameters after the parameters have been transformed to the specific common temperatures of interest. The input format for the program is presented in table III.
Computer Deck Setup

This program exceeds 32K core storage, and the overlay feature of Fortran IV is employed to allow the program to be run as a single input job.

Six decks constitute the program in its entirety and include a calling program and five subroutines.

The actual deck setup for the IBM 7094 is illustrated in figure 12.

1. Setup Cards

 $JOB card
 $IBJOB card

2. Program

 DRIVER
 STATS
 $ORIGIN ALPHA card
 MOTORS
 GLS1
 $ORIGIN ALPHA card
 MOT2
 MOT3

3. Data

 $DATA
 DATA deck
 7/8 card

 DRIVER. - DRIVER is the executive routine required in an overlayed program. This routine never leaves the machine storage area and calls the various overlayed subroutines.

 Subroutine STATS. - Subroutine STATS computes the mean and the standard deviation of an input array of given size. Due to the computer arithmetic methods, standard deviations were sometimes found to exist with a small non-zero value when all elements of the input array were identical. To avoid this difficulty, standard deviation is set to zero if its ratio to the mean is less than 0.00025. Since STATS is used by all overlayed sections of the program, it has been placed in the permanent storage area with DRIVER.
Subroutine MOTORS. - Subroutine MOTORS reads in all the data. It sorts the data for each motor into the proper propellant temperature group and does performance calculations on the input data. It calculates the transformation factors for pressures and times (π_K and σ_K) and performs the transformations on these data.

Subroutine GLS1. - Subroutine GLS1 is used to calculate a second-order least-squares curve fit of the natural logarithms of the chamber pressures and the operation time intervals versus propellant temperature.

Subroutine MOT2. - Subroutine MOT2 calculates transformed thrusts, impulses and specific impulses, and the tolerance limits at each desired pressure altitude.

Subroutine MOT3. - Subroutine MOT3 calculates transformed burning rate, characteristic velocity, and their tolerance limits.

Program Restrictions

This program was written to perform the desired transformations for a maximum of 15 motors per experimental prefire propellant temperature group, 3 experimental prefire propellant temperature groups, and 9 time intervals such as ignition delay time, thrust rise time, burn time, total time, and so forth.

The input restrictions are that the number of propellant temperatures (to which the data are to be transformed) must equal the number of experimental temperature groups, the first ambient pressure (EXPA (1)) must equal zero psia (vacuum), and the desired temperatures must be in ascending order.

Care must be exercised in the evaluation of the program results. For example, outputs of specific impulse, total impulse, and chamber pressure integral are meaningless if instantaneous data are inputed. The evaluation of data acquired during nozzle flow separation is beyond the scope of this program; therefore, action time, tail-off time, and total time data must be carefully handled. It should be noted that the output values for characteristic velocity (CSTAR) are valid for total time only.
Output Formats

The output formats are basically of two types: transformed data and nontransformed data. Table IV presents a typical page of nontransformed data output. The type of output (time, pressure, thrust, or other parameters) is identified in the upper left corner of the page. The nine columns represent the motor operating time intervals of interest (such as ignition delay time, thrust rise time, burn time, total time, and so forth). Nine columns will always be printed out even though fewer time intervals are inputed. The non-used columns will be printed out as zeros. At the left of the page, each motor is identified by its alphanumeric identification code, and the motors are separated into propellant temperature groups (up to three). Means and standard deviations are printed out for the motors in each temperature group. In three instances (thrust, impulse, and specific impulse) identical formats are used for different values of pressure altitude. The pressure altitude is printed out at the top of the page.

Table V presents a typical output page of transformed data. Each output page represents one time interval such as ignition delay time, thrust rise time, burn time, total time, and so forth. The time interval is printed out in numerical form (time no. 1, time no. 2, time no. 3, and up to time no. 9) in the upper left corner of the page and must be correlated with the time definitions in the input data (time no. 1 = ignition delay time, time no. 2 = thrust rise time, time no. 3 = burn time, or up to time no. 9 = total time). The type of output (time, pressure, thrust, and other outputs) is printed out at the top of the page. The three columns represent the three propellant temperatures to which the input data have been transformed. At the left of the page each motor is identified by its alphanumeric identification code, and the motors are separated into the original propellant temperature groups (up to three). Means and standard deviations are printed out for motors in each temperature group. Means, standard deviations, and tolerance limits are printed out for the three groups as a whole. In three instances (thrust, impulse, and specific impulse) identical formats are used for different values of pressure altitude. The pressure altitude is printed out under the type of output.
SOLID PROPELLANT ROCKET MOTOR PERFORMANCE VERSUS
TIME COMPUTER PROGRAM USING THE GROUP
TRANSFORMATION METHOD

General Description

This computer program was written at the Manned Spacecraft Center in Fortran IV for the Univac 1107 computer with 65K storage. The program effectively transforms experimentally obtained thrust-and-chamber pressure versus time data (acquired for as many as three different propellant temperature groups) to a common propellant temperature of interest for a solid propellant rocket motor of fixed geometry and a given propellant. The transformations are performed at specific regressed distances normal to the original propellant surface. The actual regressed distance need not be known, as long as the transformations are conducted at a constant regressed distance (such as percents of burn time and percents of tail-off time). See figure 13.

Statistical calculations are performed on the test data after they have been transformed to the specific common temperature of interest. The input format for the program is presented in table VI.

Computer Deck Setup

Twelve decks constitute the program in its entirety, including a main program and 12 subroutines. The program for the Univac 1107 is illustrated in figure 14.

1. Setup Card

$JOB card

2. Program

MAIN
SRCH1
LSTSQ
CURVE
STATS
GLS1
ACCEND
NORMLZ
FIXIT
STDEV
CF2F1
CF2F2
QUIKMV

3. Data

XQT card
DATA deck
EOF card
FIN card

MAIN program. - The **MAIN** program reads in all data and sorts the data for each motor into its proper prefire propellant temperature group. It then calls the **CURVE FIT** routines to curve fit both input pressure and input thrust versus input time. It subdivides burn time and tail-off time into the required number of subintervals (fig. 13). Finally, it calls subroutine LSTSQ to compute the transformed data.

Subroutine SRCH1. - Subroutine **SRCH1** computes time increments in terms of percent web time and percent tail-off time (fig. 13). The subroutine then selects from the **CURVE FIT** routines the proper cubic coefficients for the particular time increment being considered. After the proper coefficients have been selected, the subroutine uses them to compute the values of the ordinate (pressure or thrust) at each time increment and returns these values to the main program.

Subroutine LSTSQ. - Subroutine **LSTSQ** computes the transformation factors for pressures and times \(T \) and \(\sigma \lambda \) and performs the transformations on these and thrust data at each percent web time and at each percent tail-off time and prints them out as final answers. Graphs of the final answers are also produced (see subroutine QUIKMOV).

Subroutine STATS. - Subroutine **STATS** computes the mean and standard deviation of an input array of given size. Due to computer arithmetic methods, standard deviations were sometimes found to exist with a small nonzero value when all elements of the input array were identical. To avoid this difficulty, standard deviation is set to zero if its ratio to the mean is less than 0.00025.

Subroutine GLS1. - Subroutine **GLS1** is used to calculate a second-order least-squares curve fit of the natural logarithms of chamber pressures, and motor operation times (at each experimentally determined percent web time and percent tail-off time) versus propellant temperature.
CURVE FIT routines. - The CURVE FIT routines consist of subroutines CURVE, ACCEND, NORMLZ, FIXIT, STDEV, CF2F1, and CF2F2. These subroutines fit an input ordinate array versus an input abscissa array using a piecewise cubic least-squares curve fit. Because of the piecewise nature of the fit there are NPTS-ICON+1 sets of cubic coefficients, where NPTS is the size of the input arrays, and ICON points are fit in each piece. Each coefficient set is valid over a limited interval. The coefficients may be printed out by setting input parameter IPRNT to 1.

Subroutine QUIKMV. - Subroutine QUIKMV is a MSC general plot routine for the SC-4020. It has not been included in appendix B since most facilities use plotting routines individually suited to the available plotting equipment. The call to this routine may be deleted, or a dummy routine substituted, without affecting the overall program.

Program Restrictions

This program was written to perform the desired transformation for as many as 15 motors per experimental propellant temperature group, 3 experimental propellant temperature groups, and 200 selected inputs of time with corresponding chamber pressure and thrust for each motor.

Since the program is limited to 200 inputs of time with corresponding chamber pressure and thrust for each motor, care must be exercised in choosing the input points in order that they best define the variation of chamber pressure and thrust versus time for each motor (fig. 15). Care must also be exercised in choosing the proper output points that best define the variations of chamber pressure and thrust versus time. This can be accomplished since burn time can be subdivided into as many as five subintervals, and tail-off time can be subdivided into as many as four subintervals. As many time increments (percents of web time and/or percents of tail-off time) as desired can be generated to define the variation of chamber pressure and thrust versus time for each subinterval as long as the total does not exceed 200 points (fig. 13).

Output Formats

The outputs consist of the transformed results in computer printout form, such as presented in tables VII and VIII, and SC-4020 graphs as shown in figures 16(a) and 16(b).
The transformed results present the statistics (mean and tolerance limits) of the transformed time, chamber pressure, and thrust at the desired percent of burn time and percent tail-off time. Transformed thrust statistics can be presented for as many as three desired pressure altitudes.

CONCLUDING REMARKS

The method and computer programs presented in this report were developed at the Manned Spacecraft Center specifically to evaluate the performance of the solid rockets used in the Apollo Launch Escape System. From the conception, however, the method of solution, including the machine programs, was intended to be generally applicable for any rocket motor utilizing a single propellant grain with no throttling capability.

The programs were designed for two types of evaluations. Often, in the requirements, motors are constrained to operate within a given performance regime during some portion of the firing, while delivering a specified nominal performance over the total operation. The program presented in appendix A was intended to evaluate the more stringent constraints placed upon the launch escape motor where both the maximum thrust level and the minimum impulse were specified for an initial phase of firing, and an overall minimum performance required for the abort mission.

The program presented in appendix B compares the transformed thrust-time and pressure-time relationships of all motors tested to define the expected limits of the performance at any temperature. This program has been used to describe the general thrust and pressure characteristics for documentation and product variance purposes.

It is anticipated that these programs will be valuable, particularly for contracting agencies and prime contractors, in the evaluation of solid rocket test data.

Manned Spacecraft Center
National Aeronautics and Space Administration
Houston, Texas, June 29, 1966
TABLE I. - TWO-SIDED TOLERANCE FACTORS FOR NORMAL DISTRIBUTIONS

Factors K such that the probability is γ that at least a proportion P of the distribution will be included between $\bar{X} \pm KS$, where \bar{X} and S are estimates of the mean and the standard deviation computed from a sample of N

<table>
<thead>
<tr>
<th>$\gamma = 0.75$</th>
<th>$\gamma = 0.90$</th>
<th>$\gamma = 0.95$</th>
<th>$\gamma = 0.99$</th>
<th>$\gamma = 0.99$</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>P</td>
<td>0.75</td>
<td>0.90</td>
<td>0.95</td>
</tr>
<tr>
<td>2</td>
<td>4.498</td>
<td>3.601</td>
<td>2.714</td>
<td>1.931</td>
</tr>
<tr>
<td>3</td>
<td>2.501</td>
<td>1.538</td>
<td>0.876</td>
<td>0.331</td>
</tr>
<tr>
<td>4</td>
<td>2.035</td>
<td>0.920</td>
<td>0.431</td>
<td>0.167</td>
</tr>
<tr>
<td>5</td>
<td>1.825</td>
<td>0.509</td>
<td>0.288</td>
<td>0.071</td>
</tr>
<tr>
<td>6</td>
<td>1.704</td>
<td>0.420</td>
<td>0.239</td>
<td>0.044</td>
</tr>
<tr>
<td>7</td>
<td>1.624</td>
<td>0.318</td>
<td>0.175</td>
<td>0.023</td>
</tr>
<tr>
<td>8</td>
<td>1.568</td>
<td>0.258</td>
<td>0.126</td>
<td>0.013</td>
</tr>
<tr>
<td>9</td>
<td>1.525</td>
<td>0.218</td>
<td>0.103</td>
<td>0.008</td>
</tr>
<tr>
<td>10</td>
<td>1.492</td>
<td>0.192</td>
<td>0.087</td>
<td>0.004</td>
</tr>
<tr>
<td>11</td>
<td>1.465</td>
<td>0.173</td>
<td>0.074</td>
<td>0.002</td>
</tr>
<tr>
<td>12</td>
<td>1.443</td>
<td>0.159</td>
<td>0.065</td>
<td>0.001</td>
</tr>
<tr>
<td>13</td>
<td>1.425</td>
<td>0.147</td>
<td>0.058</td>
<td>0.000</td>
</tr>
<tr>
<td>14</td>
<td>1.409</td>
<td>0.138</td>
<td>0.052</td>
<td>0.000</td>
</tr>
<tr>
<td>15</td>
<td>1.395</td>
<td>0.130</td>
<td>0.047</td>
<td>0.000</td>
</tr>
<tr>
<td>16</td>
<td>1.380</td>
<td>0.125</td>
<td>0.043</td>
<td>0.000</td>
</tr>
<tr>
<td>17</td>
<td>1.366</td>
<td>0.120</td>
<td>0.040</td>
<td>0.000</td>
</tr>
<tr>
<td>18</td>
<td>1.353</td>
<td>0.116</td>
<td>0.037</td>
<td>0.000</td>
</tr>
<tr>
<td>19</td>
<td>1.341</td>
<td>0.113</td>
<td>0.035</td>
<td>0.000</td>
</tr>
<tr>
<td>20</td>
<td>1.329</td>
<td>0.109</td>
<td>0.033</td>
<td>0.000</td>
</tr>
<tr>
<td>21</td>
<td>1.318</td>
<td>0.106</td>
<td>0.031</td>
<td>0.000</td>
</tr>
<tr>
<td>22</td>
<td>1.308</td>
<td>0.103</td>
<td>0.029</td>
<td>0.000</td>
</tr>
<tr>
<td>23</td>
<td>1.299</td>
<td>0.100</td>
<td>0.027</td>
<td>0.000</td>
</tr>
<tr>
<td>24</td>
<td>1.291</td>
<td>0.097</td>
<td>0.026</td>
<td>0.000</td>
</tr>
<tr>
<td>25</td>
<td>1.283</td>
<td>0.094</td>
<td>0.024</td>
<td>0.000</td>
</tr>
<tr>
<td>26</td>
<td>1.275</td>
<td>0.092</td>
<td>0.023</td>
<td>0.000</td>
</tr>
<tr>
<td>27</td>
<td>1.267</td>
<td>0.090</td>
<td>0.021</td>
<td>0.000</td>
</tr>
</tbody>
</table>

TABLE I.- TWO-SIDED TOLERANCE FACTORS

FOR NORMAL DISTRIBUTIONS

Factors K such that the probability is \(\gamma \) that at least a proportion \(P \) of the distribution will be included between \(\bar{X} \pm Ks \), where \(\bar{X} \) and \(s \) are estimates of the mean and the standard deviation computed from a sample of \(N \)

<table>
<thead>
<tr>
<th>(P)</th>
<th>(N)</th>
<th>(\gamma = 0.75)</th>
<th>(\gamma = 0.90)</th>
<th>(\gamma = 0.95)</th>
<th>(\gamma = 0.99)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>0.90</td>
<td>0.95</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>28</td>
<td>1.305</td>
<td>1.866</td>
<td>2.282</td>
<td>2.920</td>
<td>3.728</td>
</tr>
<tr>
<td>29</td>
<td>1.301</td>
<td>1.860</td>
<td>2.215</td>
<td>2.911</td>
<td>3.718</td>
</tr>
<tr>
<td>30</td>
<td>1.297</td>
<td>1.855</td>
<td>2.201</td>
<td>2.904</td>
<td>3.708</td>
</tr>
<tr>
<td>31</td>
<td>1.294</td>
<td>1.850</td>
<td>2.194</td>
<td>2.906</td>
<td>3.700</td>
</tr>
<tr>
<td>32</td>
<td>1.291</td>
<td>1.845</td>
<td>2.189</td>
<td>2.899</td>
<td>3.690</td>
</tr>
<tr>
<td>33</td>
<td>1.284</td>
<td>1.838</td>
<td>2.180</td>
<td>2.883</td>
<td>3.670</td>
</tr>
<tr>
<td>34</td>
<td>1.275</td>
<td>1.826</td>
<td>2.170</td>
<td>2.868</td>
<td>3.650</td>
</tr>
<tr>
<td>35</td>
<td>1.265</td>
<td>1.814</td>
<td>2.160</td>
<td>2.856</td>
<td>3.630</td>
</tr>
<tr>
<td>36</td>
<td>1.256</td>
<td>1.801</td>
<td>2.150</td>
<td>2.844</td>
<td>3.609</td>
</tr>
<tr>
<td>37</td>
<td>1.245</td>
<td>1.788</td>
<td>2.140</td>
<td>2.833</td>
<td>3.588</td>
</tr>
<tr>
<td>38</td>
<td>1.234</td>
<td>1.775</td>
<td>2.130</td>
<td>2.822</td>
<td>3.568</td>
</tr>
<tr>
<td>39</td>
<td>1.223</td>
<td>1.762</td>
<td>2.120</td>
<td>2.811</td>
<td>3.547</td>
</tr>
<tr>
<td>40</td>
<td>1.212</td>
<td>1.749</td>
<td>2.111</td>
<td>2.800</td>
<td>3.526</td>
</tr>
<tr>
<td>41</td>
<td>1.200</td>
<td>1.736</td>
<td>2.101</td>
<td>2.789</td>
<td>3.506</td>
</tr>
<tr>
<td>42</td>
<td>1.188</td>
<td>1.722</td>
<td>2.091</td>
<td>2.778</td>
<td>3.486</td>
</tr>
<tr>
<td>43</td>
<td>1.175</td>
<td>1.709</td>
<td>2.081</td>
<td>2.766</td>
<td>3.465</td>
</tr>
<tr>
<td>44</td>
<td>1.163</td>
<td>1.696</td>
<td>2.071</td>
<td>2.755</td>
<td>3.444</td>
</tr>
<tr>
<td>45</td>
<td>1.150</td>
<td>1.682</td>
<td>2.061</td>
<td>2.743</td>
<td>3.423</td>
</tr>
<tr>
<td>46</td>
<td>1.137</td>
<td>1.668</td>
<td>2.050</td>
<td>2.732</td>
<td>3.402</td>
</tr>
<tr>
<td>47</td>
<td>1.124</td>
<td>1.654</td>
<td>2.040</td>
<td>2.720</td>
<td>3.381</td>
</tr>
<tr>
<td>48</td>
<td>1.111</td>
<td>1.639</td>
<td>2.030</td>
<td>2.709</td>
<td>3.360</td>
</tr>
<tr>
<td>49</td>
<td>1.097</td>
<td>1.624</td>
<td>2.020</td>
<td>2.697</td>
<td>3.339</td>
</tr>
<tr>
<td>50</td>
<td>1.084</td>
<td>1.609</td>
<td>2.010</td>
<td>2.686</td>
<td>3.318</td>
</tr>
</tbody>
</table>

TABLE II - ONE-SIDED TOLERANCE FACTORS FOR NORMAL DISTRIBUTIONS

Factors K such that the probability is γ that at least a proportion $1 - \alpha$ of the population will be less than $X = Ks$ (or greater than $X = -Ks$), where X and s are estimates of the mean and standard deviation computed from a sample of size N.

<table>
<thead>
<tr>
<th>γ</th>
<th>α</th>
<th>N</th>
<th>0.05</th>
<th>0.01</th>
<th>0.001</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.95</td>
<td>0.05</td>
<td>0.01</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.90</td>
<td>0.05</td>
<td>0.01</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.85</td>
<td>0.05</td>
<td>0.01</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.80</td>
<td>0.05</td>
<td>0.01</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>0.05</td>
<td>0.01</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE III - INPUT FORMAT FOR THE GENERAL SOLID PROPELLANT
ROCKET MOTOR PERFORMANCE COMPUTER PROGRAM

<table>
<thead>
<tr>
<th>Card number (a)</th>
<th>Variable name</th>
<th>Format</th>
<th>Columns</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CASE</td>
<td>A6</td>
<td>1-6</td>
<td>Case number being evaluated</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>HEADING</td>
<td>80H</td>
<td>2-80</td>
<td>Designation of the motor being evaluated</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>NTIMES</td>
<td>I2</td>
<td>11-12</td>
<td>Integer designating the number of time intervals being evaluated (maximum of 9)</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Description of time interval no. 1</td>
<td>80H</td>
<td>2-80</td>
<td>Definition of regressed distance no. 1 (such as ignition delay time)</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Description of time interval no. 2</td>
<td>80H</td>
<td>2-80</td>
<td>Definition of regressed distance no. 2 (such as thrust rise time)</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Description of time interval no. 3</td>
<td>80H</td>
<td>2-80</td>
<td>Definition of regressed distance no. 3 (such as ignition time)</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Description of time interval no. 4</td>
<td>80H</td>
<td>2-80</td>
<td>Definition of regressed distance no. 4 (such as burn time)</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Description of time interval no. 5</td>
<td>80H</td>
<td>2-80</td>
<td>Definition of regressed distance no. 5 (such as action time)</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Description of time interval no. 6</td>
<td>80H</td>
<td>2-80</td>
<td>Definition of regressed distance no. 6 (such as tail-off time)</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>Description of time interval no. 7</td>
<td>80H</td>
<td>2-80</td>
<td>Definition of regressed distance no. 7 (such as total time)</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>Description of time interval no. 8</td>
<td>80H</td>
<td>2-80</td>
<td>Definition of regressed distance no. 8</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>Description of time interval no. 9</td>
<td>80H</td>
<td>2-80</td>
<td>Definition of regressed distance no. 9</td>
<td>-</td>
</tr>
</tbody>
</table>

aCards 4 through 12 are shown; however, only NTIMES cards are required.
TABLE III. - INPUT FORMAT FOR THE GENERAL SOLID PROPELLANT ROCKET MOTOR PERFORMANCE COMPUTER PROGRAM - Continued

<table>
<thead>
<tr>
<th>Card number</th>
<th>Variable name</th>
<th>Format</th>
<th>Columns</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>NP</td>
<td>I12</td>
<td>12</td>
<td>Integer designating the number of pressure altitudes at which the performance data are to be reported (up to 4)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>EXPA(1)<sup>b</sup></td>
<td>F12.4</td>
<td>13-24</td>
<td>First pressure altitude at which the performance data are to be reported</td>
<td>psia</td>
</tr>
<tr>
<td></td>
<td>EXPA(2)</td>
<td>F12.4</td>
<td>25-36</td>
<td>Continue for each individual pressure altitude at which the performance data are to be reported (up to 4)</td>
<td>psia</td>
</tr>
<tr>
<td></td>
<td>EXPA(3)</td>
<td>F12.4</td>
<td>37-48</td>
<td>-</td>
<td>psia</td>
</tr>
<tr>
<td></td>
<td>EXPA(4)</td>
<td>F12.4</td>
<td>49-60</td>
<td>-</td>
<td>psia</td>
</tr>
<tr>
<td>14</td>
<td>NT<sup>c</sup></td>
<td>I12</td>
<td>12</td>
<td>Integer designating the number of prefire propellant temperatures to which the performance data are to be transformed (up to 3)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>EXTEM(1)<sup>d</sup></td>
<td>F12.4</td>
<td>13-24</td>
<td>First prefire propellant temperature to which the performance data are to be transformed</td>
<td>°F</td>
</tr>
<tr>
<td></td>
<td>EXTEM(2)<sup>d</sup></td>
<td>F12.4</td>
<td>25-36</td>
<td>Continue for each individual prefire propellant temperature to which the performance data are to be transformed (up to 3)</td>
<td>°F</td>
</tr>
<tr>
<td></td>
<td>EXTEM(3)<sup>d</sup></td>
<td>F12.4</td>
<td>37-48</td>
<td>-</td>
<td>°F</td>
</tr>
</tbody>
</table>

^bThe first pressure altitude (at which the performance data are to be reported) must be zero psia (vacuum).

^cThe number of prefire propellant temperatures (to which the data are to be transformed) must equal the number of experimental temperature groups; therefore, NT on card 14 must equal NT on card 15.

^dThe value of EXTEM(3) must be greater than EXTEM(2) and EXTEM(2) must be greater than EXTEM(1).
TABLE III - INPUT FORMAT FOR THE GENERAL SOLID PROPELLANT ROCKET MOTOR PERFORMANCE COMPUTER PROGRAM - Continued

<table>
<thead>
<tr>
<th>Card number</th>
<th>Variable name</th>
<th>Format</th>
<th>Columns</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>NT<sup>c</sup></td>
<td>I12</td>
<td>12</td>
<td>Integer designating the number of prefire propellant temperature group (up to 3)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TGRP(1)<sup>e</sup></td>
<td>F12.4</td>
<td>13-24</td>
<td>First prefire propellant temperature about which the motors are grouped (prefire propellant temperature group no. 1)</td>
<td>°F</td>
</tr>
<tr>
<td></td>
<td>TGRP(2)<sup>e</sup></td>
<td>F12.4</td>
<td>25-36</td>
<td>Continue for each individual prefire propellant temperature about which the motors are grouped (up to 3)</td>
<td>°F</td>
</tr>
<tr>
<td></td>
<td>TGRP(3)<sup>e</sup></td>
<td>F12.4</td>
<td>37-48</td>
<td>Acceleration of gravity</td>
<td>ft/sec<sup>2</sup></td>
</tr>
<tr>
<td>16</td>
<td>G</td>
<td>F12.5</td>
<td>1-12</td>
<td>Nozzle cant (from the longitudinal center line of the motor)</td>
<td>rad</td>
</tr>
<tr>
<td></td>
<td>PHI</td>
<td>F12.5</td>
<td>13-24</td>
<td>Nozzle cant (from the longitudinal center line of the motor)</td>
<td>rad</td>
</tr>
<tr>
<td></td>
<td>NTOT</td>
<td>I2</td>
<td>25-26</td>
<td>Integer designating the time interval that is total time</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>NBURN</td>
<td>I2</td>
<td>27-28</td>
<td>Integer designating the time interval that is burn time</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>NFIRST<sup>f</sup></td>
<td>I2</td>
<td>29-30</td>
<td>Integer designating the first time interval that all data are to be evaluated (see note)</td>
<td>-</td>
</tr>
</tbody>
</table>

^cThe number of prefire propellant temperatures (to which the data are to be transformed) must equal the number of experimental temperature groups; therefore, NT on card 14 must equal NT on card 15.

^eThe value of TGRP(3) must be greater than TGRP(2), and TGRP(2) must be greater than TGRP(1).

^fIn some cases (as in ignition transient data, for example) it is desirable to transform only the time data. This is accomplished in the program by inputing "time only” data in the first few time intervals, and setting the value of NFIRST to indicate the first time interval that all data are to be evaluated.
TABLE III. - INPUT FORMAT FOR THE GENERAL SOLID PROPELLANT ROCKET MOTOR PERFORMANCE COMPUTER PROGRAM - Continued

<table>
<thead>
<tr>
<th>Card number (k)</th>
<th>Variable name</th>
<th>Format</th>
<th>Columns</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>CT1</td>
<td>F12.4</td>
<td>1-12</td>
<td>One-sided tolerance factor for transformed data</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CT2</td>
<td>F12.4</td>
<td>13-24</td>
<td>Two-sided tolerance factor for transformed data</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CP1</td>
<td>F12.4</td>
<td>25-36</td>
<td>One-sided tolerance factor for nontransformed data</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CP2</td>
<td>F12.4</td>
<td>36-48</td>
<td>Two-sided tolerance factor for nontransformed data</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>XMOT</td>
<td>A6</td>
<td>1-6</td>
<td>Motor number</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>FIRETP</td>
<td>F12.4</td>
<td>7-18</td>
<td>Prefire propellant temperature</td>
<td>°F</td>
</tr>
<tr>
<td></td>
<td>ENDMOT</td>
<td>I2</td>
<td>19-2</td>
<td>Integer designating that the last motor to be processed has been reached</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1 for last motor, 0 for all other motors)</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>AT1</td>
<td>E12.5</td>
<td>1-12</td>
<td>Throat area of nozzle no. 1</td>
<td>in.²</td>
</tr>
<tr>
<td></td>
<td>AT2</td>
<td>E12.5</td>
<td>13-24</td>
<td>Continue for each individual nozzle (up to 4)</td>
<td>in.²</td>
</tr>
<tr>
<td></td>
<td>AT3</td>
<td>E12.5</td>
<td>25-36</td>
<td></td>
<td>in.²</td>
</tr>
<tr>
<td></td>
<td>AT4</td>
<td>E12.5</td>
<td>37-48</td>
<td></td>
<td>in.²</td>
</tr>
</tbody>
</table>

Cards 18 through 26 are required for each individual motor.

<table>
<thead>
<tr>
<th>Card number (g)</th>
<th>Variable name</th>
<th>Format</th>
<th>Columns</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>AE1</td>
<td>E12.5</td>
<td>1-12</td>
<td>Exit area of nozzle no. 1</td>
<td>in.²</td>
</tr>
<tr>
<td></td>
<td>AE2</td>
<td>E12.5</td>
<td>13-24</td>
<td>Continue for each individual nozzle (up to 4)</td>
<td>in.²</td>
</tr>
<tr>
<td></td>
<td>AE3</td>
<td>E12.5</td>
<td>25-36</td>
<td></td>
<td>in.²</td>
</tr>
<tr>
<td></td>
<td>AE4</td>
<td>E12.5</td>
<td>37-48</td>
<td></td>
<td>in.²</td>
</tr>
<tr>
<td>21</td>
<td>WP</td>
<td>E12.5</td>
<td>1-12</td>
<td>Total propellant weight</td>
<td>lbf</td>
</tr>
<tr>
<td></td>
<td>WEB</td>
<td>E12.5</td>
<td>13-24</td>
<td>Web thickness</td>
<td>in.</td>
</tr>
<tr>
<td></td>
<td>DENS</td>
<td>E12.5</td>
<td>25-36</td>
<td>Propellant density</td>
<td>lb/in.³</td>
</tr>
<tr>
<td></td>
<td>PAF</td>
<td>E12.5</td>
<td>37-48</td>
<td>Ambient pressure at the time of motor firing</td>
<td>psia</td>
</tr>
<tr>
<td>22</td>
<td>Time 1</td>
<td>F9.4</td>
<td>1-9</td>
<td>Time interval required to achieve regress distance no. 1</td>
<td>sec</td>
</tr>
<tr>
<td></td>
<td>Time 2</td>
<td>F9.4</td>
<td>10-18</td>
<td>Continue for each individual time interval being evaluated (up to NTIMES)</td>
<td>sec</td>
</tr>
<tr>
<td></td>
<td>Time 3</td>
<td>F9.4</td>
<td>19-27</td>
<td></td>
<td>sec</td>
</tr>
<tr>
<td></td>
<td>Time 4</td>
<td>F9.4</td>
<td>28-36</td>
<td></td>
<td>sec</td>
</tr>
<tr>
<td></td>
<td>Time 5</td>
<td>F9.4</td>
<td>37-45</td>
<td></td>
<td>sec</td>
</tr>
<tr>
<td></td>
<td>Time 6</td>
<td>F9.4</td>
<td>46-54</td>
<td></td>
<td>sec</td>
</tr>
<tr>
<td></td>
<td>Time 7</td>
<td>F9.4</td>
<td>55-63</td>
<td></td>
<td>sec</td>
</tr>
<tr>
<td></td>
<td>Time 8</td>
<td>F9.4</td>
<td>64-72</td>
<td></td>
<td>sec</td>
</tr>
<tr>
<td></td>
<td>Time 9</td>
<td>F8.4</td>
<td>73-80</td>
<td></td>
<td>sec</td>
</tr>
</tbody>
</table>

gCards 18 through 26 are required for each individual motor.
Table III. Input Format for the General Solid Propellant Rocket Motor Performance Computer Program - Continued

<table>
<thead>
<tr>
<th>Card number</th>
<th>Variable name</th>
<th>Format</th>
<th>Columns</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>INTP1</td>
<td>F9.4</td>
<td>1-9</td>
<td>Measured chamber pressure integral during Time interval 1</td>
<td>psia-sec</td>
</tr>
<tr>
<td></td>
<td>INTP2</td>
<td>F9.4</td>
<td>10-18</td>
<td>Continue for each individual time interval being evaluated (up to NTIMES)</td>
<td>psia-sec</td>
</tr>
<tr>
<td></td>
<td>INTP3</td>
<td>F9.4</td>
<td>19-27</td>
<td></td>
<td>psia-sec</td>
</tr>
<tr>
<td></td>
<td>INTP4</td>
<td>F9.4</td>
<td>28-36</td>
<td></td>
<td>psia-sec</td>
</tr>
<tr>
<td></td>
<td>INTP5</td>
<td>F9.4</td>
<td>37-45</td>
<td></td>
<td>psia-sec</td>
</tr>
<tr>
<td></td>
<td>INTP6</td>
<td>F9.4</td>
<td>46-54</td>
<td></td>
<td>psia-sec</td>
</tr>
<tr>
<td></td>
<td>INTP7</td>
<td>F9.4</td>
<td>55-63</td>
<td></td>
<td>psia-sec</td>
</tr>
<tr>
<td></td>
<td>INTP8</td>
<td>F9.4</td>
<td>64-72</td>
<td></td>
<td>psia-sec</td>
</tr>
<tr>
<td></td>
<td>INTP9</td>
<td>F8.4</td>
<td>73-80</td>
<td></td>
<td>psia-sec</td>
</tr>
<tr>
<td>24</td>
<td>P1</td>
<td>F9.4</td>
<td>1-9</td>
<td>Measured average chamber pressure during Time interval 1</td>
<td>psia</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>F9.4</td>
<td>10-18</td>
<td>Continue for each individual time interval being evaluated (up to NTIMES)</td>
<td>psia</td>
</tr>
</tbody>
</table>

Cards 18 through 26 are required for each individual motor.

Average or integral data (but not both) are required for a particular time interval; however, cards 23, 24, 25, and 26 are required because average and integral data may be intermingled with the various time intervals.
TABLE III - INPUT FORMAT FOR THE GENERAL SOLID PROPELLANT ROCKET MOTOR PERFORMANCE COMPUTER PROGRAM - Continued

<table>
<thead>
<tr>
<th>Card number (g)</th>
<th>Variable name (h)</th>
<th>Format</th>
<th>Columns</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>P3</td>
<td>F9.4</td>
<td>19-27</td>
<td>Continue for each individual time interval being evaluated (up to NTIMES)</td>
<td>psia</td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>F9.4</td>
<td>28-36</td>
<td></td>
<td>psia</td>
</tr>
<tr>
<td></td>
<td>P5</td>
<td>F9.4</td>
<td>37-45</td>
<td></td>
<td>psia</td>
</tr>
<tr>
<td></td>
<td>P6</td>
<td>F9.4</td>
<td>46-54</td>
<td></td>
<td>psia</td>
</tr>
<tr>
<td></td>
<td>P7</td>
<td>F9.4</td>
<td>55-63</td>
<td></td>
<td>psia</td>
</tr>
<tr>
<td></td>
<td>P8</td>
<td>F9.4</td>
<td>64-72</td>
<td></td>
<td>psia</td>
</tr>
<tr>
<td></td>
<td>P9</td>
<td>F8.4</td>
<td>73-80</td>
<td></td>
<td>psia</td>
</tr>
<tr>
<td>25</td>
<td>INTF1</td>
<td>F9.4</td>
<td>1-9</td>
<td>Measured impulse during Time interval 1</td>
<td>lbf-sec</td>
</tr>
<tr>
<td></td>
<td>INTF2</td>
<td>F9.4</td>
<td>10-18</td>
<td>Continue for each individual time interval being evaluated (up to NTIMES)</td>
<td>lbf-sec</td>
</tr>
<tr>
<td></td>
<td>INTF3</td>
<td>F9.4</td>
<td>19-27</td>
<td></td>
<td>lbf-sec</td>
</tr>
<tr>
<td></td>
<td>INTF4</td>
<td>F9.4</td>
<td>28-36</td>
<td></td>
<td>lbf-sec</td>
</tr>
<tr>
<td></td>
<td>INTF5</td>
<td>F9.4</td>
<td>37-45</td>
<td></td>
<td>lbf-sec</td>
</tr>
<tr>
<td></td>
<td>INTF6</td>
<td>F9.4</td>
<td>46-54</td>
<td></td>
<td>lbf-sec</td>
</tr>
<tr>
<td></td>
<td>INTF7</td>
<td>F9.4</td>
<td>55-63</td>
<td></td>
<td>lbf-sec</td>
</tr>
</tbody>
</table>

__g__ Cards 18 through 26 are required for each individual motor.

__h__ Average or integral data (but not both) are required for a particular time interval; however, cards 23, 24, 25, and 26 are required because average and integral data may be intermingled with the various time intervals.
TABLE III - INPUT FORMAT FOR THE GENERAL SOLID PROPELLANT

ROCKET MOTOR PERFORMANCE COMPUTER PROGRAM - Concluded

<table>
<thead>
<tr>
<th>Card number (g)</th>
<th>Variable name (h)</th>
<th>Format</th>
<th>Columns</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>INTF8</td>
<td>F9.4</td>
<td>64-72</td>
<td>Continue for each individual time interval being evaluated (up to NTIMES)</td>
<td>lbf-sec</td>
</tr>
<tr>
<td></td>
<td>INTF9</td>
<td>F8.4</td>
<td>73-80</td>
<td></td>
<td>lbf-sec</td>
</tr>
<tr>
<td>26</td>
<td>F1</td>
<td>F9.4</td>
<td>1-9</td>
<td>Measured average thrust during Time interval 1</td>
<td>lbf</td>
</tr>
<tr>
<td></td>
<td>F2</td>
<td>F9.4</td>
<td>10-18</td>
<td>Continue for each individual time interval being evaluated (up to NTIMES)</td>
<td>lbf</td>
</tr>
<tr>
<td></td>
<td>F3</td>
<td>F9.4</td>
<td>19-27</td>
<td></td>
<td>lbf</td>
</tr>
<tr>
<td></td>
<td>F4</td>
<td>F9.4</td>
<td>28-36</td>
<td></td>
<td>lbf</td>
</tr>
<tr>
<td></td>
<td>F5</td>
<td>F9.4</td>
<td>37-45</td>
<td></td>
<td>lbf</td>
</tr>
<tr>
<td></td>
<td>F6</td>
<td>F9.4</td>
<td>46-54</td>
<td></td>
<td>lbf</td>
</tr>
<tr>
<td></td>
<td>F7</td>
<td>F9.4</td>
<td>55-63</td>
<td></td>
<td>lbf</td>
</tr>
<tr>
<td></td>
<td>F8</td>
<td>F9.4</td>
<td>64-72</td>
<td></td>
<td>lbf</td>
</tr>
<tr>
<td></td>
<td>F9</td>
<td>F8.4</td>
<td>73-80</td>
<td></td>
<td>lbf</td>
</tr>
</tbody>
</table>

*Cards 18 through 26 are required for each individual motor.

Average or integral data (but not both) are required for a particular time interval; however, cards 23, 24, 25, and 26 are required because average and integral data may be intermingled with the various time intervals.
TABLE IV. - TYPICAL NONTRANSFORMED DATA OUTPUT FORMAT FOR THE GENERAL SOLID PROPELLANT ROCKET MOTOR PERFORMANCE COMPUTER PROGRAM

<table>
<thead>
<tr>
<th>IMPULSE MOTOR NO.</th>
<th>IT1</th>
<th>IT2</th>
<th>IT3</th>
<th>IT4</th>
<th>IT5</th>
<th>IT6</th>
<th>IT7</th>
<th>IT8</th>
<th>IT9</th>
<th>PA = -0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMP GROUP 1</td>
<td></td>
</tr>
<tr>
<td>37A</td>
<td>.00</td>
<td>.00</td>
<td>479.00</td>
<td>1510.07</td>
<td>1755.88</td>
<td>1781.61</td>
<td>271.11</td>
<td>.00</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>.00</td>
<td>.00</td>
<td>730.06</td>
<td>1515.86</td>
<td>1728.77</td>
<td>1752.70</td>
<td>236.41</td>
<td>.00</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>44A</td>
<td>.00</td>
<td>.00</td>
<td>530.96</td>
<td>1498.65</td>
<td>1757.28</td>
<td>1780.02</td>
<td>260.95</td>
<td>.00</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>45A</td>
<td>.00</td>
<td>.00</td>
<td>544.38</td>
<td>1535.37</td>
<td>1772.00</td>
<td>1795.93</td>
<td>260.17</td>
<td>.00</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>43A</td>
<td>.00</td>
<td>.00</td>
<td>549.86</td>
<td>1525.38</td>
<td>1771.66</td>
<td>1798.37</td>
<td>272.60</td>
<td>.00</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>74A</td>
<td>.00</td>
<td>.00</td>
<td>688.55</td>
<td>1556.49</td>
<td>1768.54</td>
<td>1794.93</td>
<td>238.10</td>
<td>.00</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>MEAN</td>
<td>.00</td>
<td>.00</td>
<td>603.80</td>
<td>1523.64</td>
<td>1759.02</td>
<td>1783.93</td>
<td>259.89</td>
<td>.00</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>STAND. DEV.</td>
<td>.00</td>
<td>.00</td>
<td>95.79</td>
<td>20.44</td>
<td>16.41</td>
<td>17.15</td>
<td>18.75</td>
<td>.00</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>TEMP GROUP 2</td>
<td></td>
</tr>
<tr>
<td>37A</td>
<td>.00</td>
<td>.00</td>
<td>552.44</td>
<td>1496.92</td>
<td>1754.25</td>
<td>1779.85</td>
<td>262.59</td>
<td>.00</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>.00</td>
<td>.00</td>
<td>780.61</td>
<td>1532.28</td>
<td>1771.82</td>
<td>1797.06</td>
<td>264.50</td>
<td>.00</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>38A</td>
<td>.00</td>
<td>.00</td>
<td>742.15</td>
<td>1470.46</td>
<td>1723.10</td>
<td>1751.85</td>
<td>261.05</td>
<td>.00</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>59A</td>
<td>.00</td>
<td>.00</td>
<td>708.81</td>
<td>1544.61</td>
<td>1765.84</td>
<td>1787.62</td>
<td>242.64</td>
<td>.00</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>MEAN</td>
<td>.00</td>
<td>.00</td>
<td>696.00</td>
<td>1511.07</td>
<td>1753.75</td>
<td>1779.09</td>
<td>267.69</td>
<td>.00</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>STAND. DEV.</td>
<td>.00</td>
<td>.00</td>
<td>100.11</td>
<td>33.78</td>
<td>21.70</td>
<td>19.48</td>
<td>18.60</td>
<td>.00</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>TEMP GROUP 3</td>
<td></td>
</tr>
<tr>
<td>37A</td>
<td>.00</td>
<td>.00</td>
<td>848.42</td>
<td>1485.66</td>
<td>1755.91</td>
<td>1778.68</td>
<td>292.68</td>
<td>.00</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>.00</td>
<td>.00</td>
<td>620.51</td>
<td>1537.45</td>
<td>1797.06</td>
<td>1820.64</td>
<td>282.93</td>
<td>.00</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>.00</td>
<td>.00</td>
<td>860.31</td>
<td>1508.21</td>
<td>1801.22</td>
<td>1823.41</td>
<td>314.78</td>
<td>.00</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>68A</td>
<td>.00</td>
<td>.00</td>
<td>705.46</td>
<td>1521.27</td>
<td>1795.95</td>
<td>1811.99</td>
<td>290.27</td>
<td>.00</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>40A</td>
<td>.00</td>
<td>.00</td>
<td>92.60</td>
<td>1505.43</td>
<td>1774.36</td>
<td>1800.10</td>
<td>294.36</td>
<td>.00</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>.00</td>
<td>.00</td>
<td>682.98</td>
<td>1513.31</td>
<td>1747.85</td>
<td>1772.93</td>
<td>259.16</td>
<td>.00</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>69A</td>
<td>.00</td>
<td>.00</td>
<td>796.89</td>
<td>1503.47</td>
<td>1768.28</td>
<td>1794.46</td>
<td>290.66</td>
<td>.00</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>MEAN</td>
<td>.00</td>
<td>.00</td>
<td>729.60</td>
<td>1510.68</td>
<td>1777.23</td>
<td>1800.52</td>
<td>299.26</td>
<td>.00</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td>STAND. DEV.</td>
<td>.00</td>
<td>.00</td>
<td>107.36</td>
<td>16.06</td>
<td>21.31</td>
<td>19.73</td>
<td>16.52</td>
<td>.00</td>
<td>.00</td>
<td></td>
</tr>
</tbody>
</table>
TABLE V.- TYPICAL TRANSFORMED DATA OUTPUT FORMAT FOR THE GENERAL
SOLID PROPELLANT ROCKET MOTOR PERFORMANCE COMPUTER PROGRAM

[Transformed impulse]

<table>
<thead>
<tr>
<th>TIME NO. 5</th>
<th>PA = -.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMP GROUP 1</td>
<td>TEMP1</td>
</tr>
<tr>
<td>37A</td>
<td>1717.24</td>
</tr>
<tr>
<td>70</td>
<td>1598.79</td>
</tr>
<tr>
<td>44A</td>
<td>1687.36</td>
</tr>
<tr>
<td>45A</td>
<td>1708.40</td>
</tr>
<tr>
<td>43A</td>
<td>1691.79</td>
</tr>
<tr>
<td>74A</td>
<td>1690.42</td>
</tr>
<tr>
<td>MEAN</td>
<td>1682.33</td>
</tr>
<tr>
<td>STANDARD DEV.*</td>
<td>42.56</td>
</tr>
</tbody>
</table>

TEMP GROUP 2	TEMP1	TEMP2	TEMP3	TEMP4
77	1617.59	1704.09	1884.33	.00
50A	1725.21	1816.26	2006.52	.00
38A	1660.79	1748.16	1930.84	.00
59A	1707.16	1796.08	1982.41	.00
MEAN	1677.69	1766.15	1951.03	.00
STANDARD DEV.*	48.39	50.28	54.53	.00

TEMP GROUP 3	TEMP1	TEMP2	TEMP3	TEMP4
69	1636.31	1723.54	1905.41	.00
64A	1672.84	1762.01	1947.95	.00
58A	1746.90	1840.02	2034.19	.00
65A	1676.67	1765.46	1950.87	.00
40A	1681.40	1769.57	1954.06	.00
76	1633.62	1718.44	1896.29	.00
60A	1678.60	1765.76	1948.50	.00
MEAN	1675.19	1763.54	1948.18	.00
STANDARD DEV.*	37.51	39.86	44.65	.00
TOTAL MEAN	1678.30	1766.81	1951.77	.00
TOTAL STANDARD DEV.*	39.28	41.30	45.56	.00

CONFIDENCE ON NORMAL DISTRIBUTION

ONE MIN	1537.47	1618.76	1789.44	.00
SIDED MAX	1819.13	1914.86	2115.11	.00
TWO MIN	1522.94	1603.48	1771.58	.00
SIDED MAX	1833.66	1930.14	2131.97	.00
TABLE VI - INPUT FORMAT FOR THE SOLID PROPELLANT ROCKET MOTOR
PERFORMANCE VERSUS TIME COMPUTER PROGRAM

<table>
<thead>
<tr>
<th>Card number (a)</th>
<th>Variable name</th>
<th>Format</th>
<th>Columns</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NXNW</td>
<td>I6</td>
<td>1-6</td>
<td>Integer designating the number of subintervals into which web time is divided (up to 5)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>NXNT</td>
<td>I6</td>
<td>7-12</td>
<td>Integer designating the number of subintervals into which tail-off time is divided (up to 4)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TD</td>
<td>F12.4</td>
<td>13-24</td>
<td>Prefire propellant temperature to which the performance data are to be transformed</td>
<td>°F</td>
</tr>
<tr>
<td></td>
<td>PHI</td>
<td>F12.4</td>
<td>25-36</td>
<td>Nozzle cant angle (from the longitudinal center line of the motor)</td>
<td>rad</td>
</tr>
<tr>
<td></td>
<td>CT2</td>
<td>F12.4</td>
<td>37-48</td>
<td>Tolerance factor (one- or two-sided)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>NSW<sup>b</sup></td>
<td>I6</td>
<td>49-54</td>
<td>Integer designating the method by which T0 is to be determined (0 if T0 is inputed, 1 if T0 is to be determined by the program as a function of chamber pressure)</td>
<td>-</td>
</tr>
<tr>
<td>1A</td>
<td>PSIA<sup>b</sup></td>
<td>F10.0</td>
<td>1-10</td>
<td>Value of chamber pressure at which TO is determined (card not included if NSW = 0)</td>
<td>psia</td>
</tr>
<tr>
<td>2</td>
<td>PCTW1</td>
<td>F10.4</td>
<td>1-10</td>
<td>Upper limit of first web-time subinterval</td>
<td>percent</td>
</tr>
<tr>
<td></td>
<td>NW1</td>
<td>I6</td>
<td>11-16</td>
<td>Integer designating the number of equally divided percent-web-times in the first subinterval that time, chamber pressure, and thrust transformations are to be performed</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PCTW2</td>
<td>F10.4</td>
<td>17-26</td>
<td>Continue for each subinterval up to NXNW (last subinterval must equal 100 percent web time)</td>
<td>percent</td>
</tr>
</tbody>
</table>

^a Cards 1 through 10 apply for all motors and are read in only once; however, cards 11 through \(\frac{NPTS}{2}\) are required for each motor and must be entered in sequence.

^b Card 1A can be omitted if TO is an input value (NSW = 0).
TABLE VI - INPUT FORMAT FOR THE SOLID PROPELLANT ROCKET MOTOR

PERFORMANCE VERSUS TIME COMPUTER PROGRAM - Continued

<table>
<thead>
<tr>
<th>Card number (a)</th>
<th>Variable name</th>
<th>Format</th>
<th>Columns</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>NW2</td>
<td>I6</td>
<td>27-32</td>
<td>Continue for each subinterval up to NXNW (last subinterval must equal 100 percent web time)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PCTW3</td>
<td>F10.4</td>
<td>33-42</td>
<td></td>
<td>percent</td>
</tr>
<tr>
<td></td>
<td>NW3</td>
<td>I6</td>
<td>43-48</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PCTW4</td>
<td>F10.4</td>
<td>49-58</td>
<td></td>
<td>percent</td>
</tr>
<tr>
<td></td>
<td>NW4</td>
<td>I6</td>
<td>59-64</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PCTW5</td>
<td>F10.4</td>
<td>65-74</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>NW5</td>
<td>I6</td>
<td>75-80</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>PCTT1</td>
<td>F10.4</td>
<td>1-10</td>
<td>Upper limit of first tail-off time subinterval</td>
<td>percent</td>
</tr>
<tr>
<td></td>
<td>NT1</td>
<td>I6</td>
<td>11-16</td>
<td>Integer designating the number of equally divided percent tail-off times in the first subinterval that time, chamber pressure, and thrust transformations are to be performed</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PCTT2</td>
<td>F10.4</td>
<td>17-26</td>
<td>Continue for each subinterval up to NXNT (last subinterval must equal 100 percent tail-off time)</td>
<td>percent</td>
</tr>
<tr>
<td></td>
<td>NT2</td>
<td>I6</td>
<td>27-32</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PCTT3</td>
<td>F10.4</td>
<td>33-42</td>
<td></td>
<td>percent</td>
</tr>
<tr>
<td></td>
<td>NT3</td>
<td>I6</td>
<td>43-48</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

*a*Cards 1 through 10 apply for all motors and are read in only once; however, cards 11 through $13 + \frac{NPTS}{2}$ are required for each motor and must be entered in sequence.
TABLE VI - INPUT FORMAT FOR THE SOLID PROPELLANT ROCKET MOTOR

PERFORMANCE VERSUS TIME COMPUTER PROGRAM - Continued

<table>
<thead>
<tr>
<th>Card number (a)</th>
<th>Variable name</th>
<th>Format</th>
<th>Columns</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>PCTT4</td>
<td>F10.4</td>
<td>49-58</td>
<td>Continue for each subinterval up to NXNT (last subinterval must equal 100 percent tail-off time)</td>
<td>percent</td>
</tr>
<tr>
<td></td>
<td>NT4</td>
<td>I6</td>
<td>59-64</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>NA</td>
<td>I12</td>
<td>1-12</td>
<td>Integer designating the number of prefire propellant temperatures about which the motors are grouped (up to 3)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>TGRP1</td>
<td>F12.4</td>
<td>13-24</td>
<td>First prefire propellant temperature about which the motors are grouped (prefire propellant temperature group no. 1)</td>
<td>°F</td>
</tr>
<tr>
<td></td>
<td>TGRP2</td>
<td>F12.4</td>
<td>25-36</td>
<td>Continue for each prefire propellant temperature about which the motors are grouped (up to 3)</td>
<td>°F</td>
</tr>
<tr>
<td></td>
<td>TGRP3</td>
<td>F12.4</td>
<td>37-48</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>NP</td>
<td>I12</td>
<td>1-12</td>
<td>Integer designating the number of pressure altitudes at which thrust is to be reported (up to 3)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>EXPA1</td>
<td>F12.4</td>
<td>13-24</td>
<td>The first pressure altitude at which thrust is to be reported</td>
<td>psia</td>
</tr>
<tr>
<td></td>
<td>EXPA2</td>
<td>F12.4</td>
<td>25-36</td>
<td>Continue for each pressure altitude at which thrust is to be reported (up to 3)</td>
<td>psia</td>
</tr>
<tr>
<td></td>
<td>EXPA3</td>
<td>F12.4</td>
<td>37-48</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>HEADX</td>
<td>12A6</td>
<td>1-72</td>
<td>Heading for the abscissa of all graphs (time axis)</td>
<td>sec</td>
</tr>
<tr>
<td>7</td>
<td>HEAD1</td>
<td>12A6</td>
<td>1-72</td>
<td>Ordinate heading on plot of chamber pressure versus time</td>
<td>psia</td>
</tr>
</tbody>
</table>

a Cards 1 through 10 apply for all motors and are read in only once; however, cards 11 through $13 + \frac{NPTS}{2}$ are required for each motor and must be entered in sequence.

c The value of TGRP(3) must be greater than TGRP(2), and TGRP(2) must be greater than TGRP(1).
TABLE VI. - INPUT FORMAT FOR THE SOLID PROPELLANT ROCKET MOTOR

PERFORMANCE VERSUS TIME COMPUTER PROGRAM - Continued

<table>
<thead>
<tr>
<th>Card number</th>
<th>Variable name</th>
<th>Format</th>
<th>Columns</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>HEAD2</td>
<td>12A6</td>
<td>1-72</td>
<td>Ordinate heading on plot of thrust at pressure altitude no. 1 (EXPA 1) versus time</td>
</tr>
<tr>
<td>9</td>
<td>HEAD3</td>
<td>12A6</td>
<td>1-72</td>
<td>Ordinate heading on plot of thrust at pressure altitude no. 2 (EXPA 2) versus time</td>
</tr>
<tr>
<td>10</td>
<td>HEAD4</td>
<td>12A6</td>
<td>1-72</td>
<td>Ordinate heading on plot of thrust at pressure altitude no. 3 (EXPA 3) versus time</td>
</tr>
<tr>
<td>11</td>
<td>XMOT</td>
<td>A6</td>
<td>1-6</td>
<td>Motor number</td>
</tr>
<tr>
<td></td>
<td>FIRETP</td>
<td>F12.4</td>
<td>7-18</td>
<td>Prefire propellant temperature</td>
</tr>
<tr>
<td></td>
<td>PAX</td>
<td>F12.4</td>
<td>19-30</td>
<td>Ambient pressure at the time of motor firing</td>
</tr>
<tr>
<td></td>
<td>TB</td>
<td>F12.4</td>
<td>31-42</td>
<td>Burn-time for the motor</td>
</tr>
<tr>
<td></td>
<td>TT</td>
<td>F12.4</td>
<td>43-54</td>
<td>Total time for the motor</td>
</tr>
<tr>
<td></td>
<td>TO</td>
<td>F12.4</td>
<td>55-66</td>
<td>Time offset (time that is zero percent web time)</td>
</tr>
<tr>
<td></td>
<td>PCP</td>
<td>F12.4</td>
<td>67-78</td>
<td>Prefire chamber pressure (used to convert input chamber pressures from psig to psia)</td>
</tr>
<tr>
<td></td>
<td>NDMOT</td>
<td>I1</td>
<td>80</td>
<td>Integer designating that the last motor to be processed has been reached (1 for last motor, 0 for all other motors)</td>
</tr>
<tr>
<td>12</td>
<td>AE1</td>
<td>E12.5</td>
<td>1-12</td>
<td>Exit area of nozzle no. 1</td>
</tr>
<tr>
<td></td>
<td>AE2</td>
<td>E12.5</td>
<td>13-24</td>
<td>Continue for each nozzle (up to 4)</td>
</tr>
</tbody>
</table>

Notes:
- Cards 1 through 10 apply for all motors and are read in only once; however, cards 11 through \(13 + \frac{NPTS}{2} \) are required for each motor and must be entered in sequence.
- If fewer than three ambient pressures are used, cards 9 and 10 must be present, even as blank cards.
TABLE VI. - INPUT FORMAT FOR THE SOLID PROPELLANT ROCKET MOTOR

PERFORMANCE VERSUS TIME COMPUTER PROGRAM - Concluded

<table>
<thead>
<tr>
<th>Card number (a)</th>
<th>Variable name</th>
<th>Format</th>
<th>Columns</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>AE3</td>
<td>E12.5</td>
<td>25-36</td>
<td>Continue for each nozzle (up to 4)</td>
<td>in.²</td>
</tr>
<tr>
<td></td>
<td>AE4</td>
<td>E12.5</td>
<td>37-48</td>
<td>in.²</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>NPTS</td>
<td>I6</td>
<td>1-6</td>
<td>Integer designating number of points to be read in to define motor performance versus time (up to 200)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ICON</td>
<td>I6</td>
<td>7-12</td>
<td>Integer designating the number of input points in piecewise curve fit (6 is a good choice)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IPRNT</td>
<td>I6</td>
<td>13-18</td>
<td>Integer designating that the curve fit coefficients are to be printed out (0 for no coefficients, 1 for all coefficients)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>TREP1</td>
<td>E16.8</td>
<td>1-16</td>
<td>First time input in the performance input array</td>
<td>sec</td>
</tr>
<tr>
<td></td>
<td>PC1</td>
<td>E12.5</td>
<td>17-28</td>
<td>Chamber pressure that corresponds to the time input in the performance input array</td>
<td>psig</td>
</tr>
<tr>
<td></td>
<td>F1</td>
<td>E12.5</td>
<td>29-40</td>
<td>Thrust that corresponds to time input in the performance input array</td>
<td>lbf</td>
</tr>
<tr>
<td></td>
<td>TREP2</td>
<td>E16.5</td>
<td>41-56</td>
<td>Continue for each chamber pressure and thrust at the proper time (up to NPTS) at 2 times, pressures and thrusts inputs per card</td>
<td>sec</td>
</tr>
<tr>
<td></td>
<td>PC2</td>
<td>E12.5</td>
<td>57-68</td>
<td>psig</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F2</td>
<td>E12.5</td>
<td>69-80</td>
<td>lbf</td>
<td></td>
</tr>
</tbody>
</table>

Cards 1 through 10 apply for all motors and are read in only once; however, cards 11 through \(13 + \frac{NPTS}{2}\) are required for each motor and must be entered in sequence.
TABLE VII - TRANSFORMED TIME AND CHAMBER-PRESSURE STATISTICAL

DATA OUTPUT FORMAT FOR THE SOLID PROPELLANT ROCKET

MOTOR PERFORMANCE VERSUS TIME COMPUTER PROGRAM

<table>
<thead>
<tr>
<th>PCT. WES</th>
<th>TRANSFORMED TIMES WITH TWO SIDED TOLERANCE LIMITS</th>
<th>TRANSFORMED CHAMBER PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME</td>
<td>MEAN MIN.</td>
<td>MAX.</td>
</tr>
<tr>
<td>.00</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>.10</td>
<td>0.050</td>
<td>0.0465</td>
</tr>
<tr>
<td>.20</td>
<td>0.099</td>
<td>0.0931</td>
</tr>
<tr>
<td>.30</td>
<td>0.149</td>
<td>0.136</td>
</tr>
<tr>
<td>.40</td>
<td>0.199</td>
<td>0.182</td>
</tr>
<tr>
<td>.50</td>
<td>0.248</td>
<td>0.227</td>
</tr>
<tr>
<td>.60</td>
<td>0.298</td>
<td>0.273</td>
</tr>
<tr>
<td>.70</td>
<td>0.348</td>
<td>0.318</td>
</tr>
<tr>
<td>.80</td>
<td>0.397</td>
<td>0.364</td>
</tr>
<tr>
<td>.90</td>
<td>0.447</td>
<td>0.409</td>
</tr>
<tr>
<td>1.00</td>
<td>0.497</td>
<td>0.455</td>
</tr>
<tr>
<td>1.10</td>
<td>0.546</td>
<td>0.500</td>
</tr>
<tr>
<td>1.20</td>
<td>0.595</td>
<td>0.554</td>
</tr>
<tr>
<td>1.30</td>
<td>0.644</td>
<td>0.594</td>
</tr>
<tr>
<td>1.40</td>
<td>0.693</td>
<td>0.636</td>
</tr>
<tr>
<td>1.50</td>
<td>0.742</td>
<td>0.677</td>
</tr>
<tr>
<td>1.60</td>
<td>0.791</td>
<td>0.718</td>
</tr>
<tr>
<td>1.70</td>
<td>0.840</td>
<td>0.759</td>
</tr>
<tr>
<td>1.80</td>
<td>0.889</td>
<td>0.799</td>
</tr>
<tr>
<td>1.90</td>
<td>0.938</td>
<td>0.839</td>
</tr>
<tr>
<td>2.00</td>
<td>0.987</td>
<td>0.879</td>
</tr>
<tr>
<td>2.10</td>
<td>1.036</td>
<td>0.919</td>
</tr>
<tr>
<td>2.20</td>
<td>1.085</td>
<td>0.959</td>
</tr>
<tr>
<td>2.30</td>
<td>1.134</td>
<td>0.999</td>
</tr>
<tr>
<td>2.40</td>
<td>1.183</td>
<td>1.039</td>
</tr>
<tr>
<td>2.50</td>
<td>1.232</td>
<td>1.079</td>
</tr>
<tr>
<td>2.60</td>
<td>1.281</td>
<td>1.119</td>
</tr>
<tr>
<td>2.70</td>
<td>1.330</td>
<td>1.159</td>
</tr>
<tr>
<td>2.80</td>
<td>1.379</td>
<td>1.199</td>
</tr>
<tr>
<td>2.90</td>
<td>1.428</td>
<td>1.239</td>
</tr>
<tr>
<td>3.00</td>
<td>1.477</td>
<td>1.279</td>
</tr>
<tr>
<td>3.10</td>
<td>1.526</td>
<td>1.319</td>
</tr>
<tr>
<td>3.20</td>
<td>1.575</td>
<td>1.359</td>
</tr>
<tr>
<td>3.30</td>
<td>1.624</td>
<td>1.399</td>
</tr>
<tr>
<td>3.40</td>
<td>1.673</td>
<td>1.439</td>
</tr>
<tr>
<td>3.50</td>
<td>1.722</td>
<td>1.479</td>
</tr>
<tr>
<td>3.60</td>
<td>1.771</td>
<td>1.519</td>
</tr>
<tr>
<td>3.70</td>
<td>1.820</td>
<td>1.559</td>
</tr>
<tr>
<td>3.80</td>
<td>1.869</td>
<td>1.599</td>
</tr>
<tr>
<td>3.90</td>
<td>1.918</td>
<td>1.639</td>
</tr>
<tr>
<td>4.00</td>
<td>1.967</td>
<td>1.679</td>
</tr>
</tbody>
</table>
TABLE VII - TRANSFORMED TIME AND CHAMBER PRESSURE DATA

DATA OUTPUT FORMAT FOR THE SOLID PROPELLANT ROCKET MOTOR

PERFORMANCE VERSUS TIME COMPUTER PROGRAM - Continued

<table>
<thead>
<tr>
<th>Time (sec)</th>
<th>Chamber Pressure (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>43.55</td>
<td>1.261</td>
</tr>
<tr>
<td>44.35</td>
<td>1.273</td>
</tr>
<tr>
<td>45.16</td>
<td>1.283</td>
</tr>
<tr>
<td>45.97</td>
<td>1.293</td>
</tr>
<tr>
<td>46.77</td>
<td>1.303</td>
</tr>
<tr>
<td>47.58</td>
<td>1.313</td>
</tr>
<tr>
<td>48.39</td>
<td>1.323</td>
</tr>
<tr>
<td>49.20</td>
<td>1.333</td>
</tr>
<tr>
<td>50.00</td>
<td>1.343</td>
</tr>
<tr>
<td>50.81</td>
<td>1.353</td>
</tr>
<tr>
<td>51.61</td>
<td>1.363</td>
</tr>
<tr>
<td>52.42</td>
<td>1.373</td>
</tr>
<tr>
<td>53.23</td>
<td>1.383</td>
</tr>
<tr>
<td>54.04</td>
<td>1.393</td>
</tr>
<tr>
<td>54.85</td>
<td>1.403</td>
</tr>
<tr>
<td>55.66</td>
<td>1.413</td>
</tr>
<tr>
<td>56.47</td>
<td>1.423</td>
</tr>
<tr>
<td>57.28</td>
<td>1.433</td>
</tr>
<tr>
<td>58.09</td>
<td>1.443</td>
</tr>
<tr>
<td>58.89</td>
<td>1.453</td>
</tr>
<tr>
<td>59.70</td>
<td>1.463</td>
</tr>
<tr>
<td>60.51</td>
<td>1.473</td>
</tr>
<tr>
<td>61.31</td>
<td>1.483</td>
</tr>
<tr>
<td>62.12</td>
<td>1.493</td>
</tr>
<tr>
<td>62.93</td>
<td>1.503</td>
</tr>
<tr>
<td>63.74</td>
<td>1.513</td>
</tr>
<tr>
<td>64.55</td>
<td>1.523</td>
</tr>
<tr>
<td>65.36</td>
<td>1.533</td>
</tr>
<tr>
<td>66.17</td>
<td>1.543</td>
</tr>
<tr>
<td>66.97</td>
<td>1.553</td>
</tr>
<tr>
<td>67.78</td>
<td>1.563</td>
</tr>
<tr>
<td>68.59</td>
<td>1.573</td>
</tr>
<tr>
<td>69.40</td>
<td>1.583</td>
</tr>
<tr>
<td>70.21</td>
<td>1.593</td>
</tr>
<tr>
<td>71.02</td>
<td>1.603</td>
</tr>
<tr>
<td>71.83</td>
<td>1.613</td>
</tr>
<tr>
<td>72.64</td>
<td>1.623</td>
</tr>
<tr>
<td>73.45</td>
<td>1.633</td>
</tr>
<tr>
<td>74.26</td>
<td>1.643</td>
</tr>
<tr>
<td>75.07</td>
<td>1.653</td>
</tr>
<tr>
<td>75.88</td>
<td>1.663</td>
</tr>
<tr>
<td>76.69</td>
<td>1.673</td>
</tr>
<tr>
<td>77.50</td>
<td>1.683</td>
</tr>
<tr>
<td>78.31</td>
<td>1.693</td>
</tr>
<tr>
<td>79.12</td>
<td>1.703</td>
</tr>
<tr>
<td>79.93</td>
<td>1.713</td>
</tr>
<tr>
<td>80.74</td>
<td>1.723</td>
</tr>
<tr>
<td>81.55</td>
<td>1.733</td>
</tr>
<tr>
<td>82.36</td>
<td>1.743</td>
</tr>
<tr>
<td>83.17</td>
<td>1.753</td>
</tr>
<tr>
<td>83.98</td>
<td>1.763</td>
</tr>
<tr>
<td>84.79</td>
<td>1.773</td>
</tr>
<tr>
<td>85.60</td>
<td>1.783</td>
</tr>
<tr>
<td>86.41</td>
<td>1.793</td>
</tr>
<tr>
<td>87.22</td>
<td>1.803</td>
</tr>
<tr>
<td>88.03</td>
<td>1.813</td>
</tr>
<tr>
<td>88.84</td>
<td>1.823</td>
</tr>
<tr>
<td>89.65</td>
<td>1.833</td>
</tr>
<tr>
<td>90.46</td>
<td>1.843</td>
</tr>
</tbody>
</table>

Continued
TABLE VII - TRANSFORMED TIME AND CHAMBER-PRESSURE STATISTICAL

DATA OUTPUT FORMAT FOR THE SOLID PROPELLANT ROCKET MOTOR

PERFORMANCE VERSUS TIME COMPUTER PROGRAM - Continued

<table>
<thead>
<tr>
<th>TIME</th>
<th>SOLID CHAMBER-PRESSURE STATISTICAL</th>
<th>TRANSFORMED TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.33</td>
<td>5206.601 5091.6031 1299.0389 1126.5444 1471.5334</td>
<td></td>
</tr>
<tr>
<td>2.67</td>
<td>6254.5736 6773.1066 7690.892 1280.8042</td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>6303.5765 6821.1050 3537.857 1244.0328</td>
<td></td>
</tr>
<tr>
<td>5.33</td>
<td>6352.5835 6870.1011 7421.241 1201.7930</td>
<td></td>
</tr>
<tr>
<td>6.67</td>
<td>6401.5903 6919.9711 4574.973 1156.8002</td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td>6450.5932 6968.9316 6782.8625 1110.4938</td>
<td></td>
</tr>
<tr>
<td>9.33</td>
<td>6499.5980 7017.8926 6782.8643 1063.3509</td>
<td></td>
</tr>
<tr>
<td>10.67</td>
<td>6548.6029 7067.8553 6933.066 1017.6131</td>
<td></td>
</tr>
<tr>
<td>12.00</td>
<td>6597.6077 7117.8194 4574.973 973.4971</td>
<td></td>
</tr>
<tr>
<td>13.33</td>
<td>6646.6124 7167.7855 6782.8643 931.6200</td>
<td></td>
</tr>
<tr>
<td>14.67</td>
<td>6694.6171 7217.7539 6782.8643 891.3198</td>
<td></td>
</tr>
<tr>
<td>16.00</td>
<td>6743.6219 7268.7227 6782.8643 853.0896</td>
<td></td>
</tr>
<tr>
<td>17.33</td>
<td>6792.6265 7319.6936 6782.8643 816.9296</td>
<td></td>
</tr>
<tr>
<td>18.67</td>
<td>6841.6312 7370.6663 6782.8643 782.9741</td>
<td></td>
</tr>
<tr>
<td>20.00</td>
<td>6890.6359 7422.6403 6782.8643 751.3472</td>
<td></td>
</tr>
<tr>
<td>21.33</td>
<td>6939.6405 7473.6155 6782.8643 720.0299</td>
<td></td>
</tr>
<tr>
<td>22.67</td>
<td>6988.6451 7525.5925 6782.8643 691.0230</td>
<td></td>
</tr>
<tr>
<td>24.00</td>
<td>7037.6496 7577.5700 6782.8643 662.7849</td>
<td></td>
</tr>
<tr>
<td>25.33</td>
<td>7086.6542 7629.5488 6782.8643 634.6145</td>
<td></td>
</tr>
<tr>
<td>26.67</td>
<td>7134.6587 7682.5283 6782.8643 606.5057</td>
<td></td>
</tr>
<tr>
<td>28.00</td>
<td>7183.6632 7735.5092 6782.8643 578.1449</td>
<td></td>
</tr>
<tr>
<td>29.33</td>
<td>7232.6677 7788.4957 6782.8643 547.5698</td>
<td></td>
</tr>
<tr>
<td>30.67</td>
<td>7281.6721 7841.4734 6782.8643 514.1697</td>
<td></td>
</tr>
<tr>
<td>32.00</td>
<td>7329.6766 7894.4566 6782.8643 480.4416</td>
<td></td>
</tr>
<tr>
<td>33.33</td>
<td>7379.6810 7948.4409 6782.8643 446.8805</td>
<td></td>
</tr>
<tr>
<td>34.67</td>
<td>7428.6854 8002.4257 6782.8643 413.2861</td>
<td></td>
</tr>
<tr>
<td>36.00</td>
<td>7477.6898 8056.4115 6782.8643 380.5005</td>
<td></td>
</tr>
<tr>
<td>37.33</td>
<td>7526.6942 8110.3880 6782.8643 347.3162</td>
<td></td>
</tr>
<tr>
<td>38.67</td>
<td>7575.6985 8164.3644 6782.8643 314.3472</td>
<td></td>
</tr>
<tr>
<td>40.00</td>
<td>7623.7028 8219.3418 6782.8643 280.9198</td>
<td></td>
</tr>
<tr>
<td>41.33</td>
<td>7672.7071 8273.3193 6782.8643 248.4642</td>
<td></td>
</tr>
<tr>
<td>42.67</td>
<td>7721.7114 8328.2955 6782.8643 216.0096</td>
<td></td>
</tr>
<tr>
<td>44.00</td>
<td>7770.7157 8383.2716 6782.8643 183.7953</td>
<td></td>
</tr>
<tr>
<td>45.33</td>
<td>7819.7200 8438.2478 6782.8643 152.1175</td>
<td></td>
</tr>
<tr>
<td>46.67</td>
<td>7868.7242 8494.2240 6782.8643 120.4670</td>
<td></td>
</tr>
<tr>
<td>48.00</td>
<td>7917.7285 8549.2002 6782.8643 88.8497</td>
<td></td>
</tr>
<tr>
<td>49.33</td>
<td>7966.7327 8605.1764 6782.8643 57.0317</td>
<td></td>
</tr>
<tr>
<td>50.67</td>
<td>8015.7369 8660.1526 6782.8643 25.0349</td>
<td></td>
</tr>
<tr>
<td>52.00</td>
<td>8063.7411 8716.1288 6782.8643 13.0381</td>
<td></td>
</tr>
<tr>
<td>53.33</td>
<td>8112.7453 8772.1050 6782.8643 1.0414</td>
<td></td>
</tr>
<tr>
<td>54.67</td>
<td>8161.7494 8828.0812 6782.8643 13.0381</td>
<td></td>
</tr>
<tr>
<td>56.00</td>
<td>8210.7536 8884.0574 6782.8643 25.0349</td>
<td></td>
</tr>
</tbody>
</table>
TABLE VII - TRANSFORMED TIME AND CHAMBER-PRESSURE STATISTICAL DATA OUTPUT FORMAT FOR THE SOLID PROPELLANT ROCKET MOTOR PERFORMANCE VERSUS TIME COMPUTER PROGRAM - Concluded

<table>
<thead>
<tr>
<th>Time</th>
<th>Chamber Pressure</th>
<th>Solid Propellant</th>
<th>Solid Propellant</th>
</tr>
</thead>
<tbody>
<tr>
<td>57.33</td>
<td>8259</td>
<td>7577</td>
<td>8941</td>
</tr>
<tr>
<td>58.67</td>
<td>8308</td>
<td>7619</td>
<td>8997</td>
</tr>
<tr>
<td>60.00</td>
<td>8357</td>
<td>7660</td>
<td>9054</td>
</tr>
<tr>
<td>61.33</td>
<td>8406</td>
<td>7711</td>
<td>9110</td>
</tr>
<tr>
<td>62.67</td>
<td>8455</td>
<td>7762</td>
<td>9167</td>
</tr>
<tr>
<td>64.00</td>
<td>8503</td>
<td>7813</td>
<td>9224</td>
</tr>
<tr>
<td>65.33</td>
<td>8552</td>
<td>7864</td>
<td>9281</td>
</tr>
<tr>
<td>66.67</td>
<td>8601</td>
<td>7915</td>
<td>9338</td>
</tr>
<tr>
<td>68.00</td>
<td>8650</td>
<td>7966</td>
<td>9395</td>
</tr>
<tr>
<td>69.33</td>
<td>8699</td>
<td>7946</td>
<td>9452</td>
</tr>
<tr>
<td>70.67</td>
<td>8748</td>
<td>7986</td>
<td>9510</td>
</tr>
<tr>
<td>72.00</td>
<td>8797</td>
<td>8027</td>
<td>9567</td>
</tr>
<tr>
<td>73.33</td>
<td>8846</td>
<td>8067</td>
<td>9625</td>
</tr>
<tr>
<td>74.67</td>
<td>8895</td>
<td>8107</td>
<td>9682</td>
</tr>
<tr>
<td>76.00</td>
<td>8944</td>
<td>8147</td>
<td>9740</td>
</tr>
<tr>
<td>77.33</td>
<td>8992</td>
<td>8187</td>
<td>9797</td>
</tr>
<tr>
<td>78.67</td>
<td>9041</td>
<td>8227</td>
<td>9855</td>
</tr>
<tr>
<td>80.00</td>
<td>9090</td>
<td>8267</td>
<td>9913</td>
</tr>
<tr>
<td>81.33</td>
<td>9139</td>
<td>8307</td>
<td>9971</td>
</tr>
<tr>
<td>82.67</td>
<td>9188</td>
<td>8347</td>
<td>10029</td>
</tr>
<tr>
<td>84.00</td>
<td>9237</td>
<td>8387</td>
<td>10087</td>
</tr>
<tr>
<td>85.33</td>
<td>9286</td>
<td>8427</td>
<td>10145</td>
</tr>
<tr>
<td>86.67</td>
<td>9335</td>
<td>8466</td>
<td>10203</td>
</tr>
<tr>
<td>88.00</td>
<td>9384</td>
<td>8506</td>
<td>10261</td>
</tr>
<tr>
<td>89.33</td>
<td>9432</td>
<td>8545</td>
<td>10320</td>
</tr>
<tr>
<td>90.67</td>
<td>9481</td>
<td>8585</td>
<td>10378</td>
</tr>
<tr>
<td>92.00</td>
<td>9530</td>
<td>8624</td>
<td>10436</td>
</tr>
<tr>
<td>93.33</td>
<td>9579</td>
<td>8664</td>
<td>10495</td>
</tr>
<tr>
<td>94.67</td>
<td>9628</td>
<td>8703</td>
<td>10553</td>
</tr>
<tr>
<td>96.00</td>
<td>9677</td>
<td>8742</td>
<td>10611</td>
</tr>
<tr>
<td>97.33</td>
<td>9726</td>
<td>8782</td>
<td>10670</td>
</tr>
<tr>
<td>98.67</td>
<td>9775</td>
<td>8821</td>
<td>10738</td>
</tr>
<tr>
<td>100.00</td>
<td>9824</td>
<td>8860</td>
<td>10797</td>
</tr>
</tbody>
</table>
TABLE VIII - TRANSFORMED TIME-AND-THRUST STATISTICAL DATA OUTPUT

FORMAT FOR THE SOLID PROPELLENT ROCKET MOTOR PERFORMANCE

VERSUS TIME COMPUTER PROGRAM

<table>
<thead>
<tr>
<th>PCT.</th>
<th>TRANSFORMED TIMES MEANS WITH TWO SIDED TOLERANCE LIMITS</th>
<th>TRANSFORMED THRUST AT PA = 900</th>
</tr>
</thead>
<tbody>
<tr>
<td>WGT.</td>
<td>MEAN</td>
<td>MIN.</td>
</tr>
<tr>
<td>TIME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **MEAN:** Arithmetic mean of measured values.
- **MIN.** and **MAX.** represent the minimum and maximum values observed.
- **TRANSFORMED TIMES** are derived from original data through a specified transformation process.
- **TRANSFORMED THRUST AT PA = 900** is calculated using a computer program designed for assessing rocket motor performance.

The table contains detailed statistical information, including means, minimums, and maximums, for various weights and times, providing a comprehensive view of the performance data output for solid propellant rocket motors.
TABLE VIII - TRANSFORMED TIME-AND-THRUST STATISTICAL DATA OUTPUT

FORMAT FOR THE SOLID PROPELLANT ROCKET MOTOR PERFORMANCE

VERSUS TIME COMPUTER PROGRAM - Continued

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>43.55</td>
<td>260</td>
<td>2455</td>
<td>2906</td>
<td>2668</td>
<td>3248</td>
</tr>
<tr>
<td>44.55</td>
<td>273</td>
<td>2500</td>
<td>2961</td>
<td>2605</td>
<td>2769</td>
</tr>
<tr>
<td>45.15</td>
<td>278</td>
<td>2545</td>
<td>3015</td>
<td>2662</td>
<td>4629</td>
</tr>
<tr>
<td>45.97</td>
<td>283</td>
<td>2591</td>
<td>3069</td>
<td>2659</td>
<td>7900</td>
</tr>
<tr>
<td>46.77</td>
<td>288</td>
<td>2636</td>
<td>3123</td>
<td>2856</td>
<td>6662</td>
</tr>
<tr>
<td>47.58</td>
<td>292</td>
<td>2682</td>
<td>3177</td>
<td>2854</td>
<td>2220</td>
</tr>
<tr>
<td>48.39</td>
<td>297</td>
<td>2727</td>
<td>3231</td>
<td>2851</td>
<td>2232</td>
</tr>
<tr>
<td>49.19</td>
<td>302</td>
<td>2773</td>
<td>3285</td>
<td>2846</td>
<td>1022</td>
</tr>
<tr>
<td>50.00</td>
<td>307</td>
<td>2818</td>
<td>3338</td>
<td>2844</td>
<td>7198</td>
</tr>
<tr>
<td>50.81</td>
<td>312</td>
<td>2864</td>
<td>3392</td>
<td>2839</td>
<td>4213</td>
</tr>
<tr>
<td>51.62</td>
<td>317</td>
<td>2909</td>
<td>3446</td>
<td>2814</td>
<td>2776</td>
</tr>
<tr>
<td>52.42</td>
<td>322</td>
<td>2955</td>
<td>3500</td>
<td>2829</td>
<td>4647</td>
</tr>
<tr>
<td>53.23</td>
<td>327</td>
<td>3000</td>
<td>3554</td>
<td>2824</td>
<td>1272</td>
</tr>
<tr>
<td>54.04</td>
<td>332</td>
<td>3045</td>
<td>3608</td>
<td>2818</td>
<td>4720</td>
</tr>
<tr>
<td>54.85</td>
<td>337</td>
<td>3091</td>
<td>3661</td>
<td>2812</td>
<td>7021</td>
</tr>
<tr>
<td>55.66</td>
<td>342</td>
<td>3136</td>
<td>3715</td>
<td>2807</td>
<td>0796</td>
</tr>
<tr>
<td>56.47</td>
<td>347</td>
<td>3182</td>
<td>3769</td>
<td>2799</td>
<td>6079</td>
</tr>
<tr>
<td>57.28</td>
<td>352</td>
<td>3227</td>
<td>3823</td>
<td>2791</td>
<td>6342</td>
</tr>
<tr>
<td>58.09</td>
<td>357</td>
<td>3273</td>
<td>3877</td>
<td>2783</td>
<td>1130</td>
</tr>
<tr>
<td>58.8</td>
<td>362</td>
<td>3318</td>
<td>3931</td>
<td>2773</td>
<td>3599</td>
</tr>
<tr>
<td>59.61</td>
<td>367</td>
<td>3364</td>
<td>3985</td>
<td>2762</td>
<td>9403</td>
</tr>
<tr>
<td>60.42</td>
<td>372</td>
<td>3409</td>
<td>4038</td>
<td>2751</td>
<td>2329</td>
</tr>
<tr>
<td>61.23</td>
<td>377</td>
<td>3455</td>
<td>4092</td>
<td>2740</td>
<td>2078</td>
</tr>
<tr>
<td>62.04</td>
<td>382</td>
<td>3500</td>
<td>4146</td>
<td>2728</td>
<td>6394</td>
</tr>
<tr>
<td>62.85</td>
<td>387</td>
<td>3545</td>
<td>4200</td>
<td>2715</td>
<td>7695</td>
</tr>
<tr>
<td>63.66</td>
<td>392</td>
<td>3591</td>
<td>4254</td>
<td>2702</td>
<td>5398</td>
</tr>
<tr>
<td>64.47</td>
<td>397</td>
<td>3636</td>
<td>4308</td>
<td>2688</td>
<td>8404</td>
</tr>
<tr>
<td>65.28</td>
<td>402</td>
<td>3682</td>
<td>4362</td>
<td>2675</td>
<td>3877</td>
</tr>
<tr>
<td>66.1</td>
<td>407</td>
<td>3727</td>
<td>4415</td>
<td>2662</td>
<td>1713</td>
</tr>
<tr>
<td>66.92</td>
<td>412</td>
<td>3772</td>
<td>4469</td>
<td>2649</td>
<td>3055</td>
</tr>
<tr>
<td>67.74</td>
<td>417</td>
<td>3818</td>
<td>4523</td>
<td>2637</td>
<td>0794</td>
</tr>
<tr>
<td>68.55</td>
<td>422</td>
<td>3864</td>
<td>4577</td>
<td>2623</td>
<td>4088</td>
</tr>
<tr>
<td>69.36</td>
<td>427</td>
<td>3909</td>
<td>4631</td>
<td>2608</td>
<td>4831</td>
</tr>
<tr>
<td>70.16</td>
<td>432</td>
<td>3955</td>
<td>4685</td>
<td>2593</td>
<td>8872</td>
</tr>
<tr>
<td>70.97</td>
<td>437</td>
<td>4000</td>
<td>4739</td>
<td>2577</td>
<td>9221</td>
</tr>
<tr>
<td>71.77</td>
<td>442</td>
<td>4046</td>
<td>4792</td>
<td>2561</td>
<td>1299</td>
</tr>
<tr>
<td>72.58</td>
<td>447</td>
<td>4091</td>
<td>4846</td>
<td>2545</td>
<td>1835</td>
</tr>
<tr>
<td>73.39</td>
<td>452</td>
<td>4136</td>
<td>4900</td>
<td>2529</td>
<td>2288</td>
</tr>
<tr>
<td>74.19</td>
<td>457</td>
<td>4182</td>
<td>4954</td>
<td>2514</td>
<td>2934</td>
</tr>
<tr>
<td>75.0</td>
<td>462</td>
<td>4227</td>
<td>5008</td>
<td>2499</td>
<td>9293</td>
</tr>
<tr>
<td>75.81</td>
<td>467</td>
<td>4273</td>
<td>5061</td>
<td>2483</td>
<td>7794</td>
</tr>
<tr>
<td>76.61</td>
<td>472</td>
<td>4318</td>
<td>5115</td>
<td>2467</td>
<td>0346</td>
</tr>
<tr>
<td>77.42</td>
<td>477</td>
<td>4364</td>
<td>5169</td>
<td>2450</td>
<td>3193</td>
</tr>
<tr>
<td>78.23</td>
<td>482</td>
<td>4409</td>
<td>5223</td>
<td>2435</td>
<td>9662</td>
</tr>
<tr>
<td>79.03</td>
<td>487</td>
<td>4455</td>
<td>5277</td>
<td>2421</td>
<td>6738</td>
</tr>
<tr>
<td>79.84</td>
<td>492</td>
<td>4500</td>
<td>5331</td>
<td>2406</td>
<td>6572</td>
</tr>
<tr>
<td>80.65</td>
<td>497</td>
<td>4546</td>
<td>5384</td>
<td>2391</td>
<td>4948</td>
</tr>
<tr>
<td>81.45</td>
<td>502</td>
<td>4591</td>
<td>5438</td>
<td>2376</td>
<td>3506</td>
</tr>
<tr>
<td>82.26</td>
<td>507</td>
<td>4636</td>
<td>5492</td>
<td>2359</td>
<td>9619</td>
</tr>
<tr>
<td>83.07</td>
<td>512</td>
<td>4682</td>
<td>5546</td>
<td>2343</td>
<td>4240</td>
</tr>
<tr>
<td>83.87</td>
<td>517</td>
<td>4727</td>
<td>5600</td>
<td>2328</td>
<td>0088</td>
</tr>
<tr>
<td>84.68</td>
<td>522</td>
<td>4772</td>
<td>5654</td>
<td>2312</td>
<td>4452</td>
</tr>
<tr>
<td>85.48</td>
<td>527</td>
<td>4818</td>
<td>5708</td>
<td>2296</td>
<td>3338</td>
</tr>
<tr>
<td>86.29</td>
<td>533</td>
<td>4864</td>
<td>5761</td>
<td>2280</td>
<td>9606</td>
</tr>
<tr>
<td>87.1</td>
<td>538</td>
<td>4909</td>
<td>5815</td>
<td>2265</td>
<td>0679</td>
</tr>
<tr>
<td>87.91</td>
<td>543</td>
<td>4955</td>
<td>5869</td>
<td>2249</td>
<td>1525</td>
</tr>
<tr>
<td>88.72</td>
<td>548</td>
<td>5000</td>
<td>5923</td>
<td>2232</td>
<td>3401</td>
</tr>
<tr>
<td>89.52</td>
<td>553</td>
<td>5046</td>
<td>5977</td>
<td>2215</td>
<td>3879</td>
</tr>
</tbody>
</table>

Continued
TABLE VIII - TRANSFORMED TIME-AND-THRUST STATISTICAL DATA OUTPUT

FORMAT FOR THE SOLID PROPELLANT ROCKET MOTOR PERFORMANCE

VERSUS TIME COMPUTER PROGRAM - Continued

<table>
<thead>
<tr>
<th>TIME</th>
<th>PROPELLANT TIME-THRUST STATISTICAL DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>90.32</td>
<td>5561 5091 6031 2198.1009 1919.2804 2476.9214</td>
</tr>
<tr>
<td>91.13</td>
<td>5610 5136 6084 2161.0201 1901.6137 2460.2263</td>
</tr>
<tr>
<td>91.94</td>
<td>5660 5182 6136 2163.9528 1905.1708 2444.7348</td>
</tr>
<tr>
<td>92.74</td>
<td>5710 5227 6192 2195.8561 1865.0740 2426.6382</td>
</tr>
<tr>
<td>93.55</td>
<td>5759 5273 6246 2127.6139 1847.1024 2408.1255</td>
</tr>
<tr>
<td>94.35</td>
<td>5809 5318 6300 2110.6269 1827.6688 2389.5903</td>
</tr>
<tr>
<td>95.16</td>
<td>5859 5364 6354 2089.5475 1807.7857 2371.3093</td>
</tr>
<tr>
<td>95.97</td>
<td>5908 5409 6408 2070.9562 1787.6872 2354.2851</td>
</tr>
<tr>
<td>96.77</td>
<td>5958 5455 6461 2052.5068 1769.6109 2335.4027</td>
</tr>
<tr>
<td>97.58</td>
<td>6008 5500 6515 2033.8807 1750.0865 2317.6729</td>
</tr>
<tr>
<td>98.39</td>
<td>6057 5546 6569 2010.3786 1718.7040 2292.0537</td>
</tr>
<tr>
<td>99.19</td>
<td>6107 5591 6623 1963.3887 1682.3773 2284.3999</td>
</tr>
<tr>
<td>100.00</td>
<td>6157 5636 6677 1947.5539 1638.6585 2256.4492</td>
</tr>
</tbody>
</table>

PCT.

TAILOFF

50
TABLE VIII. TRANSFORMED TIME-AND-THRUST STATISTICAL DATA OUTPUT

FORMAT FOR THE SOLID PROPELLANT ROCKET MOTOR PERFORMANCE
VERSUS TIME COMPUTER PROGRAM - Concluded

<table>
<thead>
<tr>
<th>Time (sec)</th>
<th>Thrust (lbf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>57.33</td>
<td>6259</td>
</tr>
<tr>
<td>58.67</td>
<td>6308</td>
</tr>
<tr>
<td>60.00</td>
<td>6357</td>
</tr>
<tr>
<td>61.33</td>
<td>6406</td>
</tr>
<tr>
<td>62.67</td>
<td>6455</td>
</tr>
<tr>
<td>64.00</td>
<td>6503</td>
</tr>
<tr>
<td>65.33</td>
<td>6552</td>
</tr>
<tr>
<td>66.67</td>
<td>6601</td>
</tr>
<tr>
<td>68.00</td>
<td>6650</td>
</tr>
<tr>
<td>69.33</td>
<td>6699</td>
</tr>
<tr>
<td>70.67</td>
<td>6748</td>
</tr>
<tr>
<td>72.00</td>
<td>6797</td>
</tr>
<tr>
<td>73.33</td>
<td>6846</td>
</tr>
<tr>
<td>74.67</td>
<td>6895</td>
</tr>
<tr>
<td>76.00</td>
<td>6944</td>
</tr>
<tr>
<td>77.33</td>
<td>6992</td>
</tr>
<tr>
<td>78.67</td>
<td>7041</td>
</tr>
<tr>
<td>80.00</td>
<td>7090</td>
</tr>
<tr>
<td>81.33</td>
<td>7139</td>
</tr>
<tr>
<td>82.67</td>
<td>7188</td>
</tr>
<tr>
<td>84.00</td>
<td>7237</td>
</tr>
<tr>
<td>85.33</td>
<td>7286</td>
</tr>
<tr>
<td>86.67</td>
<td>7335</td>
</tr>
<tr>
<td>88.00</td>
<td>7384</td>
</tr>
<tr>
<td>89.33</td>
<td>7432</td>
</tr>
<tr>
<td>90.67</td>
<td>7481</td>
</tr>
<tr>
<td>92.00</td>
<td>7530</td>
</tr>
<tr>
<td>93.33</td>
<td>7579</td>
</tr>
<tr>
<td>94.67</td>
<td>7628</td>
</tr>
<tr>
<td>96.00</td>
<td>7677</td>
</tr>
<tr>
<td>97.33</td>
<td>7726</td>
</tr>
<tr>
<td>98.67</td>
<td>7775</td>
</tr>
<tr>
<td>100.00</td>
<td>7824</td>
</tr>
</tbody>
</table>
(a) Longitudinal cross section.

(b) Typical internal-burning six-point star propellant grain configuration.

Figure 1. - Typical solid propellant rocket motor.
Extrapolation of the sliver burning surface geometry to web thickness

(c) Burning surface geometry of a typical internal-burning six-point star propellant grain configuration versus regressed distances normal to the original propellant surface.

Figure 1. - Concluded.
Figure 2. - Typical variation of propellant performance characteristics over extended burning rate and chamber pressure ranges.
Figure 3. - Typical performance variation of a solid propellant rocket motor of fixed geometry and given propellant that is tested at differing prefire propellant temperatures.

Figure 4. - Propellant burning surface area versus increasing distance burned normal to the original propellant surface for the six-point star propellant grain configuration shown in figures 1(b) and 1(c).

Figure 5. - Area ratio of propellant burning surface area to nozzle throat area versus increasing distance burned normal to the original propellant surface for the solid propellant rocket motor shown in figure 1.
Figure 6. - Typical variation of propellant performance characteristics over limited burning rate and chamber pressure ranges.
Figure 7. - Second-order, least-squares curve fit of experimentally determined chamber pressures at the individual regressed distance of interest normal to the original propellant surface versus prefire propellant temperature.

Figure 8. - Second-order, least-squares curve fit of experimentally determined burning rates at the individual regressed distance of interest normal to the original propellant surface versus prefire propellant temperature.
Figure 9. - Second-order, least-squares curve fit of experimentally determined motor operation times to the individual regressed distance of interest normal to the original propellant surface versus prefire propellant temperature.

Figure 10. - Example of two-sided tolerance limits for a normal distribution.
Figure 11. - Example of one-sided tolerance limits for a normal distribution.
Figure 12. - IBM 7094 deck setup for the general solid propellant rocket motor performance computer program using the group transformation method.
Figure 13. - Example of choosing the output points that will best define the variation of chamber pressure and thrust versus time.
Figure 14. - Univac 1107 deck setup for the solid propellant rocket motor performance versus time computer program using the group transformation method.
Figure 15. - Example of choosing the input points that will best define the variation of chamber pressure and thrust versus time.
(a) Typical transformed time and chamber pressure graphed outputs.

Figure 16. - Example of graphical format from the solid propellant rocket motor performance versus time computer program.
(b) Typical transformed time and thrust graphed outputs.

Figure 16 - Concluded.
REFERENCES

APPENDIX A

LISTING OF THE GENERAL SOLID PROPELLANT ROCKET MOTOR PERFORMANCE

COMPUTER PROGRAM USING THE GROUP TRANSFORMATION METHOD
$IBFRTC DRIVER GO SOURCE
$IBFRTC DRIVER
C
C DRIVER PROGRAM FOR MOTORS
C
DIMENSION XX(4,60)
DIMENSION EXP(4), COUNT(4), WP(4,15), WEB(4,15), ATTOT(4,15),
1 ATOT(4,15), P(9,4,15), MOTNO(4,15), FVAC1(9,4,15)
COMMON G, CPHI, NT, EXP, COUNT, WP, WEB, ATTOT, ATOT,
1 P, MOTNO, FVAC1, NTIMES, XX, NTOT, NAURN, NFIRST, NP
COMMON CP1, CP2, CT1, CT2, VEC1, VEC2, VEC3
1 READ (5,10) CASE
WRITE (6,11) CASE
READ (5,10)
WRITE (6,10)
READ (5,79) NTIMES
WRITE (6,14) NTIMES
DO 2 I = 1, NTIMES
2 READ (5,80)
10 FORMAT (A)
11 FORMAT (1H1, A6/)
14 FORMAT (1X //I2, 33H TIMES WERE USED IN THIS ANAYSIS)
21 FORMAT (46HGENERAL SOLID-FUEL ROCKET PERFORMANCE PROGRAM /
1 120H ROCKET TEST FIRINGS CONDUCTED AT SEVERAL TEMPERATURES
2 ARE EFFECTIVELY TRANSFORMED TO SPECIFIED TEMPERATURES OF INTEREST
3 / 89H STATISTICAL ANALYSES ARE PERFORMED ON THE TEST FIRING
4 DATA AFTER IT HAS BEEN TRANSFORMED //)
79 FORMAT (10x, I2)
80 FORMAT (10H)
1 CALL MOTORS
CALL MOT2
CALL MOT3
GO TO 1
END
$IBFRTC STATS
SUBROUTINE STATS (X, N, XM, SD)
DIMENSION X(100)
SUM1 = 0.
SUM2 = 0.
XNO = N
XNO1 = XNO - 1.
DENOM = XNO*XNO1
DO 10 I = 1,N
SUM1 = SUM1 + X(I)
10 SUM2 = SUM2 + X(I)*X(I)
XM = SUM1 / XNO
XNUM = (XNO*SUM2 - SUM1*SUM1)
IF (XNUM .LE. 0.) GO TO 14
SD = SQRT(XNUM/DENOM).
IF ((SD/XM) .LT. .00025) GO TO 14
GO TO 15
14 SD = 0.
15 RETURN
END
70
DIMENSION Z(648), XX(4860)
COMMON CPHI, NT, EXPA, COUNT, WP, WEB, ATTOT, AETOT,
P, MOTNO, FVAC1, NTIMES, XX, NTOT, NBURN, NFIRST, NP
COMMON CP1, CP2, CT1, CT2, VECl, VEC2, VEC3
DIMENSION EXTEM(4), EXPA(4), EPS(4),
1 COUNT(4), SET1(45), SET2(45), SET3(45), SET4(45),
2 SET5(45), SET6(45), SET7(45), Tgrp(3),
3 TENTRY(60), TENT2(60), ARRAY(464), ENTRY(9, 60),
4 COEF1(9, 4), COEF2(9, 4), IFLAG1(9), IFLAG2(9)

DIMENSION X(4), TIME(9, 4, 15), INTP(9, 4, 15), P(9, 4, 15),
1 INTF(9, 4, 15), F(9, 4, 15), P1(9, 4, 15), P2(9, 4, 15),
2 P3(9, 4, 15), T1(9, 4, 15), T2(9, 4, 15), T3(9, 4, 15),
3 INTPT1(9, 4, 15), INTPT2(9, 4, 15), INTPT3(9, 4, 15)

DIMENSION AT1(4, 15), AT2(4, 15), AT3(4, 15), AT4(4, 15), AE1(4, 15),
1 AE2(4, 15), AE3(4, 15), AE4(4, 15), WP(4, 15), WER(4, 15),
2 DENS(4, 15), PAF(4, 15), LNP(9, 4), LNT(9, 4),
3 MOTNO(4, 15), TEMPT(4, 15), RU(4, 15), KN(4, 15)

DIMENSION MP(9, 4), SDP(9, 4), MF(9, 4), SDF(9, 4),
1 MTIMF(9, 4), SDTIMF(9, 4), MPT1(9, 4), SUPT1(9, 4), MPT2(9, 4),
2 SDPT2(9, 4), MPT3(9, 4), SDPT3(9, 4), MTT1(9, 4), SDTT1(9, 4),
3 MTT2(9, 4), SDTT2(9, 4), MTT3(9, 4), SDTT3(9, 4), MTT4(9, 4),
4 SDPTT(9, 4), MTTT(9, 4), SDTTT(9, 4), MINT1(9, 4), SDINT1(9, 4),
5 MINT2(9, 4), SDINT2(9, 4), MINT3(9, 4), SDINT3(9, 4), MINTT(9, 4),
6 SDINTT(9, 4), MTEMP(15), SDEMP(15)

DIMENSION R1(4, 15), R2(4, 15), R3(4, 15), ARTOT(4, 15),
1 ATTOT(4, 15), EA(4, 15), EB(4, 15), EC(4, 15), ED(4, 15),
2 ETOT(4, 15),
3, CMIN(4), CMAX(4), C2MIN(4), C2MAX(4), C1TMN(4), C1TMX(4),
4 C2TMN(4), C2TMX(4)
DIMENSION C1MN(5), C1MX(5), C2MN(5), C2MX(5)
DIMENSION FVAC1(9, 4, 15), WPU(9, 4, 15), ISP(9, 4, 15), IVAC1(9, 4, 15),
2 ISP1(9, 4, 15), I12(9, 4, 15), F12(9, 4, 15), ISP12(9, 4, 15),
3 I13(9, 4, 15), F13(9, 4, 15), ISP13(9, 4, 15), I14(9, 4, 15),
4 F14(9, 4, 15), ISP14(9, 4, 15), CSTU(9, 4, 15)
DIMENSION MAT(5), SDAT(5), MAF(5), SDAE(5), ME(5), SUE(5)
DIMENSION MINTP(9, 4), SDINTP(9, 4), MINTF(9, 4), SDINTF(9, 4),
1 MWPU(9, 4), SWPU(9, 4), MISP(9, 4), SDISP(9, 4), MCSTU(9, 4),
2 SDSTU(9, 4), MRU(4), SDRU(4), MKN(4), SDKN(4),
3 MIVC(9, 4), SIVC(9, 4), MVFC(9, 4), SDVF(9, 4), MIU11(9, 4),
4 SIDIU11(9, 4), MI12(9, 4), SIDIU12(9, 4), MFI12(9, 4), SD12(9, 4),
5 MIU12(9, 4), SIDIU12(9, 4), MI13(9, 4), SIDIU13(9, 4), MI13(9, 4),
6 SOF13(9, 4), MI13(9, 4), SIDIU13(9, 4), MI14(9, 4), SDI14(9, 4),
7 MF14(9, 4), SDF14(9, 4), MIU14(9, 4), SD1U14(9, 4), IL(4)
DIMENSION SIGP12(9), SIGP22(9), SIGP32(9), SIGP11(9),
1 SIGP21(9), SIGP31(9), SIGP31(9), SIGP23(9), SIGP33(9),
2 PIK11(9), PIK21(9), PIK31(9), PIK12(9), PIK22(9), PIK32(9),
3 PIK13(9), PIK23(9), PIK33(9)

EQUIVALENCE
1 (XX (1)), I12(1), I13(1), I14(1), P1(1)),
2 (XX (54)), WPU (1), P2(1)),
3 (XX (1081)), ISP (1), P3(1)),
4 (XX (1621)), F12(1), F13(1), F14(1)),
5 (XX (2161)), INTF(1), T2(1)),
6 (XX (2701)), INT(1), T3(1)),
7 (XX (3241)), ISPU1(1), ISPU12(1), ISPU13(1), ISPU14(1), INTPT(1)),
8 (XX (3761)), CSTM(1), INTP2(1)),
9 (XX (4321)), INTP3(1))
EQUIVALENE
1 (ZZ (1)), MIVC1(1), MI12(1), MI13(1), MI14(1), MPT1(1)),
2 (ZZ (37)), MPT2(1)),
3 (ZZ (73)), MPT3(1)),
4 (ZZ (109)), MFVC1(1), MF12(1), MF13(1), MF14(1), MTT1(1)),
5 (ZZ (145)), MTT2(1)),
6 (ZZ (181)), MTT3(1)),
7 (ZZ (217)), MIU11(1), MIU12(1), MIU13(1), MIU14(1), MINT1(1)),
8 (ZZ (253)), MINT2(1)),
9 (ZZ (299)), MINT3(1))

REAL MAT, MATH, ME
C
C INPUT FORMATS
C
81 FORMAT (112, 4F12.4)
82 FORMAT (2F12.5, 312)
83 FORMAT (4F12.4)
84 FORMAT (A6, F12.4, 12)
85 FORMAT (4E12.5)
86 FORMAT (8F9.4, F8.4)
C
C OUTPUT FORMATS
C
16 FORMAT (10H THERE ARE 12, 46H AMBIENT PRESSURES BEING CONSIDERED,
1 THEY ARE / 4F12.4)
18 FORMAT (100H THERE ARE 12, 46H EXACT TEMPERATURES BEING CONSIDERED,
1 THEY ARE / 4F12.4)
20 FORMAT (41H G AND PHI ARE CONSTANT FOR A RUN AND ARE / 2F12.5)
2001 FORMAT (1H TOTAL / 10H MOTOR NO.//)
2002 FORMAT (1H MOTOR GROUP I2 / (1X, A6, 5X, 5F10.4))
2003 FORMAT (10H IAE TOTAL / 10H MOTOR NO.//)
2004 FORMAT (10H EXPANSION RATIO EA ER LC ED)
C
INTEGER COUNT, ENDMOT, TEMSEL
REAL INTP, INTF, INTP1, INTP2, INTP3, INTPT,
1 MTMP, MTIME, SOTIME, MP, MF, MPT, MPT2, MPT3,
2 MPTT, MM1, MTT2, MTT3, MTT4, MINT1, MINT2, MINT3,
3 MINTT, LNT, LNP, MOTO, ISP, IVAC1, ISP1, I12,
4 ISPU12, I13, ISPU13, I14, ISP14, KN, MINTP, MINTF,
5 MWPU, MISP, MCTU, MRT, MKN, MIVC1, MFVC1, MIU11,
6 MI12, MF12, MI13, MF13, MIU13, MI14, MF14, MIU14
REAL MAT, MAE, ME
C
C
C
72
2005 FORMAT (101H TIMES T1 T2 T3 T4
1 T5 T6 T7 T8 T9 / 10H MOTOR NO.)
2006 FORMAT (11H TEMP GROUP I2 // (1X, A6, 5X, 9F10.4))
2007 FORMAT (101H PRESSURE PT1 PT2 PT3 PT4
1 PT5 PT6 PT7 PT8 PT9 / 10H MOTOR NO.)
2008 FORMAT (119H INTEGRATED INTPT1 INTPT2 INTPT3 INTPT4 INTPT5 INTPT6 INTPT7 INTPT8 INTPT9
2 9H PRESSURE / 10H MOTOR NO.)
2009 FORMAT (102H CSTAR T1 CSTAR T2 CSTAR T3 CSTAR T4
1 CSTAR T5 CSTAR T6 CSTAR T7 CSTAR T8 CSTAR T9 / 10H MOTOR NO.)
2010 FORMAT (52H AVERAGE R BASED AVERAGE KN BASED /
1 4RH ON BURN TIME ON BURN TIME / 2 10H MOTOR NO.)
2011 FORMAT (101H PROPELLANT WTP WPT1 WPT2 WPT3 WPT4
1 WPT5 WPT6 WPT7 WPT8 WPT9 / 10H MOTOR NO.)
2012 FORMAT (101H1 PROPELLANT WTP WPT1 WPT2 WPT3 WPT4
1 WPT5 WPT6 WPT7 WPT8 WPT9 / 10H MOTOR NO.)
2013 FORMAT (1H1, 30X, 13H PA = AMBIENT //)
2014 FORMAT (1H1, 30X, 5H PA = F 9.3)
2015 FORMAT (119H THRUST FT1 FT2 FT3
1 FT4 FT5 FT6 FT7 FT8 FT9 / 2 10H MOTOR NO.)
2016 FORMAT (119H TOTAL IMPULSE IT1 IT2 IT3
1 IT4 IT5 IT6 IT7 IT8 IT9 / 2 10H MOTOR NO.)
2017 FORMAT (119H SPEC. IMPULSE ISPT1 ISPT2 ISPT3 ISPT4 ISPT5 ISPT6 ISPT7 ISPT8 ISPT9
1 10H MOTOR NO.)
2018 FORMAT (1H1, 30X, 5H PA = 9.3)
2019 FORMAT (1H1, 30X, 1RH TRANSFORMED TIME / 9H TIME NO.1P)
2020 FORMAT (1H1, 30X, 22H TRANSFORMED PRESSURES / 9H TIME NO.12)
2021 FORMAT (11H TEMP GROUP I2 // (1X, A6, 18X, 4F10.4))
2022 FORMAT (30X, 18H PRESSURE INTEGRAL 40X, 17H AVERAGE PRESSURE)
2023 FORMAT (119H TEMP GROUP I2 // (1X, A6, 7X, F10.4, 12X, F10.4))
2024 FORMAT (119H TEMP GROUP I2 // (1X, A6, 5X, 9F10.2))
2025 FORMAT (119H TEMP GROUP I2 // (1X, A6, 5X, 9F10.2))
2026 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2027 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2028 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2029 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2030 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2031 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2032 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2033 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2034 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2035 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2036 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2037 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2038 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2039 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2040 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2041 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2042 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2043 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2044 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2045 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2046 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2047 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2048 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2049 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2050 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2051 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2052 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2053 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2054 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2055 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2056 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2057 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2058 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2059 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2060 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2061 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2062 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2063 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2064 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2065 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2066 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
2067 FORMAT (1H1, 30X, 23H TRANSFORMATION FACTORS)
1 25H TOTAL STANDARD DEV. 4F12.2, 10X, 4F12.2
2068 FORMAT (3H40CONFIDENCE ON NORMAL DISTRIBUTION /
1 25H ONE MIN 4F12.2,10X,4F12.2 /
2 25H SIDED) MAX 4F12.2,10X,4F12.2 /
3 25H (TWO MIN 4F12.2,10X,4F12.2 /
4 25H SIDED) MAX 4F12.2,10X,4F12.2)
2070 FORMAT (12H0TOTAL MEAN 5F10.4 / 12H TOTAL 5.0. 5F10.4)
2071 FORMAT (3H40CONFIDENCE ON NORMAL DISTRIBUTION /
1 12H (ONE MIN 5F10.4 / 12H SIDED) MAX 5F10.4//
2 12H (TWO MIN 5F10.4 / 12H SIDED) MAX 5F10.4)
2080 FORMAT (12H0MEAN 9F12.2 / 12H STAND. DEV. 9F12.2)
C
COUNT(1) = 0
COUNT(2) = 0
COUNT(3) = 0
HLANK = 0.
C
READ DATA AND GROUP IT INTO TEMPERATURE GROUPS
C
5 READ (5,B1) NP, (EXPA(I), I = 1,NP)
WRITE (6,16) NP, (EXPA(I), I = 1,NP)
READ (5,B1) NT, (EXTM(I), I = 1,NT)
HEAD (5,B1) NT, (TGRP (I), I = 1,NT)
TGRP (NT + 1) = TGRP (NT) + 2*
WRITE (6,B18) NT, (EXTM(I), I = 1,NT)
READ (5,B2) GI, PHI, NTOT, NEURN, NFIRST
WRITE (6,B20) GI, PHI
READ (5,B3) CT1, CT2, CP1, CP2
C
ASSIGN DATA FOR A MOTOR INTO PROPER TEMPERATURE GROUP
C
9 READ (5,B4) XMOT, FIRETP, ENDMOT
DO 19 J = 1,3
EPS(J) = (TGRP (J+1) - TGRP (J)) * 5
IF (((TGRP (J) + EPS(J)) .GT. FIRETP) GO TO 25
CONTINUE
19 COUNT(J) = COUNT(J) + 1
K = COUNT(J)
45 TEMP (J,K) = FIRETP
MOTNO(J,K) = XMOT
C
READ REMAINDR OF DATA FOR A MOTOR
C
READ (5,B5) AT1(J,K), AT2(J,K), AT3(J,K), AT4(J,K),
1 AE1(J,K), AE2(J,K), AF3(J,K), AF4(J,K),
2 WP(J,K), WEB(J,K), DENS(J,K), PAF(J,K)
READ (5,B6) (TIME(I,J,K), I = 1,NTIMES)
READ (5,B6) (INTP(I,J,K), I = 1,NTIMES)
READ (5,B6) (P(I,J,K), I = 1,NTIMES)
READ (5,B6) (INTF(I,J,K), I = 1,NTIMES)
READ (5,B6) (F(I,J,K), I = 1,NTIMES)
IF (ENDMOT .LT. 1) GO TO 9
C
PROCEED WITH MAIN BODY OF PROGRAM
C
J1 = COUNT(1)
J2 = COUNT(2)
J3 = COUNT(3)
TEMSEL = 1
CPhi = COS (PHI)
C
COMPUTE P(I,J,K), F(I,J,K) AND STATISTICS ON P,F AND TIME
C
DO 115 I = 1, NTIMES
ISW = 1
IF (P(I, J, K) .GT. 0.) ISW = ISW + 1
IF (F(I, J, K) .GT. 0.) ISW = ISW + 2
DO 115 J = 1, NT
L = 0
JJ = COUNT(J)
DO 108 K = 1, JJ
GO TO (104, 105, 106, 107), ISW
104 P(I, J, K) = INTP(I, J, K) / TIME(I, J, K)
105 F(I, J, K) = INTF(I, J, K) / TIME(I, J, K)
GO TO 107
106 P(I, J, K) = INTP(I, J, K) / TIME(I, J, K)
107 L = L + 1
SET1(L) = P(I, J, K)
SET2(L) = F(I, J, K)
108 CALL STATS (SET1, L, MP (I, J), SUP (I, J))
CALL STATS (SET2, L, MF (I, J), SUF (I, J))
115 CALL STATS (SET3, L, MTIME(I, J), SUTMF(I, J))
WRITE (6, 2005)
DO 55 J = 1, NT
JJ = COUNT(J)
WRITE (6, 2006) J, (MOTNO(J, K), (TIME(I, J, K), I = 1, 9), K = 1, JJ)
55 WRITE (6, 2055) (MTIME(I, J), I = 1, 9), (SMTIME(I, J), I = 1, 9)
116 WRITE (6, 2007)
DO 11A J = 1, NT
JJ = COUNT(J)
WRITE (6, 2046) J, (MOTNO(J, K), (P(I, J, K), I = 1, 9), K = 1, JJ)
11A WRITE (6, 2060) (MP(I, J), I = 1, 9), (SMP(I, J), I = 1, 9)
WRITE (6, 2014)
216 WRITE (6, 2015)
DO 218 J = 1, NT
JJ = COUNT(J)
WRITE (6, 2045) J, (MOTNO(J, K), (F(I, J, K), I = 1, 9), K = 1, JJ)
218 WRITE (6, 2080) (MF(I, J), I = 1, 9), (SMP(I, J), I = 1, 9).
C
C COMPUTE STATISTICS FOR TEMPERATURE
C
DO 270 J = 1, NT
L = 0
JJ = COUNT(J)
DO 260 K = 1, JJ
L = L + 1
260 SET1(L) = TEMP(J, K)
270 CALL STATS (SET1, L, MTEMP(J), SUTEMP(J))
C
C COMPUTE AETOTAL, ATTOTAL AND AREA RATIOS FOR FUTURE ISF
C
L = 0
DO 704 J = 1, NT
JJ = COUNT(J)
DO 704 K = 1, JJ
L = L + 1
AETOT(J, K) = AE1(J, K) + AE2(J, K) + AE3(J, K) + AE4(J, K)
ATTOT(J, K) = AT1(J, K) + AT2(J, K) + AT3(J, K) + AT4(J, K)
EA(J, K) = AE1(J, K) / AT1(J, K)
ER(J, K) = AE2(J, K) / AT2(J, K)
EC(J, K) = AE3(J, K) / AT3(J, K)
ED(J, K) = AE4(J, K) / AT4(J, K)
ETOT(J, K) = AETOT(J, K) / ATTOT(J, K)
SET1(L) = AT1(J*K)
SET2(L) = AT2(J*K)
SET3(L) = AT3(J*K)
SET4(L) = AT4(J*K)
SET5(L) = ATTOT(J*K)
SET6(L) = AE1(J*K)
SET7(L) = AE2(J*K)

CALL STATS (SET1, L, MAT(1), SDAT(1))
CALL STATS (SET2, L, MAT(2), SDAT(2))
CALL STATS (SET3, L, MAT(3), SDAT(3))
CALL STATS (SET4, L, MAT(4), SDAT(4))
CALL STATS (SET5, L, MAT(5), SDAT(5))
CALL STATS (SET6, L, MAE(1), SDAE(1))
CALL STATS (SET7, L, MAE(2), SDAE(2))
 CALL STATS (TENT2, L, MAE(3), SDAE(3))

L = 0
DO 1704 J = 1, NT
 JJ = COUNT(J)
 DO 1704 K = 1, JJ
 L = L + 1
 SET1(L) = EA(J*K)
 SET2(L) = EB(J*K)
 SET3(L) = EC(J*K)
 SET4(L) = ED(J*K)
 SET5(L) = ETOT(J*K)
 SET6(L) = AF4(J*K)
 CALL STATS (SET1, L, MF(1), SDE(1))
 CALL STATS (SET2, L, ME(2), SDE(2))
 CALL STATS (SET3, L, ME(3), SDE(3))
 CALL STATS (SET4, L, ME(4), SDE(4))
 CALL STATS (SET5, L, ME(5), SDE(5))
 CALL STATS (SET6, L, MAE(4), SDAE(4))
 CALL STATS (SET7, L, MAE(5), SDAE(5))
 DO 1706 K = 1, 5
 C1MN(K) = MAT(K) - CP1*SDAT(K)
 C1MX(K) = MAT(K) + CP1*SDAT(K)
 C2MN(K) = MAT(K) - CP2*SDAT(K)
 C2MX(K) = MAT(K) + CP2*SDAT(K)
 DO 1100 I = NFIRST, NTIMES
 DO 1100 J = 1, NT
 L = 0
 JJ = COUNT(J)
 DO 1076 K = 1, JJ
 IF (INTP(I,J*K) .NE. 0.) GO TO 1070
 INTP(I,J*K) = P(I,J*K) * TIME(I,J*K)
 1070 IF (INTF(I,J*K) .NE. 0.) GO TO 1075
 INTF(I,J*K) = F(I,J*K) * TIME(I,J*K)
 1075 WPUI(I,J*K) = WP(J*K)*INTP(I,J*K) / INTP(NTOT,J*K)
 CSTUI(I,J*K) = INTP(I,J*K)*6*ATTOT(J*K) / WPUI(I,J*K)
 ISP(I,J*K) = INTF(I,J*K) / WPUI(I,J*K)
 FVAC1(I,J*K) = F(I,J*K) + PAF(J*K)*ATTOT(J*K)*CPHI
 IVAC1(I,J*K) = FVAC1(I,J*K) * TIME(I,J*K)
 ISP1(I,J*K) = IVAC1(I,J*K) / WPUI(I,J*K)
 TENT2(L) = CSTUI(I,J*K)
 SET1(L) = IVAC1(I,J*K)
 SET2(L) = INTP(I,J*K)
SET3(L) = INTF(I+J+K)
SET4(L) = FVAC1(I+J+K)
SET5(L) = ISP(I+J+K)
SET6(L) = WPU(I+J+K)

1076 SET7(L) = ISP1(I+J+K)
CALL STATS (SET7, L, MCPSTU(I+J), SDSTU(I+J))
CALL STATS (SET1, L, MIVC1(I+J), SDIVC1(I+J))
CALL STATS (SET2, L, MINTP(I+J), SDINTP(I+J))
CALL STATS (SET3, L, MINTF(I+J), SDINTF(I+J))
CALL STATS (SET4, L, MFVC1(I+J), SDFVC1(I+J))
CALL STATS (SET5, L, MISP (I+J), SDISP (I+J))
CALL STATS (SET6, L, MWPU (I+J), SDWPU (I+J))
CALL STATS (SET7, L, MU11(I+J), SDU11(I+J))

1100 CONTINUE
C
WRITE (6,2008)
DO 1080 J = 1, NT
JJ = COUNT(J)
WRITE (6,2045) J, (MOTNO(J,K), (INTP(I,J,K), I=1,9), K=1,JJ)
1080 WRITE (6,2080) (MINTP(I,J), I=1,9), (SDINTP(I,J), I=1,9)
WRITE (6,2014)
WRITE (6,2016)
DO 1085 J = 1, NT
JJ = COUNT(J)
WRITE (6,2045) J, (MOTNO(J,K), (ISP(I,J,K), I=1,9), K=1,JJ)
1085 WRITE (6,2080) (MINTF(I,J), I=1,9), (SDINTF(I,J), I=1,9)
WRITE (6,2014)
WRITE (6,2017)
DO 1090 J = 1, NT
JJ = COUNT(J)
WRITE (6,2045) J, (MOTNO(J,K), (FVAC1(I+J,K), I=1,9), K=1,JJ)
1090 WRITE (6,2080) (MFVC1(I+J), I=1,9), (SDFVC1(I+J), I=1,9)
WRITE (6,2024) EXPA(1)
WRITE (6,2015)
DO 1061 J = 1, NT
JJ = COUNT(J)
WRITE (6,2045) J, (MOTNO(J,K), (IVAC1(I+J,K), I=1,9), K=1,JJ)
1061 WRITE (6,2080) (MIVC1(I+J), I=1,9), (SDIVC1(I+J), I=1,9)
WRITE (6,2024) EXPA(1)
WRITE (6,2017)
DO 1063 J = 1, NT
JJ = COUNT(J)
WRITE (6,2045) J, (MOTNO(J,K), (ISP1 (I+J,K),I=1,9), K=1,JJ)
1063 WRITE (6,2080) (MUI11(I+J), I=1,9), (SDUI11(I+J), I=1,9)
C
IF (NP .LE. 1) GO TO 1099
DO 1101 I = NFIRST, NTIMES
DO 1101 J = 1, NT
L = 0
JJ = COUNT(J)
DO 1160 K = 1, JJ
L = L + 1
I12(I+J+K) = IVAC1(I+J+K) - (EXPA(2)•AETOT(J+K)•CPHY•TIME(I+J+K)
F12(I+J+K) = I12(I+J+K) / TIME(I+J+K)
ISPU12(I+J+K) = I12(I+J+K) / WPU(I+J+K)
SET11(L) = I12(I+J+K)
}

77
SET4(L) = F12(I*J*K)
CALL STATS (SET1, L, MI12(I*J), SD12(I*J))
CALL STATS (SET4, L, MF12(I*J), SDF12(I*J))
CALL STATS (SET7, L, M1U12(I*J), SD1U12(I*J))

C
WRITE (6,2024) EXPA(2)
WRITE (6,2015)
DO 1071 J = 1,NT
JJ = COUNT(J)
WRITE (6,2045) J, (MOTNO(J,K), (F12(I*J,K), I=1,9), K=1,JJ)
1071 WRITE (6,2080) (MF12(I,J), I=1,9), (SDF12(I,J), I=1,9)
WRITE (6,2024) EXPA(2)
WRITE (6,2016)
DO 1072 J = 1,NT
JJ = COUNT(J)
WRITE (6,2045) J, (MOTNO(J,K), (I12(I,J,K), I=1,9), K=1,JJ)
1072 WRITE (6,2080) (MI12(I,J), I=1,9), (SD112(I,J), I=1,9)
WRITE (6,2024) EXPA(2)
WRITE (6,2017)
DO 1073 J = 1,NT
JJ = COUNT(J)
WRITE (6,2045) J, (MOTNO(J,K), (ISPU12(I*J,K), I=1,9), K=1,JJ)
1073 WRITE (6,2080) (MIU12(I*J), I=1,9), (SDIU12(I*J), I=1,9)
IF (NP .LE. 2) 60 TO 1099

C
DO 1102 I = NFIRST,NTIMES
DO 1102 J = 1,NT
L = 0
JJ = COUNT(J)
DO 1180 K = 1,JJ
L = L + 1
I13(I,J,K) = IVAC1(I,J,K) - (EXPA3*AETOT(J,K)*CPIJ)*TIME(I,J,K)
F13(I,J,K) = I13(I,J,K) / TIME(I,J,K)
ISPU13(I,J,K) = I13(I,J,K) / WPUI(J,K)
SET4(L) = I13(I,J,K)
SET4(L) = F13(I,J,K)
1180 SET7(L) = ISPU13(I,J,K)
CALL STATS (SET1, L, MI13(I,J), SD13(I,J))
CALL STATS (SET4, L, MF13(I,J), SDF13(I,J))
CALL STATS (SET7, L, M1U13(I,J), SDU13(I,J))

C
WRITE (6,2024) EXPA(3)
WRITE (6,2015)
DO 1081 J = 1,NT
JJ = COUNT(J)
WRITE (6,2045) J, (MOTNO(J,K), (F13(I*J,K), I=1,9), K=1,JJ)
1081 WRITE (6,2080) (MF13(I,J), I=1,9), (SDF13(I,J), I=1,9)
WRITE (6,2024) EXPA(3)
WRITE (6,2016)
DO 1082 J = 1,NT
JJ = COUNT(J)
WRITE (6,2045) J, (MOTNO(J,K), (I13(I*J,K), I=1,9), K=1,JJ)
1082 WRITE (6,2080) (MI13(I,J), I=1,9), (SD113(I,J), I=1,9)
WRITE (6,2024) EXPA(3)
WRITE (6,2017)
DO 1083 J = 1,NT
JJ = COUNT(J)
WRITE (6,2045) J, (MOTNO(J,K), (ISPU13(I*J,K), I=1,9), K=1,JJ)
1083 WRITE (6,2080) (MIU13(I*J), I=1,9), (SDIU13(I*J), I=1,9)
IF (NP .LE. 3) 60 TO 1099

C
DO 1103 I = NFIRST, NTIMES
DO 1103 J = 1, NT
L = 0
JJ = COUNT(J)
DO 1200 K = 1, JJ
L = L + 1
I14(I,J,K) = IVAC1(I,J,K) - (EXPA4(K) * AETOT(K) * CPHI) * TIME(I,J,K)
F14(I,J,K) = I14(I,J,K) / TIME(I,J,K)
ISPU14(I,J,K) = I14(I,J,K) / WPU(I,J,K)
SET1(L) = I14(I,J,K)
SET4(L) = F14(I,J,K)
1200 SET7(L) = ISPU14(I,J,K)
CALL STATS (SET1, L, MI14(I,J), SDI14(I,J))
CALL STATS (SET4, L, MF14(I,J), SDF14(I,J))
1103 CALL STATS (SET7, L, MIU14(I,J), SDU14(I,J))
WRITE (6, 2024) FXPA(4)
WRITE (6, 2015)
DO 1091 J = 1, NT
JJ = COUNT(J)
WRITE (6, 2045) J, (MOTNO(J,K), (F14(I,J,K), I=1,9), K=1, JJ)
1091 WRITE (6, 2040) (MF14(I,J), I=1,9), (SDF14(I,J), I=1,9)
WRITE (6, 2024) FXPA(4)
WRITE (6, 2016)
DO 1092 J = 1, NT
JJ = COUNT(J)
WRITE (6, 2045) J, (MOTNO(J,K), (I14(I,J,K), I=1,9), K=1, JJ)
1092 WRITE (6, 2040) (MI14(I,J), I=1,9), (SDI14(I,J), I=1,9)
WRITE (6, 2024) FXPA(4)
WRITE (6, 2017)
DO 1093 J = 1, NT
JJ = COUNT(J)
WRITE (6, 2045) J, (MOTNO(J,K), (ISMU14(I,J,K), I=1,9), K=1, JJ)
1093 WRITE (6, 2040) (MIU14(I,J), I=1,9), (SDU14(I,J), I=1,9)
C
C COMPUTE RU, KN AND THEIR STATISTICS
C
1099 DO 1104 J = 1, NT
L = 0
JJ = COUNT(J)
DO 1120 K = 1, JJ
RU(J,K) = WEK(J,K) / TIME(NPURN,J,K)
KN(J,K) = G * INTP(NPURN,J,K) / (UFNS(J,K) * CSTU(NPURN,K,J) * RU(J,K))
SET6(L) = RU(J,K)
SET7(L) = KN(J,K)
1120 CONTINUE
CALL STATS (SET6, L, MRU (J), SURU (J))
CALL STATS (SET7, L, MKN (J), SuKN (J))
1104 CONTINUE
WRITE (6, 2069)
DO 1095 J = 1, NT
JJ = COUNT(J)
WRITE (6, 2046) J, (MOTNO(J,K), (CSTU(I,J,K), I = 1,9), K = 1, JJ)
1095 WRITE (6, 2060) (MCSTU(I,J), I=1,9), (SDCSTU(I,J), I=1,9)
WRITE (6, 2012)
DO 1077 J = 1, NT
JJ = COUNT(J)
WRITE (6, 2046) J, (MOTNO(J,K), (WPU(I,J,K), I=1,9), K = 1, JJ)
1077 WRITE (6, 2060) (MWPU(I,J), I=1,9), (SDWPU(I,J), I=1,9)
WRITE (6, 2010)
DO 1098 J = 1, NT
JJ = COUNT(J)
79
WRITE (6,2044) J, (MOTNO(J,K), RU(J,K), KN(J,K), K=1, JJ)
1098 WRITE (6,2063) MRU(J), MKN(J), SDRU(J), SDKN(J)
C C PRINTOUT OF THROAT AREAS, EXIT AREAS AND AREA RATIOS
C
WRITE (6,2001)
DO 701 J = 1, NT
JJ = COUNT(J)
701 WRITE (6,2002) J, (MOTNO(J,K), AT1(J,K), AT2(J,K), AT3(J,K),
1 AT4(J,K), ATTOT(J,K), K = 1, JJ)
WRITE (6,2070) MAT, SDAT
WRITE (6,2071) C1MN, C1MX, C2MN, C2MX
DO 1707 K = 1, 5
C1MN(K) = MAE(K) - CP1*SDAE(K)
C1MX(K) = MAE(K) + CP1*SDAE(K)
C2MN(K) = MAE(K) - CP2*SDAE(K)
C2MX(K) = MAE(K) + CP2*SDAE(K)
1707 C2MX(K) = MAE(K) + CP2*SDAF(K)
WRITE (6,2003)
DO 702 J = 1, NT
JJ = COUNT(J)
702 WRITE (6,2002) J, (MOTNO(J,K), AE1(J,K), AE2(J,K), AE3(J,K),
1 AE4(J,K), AETOT(J,K), K = 1, JJ)
WRITE (6,2070) MEF, SDAF
WRITE (6,2071) C1MN, C1MX, C2MN, C2MX
DO 170A K = 1, 5
C1MN(K) = ME(K) - CP1*SDE(K)
C1MX(K) = MF(K) + CP1*SDF(K)
C2MN(K) = ME(K) - CP2*SDF(K)
C2MX(K) = MF(K) + CP2*SDF(K)
170A C2MX(K) = MF(K) + CP2*SDF(K)
WRITE (6,2004)
DO 703 J = 1, NT
JJ = COUNT(J)
703 WRITE (6,2002) J, (MOTNO(J,K), EA(J,K), EP(J,K), EC(J,K),
1 ED(J,K), ETOT(J,K), K = 1, JJ)
WRITE (6,2070) ME, SDF
WRITE (6,2071) C1MN, C1MX, C2MN, C2MX
C C COMPUTE CONSTITUENTS OF LNP USING LEAST SQUARES
C
LL = 0
DO 282 J = 1, NT
JJ = COUNT(J)
CO 282 K = 1, JJ
LL = LL + 1
TENTRY(LL) = TEMP(J,K)
282 TENTRY(LL) = TENTRY(LL)**2
C
300 DO 311 I = 1, NM TIMES
IFLAG1(I) = 0
IFLAG2(I) = 0
IF (P(I,J,K)) 300A, 300A, 300B
300A IFLAG1(I) = 1
GO TO 311
300B IFLAG2(I) = 1
DO 310 J = 1, NT
JJ = COUNT(J)
DO 310 K = 1, JJ
LL = LL + 1
ENTRY(I*LL) = ALOG (P(I,J,K))
310 CONTINUE
311 CONTINUE
NM = COUNT(1) + COUNT(2) + COUNT(3)
DO 320 I = 1, NTIMES
 IF(IFLAG1(I) - 1) 312, 320, 312
312 DO 315 LL = 1, NM
 ARRAY(LL,1) = 1.
 ARRAY(LL,2) = TENTRY(LL)
 ARRAY(LL,3) = TENTRY2(LL)
315 ARRAY(LL,4) = ENTRY(I, LL)
 CALL GLS1 (ARRAY, X, IL, NM, 3, ALPHA, 0., 0.)
 COEF1(I,1) = X(1)
 COEF1(I,2) = X(2)
 COEF1(I,3) = X(3)
320 CONTINUE

COMPUTE CONSTITUENTS OF LNT USING LEAST SQUARES

DO 411 I = 1, NTIMES
 IF (TIME(I,1) .LT. 408, 408, 409
408 IFLAG2(I) = 1
 GO TO 411
410 CONTINUE

DO 420 I = 1, NTIMES
 IF (IFLAG2(I) - 1) 412, 420, 412
412 DO 415 LL = 1, NM
 ARRAY(LL,1) = 1.
 ARRAY(LL,2) = TENTRY(LL)
 ARRAY(LL,3) = TENTRY2(LL)
415 ARRAY(LL,4) = ENTRY(I, LL)
 CALL GLS1 (ARRAY, X, IL, NM, 3, ALPHA, 0., 0.)
 COEF2(I,1) = X(1)
 COEF2(I,2) = X(2)
 COEF2(I,3) = X(3)
420 CONTINUE

COMPUTE ACTUAL LNP AND LNT

DO 460 J = 1, NT
450 DO 460 I = 1, NTIMES
 LNP(I,J) = COEF1(I,1) + COEF1(I,2)*EXTEM(J) + COEF1(I,3)*EXTEM(J)**2
460 LNT(I,J) = COEF2(I,1) + COEF2(I,2)*EXTEM(J) + COEF2(I,3)*EXTEM(J)**2

DO 462 I = 1, NTIMES
 SET1(I) = 0.
 IF (MP(I,1) .GT. 0.) SET1(I) = COEF1(I,1) + COEF1(I,2)*MTEMP(1) + COEF1(I,3)*MTEMP(1)**2
 SET1(2) = 0.
 IF (MP(I,2) .GT. 0.) SET1(2) = COEF1(I,1) + COEF1(I,2)*MTEMP(2) + COEF1(I,3)*MTEMP(2)**2
 SET1(3) = 0.
 IF (MP(I,3) .GT. 0.) SET1(3) = COEF1(I,1) + COEF1(I,2)*MTEMP(3) + COEF1(I,3)*MTEMP(3)**2
 P1K11(I) = (LNP(I,1) - SET1(1)) / (EXTEM(1) - MTEMP(1))
 P1K12(I) = (LNP(I,2) - SET1(1)) / (EXTEM(2) - MTEMP(1))
 P1K13(I) = (LNP(I,3) - SET1(1)) / (EXTEM(3) - MTEMP(1))
PIK21(I) = (LNP(I,1) - SET1(2)) / (EXTFM(1) - MTEMP(2))
PIK22(I) = (LNP(I,2) - SET1(2)) / (EXTFM(2) - MTEMP(2))
PIK23(I) = (LNP(I,3) - SET1(2)) / (EXTFM(3) - MTEMP(2))
PIK31(I) = (LNP(I,1) - SET1(3)) / (EXTFM(1) - MTEMP(3))
PIK32(I) = (LNP(I,2) - SET1(3)) / (EXTFM(2) - MTEMP(3))
PIK33(I) = (LNP(I,3) - SET1(3)) / (EXTFM(3) - MTEMP(3))

SET2(I) = 0.
IF (MTIME(I,1) > 0.0) SET2(I) = COEF2(I,1) + COEF2(I,2)*MTEMP(1) + 1
COEF2(I,3)*MTEMP(1)**2

SET2(I) = 0.
IF (MTIME(I,2) > 0.0) SET2(I) = COEF2(I,1) + COEF2(I,2)*MTEMP(2) + 1
COEF2(I,3)*MTEMP(2)**2

SET2(I) = 0.
IF (MTIME(I,3) > 0.0) SET2(I) = COEF2(I,1) + COEF2(I,2)*MTEMP(3) + 1
COEF2(I,3)*MTEMP(3)**2

462 SIGP33(I) = (SET2(I) - LNT(I,1))/ (EXTFM(1) - MTEMP(1))

WRITE (6,2050)
WRITE (6,2051) PIK11, PIK21, PIK31, PIK12, PIK22, PIK32, PIK13,
PIK23, PIK33
WRITE (6,2052) SIGP11, SIGP21, SIGP31, SIGP12, SIGP22, SIGP32, SIGP13,
SIGP23, SIGP33

C COMPUTE P,I1,TT AND TIME TT TRANSFORMATION - SFLCTOR
C CHOOSES WHICH TEMPERATURE DATA IS TO BE TRANSFORMED TO
C
II = 1
I2 = 2
I3 = 3

450 DO 510 I = 1,NTIMES
 JJ = COUNT(I)
 DO 502 K = 1,J1
 IF (IFLAG1(I,J) .EQ. 1) GO TO 501
 PJ(I,J,K) = P(I,J,K) * EXP (PIK11(I)*(EXTFM(I)-TEMP(1,K)))
501 IF (IFLAG2(I,J) .EQ. 1) GO TO 502
 TI(I,J,K) = TIME(I,J,K) / (EXP (SIGP11(I)*(EXTFM(I)-TEMP(1,K)))
502 CONTINUE
 DO 504 K = 1,J2
 IF (IFLAG1(I,J) .EQ. 1) GO TO 503
 P2(I,J,K) = P(I,J,K) * EXP (PIK21(I)*(EXTFM(I)-TEMP(2,K)))
503 IF (IFLAG2(I,J) .EQ. 1) GO TO 504
 T2(I,J,K) = TIME(I,J,K) / (EXP (SIGP21(I)*(EXTFM(I)-TEMP(2,K)))
504 CONTINUE
 DO 506 K = 1,J3
 IF (IFLAG1(I,J) .EQ. 1) GO TO 508
 P3(I,J,K) = P(I,J,K) * EXP (PIK31(I)*(EXTFM(I)-TEMP(3,K)))
506 IF (IFLAG2(I,J) .EQ. 1) GO TO 510
 T3(I,J,K) = TIME(I,J,K) / (EXP (SIGP31(I)*(EXTFM(I)-TEMP(3,K)))
510 CONTINUE
 JSAVE = 1
 GO TO 580
C
520 DO 530 I = 1,NTIMES

82
JJ = COUNT(2)
DO 522 K = 1*J1
 IF (IFLAG1(I) .EQ. 1) GO TO 521
 PJ(I+2,K) = P(I+1,K) * EXP (PIK12(I)*(EXTM(2)-TEMP(1,K)))
521 IF (IFLAG2(I) .EQ. 1) GO TO 522
 TJ(I+2,K) = TIME(I+1,K) / (EXP (SIGP12(I)*(EXTM(2)- TEMP(1,K))))
522 CONTINUE
DO 524 K = 1*J2
 IF (IFLAG1(I) .EQ. 1) GO TO 523
 PJ(I+2,K) = P(I+2,K) * EXP (PIK22(I)*(EXTM(2)-TEMP(2,K)))
523 IF (IFLAG2(I) .EQ. 1) GO TO 524
 TJ(I+2,K) = TIME(I+2,K) / (EXP (SIGP22(I)*(EXTM(2)- TEMP(2,K))))
524 CONTINUE
DO 530 K = 1*J3
 IF (IFLAG1(I) .EQ. 1) GO TO 528
 PJ(I+3,K) = P(I+3,K) * EXP (PIK32(I)*(EXTM(2)-TEMP(3,K)))
528 IF (IFLAG2(I) .EQ. 1) GO TO 530
 TJ(I+3,K) = TIME(I+3,K) / (EXP (SIGP32(I)*(EXTM(2)- TEMP(3,K))))
530 CONTINUE
JSAVE = 2
GO TO 580
C
540 DO 550 I = 1*NTIMES
 JJ = COUNT(3)
 DO 542 K = 1*J1
 IF (IFLAG1(I) .EQ. 1) GO TO 541
 PJ(I+1,K) = P(I+1,K) * EXP (PIK13(I)*(EXTM(3)-TEMP(1,K)))
541 IF (IFLAG2(I) .EQ. 1) GO TO 542
 TJ(I+1,K) = TIME(I+1,K) / (EXP (SIGP13(I)*(EXTM(3)- TEMP(1,K))))
542 CONTINUE
DO 544 K = 1*J2
 IF (IFLAG1(I) .EQ. 1) GO TO 543
 PJ(I+2,K) = P(I+2,K) * EXP (PIK23(I)*(EXTM(3)-TEMP(2,K)))
543 IF (IFLAG2(I) .EQ. 1) GO TO 544
 TJ(I+2,K) = TIME(I+2,K) / (EXP (SIGP23(I)*(EXTM(3)- TEMP(2,K))))
544 CONTINUE
DO 548 K = 1*J3
 IF (IFLAG1(I) .EQ. 1) GO TO 547
 PJ(I+3,K) = P(I+3,K) * EXP (PIK33(I)*(EXTM(3)-TEMP(3,K)))
547 IF (IFLAG2(I) .EQ. 1) GO TO 548
 TJ(I+3,K) = TIME(I+3,K) / (EXP (SIGP33(I)*(EXTM(3)- TEMP(3,K))))
548 CONTINUE
JSAVE = 3
GO TO 580
C
C COMPUTE STATISTICS FOR PTT AND TIME TT
C
580 J = JSAVE
 DO 640 I = 1*NTIMES
 L = 0
 M = 0
 DO 620 K = 1*J1
 L = L + 1
 M = M + 1
 TENTRY(L) = PJ(I+1,K)
 TENT2(L) = TJ(I+1,K)
 SET1(M) = PJ(I+1,K)
 DO 625 K = 1*J2
 L = L + 1
 M = M + 1
 TENTRY(L) = PJ(I+2,K)
 TENT2(L) = TJ(I+2,K)
 SET1(M) = PJ(I+2,K)
 DO 620 K = 1*J3
 L = L + 1
 M = M + 1
 TENTRY(L) = PJ(I+3,K)
 TENT2(L) = TJ(I+3,K)
 SET1(M) = PJ(I+3,K)
 620 SET4(M) = T1(I+J,K)
 M = 0
 DO 625 K = 1*J2
 L = L + 1
 M = M + 1
 TENTRY(L) = PJ(I+2,K)
 TENT2(L) = TJ(I+2,K)
 SET1(M) = PJ(I+2,K)
 DO 620 K = 1*J3
 L = L + 1
 M = M + 1
 TENTRY(L) = PJ(I+3,K)
 TENT2(L) = TJ(I+3,K)
 SET1(M) = PJ(I+3,K)
 625 SET4(M) = T3(I+J,K)
 M = 0
 DO 640 K = 1*J3
 L = L + 1
 M = M + 1
 TENTRY(L) = PJ(I+3,K)
 TENT2(L) = TJ(I+3,K)
 SET1(M) = PJ(I+3,K)
 640 CONTINUE
TENTRY(L) = P2(I,J,K)
TENT2(L) = T2(I,J,K)
SET2(M) = P2(I,J,K)
625 SET5(M) = T2(I,J,K)
M = 0
630 GO 630 K = 1, J3
L = L + 1
M = M + 1
TENTRY(L) = P3(I,J,K)
TENT2(L) = T3(I,J,K)
SET3(M) = P3(I,J,K)
640 CALL STATS (SET1, J1, MPT1(I,J), SUMP1(I,J))
CALL STATS (SET2, J2, MPT2(I,J), SUMP2(I,J))
CALL STATS (SET3, J3, MPT3(I,J), SUMP3(I,J))
CALL STATS (SET4, J1, MTI1(I,J), SUTI1(I,J))
CALL STATS (SET5, J2, MTI2(I,J), SUTI2(I,J))
CALL STATS (SET6, J3, MTI3(I,J), SUTI3(I,J))
CALL STATS (TENTRY, L, MPTT(I,J), SUTTT(I,J))
IF IFTMSEL .GE. NT GO TO 655
THMSEL = TEMSEL + 1
GO TO 4A0

C
C COMPUTE INTEGRALS OF P TRANSFORMED

C 655 DO 700 I = 1, NITEMS
L = 0
DO 660 J = 1, NFT
L = L + 1
M = 0
660 INTPT1 (I,J,K) = P1(I,J,K) * T1(I,J,K)
L = L + 1
M = M + 1
TENTRY(L) = INTPT1(I,J,K)
M = 0
670 DO 680 K = 1, J3
L = L + 1
M = M + 1
TENTRY(L) = INTPT2(I,J,K)
680 SET1(M) = INTPT2(I,J,K)

C
C COMPUTE STATS ON INTEGRALS OF P TRANSFORMED

C CALL STATS (SET1, J1, MINT1(I,J), SINT1(I,J))
CALL STATS (SET2, J2, MINT2(I,J), SINT2(I,J))
CALL STATS (SET3, J3, MINT3(I,J), SINT3(I,J))
700 CALL STATS (TENTRY, L, MINTT(I,J), SINTT(I,J))
575 DO 565 I = 1, NITEMS
WRITE (6,20360) I
WRITE (A,20471)
WRITE (6,20440)11, (MINTN(I,K), T1(I,J,K), T1(I,J,K), T1(I,J,K), T1(I,J,K),
1 PLANK , K = 1, J1)
WRITE (6,2064) (MINT(J,J), J=1,4), (SDPTT(I,J), J=1,4)
IF (NT .LE. 1) GO TO 561
WRITE (6,2040)I2, (MOTNO(2,K), T2(I1,K), T2(I2,K), T2(I3,K),
1 BLANK , K = 1,J2)
WRITE (6,2064) (MINT2(I,J), J=1,4), (SDPTT(I,J), J=1,4)
IF (NT .LE. 2) GO TO 561
WRITE (6,2040)I3, (MOTNO(3,K), T3(I1,K), T3(I2,K), T3(I3,K),
1 BLANK , K = 1,J3)
WRITE (6,2064) (MINT3(I,J), J=1,4), (SDPTT(I,J), J=1,4)
561 WRITE (6,2065) (MINTT(I,J), J=1,4), (SDPTT(I,J), J=1,4)
DO 562 J = 1,NT
C1MIN(J) = MINT(I,J) - CT1*SDINTT(I,J)
C1MAX(J) = MINT(I,J) + CT1*SDINTT(I,J)
C2MIN(J) = MINTT(I,J) - CT2*SDPTT(I,J)
C2MAX(J) = MINTT(I,J) + CT2*SDPTT(I,J)
562 WRITE (6,2062) C1MIN, C1MAX, C2MIN, C2MAX
565 CONTINUE
DO 570 I = 1,NTimes
WRITE (6,2031) I
WRITE (6,2042)
WRITE (6,2043)
WRITE (6,2044)I1, (MOTNO(1,K), INPT1(I1,K), INPT1(I2,K),
1 INPT1(I3,K), HLANK, P1(I1,K), P1(I2,K), P1(I3,K),
2 BLANK , K = 1,J1)
WRITE (6,2064) (MINT1(I,J), J =1,4), (MPT1(I,J), J=1,4),
1 (SINT1(I,J), J =1,4), (SDPT1(I,J), J=1,4)
IF (NT .LT. 1) GO TO 564
WRITE (6,2044)I2, (MOTNO(2,K), INPT2(I1,K), INPT2(I2,K),
1 INPT2(I3,K), HLANK, P2(I1,K), P2(I2,K), P2(I3,K),
2 BLANK , K = 1,J2)
WRITE (6,2064) (MINT2(I,J), J =1,4), (MPT2(I,J), J=1,4),
1 (SINT2(I,J), J =1,4), (SDPT2(I,J), J=1,4)
IF (NT .LT. 2) GO TO 564
WRITE (6,2044)I3, (MOTNO(3,K), INPT3(I1,K), INPT3(I2,K),
1 INPT3(I3,K), HLANK, P3(I1,K), P3(I2,K), P3(I3,K),
2 BLANK , K = 1,J3)
WRITE (6,2064) (MINT3(I,J), J =1,4), (MPT3(I,J), J=1,4),
1 (SINT3(I,J), J =1,4), (SDPT3(I,J), J=1,4)
564 WRITE (6,2067) (MINTT(I,J), J =1,4), (SDPTT(I,J), J=1,4),
1 (SINTT(I,J), J =1,4), (SDPTT(I,J), J=1,4)
DO 566 J =1,NT
C1MIN(J) = MINTT(I,J) - CT1*SDINTT(I,J)
C1MAX(J) = MINTT(I,J) + CT1*SDINTT(I,J)
C2MIN(J) = MINTT(I,J) - CT2*SDPTT(I,J)
C2MAX(J) = MINTT(I,J) + CT2*SDPTT(I,J)
566 C2TMX(J) = MPTT (I,J) + CT2*SDPTT (I,J)
WRITE (6,2068) C1MIN, C1TMN, C1MAX, C1TXM,
1 C2MIN, C2TMN, C2MAX, C2TXM
570 CONTINUE
RETURN
END
IBFCTC GLS1

SUBROUTINE GLS1(A,X,IL,N,M,ALPHA,E1,E2)

DIMENSION A(46,4), X(4), IL(4).

MN=M+1

LJ=1

DO 60 J=1,M

IL(J)=0

I=1

DO 3 K=1,M

II=I+1

DO 4 J=II,N

IF (ABS(A(J,K))-E1)

6 T1=SQRT((A(J,K)2+(A(I,K)**2))**2)**

S=A(J,K)/T1

C=A(I,K)/T1

DO 5 L=K,M

T2=C

5 A(I+L)=T2

LL=LL+1

4 CONTINUE

IF (ABS(A(I,K))-E2)

8 IL(K)=I

I=I+1

3 CONTINUE

X(MM)=0.0

II=M

DO 3 L=1,M

31 S=0.0

II=II+1

I=IL(II)

DO 32 K=LL,MM

S=S+A(I,K)

32 X(II)=-S/A(I,II)

30 II=II-1

IF (IL(MM))

51 ALPHA=0.0

GO TO 52

50 1=IL(MM)

ALPHA=A(I,MM)

52 RETURN

END
SECOND LINK OF MOTORS PROGRAM

DIMENSION XX(4860), ZZ(2124)
COMMON & CPHI, NT, EXPA, COUNT, WP, WFB, ATTOT, AETOT,
1 P, MOTNO, FVAC1, NTIMES, XX, NTOT, NBURN, NF1NST, NP
COMMON CP1, CP2, CT1, CT2, VEC1, VEC2, VEC3
COMMON SET1, SET2, SET3, SET4, SET5, SET6, SET7, C1MIN, C1MAX,
1 C2MIN, C2MAX, C1TMN, C1TMX, C2TMN, C2TMX
COMMON SAVE1(9*4,15), SAVE2(9*4,15), SAVE3(9*4,15)
DIMENSION MFT11(9*4), SDF11(9*4), MIT11(9*4), SDIT11(9*4)
1 MFT21(9*4), SDFT21(9*4), MIT21(9*4), SDIT21(9*4), MFT31(9*4)
2 SOFT31(9*4), MIT31(9*4), SDIT31(9*4), MFT1(9*4), SDFT1(9*4)
3 MITI(9*4), SDITI(9*4), MFT2(9*4), SDFT2(9*4), MIT2(9*4)
4 SDIT2(9*4), MIT22(9*4), SDIT22(9*4), MIT2(9*4), SDIT22(9*4)
5 MFT32(9*4), SDFT32(9*4), MIT32(9*4), SDIT32(9*4), MFT32(9*4)
6 SOFT7(9*4), MITT2(9*4), SDITT2(9*4)
DIMENSION MIS11(9*4), SDIS11(9*4), MIS12(9*4), SDIS12(9*4)
1 C2MIN, C2MAX, C1TMN, C1TMX, C2TMN, C2TMX
DIMENSION P1(9*4,15), P2(9*4,15), P3(9*4,15)
1 EXPA(4), P(9*4,15), FVAC1(9*4,15)
2 AETOT(4,15), INTPT1(9*4,15), INTPT2(9*4,15)
3 ATTOT(4,15), INTPT3(9*4,15), T1(9*4,15), T2(9*4,15)
4 T3(9*4,15), WP(9*4,15), VEC1(4,15), VEC2(4,15), VEC3(4,15)
DIMENSION C1MIN(4), C1MAX(4), C2MIN(4), C2MAX(4)
DIMENSION SET1(45), SET2(45), SET3(45), SET4(45), SET5(45)
1 SET6(45), TENT2(60), MWP1(9*4), MWP2(9*4), MWP3(9*4)
2 SNWP1(9*4), SNWP2(9*4), SNWP3(9*4), TENTRY(60)
3 MOTNO(4,15), COUNT(4), MWPT(9*4), SLWP3(9*4), WER(4,15)
REAL MFT11, MIT11, MFT21, MIT21, MFT31, MIT31, MFTI1,
1 MFTI, MIT12, MFT22, MIT22, MFT32, MIT32, MFTT1,
2 IT11, MOTNO, MWPT, MWPT, MWPT,
4 MITT2, MIS11, MIS21, MIS31, MIS12, MIS22, MIS32,
7 MIST2, IT21, IT31, IT12, IT22, IT32, ISP11,
9 ISP21, ISP31, ISP12, ISP22, ISP32, INTPT1, INTPT2, INTPT3
INTEGER COUNT

EQUIVALENCE
1 (XX(1), P1(1), WP1(1)),
2 (XX(541), P2(1), WP2(1)),
3 (XX(1101), P3(1), WP3(1)),
4 (XX(1621), T1(1), IT1(1), IT12(1), ISP1(1), ISP2(1)),
5 (XX(2161), T2(1), IT21(1), IT22(1), ISP21(1), ISP22(1)),
6 (XX(2701), T3(1), IT31(1), IT32(1), ISP31(1), ISP32(1)),
7 (XX(3241), INTPT1(1)),
8 (XX(3781), INTPT2(1)),
9 (XX(4321), INTPT3(1))
EQUIVALENCE
1 (ZZ(1), MFT11(1), MFT12(1), MFT13(1), MFT14(1), MWP1(1)),
2 (ZZ(37), MFT21(1), MFT22(1), MFT23(1), MFT24(1), MWP2(1)),
3 (ZZ(73), MFT31(1), MFT32(1), MFT33(1), MFT34(1), MWP3(1)),
4 (ZZ(109), MIT11(1), MIT12(1), MIS11(1), MIS12(1)),
5 (ZZ(145), MIT21(1), MIT22(1), MIS21(1), MIS22(1)),
6 (ZZ(181), MIT31(1), MIT32(1), MIS31(1), MIS32(1))
EQUIVALENCE
1 (ZZ(217), SDFT11(1), SDFT12(1), SDFT13(1), SDFT14(1), SNWP1(1)),
2 (ZZ(253), SDFT21(1), SDFT22(1), SDFT23(1), SDFT24(1), SNWP2(1)),
3 (ZZ(289), SDFT31(1), SDFT32(1), SDFT33(1), SDFT34(1), SDWP3(1)),
4 (ZZ(325), SDIT11(1), SDIT12(1), SDIS11(1), SDIS12(1)),
5 (ZZ(361), SDIT21(1), SDIT22(1), SDIS21(1), SDIS22(1)),
6 (ZZ(397), SDIT31(1), SDIT32(1), SDIS31(1), SDIS32(1))
EQUIVALENCE
1 (ZZ(433), MFTI1(1), MFTT2(1), MFTT31(1), MFTT4(1)),
2 (ZZ(469), SDFTT1(1), SDFTT2(1), SDFTT31(1), SDFTT4(1)),
3 (ZZ(505), FT11(1), FT12(1), FT13(1), FT14(1)),
4 (ZZ(1045), FT21(1), FT22(1), FT23(1), FT24(1)),
5 (ZZ(1985), FT31(1), FT32(1), FT33(1), FT34(1))
C
OUTPUT FORMATS
C
2014 FORMAT (34X, 5H PA = F5.2)
2032 FORMAT (1H, 30X, 20H TRANSFORMIEH T/HUST / 9H TIME NO.12)
2033 FORMAT (1H, 30X, 20H TRANSFORMIEH T/HUST / 9H TIME NO.12)
2034 FORMAT (1H, 30X, 30H TRANSFORMIEH SPECIFIC IMPULSE / 9H TIME NO.12)
2037 FORMAT (1H, 30X, 20H TRANSFORMIEH PROPellant WT. / 9H TIMF NO.12)
2041 FORMAT (11HOTEMP GROUP 12 // (1X1A6, 19X, 4F12.2))
2047 FORMAT (30X, 43H TEMP1 TEMP2 TEMP3 TEMP4 /
1 10H MOTOR NO.,)
2062 FORMAT (34XHCONFIDENCE ON NORMAL DISTRIBUTION /
1 26H (ONE MIN 4F12.2 /
2 26H SIMEJ MAX 4F12.2 //
3 26H (TWO MIN 4F12.2 /
4 26H SIMEJ MAX 4F12.2)
2064 FORMAT (26HMEAN 4F12.2 /
1 26H STANDARD DEVI. 4F12.2)
2065 FORMAT (26H0TOTAL MEAN 4F12.2 /
1 26H TOTAL STANDARD DEVI. 4F12.2)
C
11 = 1
12 = 2
13 = 3
HLANK = 0,
J1 = COUNT(1)
J2 = COUNT(2)
J3 = COUNT(3)
DO 696 J = 1, 504
696 ZZ(1) = 0.
C1MIN(4) = 0,
C1MAX(4) = 0,
C2MIN (4) = 0,
C2MAX(4) = 0,
L0 701 J = 1,NT
DO 697 K = 1, J1
697 VEC1(J,K) = T1NJURN,J,K)
DO 698 K = 1, J2
698 VEC2(JrK) = T2(NBURNrJrK)
DO 699 K = 1, J3
699 VEC3(JrK) = T3(NBURNrJrK)
701 CONTINUE

COMPUTE THRUST, IMPULSE AND THEIR STATISTICS FOR P1

DO 752 I = 1, NTIMES
752 J = 1, NT
L = 0
M = 0
DO 705 K = 1, J1
L = L + 1
M = M + 1
RATIO1(I, JrK) = P1(I, JrK) / P(I, 1, K)
FT11(I, JrK) = RATIO1(I, JrK) * FVAC1(I, 1, K) - EXPA1 * AETOT1(I, K) * CPHI
IT11(I, JrK) = FT11(I, JrK) * T1(I, JrK)
TENTRY(L) = FT11(I, JrK)
TENT2(L) = IT11(I, JrK)
SET1 (M) = FT11(I, JrK)
705 SET4 (M) = IT11(I, JrK)
M = 0
DO 708 K = 1, J2
L = L + 1
M = M + 1
RATIO2(I, JrK) = P2(I, JrK) / P(I, 2, K)
FT21(I, JrK) = RATIO2(I, JrK) * FVAC1(I, 2, K) - EXPA1 * AETOT2(I, K) * CPHI
IT21(I, JrK) = FT21(I, JrK) * T2(I, JrK)
TENTRY(L) = FT21(I, JrK)
TENT2(L) = IT21(I, JrK)
SET2 (M) = FT21(I, JrK)
708 SET5 (M) = IT21(I, JrK)
M = 0
DO 710 K = 1, J3
L = L + 1
M = M + 1
RATIO3(I, JrK) = P3(I, JrK) / P(I, 3, K)
FT31(I, JrK) = RATIO3(I, JrK) * FVAC1(I, 3, K) - EXPA1 * AETOT3(I, K) * CPHI
IT31(I, JrK) = FT31(I, JrK) * T3(I, JrK)
TENTRY(L) = FT31(I, JrK)
TENT2(L) = IT31(I, JrK)
SET3 (M) = FT31(I, JrK)
710 SET6 (M) = IT31(I, JrK)
CALL STATS (SET1, J1, MFT11(I, J), SDFT11(I, J))
CALL STATS (SET2, J2, MFT21(I, J), SDFT21(I, J))
CALL STATS (SET3, J3, MFT31(I, J), SDFT31(I, J))
CALL STATS (SET4, J1, MFT11(I, J), SDFT11(I, J))
CALL STATS (SET5, J2, MFT21(I, J), SDFT21(I, J))
CALL STATS (SET6, J3, MFT31(I, J), SDFT31(I, J))
CALL STATS (TENTRY, L, MFTT1(I, J), SDFTT1(I, J))
CALL STATS (TENT2, L, MITT1(I, J), SDITT1(I, J))
752 CONTINUE

PRINT THRUST, IMPULSE AND STATS FOR P1

DO 1710 I = 1, NTIMES
1710 WRITE (6, 2032) I
WRITE (6, 2032) EXPA1
WRITE (6, 2041) I, (MOTNO(I, 1, K), FT11(I, 1, K), FT11(I, 2, K),

89
1. WRITE (6,2064) (MFT1(I,J), J = 1:4), (SUFT1(I,J), J = 1:4)
 IF (NT .LE. 1) GO TO 1708
 WRITE (6,2041) I2, (MOTNO(I2,K), FT21(I2,K), FT21(I2,K),
 1 FT21(I3,K), BLANK, K=1,J2)
 WRITE (6,2064) (MFT21(I,J), J = 1:4), (SUFT21(I,J), J = 1:4)
 IF (NT .LE. 2) GO TO 1708
 WRITE (6,2041) I3, (MOTNO(I3,K), FT31(I3,K), FT31(I3,K),
 1 FT31(I3,K), BLANK, K=1,J3)
 WRITE (6,2064) (MFT31(I,J), J = 1:4), (SUFT31(I,J), J = 1:4)
1708 WRITE (6,2065) (MFTT1(I,J), J = 1:4), (SUFTT1(I,J), J = 1:4)
 DO 1709 J = 1,NT
 C1MIN(J) = MFTT1(I,J) - CT1*SUFTT1(I,J)
 C1MAX(J) = MFTT1(I,J) + CT1*SUFTT1(I,J)
 C2MIN(J) = MFTT1(I,J) - CT2*SUFTT1(I,J)
 C2MAX(J) = MFTT1(I,J) + CT2*SUFTT1(I,J)
1709 CONTINUE
 DO 1710 I = 1,NTIMES
 WRITE (6,2033) I
 WRITE (6,2014) EXPA(I)
 WRITE (6,2047)
 WRITE (6,2041) I1, (MOTNO(I1,K), IT11(I1,K), IT11(I1,K),
 1 IT11(I3,K), BLANK, K=1,J1)
 WRITE (6,2064) (MIT11(I,J), J = 1:4), (SUIT11(I,J), J = 1:4)
 IF (NT .LE. 1) GO TO 1707
 WRITE (6,2041) I2, (MOTNO(I2,K), IT21(I2,K), IT21(I2,K),
 1 IT21(I3,K), BLANK, K=1,J2)
 WRITE (6,2064) (MIT21(I,J), J = 1:4), (SUIT21(I,J), J = 1:4)
 IF (NT .LE. 2) GO TO 1707
 WRITE (6,2041) I3, (MOTNO(I3,K), IT31(I3,K), IT31(I3,K),
 1 IT31(I3,K), BLANK, K=1,J3)
 WRITE (6,2064) (MIT31(I,J), J = 1:4), (SUIT31(I,J), J = 1:4)
1707 WRITE (6,2065) (MITTI(I,J), J = 1:4), (SUITTI(I,J), J = 1:4)
 DO 1711 J = 1,NT
 C1MIN(J) = MITTI(I,J) - CT1*SUFTTI(I,J)
 C1MAX(J) = MITTI(I,J) + CT1*SUFTTI(I,J)
 C2MIN(J) = MITTI(I,J) - CT2*SUFTTI(I,J)
 C2MAX(J) = MITTI(I,J) + CT2*SUFTTI(I,J)
1711 CONTINUE
 COMPUTE TRANSFORMER PROPELLANT WEIGHT, SPECIFIC IMPULSE
 FOR P1 AND THEIR STATISTICS
M = M + 1
WP2(I,J,K) = WP(2,K) * INTPT2(I,J,K) / INTPT2(NTOT,J,K)
ISP2(I,J,K) = IT21(I,J,K) / WP2(I,J,K)
SAVE2(I,J,K) = ISP2(I,J,K)
TENT2(L) = ISP2(I,J,K)
TENTRY(L) = WP2(I,J,K)
SET5(M) = WP2(I,J,K)

806 SET2 (M) = ISP21(I,J,K)
M = 0
DO 808 K = 1, J3
L = L + 1
M = M + 1
WP3(I,J,K) = WP(3,K) * INTPT3(I,J,K) / INTPT3(NTOT,J,K)
ISP3(I,J,K) = IT31(I,J,K) / WP3(I,J,K)
SAVE3(I,J,K) = ISP3(I,J,K)
TENT2(L) = ISP3(I,J,K)
TENTRY(L) = WP3(I,J,K)
SET6(M) = WP3(I,J,K)

808 SET3 (M) = ISP31(I,J,K)
CALL STATS (SET1, J1, MIS11(I,J), SDIS11(I,J)).
CALL STATS (SET2, J2, MIS21(I,J), SDIS21(I,J)).
CALL STATS (SET3, J3, MIS31(I,J), SDIS31(I,J)).
CALL STATS (SET4, J1, MWP1(I,J), SDWP1(I,J)).
CALL STATS (SET5, J2, MWP2(I,J), SDWP2(I,J)).
CALL STATS (SET6, J3, MWP3(I,J), SDWP3(I,J)).
CALL STATS (TENT2, L, MIST1(I,J), SDIST1(I,J)).
CALL STATS (TENTRY, L, MWPT(I,J), SDWPT(I,J)).

882 CONTINUE

C
C PRINT PROPELLANT WT. AND SPECIFIC IMPULSE FOR P1
C
DO 812 I = 1, NTIMES
WRITE (6,2037) I
WRITE (6,2047)
WRITE (6,2041) I1, (MOTNO(I1,K), WP1(I1,K), WP1(I2,K),
1 WP1(I3,K), BLANK, K = 1, J1)
WRITE (6,2064) (MWP1(I,J), J=1,4), (SDWP1(I,J), J=1,4)
IF (NT .LE. 1) GO TO 810
WRITE (6,2041) I2, (MOTNO(I2,K), WP2(I1,K), WP2(I2,K),
1 WP2(I3,K), BLANK, K = 1, J2)
WRITE (6,2064) (MWP2(I,J), J=1,4), (SDWP2(I,J), J=1,4)
IF (NT .LE. 2) GO TO 810
WRITE (6,2041) I3, (MOTNO(I3,K), WP3(I1,K), WP3(I2,K),
1 WP3(I3,K), BLANK, K = 1, J3)
WRITE (6,2064) (MWP3(I,J), J=1,4), (SDWP3(I,J), J=1,4)

810 WRITE (6,2065) (MWP(I,J), J=1,4), (SDWP(I,J), J=1,4)
DO 811 J = 1, NT
CIMIN(J) = MWPT(I,J) - CT1*SDWPT(I,J)
CIMAX(J) = MWPT(I,J) + CT1*SDWPT(I,J)
C2MIN(J) = MWPT(I,J) - CT2*SDWPT(I,J)
C2MAX(J) = MWPT(I,J) + CT2*SDWPT(I,J)

811 CALL STATS (SET5, J5, MWP5(I,J), SDWP5(I,J)).
812 CONTINUE

DO 1775 I = 1, NTIMES
WRITE (6,2034) I
WRITE (6,2014) EXPA(I)
WRITE (6,2047)
WRITE (6,2041) I1, (MOTNO(I1,K), ISP11(I1,K), ISP11(I2,K),
1 ISP11(I3,K), BLANK, K = 1, J1)
WRITE (6,2064) (MIS11(I,J), J=1,4), (SDIS11(I,J), J=1,4)
IF (NT .LE. 1) GO TO 1773
WRITE (6,2041) I2, (MOTNO(I2,K), ISP21(I1,K), ISP21(I2,K),
1 ISP21(I3,K), BLANK, K = 1, J1)
WRITE (6,2064) (MIS21(I,J), J=1,4), (SDIS21(I,J), J=1,4)
IF (NT .LE. 1) GO TO 1773
WRITE (6,2064) (MIS21(I,J), J=1,4), (SDIS21(I,J), J=1,4)
IF (NT .LE. 1) GO TO 1773
WRITE (6,2064) (MIS21(I,J), J=1,4), (SDIS21(I,J), J=1,4)
IF (NT .LE. 1) GO TO 1773
WRITE (6,2064) (MIS21(I,J), J=1,4), (SDIS21(I,J), J=1,4)
IF (NT .LE. 1) GO TO 1773
WRITE (6,2064) (MIS21(I,J), J=1,4), (SDIS21(I,J), J=1,4)
IF (NT .LE. 1) GO TO 1773
WRITE (6,2064) (MIS21(I,J), J=1,4), (SDIS21(I,J), J=1,4)
IF (NT .LE. 1) GO TO 1773
WRITE (6,2064) (MIS21(I,J), J=1,4), (SDIS21(I,J), J=1,4)
IF (NT .LE. 1) GO TO 1773
WRITE (6,2064) (MIS21(I,J), J=1,4), (SDIS21(I,J), J=1,4)
IF (NT .LE. 1) GO TO 1773
WRITE (6,2064) (MIS21(I,J), J=1,4), (SDIS21(I,J), J=1,4)
IF (NT .LE. 1) GO TO 1773
WRITE (6,2064) (MIS21(I,J), J=1,4), (SDIS21(I,J), J=1,4)
IF (NT .LE. 1) GO TO 1773
WRITE (6,2064) (MIS21(I,J), J=1,4), (SDIS21(I,J), J=1,4)
1773 CONTINUE

CONTINUE
1 ISP21(I,J,K), BLANK, K = 1,J3)
WRITE (6,2064) (MIS21(I,J), J=1,4), (SDIS21(I,J), J=1,4)
IF (NT .LE. 2) GO TO 1773
WRITE (6,2041)I3,(MOTNO(I3,K), ISP31(I,J,K), ISP31(I,J,K),
1 ISP31(I,J,K), BLANK, K = 1,J3)
1773 WRITE (6,2065) (MIST1(I3,K), ISP31(I,J,K), ISP31(I,J,K),
1 ISP31(I,J,K), BLANK, K = 1,J3)
1774 WRITE (6,2061)13r(MIST1(I3,K), ISP31(I,J,K), ISP31(I,J,K),
1 ISP31(I,J,K), BLANK, K = 1,J3)
1775 CONTINUE:
IF (NP .LE. 1) GO TO 835
C C COMPUTE THRUST AND IMPULSE FOR P2 AND THEIR STATISTICS
C
U0 1785 N = 2, NP
DO 767 I = 1, NTIMES
DO 767 J = 1, NT
L = 0
M = 0
U0 712 K = 1, J1
L = L + 1
M = M + 1
SAVE = FT11(I,J3,K)
FT12(I,J3,K) = RAT101(I,J3,K)*FVAC1(I,J3,K)*FXPA(I,J3,K)*CT1*SDIST1(I,J3,K)
IT12(I,J3,K) = SAVE(I,J3,K)*W1(I,J3,K)*FT12(I,J3,K) / SAVE
TENTRY(L) = FT12(I,J3,K)
TENT2(L) = IT12(I,J3,K)
SET1 (M) = FT12(I,J3,K)
712 SET4 (M) = IT12(I,J3,K)
M = 0
U0 715 K = 1, J2
L = L + 1
M = M + 1
SAVE = FT21(I,J2,K)
FT22(I,J2,K) = RAT102(I,J2,K)*FVAC1(I,J2,K)*FXPA(I,J2,K)*CT2*SDIST1(I,J2,K)
IT22(I,J2,K) = SAVE2(I,J2,K)*W2(I,J2,K)*FT22(I,J2,K) / SAVE
TENTRY(L) = FT22(I,J2,K)
TENT2(L) = IT22(I,J2,K)
SET2 (M) = FT22(I,J2,K)
715 SET5 (M) = IT22(I,J2,K)
M = 0
DO 718 K = 1, J3
L = L + 1
M = M + 1
SAVE = FT31(I,J3,K)
FT32(I,J3,K) = RAT103(I,J3,K)*FVAC1(I,J3,K)*FXPA(I,J3,K)*CT3*SDIST1(I,J3,K)
IT32(I,J3,K) = SAVE3(I,J3,K)*W3(I,J3,K)*FT32(I,J3,K) / SAVE
TENTRY(L) = FT32(I,J3,K)
TENT2(L) = IT32(I,J3,K)
SET3 (M) = FT32(I,J3,K)
718 SET6 (M) = IT32(I,J3,K)
CALL STATS (SET1, J1, MFT12(I,J), SDFT12(I,J))
CALL STATS (SET4, J1, MFT12(I,J), SDFT12(I,J))
CALL STATS (SET2, J2, MFT22(I,J), SDFT22(I,J))
CALL STATS (SET5, J2, MFT22(I,J), SDFT22(I,J))
CALL STATS (SET3, J3, MFT32(I,J), SDFT32(I,J))
CALL STATS (SET6, J3, MFT32(I,J), SDFT32(I,J))
CALL STATS (TENTRY, L, MFTT2(I,J), SDFTT2(I,J))
CALL STATS (TENT2, MITT2(I,J), SDTT2(I,J))

CONTINUE

DO 1710 I = 1, NTIMES
 WRITE (6, 2032) I
 WRITE (6, 2014) EXPA(N)
 WRITE (6, 2047) I, (MOTNO(I1,K), FT12(I1,K), FT22(I1,K),
 IT12(I1,K), PLANK, K=1, J)
 WRITE (6, 2064) (MFT12(I,J), J = 1, NTIMES, (SUIT2(I,J), J = 1, J)
 IF (NT .LE. 1) GO TO 1716
 WRITE (6, 2041) I2, (MOTNO(I2,K), FT22(I2,K), FT22(I2,K),
 IT22(I2,K), PLANK, K=1, J)
 WRITE (6, 2064) (MFT22(I,J), J = 1, NTIMES, (SUIT2(I,J), J = 1, J)
 IF (NT .LE. 2) GO TO 1716
 WRITE (6, 2041) I3, (MOTNO(I3,K), FT32(I3,K), FT32(I3,K),
 IT32(I3,K), PLANK, K=1, J)
 WRITE (6, 2064) (MFT32(I,J), J = 1, NTIMES, (SUIT2(I,J), J = 1, J)

1710 CONTINUE

DO 1720 I = 1, NTIMES
 WRITE (6, 2033) I
 WRITE (6, 2014) EXPA(N)
 WRITE (6, 2047) WRITE (6, 2064) (MOTNO(I1,K), IT12(I1,K), IT22(I1,K),
 IT12(I1,K), PLANK, K=1, J)
 WRITE (6, 2064) (MFT12(I,J), J = 1, NTIMES, (SUIT2(I,J), J = 1, J)
 IF (NT .LE. 1) GO TO 1715
 WRITE (6, 2041) I2, (MOTNO(I2,K), IT22(I2,K), IT22(I2,K),
 IT22(I2,K), PLANK, K=1, J)
 WRITE (6, 2064) (MFT22(I,J), J = 1, NTIMES, (SUIT2(I,J), J = 1, J)
 IF (NT .LE. 2) GO TO 1715
 WRITE (6, 2041) I3, (MOTNO(I3,K), IT32(I3,K), IT32(I3,K),
 IT32(I3,K), PLANK, K=1, J)
 WRITE (6, 2064) (MFT32(I,J), J = 1, NTIMES, (SUIT2(I,J), J = 1, J)

1715 CONTINUE

DO 1719 J = 1, NT
 C1MIN(J) = MITT2(I,J) - CT1*SDTT2(I,J)
 C1MAX(J) = MITT2(I,J) + CT1*SDTT2(I,J)
 C2MIN(J) = MITT2(I,J) - CT2*SDTT2(I,J)
 C2MAX(J) = MITT2(I,J) + CT2*SDTT2(I,J)

1719 CONTINUE

DO 1720 I = 1, NTIMES
 WRITE (6, 2065) (MFT22(I,J), J = 1, NTIMES, (SUIT2(I,J), J = 1, J)

1720 CONTINUE

C COMPUTE SPECIFIC IMPULSE AND ITS STATISTICS FOR P2

DO 897 I = 1, NTIMES
 DO 897 J = 1, NT
 L = 0
 M = 0
 DO 1810 K = 1, J
 L = L + 1
 M = M + 1
 ISP12(I,J,K) = ITP2(I,J,K) / WP1(I,J,K)
SAVE1(I,J,K) = ISP12(I,J,K)
TENT2(L) = ISP12(I,J,K)

1810 SET1 (M) = ISP12(I,J,K)
M = 0
DO 813 K = 1,J
L = L + 1
M = M + 1
ISP22(I,J,K) = IT22(I,J,K) / WP2(I,J,K)
SAVE2(I,J,K) = ISP22(I,J,K)
TENT2(L) = ISP22(I,J,K)

813 SET2 (M) = ISP22(I,J,K)
M = 0
DO 814 K = 1,J
L = L + 1
M = M + 1
ISP32(I,J,K) = IT32(I,J,K) / WP3(I,J,K)
SAVE3(I,J,K) = ISP32(I,J,K)
TENT2(L) = ISP32(I,J,K)

814 SET3 (M) = ISP32(I,J,K)
CALL STATS (SET1, J1, MIS12(I,J), SD1S12(I,J))
CALL STATS (SET2, J2, MIS22(I,J), SD1S22(I,J))
CALL STATS (SET3, J3, MIS32(I,J), SD1S32(I,J))
CALL STATS (TENT2, L, MIST2(I,J), SDIST2(I,J))

897 CONTINUE

PRINT SPECIFIC IMPULSE FOR P2

1780 CONTINUE
WRITE (6,2034) I
WRITE (6,2041) I1, (MINT0(I1,K), ISP12(I1,K), ISP12(I2,K),
1 ISP12(I3,K), PLANK, K = 1,J1)
WRITE (6,2046) (MIS12(I,J), J=1,J4), (SD1S12(I,J), J=1,J4)
IF (NT .LE. 1) GO TO 1778
WRITE (6,2041) I2, (MINT0(I2,K), ISP22(I2,K), ISP22(I2,K),
1 ISP22(I2,K), PLANK, K = 1,J2)
WRITE (6,2064) (MIS22(I,J), J=1,J4), (SD1S22(I,J), J=1,J4)
IF (NT .LE. 2) GO TO 1778
WRITE (6,2041) I3, (MINT0(I3,K), ISP32(I3,K), ISP32(I3,K),
1 ISP32(I3,K), PLANK, K = 1,J3)
WRITE (6,2064) (MIS32(I,J), J=1,J4), (SD1S32(I,J), J=1,J4)

1778 WRITE (6,2065) (MIST2(I,J), J=1,J4), (SDIST2(I,J), J=1,J4)
DO 1779 J = 1,NT
CIMN(J) = MIST2(I,J) - CT1*SDIST2(I,J)
CIMAX(J) = MIST2(I,J) + CT1*SDIST2(I,J)
C2MIN(J) = MIST2(I,J) - CT2*SDIST2(I,J)
C2MAX(J) = MIST2(I,J) + CT2*SDIST2(I,J)
WRITE (6,2062) CIMN, CIMAX, C2MIN, C2MAX

1780 CONTINUE
IF (NP .LE. 2) GO TO 835
1785 CONTINUE
835 CONTINUE
RETURN
SIBFTC MOT3

SUBROUTINE MOT3
DIMENSION XX(4860)
COMMON G, CPHT, NT, EXPA, COUNT, WP, WFB, ATTOT, AETOT,
1 P, MOTNO, FVAC1, NTIMES, XX, NTOTr, NBURTr, NFIRST1, NP
COMMON CP1, CP2, CT1, CT2, VEC1, VEC2, VEC3
DIMENSION WP1 (94,15), WP2 (94,15), WP3 (94,15),
DIMENSION CST1 (94,15), CST2 (94,15), CST3 (94,15),
1 FVAC1 (94,15), INTPT1 (94,15), INTPT2 (94,15), INTPT3 (94,15),
2 P (94,15), ATTOT (415), AETOT (415), WP (415),
3 WEB (415), VEC1 (415), VEC2 (415), VEC3 (415),
4 R1 (415), R2 (415), R3 (415), MOTNO (415),
DIMENSION EXPA (4), C1MIN(4), C1MAX(4), C2MIN(4), C2MAX(4),
1 CTMIN (4), CTMX (4), C2TMIN(4), C2TMX(4), SET1 (15), SET2 (15),
2 SET3 (15), TENTRY(60), TENT2(60), MH1 (4), MR2 (4), MR3 (4),
3 MRT (4), SDR1 (4), SDR2 (4), SDR3(4), SDRT (4), COUNT(4),
DIMENSION MCST1 (9,4), MCST2(9,4), MCST3(9,4), MCSTT(9,4),
1 SDCST1 (9,4), SDCST2(9,4), SDCST3(9,4), SDCSTT(9,4),
EQUIVALENT
1 (XX(1), WP1(1), CST1(1)),
2 (XX(541), WP2(1), CST2(1)),
3 (XX(1081), WP3(1), CST3(1)),
4 (XX(3241), INTPT1(1)),
5 (XX(3781), INTPT2(1)),
6 (XX(4321), INTPT3(1)),
REAL
1 MRT, MCST1, MCST2, MCST3, MCSTT, MR1, MR2, MR3,
2 MOTNO, INTPT1, INTPT2, INTPT3
INTEGER COUNT

C OUTPUT FORMATS
2035 FORMAT (1H1, 30X, 36H TRANSFORMED CHARACTERISTIC VELOCITY /
1 9H TIME NO.12)
2036 FORMAT (1H1, 30X, 36H TRANSFORMED CHARACTERISTIC VELOCITY, 14X,
1 33H TRANSFORMED AVERAGE BURNING RATE /
2 9H TIME NO.12, 70X, 10H BASED ON WFB TIME)
2040 FORMAT (11H0TEMP GROUP 12 // (1X,A6, 19X, 4F10.2, 10X, 4F10.4))
2041 FORMAT (11H0TEMP GROUP 12 // (1X,A6, 19X, 4F10.2))
2047 FORMAT (29X, 36H TEMP1, TEMP2, TEMP3, TEMP4 /
1 10H MOTOR NO.),
2048 FORMAT (29X, 36H TEMP1, TEMP2, TEMP3, TEMP4, 17X,
1 36H TEMP1, TEMP2, TEMP3, TEMP4 /
2 10H MOTOR NO.),
2062 FORMAT (34H0CONFIDENCE ON NORMAL DISTRIBUTION /
1 26H ONE MIN 4F10.2/,
2 26H SIDED MAX 4F10.2,,
3 26H (TWO MIN 4F10.2 /
4 26H SIDED MAX 4F10.2)
2064 FORMAT (26H0MEAN 4F10.2 /
1 26H STANDARD DEV. 4F10.2)
2065 FORMAT (26H0TOTAL MEAN 4F10.2 /
1 26H TOTAL STANDARD DEV. 4F10.2)
2066 FORMAT (26H0TOTAL MEAN 4F10.2 /
1 26H TOTAL STANDARD DEV. 4F10.2)
2067 FORMAT (26H0TOTAL MEAN 4F10.2 /
1 26H TOTAL STANDARD DEV. 4F10.2)
2068 FORMAT (34H0CONFIDENCE ON NORMAL DISTRIBUTION /
1 26H ONE MIN 4F10.2,10X,4F10.4 /
2 26H SIDED MAX 4F10.2,10X,4F10.4 /
3 26H (TWO MIN 4F10.2,10X,4F10.4 /
4 26H SIDED MAX 4F10.2,10X,4F10.4)

C
C
I1 = 1
I2 = 2
I3 = 3
J1 = COUNT(1)
J2 = COUNT(2)
J3 = COUNT(3)
SDR1(4) = 0.
MCSTT(5,4) = 0.
BLANK = 0.
C COMPUTE R TRANSFORMED AND ITS STATISTICS
C
DO 1055 J = 1, NT
L = 0
M = 0
DO 1010 K = 1, J1
L = L + 1
M = M + 1
R1(J,K) = WEB(1,K) / VEC1(J,K)
TENT2(L) = R1(J,K)
1010 SET1 (M) = R1(J,K)
M = 0
DO 1015 K = 1, J2
L = L + 1
M = M + 1
R2(J,K) = WEB(2,K) / VEC2(J,K)
TENT2(L) = R2(J,K)
1015 SET2 (M) = R2(J,K)
M = 0
DO 1020 K = 1, J3
L = L + 1
M = M + 1
R3(J,K) = WEB(3,K) / VEC3(J,K)
TENT2(L) = R3(J,K)
1020 SET3 (M) = R3(J,K)
CALL STATS (SET1, J1, MR1(J), SDR1(J))
CALL STATS (SET2, J2, MR2(J), SDR2(J))
CALL STATS (SET3, J3, MR3(J), SDR3(J))
CALL STATS (TENT2, L, MRT(J), SDRT(J))
1055 CONTINUE
C COMPUTE C-STAR AND ITS STATISTICS
C
DO 1000 I = NBURN, NTOT
DO 1000 J = 1, NT
L = 0
M = 0
DO 950 K = 1, J1
L = L + 1
M = M + 1
CST1(I,J,K) = INTPT1(NTOT,J,K) * G * ATTOT(1,K) / WP(1,K)
TENT2(L) = CST1(I,J,K)
950 SET1 (M) = CST1(I,J,K)
M = 0
DO 955 K = 1, J2
L = L + 1
M = M + 1
CST2(I,J,K) = INTPT2(NTOT,J,K) * G * ATTOT(2,K) / WP(2,K)
TENT2(L) = CST2(I,J,K)
955 SET2 (M) = CST2(I,J,K)
M = 0
DO 960 K = 1, J3
L = L + 1
M = M + 1
CST3(I,J,K) = INTPT3(NTOT(J,K)) * 6 * ATTOT(3,K) / WP(3,K)
TENT2(L) = CST3(I,J,K)
960 SET3 (M) = CST3(I,J,K)
CALL STATS (SET1, J1, MCST1(I,J), SDCST1(I,J))
CALL STATS (SET2, J2, MCST2(I,J), SDCST2(I,J))
CALL STATS (SET3, J3, MCST3(I,J), SDCST3(I,J))
CALL STATS (TENT2, L, MCSTT(I,J), SDCSTT(I,J))
1000 CONTINUE
DO 1795 I = NBURN, NTOT
DO 1785 J = 1, NT
C1MIN(J) = MCSTT(I,J) - CT1 * SDCSTT(I,J)
C1MAX(J) = MCSTT(I,J) + CT1 * SDCSTT(I,J)
C2MIN(J) = MCSTT(I,J) - CT2 * SDCSTT(I,J)
C2MAX(J) = MCSTT(I,J) + CT2 * SDCSTT(I,J)
1785 IF (I.EQ.0., NBURN) GO TO 1786
WRITE (6,2035) I
WRITE (6,2047) I
GO TO 1788
1786 WRITE (6,2036) I
WRITE (6,2049) I
1788 IF (I.EQ.0., NBURN) GO TO 1791
WRITE (6,2041)I1, (MOTNO(I1,K), CST1(I,1,K), CST1(I,2,K),
1 CST1(I3,K), BLANK, K = 1, J1)
WRITE (6,2064) (MCST1(I,J), J=1,4), (SDCST1(I,J), J=1,4)
WRITE (6,2065) (MCSTT(I,J), J=1,4), (SDCSTT(I,J), J=1,4)
WRITE (6,2066) (MCST3(I,J), J=1,4), (SDCST3(I,J), J=1,4)
WRITE (6,2067) (MCST4(I,J), J=1,4), (SDCST4(I,J), J=1,4)
WRITE (6,2068) C1MIN, C1MAX, C2MIN, C2MAX
GO TO 1795
1791 WRITE (6,2040)I1, (MOTNO(I1,K), CST1(I,1,K), CST1(I,2,K), CST1(I3,
1 K), BLANK, R1(1,K), R1(2,K), R1(3,K), BLANK, K = 1, J1)
WRITE (6,2066) (MCST1(I,J), J=1,4), MR1, (SDCST1(I,J), J=1,4), SMR1
WRITE (6,2040)I2, (MOTNO(I2,K), CST2(I,1,K), CST2(I2,K),
1 K), BLANK, R2(1,K), R2(2,K), R2(3,K), BLANK, K = 1, J2)
WRITE (6,2066) (MCST2(I,J), J=1,4), MR2, (SDCST2(I,J), J=1,4), SMR2
WRITE (6,2040)I3, (MOTNO(I3,K), CST3(I,1,K), CST3(I2,K), CST3(I3,
1 K), BLANK, R3(1,K), R3(2,K), R3(3,K), BLANK, K = 1, J3)
WRITE (6,2066) (MCST3(I,J), J=1,4), MR3, (SDCST3(I,J), J=1,4), SMR3
WRITE (6,2040)I4, (MOTNO(I4,K), CST4(I,1,K), CST4(I2,K), CST4(I3,
1 K), BLANK, R4(1,K), R4(2,K), R4(3,K), BLANK, K = 1, J4)
WRITE (6,2067) (MCST4(I,J), J=1,4), MR4, (SDCST4(I,J), J=1,4), SMR4
1794 CONTINUE
RETURN
END
APPENDIX B

LISTING OF THE SOLID PROPELLANT ROCKET MOTOR PERFORMANCE VERSUS TIME COMPUTER PROGRAM USING THE GROUP TRANSFORMATION METHOD
*P FOR MAIN
C GENERAL SOLID-PROPELLANT ROCKET MOTOR PERFORMANCE VS. TIME
C
DIMENSION XX(1700)
DIMENSION XLNP (3,15,200), FSAVE(3,15,200), PSAVE(3,15,200)
DIMENSION CC(200,4), PCO(200), FO(200), T(200), Y(200),
 1 WPRNT(200), TREP(200), PC (200), T(200), F(200)
DIMENSION AE(3,15), AE(3,15), AE(3,15), AE(3,15), WEB(3,15),
 1 XMOTNO(3,15), TEMP(3,15), PAF(3,15), TAIL(3,15), AETOT(3,15)
DIMENSION TGRP(4), EXTEM(3), EXPA(3), KOUNT(4), EPS(4)
DIMENSION BCX(12), BCD1(12), BCD2(12), BCD3(12), BCD4(12)
DIMENSION PCTW(10), NW(10), BREAKW(10), WINC(10)
DIMENSION PCTT(5), NT(5), BREAKT(5), TINC(5)
DIMENSION NGO(10), NSTOP(10), XNW(10), XNT(5), SETI(10)
COMMON XX
COMMON XLNP, FSAVE, PSAVE
COMMON BCDX, BCD1, BCD2, BCD3, BCD4
EQUIVALENCE
1 (XX(1), NSV2), (XX(3), ICON),
2 (XX(4), TAV), (XX(5), N1), (XX(6), NPRIME),
3 (XX(7), NPTS), (XX(8), TA), (XX(9), TT),
4 (XX(10), WPCT), (XX(11), TPCT),
5 (XX(13), CT2), (XX(14), TREP), (XX(214), T),
6 (XX(414), CC), (XX(1214), NSV1), (XX(1215), NXNT),
7 (XX(1216), NA), (XX(1217), KOUNT), (XX(1221), TEMP),
8 (XX(1266), IPNRT), (XX(1267), N2), (XX(1268), TO),
9 (XX(1269), NP), (XX(1270), EXPAT), (XX(1273), AETOT)
EQUIVALENCE
1 (XX(1318), PAF), (XX(1363), CPHI), (XX(1364), TD),
2 (XX(1365), WPRT), (XX(1565), XMOTNO), (XX(1601), NXNW)
EQUIVALENCE
1 (XX(1602), BREAKW), (XX(1612), BKEAKT), (XX(1617), WINC),
2 (XX(1627), TINC), (XX(1632), NGO), (XX(1642), NSTOP),
3 (XX(1652), PCTW), (XX(1662), PCTT)

INPUT FORMATS

81 FORMAT (112, 4F12.4)
82 FORMAT (A6, 6F12.4, 1X, I1)
83 FORMAT (2I6, 3F12.4, 16)
84 FORMAT (5(F10.4, I6))
85 FORMAT (4E12.5)
100 FORMAT (3I6)
101 FORMAT (2(E16.8, E12.5, E12.5))
102 FORMAT (12AG)

OUTPUT FORMATS

100 FORMAT (3AH, THE FOLLOWING OUTPUT IS FOR MOTOR NO. A6)
110 FORMAT(54H0, PCT WEB TIME TIME PC THRUST/)
111 FORMAT(F12.4,3F14.4)
112 FORMAT(54H0, PCT TAILOFF TIME TIME PC THRUST/)
1 READ (5, 83) NNXW, NXNT, TD, PHI, CT2, NSW
IF(NSW .GE. 0) READ (5,84) PSIA
WRITE(6, 83) NNXW, NXNT, TD, PHI, CT2
READ (5, 84) (PCTW(I), NW(I), I = 1,NXNW)
WRITE(6, 84) (PCTW(I), NW(I), I = 1,NXNW)
READ (5, 84) (PCTT(I), NT(I), I = 1,NXNT)
WRITE(6, 84) (PCTT(I), NT(I), I = 1,NXNT)
READ (5, 81) NA, (TGRP(I), I = 1,NA)
WRITE(6, 81) NA, (TGRP(I), I = 1:NA)
READ (5, 81) NP, (EXPA(I), I = 1:NP)
WRITE(6, 81) NP, (EXPA(I), I = 1:NP)
READ (5*102) (ACDX(I),I=1:12)
WRITE(6*102) (ACDX(I),I=1:12)
READ (5*102) (ACD1(I),I=1:12)
WRITE(6*102) (ACD1(I),I=1:12)
READ (5*102) (ACD2(I),I=1:12)
WRITE(6*102) (ACD2(I),I=1:12)
READ (5*102) (ACD3(I),I=1:12)
WRITE(6*102) (ACD3(I),I=1:12)
READ (5*102) (ACD4(I),I=1:12)
WRITE(6*102) (ACD4(I),I=1:12)
KOUNT(1) = 0
KOUNT(2) = 0
KOUNT(3) = 0
NGO(1) = 1
DO 4 I = 1:NXNW
NXW(I) = NW(I)
WINC(I) = 1. / XNW(I)
NGO(I+1) = NGO(I) + NW(I) + 1/I
NSTOP(I) = NGO(I+1) - 1
4 CONTINUE
DO 5 I = 1:NXMT
XNT(I) = NT(I)
TINC(I) = 1. / XNT(I)
ISMU = (NXNW + I + 1)
NGO(ISMU) = NGO(NXNW + I) + NT(I)
NSTOP(NXNW+I) = NGO(ISMU) - 1
5 CONTINUE
C
IPASS = 0
CPhi = COS (PHI)
NSUM = NXNW + NXMT
NSV0 = NSSTOP(NXNW)
NI = NSV0 - 1
NSV1 = NSV0 + 1
NSV2 = NSSTOP(NSUM)
DO 7 I = 1:NXNW
7 SET1(I) = PCTW(I) * .01
DO 8 I = 1:NXNW
8 PCTW(I+1) = SET1(I)
PCTW(I) = 0.
DO 9 I = 1:NXNT
9 SET1(I) = PCTT(I) * .01
DO 10 I = 1:NXNT
10 PCTT(I+1) = SET1(I)
PCTT(I) = 0.
C
GROUP MOTORS INTO TEMPERATURE GROUPS
C
TGRP(MAX+1) = TGRP(NA) + 2.
15 READ (5, A2) XMOT, FIRFTP, PAX, IP, IT, TO, PCP, NMAX
WRITE(6, A2) XMOT, FIRFTP, PAX, IP, IT, TO, PCP, NMAX
DO 19 J = 1, NA
EPS(J) = (TGRP(J+1) - TGRP(J)) *.5
IF ((TGRP(J) + EPS(J)) - FIRFTP) I9, 19, 25
19 CONTINUE
25 KOUNT(J) = KOUNT(J) + 1
K = KOUNT(J)
READ (5, A5) AE1(J,K), AE2(J,K), AE3(J,K), AE4(J,K)
WRITE(6, 109) XMOTNO(J, K)
WRITE(6, 110)
DO 56 IJ = 1, MXNW
AI = 0.
NG = NG0(IJ)
LSP = MST0P(IJ)
DELPW = PCTW(IJ) + PCTW(IJ+1)
DO 55 I = NG, LSP
IF (IJ .NE. 1) GO TO 53
IF (I .GE. 1) GO TO 54
53 AI = AI + 1
54 IF (IPASS .EQ. 1) GO TO 55
 WPRNT(I) = (PCTW(IJ) + WINC(IJ) * AI * DELPW) * 100.
55 WRITE (6, 111) WPRNT(I), T(I), PCO(I), FO(I)
56 CONTINUE
 WRITE (6, 112)
 60 IJ = 1, NXNT
 AI = 0,
 NG = NGO (IJ + NXNW)
 NSP = NSTOP(IJ + NXNW)
 DELPT = PCTT(IJ+1) - PCTT(IJ)
 60 58 I = NG, NSP
 IF (IPASS .EQ. 1) GO TO 5A
 AI = AI + 1.
 WPRNT(I) = (PCTT(IJ) + TINC(IJ) * AI * DELPT) * 100.
58 WRITE (6, 111) WPRNT(I), T(I), PCO(I), FO(I)
60 CONTINUE
 IPASS = 1
 IF (NDMOI) 65, 15, 65
65 CALL LSTSQ (1, NSV0, WEB, 1)
 CALL LSTSQ (NSV1, NSV2, TAIL, 2)
 GO TO 1
END
'IP FOR SRCH1

SUBROUTINE SRCH1 (Y)

DIMENSION XX(1700)
DIMENSION T(200), CC(200,4), TREP(200), Y(200)
DIMENSION BREAKW(10), BREAKT(5), WINC(10), TINC(5), NGO(10), NSTOP(10)
COMMON XX

EQUIVALENCE
1 (XX(4), TAV), (XX(8), Th), (XX(10), WPCT),
2 (XX(14), TREP), (XX(214), T), (XX(414), CC),
3 (XX(126A), TO), (XX(1215), NXNT), (XX(5), N1),
4 (XX(1601), NXNW), (XX(7), NPTS), (XX(9), TT),
5 (XX(11), TPCT), (XX(3), ICON)

EQUIVALENCE
1 (XX(1602), BREAKW), (XX(1612), BREAKT), (XX(1617), WINC),
2 (XX(1627), TINC), (XX(1632), NGO), (XX(1642), NSTOP)

NI = ICON - 1
XI = -1.
NSUM = NXNW + NXNT
DO 45 IJ = 1, NSUM
XI = 0.
NG = NGO(IJ)
NSP = NSTOP(IJ)
DELW = BREAKW(IJ+1) - BREAKW(IJ)
IK = IJ - NXNW
DELT = BREAKT(IK+1) - BREAKT(IK)
DO 40 I = NG, NSP
IF (IJ .GT. NXNW) GO TO 15
IF (IJ .NE. 1) GO TO 8
8 XI = XI + 1.
9 T(I) = BREAKW(IJ) + XI*WINC(IJ)*DELW
GO TO 21
15 XI = XI + 1.
T(I) = BREAKT(IK) + XI*TINC(TK)*DELT
21 DO 28 J = 1, NPTS
IF (TREP(J) - T(I)) 28, 28, 22
22 JS = J - 3
IF (JS) 23, 23, 25
23 JS = 1
GO TO 32
25 IF (JS - NPTS + NI) 32, 32, 26
26 JS = NPTS - NI
GO TO 32
28 CONTINUE
32 TQ = T(I) - TAV
Y(I) = ((CC(JS,4))*TQ + CC(JS,3))*TQ + CC(JS,2))*TQ + CC(JS,1)
40 CONTINUE
45 CONTINUE
RETURN
END
SUBROUTINE LSTSQ (NGOr NSTOPr TIMEr IPASS)
DIMENSION XX(1700)
DIMENSION XLNP(3,15,200), FSAVE(3,15,200), FD1(3,15,200), PD(3,15,200)
1. PSAVE(3,15,200), FD2(3,15,200), FD3(3,15,200), PD1(3,15,200)
DIMENSION C2MAX(200,3), C2MIN(200,3), XMFD(200,3)
1 Pikd(3,200), XMNP(3,200), XMOTNO(3,15), AETOT(3,15)
2 PAF(3,15), TEMP(3,15), TIME(3,15), ARRAY(46,4)
3 XLMND(200), C3MIN(200), C3MAX(200), WPRNT(200)
4 XMNO(200), C3_MIN(200), C3_MAX(200), XMPTD(200)
5 SET1(45), SET2(45), XMTEMP(3), DENOM(3)
6 EXP(3), SIGP(3), X(4), KOUN(4)
7 IL(4), L6O(10), PCTW(10), PCTT(5)
8 WINC(10), TINC(5), SET3(45), TEMX(45)
DIMENSION BCDX(12), BCD1(12), BCD2(12), BCD3(12), BCD4(12)
COMMON XX
COMMON XLNP, FSAVE, PSA V
COMMON BCDX, BCD1, BCD2, BCD3, BCD4
EQUIVALENCE
1 (XX(5)), N1, (XX(11)), TPCT, (XX(10)), WPCT,
2 (XX(1216)), NT, (XX(1217)), KOUNT, (XX(1221)), TEMP,
3 (XX(1269)), NP, (XX(1270)), EXPA, (XX(1273)), AETOT,
4 (XX(1318)), PAF, (XX(1363)), CPHI, (XX(1364)), T0,
5 (XX(1365)), WPRNT, (XX(1565)), XMOTNO, (XX(13)), CT2,
6 (XX(1)), NSV2, (XX(1214)), NSV1, (XX(1601)), WXW,
7 (XX(1632)), LGO, (XX(1652)), PCTW, (XX(1662)), PCTT,
8 (XX(1617)), WINC, (XX(1627)), TINC
EQUIVALENCE (XLNP(1), FD1(1), FD2(1), FD3(1), PD(1))
C OUTPUT FORMATS
C 200 FORMAT (1H1, 13X, 56H TRANSFORMED TIMES TRANSFORMED CHAMB
NER PRESSURE)
201 FORMAT (7H PCT., 16X, 3AH MEANS WITH TWO SIDED TOLERANCE LIMITS/
1 36H WER MIN. MAX., /7X, 30H MEAN MIN.
2 MAX. /7H TIME)
202 FORMAT (1H1, 13X, 54H TRANSFORMED TIMES TRANSFORMED THRU
1 AT PA =FA.2)
205 FORMAT (1X, F6.2, 3F10.4, 3F12.4)
1201 FORMAT (5H PCT. / AH TAILOFF / 5H TIME)
C NSV= N1 + 1
IF (IPASS = 2) 66, 72, 66
66 NM = KOUNT(1) + KOUNT(2) + KOUNT(3)
C COMPUTE STATISTICS FOR TEMPERATURE
C DO 70 J = 1,NT
70 CONTINUE
C LEAST SQUARE FIT LOG OF BURN TIME VS. TEMP.
C DO 210 J = 1,NT

JJ = KOUNT(J)
DO 210 K = 1, JJ
LL = LL + 1
ARRAY(LL,1) = 1.
ARRAY(LL,2) = TEMP(J,K)
ARRAY(LL,3) = TEMP(J,K)**2
ARG = TIME(J,K)
ARRAY(LL,4) = ALOG(ARG)
210 CONTINUE
CALL GLS1 (ARRAY, X, IL, NM, 3, ALPHA, 0., 0.)
XLNPDL(1) = (X(3)*TD + X(2))**TD + X(1)

C COMPUTE LOG OF MEANS OF BURN TIMES AND SIGP*S
C
UO 230 J = 1, NT
XLNP(J,1) = (X(3)*XMTMP(J) + X(2))*XMTMP(J) + X(1)
230 SIGP(J) = (XLNP(J,1) - XLNPDL(1)) / WENOM(J)

C COMPUTE TRANSFORMED TIMES AND IN THE SAME LOOP LFAST SQUARE
C FIT LOG OF PRESSURE VS. TEMP
C
IJ = 0
UO 240 L = NGO, NSTOP
IQ = IJ + 1 + (IPASS-1)*NXNW
IF (L, NL, LGO(IQ)) GO TO 231
IJ = IJ + 1
AL = 0.
INCR = 1 / IJ
XINC = XINC

231 AL = AL + 1
UO 235 J = 1, NT
JJ = KOUNT(J)
UO 235 K = 1, JJ
LL = LL + 1
ARRAY(LL,4) = XLNP(J,K,L)
ARG = SIGP(J)*TD - TEMP(J,K))
TEM = TIME(J,K) / (EXP (ARG))
IF (IPASS - 1) 232, 232, 233
XLNPDL(L) = (X(3)*TD + X(2))*TD + X(1)

C COMPUTE XMLNP FROM CURVE FIT AND PIK'S
C
UO 240 J = 1, NT
XLNP(J,L) = (X(3)*XMTMP(J) + X(2))*XMTMP(J) + X(1)
PIK(J,L) = (XLNP(J,L) - XMLNP(J,L))/WENOM(J)
240 CONTINUE
C COMPUTE AND PRINT OUT TRANSFORMED PRESSURES
C
106
DO 100 L = NGO, NSTOP
 LL = 0
 DO 90 J = 1, NT
 JJ = KOUNT(J)
 DO 90 K = 1, JJ
 LL = LL + 1
 ARG = PKD(J,K,L) * (T0 - TFMP(J,K))
 PD(J,K,L) = EXP(XLNP(J,K,L) + ARG)
 SET3(LL) = PD(J,K,L)
 90 CONTINUE

 CALL ST'TS (SET3, NM, XMPTD(L), SDPTD)
 C3MIN(L) = XMPTD(L) - CT2*SDPTD
 C3MAX(L) = XMPTD(L) + CT2*SDPTD
 100 CONTINUE

C
 IF (IPASS <= 2) 182, 101, 182

 WRITE (6, 201)
 WRITE (6, 202)
 104 WRITE (6, 1201)
 105 WRITE (6, 205) WPRNT(L), XMPTD(L), C3MIN(L), C3MAX(L),
 1 XMPTD(L), C3MIN(L), C3MAX(L)
 CALL QUIKMV (-1, 46, RCDX, BCD1, -NSV2*C3MAX, C3MAX)
 CALL QUIKMV (0, 67, RCDX, BCD1, -NSV2, XMPTD, XMPTD)
 CALL QUIKMV (0, 77, RCDX, BCD1, -NSV2*C3MIN, C3MIN)

C
 COMPUTE TRANSFORMED THRUSTS

C
 182 DO 198 L = NGO, NSTOP
 LL = 0
 DO 190 J = 1, NT
 JJ = KOUNT(J)
 DO 190 K = 1, JJ
 LL = LL + 1
 RATIO = PD(J,K,L) / PSAVE(J,K,L)
 FVAC = FSAVE(J,K,L) + PAF(J,K)*AFTOT(J,K)*CPI
 FD1(J,K,L) = RATIO*FVAC - EXPA(1)*AETOT(J,K)*CPI
 SET1(LL) = FD1(J,K,L)
 190 IF (NP = 1) 190, 190, 194
 194 FD2(J,K,L) = RATIO*FVAC - EXPA(2)*AETOT(J,K)*CPI
 SET2(LL) = FD2(J,K,L)
 196 IF (NP = 2) 190, 190, 196
 196 FD3(J,K,L) = RATIO*FVAC - EXPA(3)*AETOT(J,K)*CPI
 SET3(LL) = FD3(J,K,L)
 190 CONTINUE

 CALL STATS (SET1, NM, XMFD(L), SUD)
 C3MIN(L,1) = XMFD(L,1) - CT2*SDFU
 C3MAX(L,1) = XMFD(L,1) + CT2*SDFU
 IF (NP = 1) 198, 198, 194
 CALL STATS (SET2, NM, XMFD(L,2), SUD)
 C3MIN(L,2) = XMFD(L,2) - CT2*SDFU
 C3MAX(L,2) = XMFD(L,2) + CT2*SDFU
 IF (NP = 2) 196, 198, 196
 CALL STATS (SET3, NM, XMFD(L,3), SUD)
 C3MIN(L,3) = XMFD(L,3) - CT2*SDFU
 C3MAX(L,3) = XMFD(L,3) + CT2*SDFU
 198 CONTINUE

C
 IF (IPASS <= 2) 209, 301, 209
 301 M = 0
 204 M = M + 1
WRITE (6, 202) EXPA(M)
WRITE (6, 201)
DO 206 L = 1, NSV2
IF (L - NSV1) 206, 207, 206
207 WRITE (6, 1201)
206 WRITE (6, 205) WPRNT(L), XMTD(L), C1MIN(L), C1MAX(L),
1 XMFD(L+M), C2MIN(L+M), C2MAX(L+M)
IF (M - NP) 204, 218, 218
218 CALL QUIKMV (-1, 46, BCDX, BCD2, -NSV2, C1MAX, C2MAX(1,1))
CALL QUIKMV (0, 67, BCDX, BCD2, -NSV2, XMTD, XMFD(1,1))
IF (NP - 1) 209, 209, 220
220 CALL QUIKMV (-1, 46, BCDX, BCD3, -NSV2, C1MAX, C2MAX(1,2))
CALL QUIKMV (0, 67, BCDX, BCD3, -NSV2, XMTD, XMFD(1,2))
CALL QUIKMV (0, 77, BCDX, BCD3, -NSV2, C1MIN, C2MIN(1,2))
IF (NP - 2) 209, 209, 222
222 CALL QUIKMV (-1, 46, BCDX, BCD4, -NSV2, C1MAX, C2MAX(1,3))
CALL QUIKMV (0, 67, BCDX, BCD4, -NSV2, XMTD, XMFD(1,3))
CALL QUIKMV (0, 77, BCDX, BCD4, -NSV2, C1MIN, C2MIN(1,3))
209 RETURN
END
'IP FOR CURVF

C CURVF FIT

DIMENSION XX(1700)
DIMENSION ALD(400), DAL(400), ALC(400), ALY(1000), TL(200),
1 T(200), S(200), A3(200), SC(200), NP(200),
2 NLR(200), CC(200,4)
COMMON XX
EQUIVALENCF
1 (XX(3), ICON), (XX(4), TAV), (XX(414), CC),
2 (XX(1266), IPRNF)
WRITE (6,111)
110 FORMAT (2F15.5)
111 FORMAT (1H1,12HINPUT ARRAYS)
WRITE (6,110) (T(I),S(I), I=1,N)
C ***THE ELEMENTS OF THE T AND S ARRAYS ARE ARRANGED IN ASCENDING ORDER
C AND ARE THEN NORMALIZED.
CALL ACCMN(T *S, N)
CALL NORMLZ(T,TC,N,TAV)
CALL NORMLZ(S,SC,N,SAV)
DO 1 I=1,N
ALD(2*I-1)=TC(I)
ALD(2*I-1)=SC(I)
1 VAL(2*I-1)=TC(I)
C HERE "EGIMS PIECEWISE FITS WITH CUBICS, EMBRACING M POINTS AT TIME
K = 1
M = ICON
IF(M-2*(M/2))23,24,23
23 IS=0
GO TO 25
24 IS=1
25 GO TO 25
M=M/N+1-M
IF (IPRF) 62, 64, 62
62 WRITE (6, 63) TAV, M
63 FORMAT(78Hfollowing are coefficients of slightly discontinuous cubic
631,ics in the time (time=F1,7+25H), for time ranges shown in
632,angio. coeff of 0**1 coeff. of 0**2 coeff. of 0**3
633,coeff. of O**3,14+2ph points linked per sec/)
C ***COMPUTING THE COEFFICIENTS OF THE CUBICS AND STORING THEM IN THE
C CC ARRAY
64 L0 S2 1=1,MM
CALL CF2F1(0,ALC,A3,ALD(2*I-1),3,M)
CALL CF2F2(0,0,ALC,3,NFR,3,3)
CC(1+1) = DER(1) + SAV
1=1.
L0 S2 J=1,3
1= K * FLOAT (J)
52 CC(1, J+1) = DER(2*J+1) / A
CALL CF2F1(0,ALC,A3,ALD,3,M)
C ***COMPUTING THE DISCREPANCIES FOR THE PIECEWISE FITS.
L0 S3 I=1,N
J=I-(MH-I5)
IF(J-1)57,57,56
56 IF(J-MM)59,58,57
58 CALL CF2F1(0,ALC,A3,ALD(2*J-1),3,M)
57 CALL CF2F2(TC(I),ALC,3,NFR,0,3)
53 DPI(I) = SC(I) - DER(I)
E=T(I)

109
IZ=MH-IS
H=T(IZ+1)
DO 166 I = 1,MM
IF (IPRINT) 51, 55, 51
51 WRITE (6, 54) H, (CC(I,J), J=1,4)
54 FORMAT(F7.2,3H TOF8.2,4E17.8)
55 H=H
J=I+MH+1-IS
IF(I+1-MM)164,165,164
165 J=N
H = T(J)
GO TO 166
164 H=T(J)
166 CONTINUE
WRITE (6,124) MK
124 FORMAT(17H PIECEWISE CUBICS / 21H NO. OF POINTS LINKED, IP)
WRITE (6,127)
127 FORMAT (1H0,3(30X,6HDELTAS))
DO 151 J=1,N+1
151 WRITE (6,153) T(J),S(J),DP(J)
153 FORMAT (F10.4,2X,F10.3,F1.4)
CALL STDEV (UP,N,S2)
WRITE (6,11) S2
11 FORMAT (19H0, STD. DEV. F11.b)
RETURN
END

!*IP FOR STATS
SUBROUTINE STATS (X, N, XM, SD)
DIMENSION X(100)
SUM1 = 0.
SUM2 = 0.
XNO = N
XNO1 = XNO - 1.
DENOM = XNO*XNO1
DO 10 I = 1,N
SUM1 = SUM1 + X(I)
10 SUM2 = SUM2 + X(I)*X(I)
XM = SUM1 / XNO
XNUM = (XNO*SUM2 - SUM1*SUM1)
IF (XNUM .LE. 0.) GO TO 14
SD = SQRT(XNUM/DENOM)
IF ((SD/XM) .LT. .00025) GO TO 14
GO TO 15
14 SD = 0.
15 RETURN
END
'IP FOR GLS1:
SUBROUTINE GLSI(U,X,IL,N,M,ALPHA,E1,E2)
DIMENSION A(46,4), B(46,4), X(4), IL(4)
MM=M+1
DO 2 J = 1,N
DO 2 K = 1,MM
2 A(J,K) = H(J,K)
LL=1
DO 60 J=1,MM
I=1
DO 3K=1,MM
II=I+1
DO 4 J=II,N
IF (ABS(A(J,K))=E1)4,4,6
6 T1=SQRT((U(J,K))**2+(A(I,K))**2)
S=A(J,K)/T1
C=A(I,K)/T1
DO 5 SL=K,MM
T2=C*A(I,L)+S*A(J,L)
A(J,L)=S*A(I,L)+C*A(J,L)
5 A(I,L)=T2
LL=LL+1
4 CONTINUE
IF (ABS(A(I,K))=E2)3,3,8
8 IL(K)=1
I=I+1
3 CONTINUE
X(MM)=-1.0
II=M
DO 35 I=1,M
35 X(I)=0.
DO 30 J=1,M
IF (IL(II))30,30,31
31 S=0.
LL=II+1
I=IL(II)
DO 32 K=LL,MM
32 S=S*A(I,K)*X(K)
X(II)=-S/A(I,II)
30 II=II-1
IF (IL(MM))50,51,50
51 ALPHA=0.
GO TO 52
50 I=IL(MM)
ALPHA=A(I,MM)
52 RETURN
END
SUBROUTINE ACCENU(X,Y,N)
C THIS SUBROUTINE SORTS (X,Y) POINTS INTO A SEQUENCE OF ASCENDING X VALUES.
C N IS THE NO. OF POINTS IN THE SEQUENCE. WHILE X AND Y ARE ASSOCIATED, X IS THE
C INDEX OF A POINT. THE ARRAYS OCCUPY THE SAME STORAGE AFTER SORTING AS THE
C THEY DID BEFORE SORTING. N IS THE NO. OF POINTS.
DIMENSION X(1),Y(1)
C DIMENSIONS OF ABOVE VARIABLES ARE ACTUALLY EFFECTED BY THE
C HIGHER (CALLING) PROGRAM OR THE
C EQUIVALENCE (I,T)
J=1
C J IS THE INDEX OF THE NEXT MEMBER OF THE SET OF POINTS WHICH WILL BE
C ORDERED BY OPERATIONS IN THE INNER LOOP DO 10 K=1,N
C GO TO 3
C THE ABOVE TRANSFER AVOIDS MIS-OFFRACTION IF N=1 OR LESS, SEE CARD
C NO 305. NORMALLY, PROGRESS TO STMT. 4.
C IF (X(I)) X(K)) 1, I=1, N
1 K=I
I=I+1
C K IS THE TENTATIVE INDEX OF THE SMALLEST UN-ORDERED X VALUE.
C IF I=1, A SCREW
C GO TO 6
C 5 I=I+1
C 6 IF (I-I) 5, 7, 7
C 7 IF (K-J)-1, 9, 2
2 T=X(K)
X(K)=X(J)
X(J)=T
T=Y(K)
Y(K)=Y(J)
Y(J)=T
C BOTH X AND Y HAVE BEEN SWAPPED, USING T AS A TEMPORARY STAGE.
C 9 J=J+1
3 IF (J-N)-0, 10, 10
10 RETURN
END

SUBROUTINE NORMLZ(X,Y,N,AV)
C THIS ROUTINE AVERAGES N ELEMENTS IN X ARRAY GETTING AV AS THE
C RESULT. IT THEN PRODUCE'S ARRAY Y WHICH IS SAME AS X*MINUS AV,
C TERM BY TERM
DIMENSION X(1),Y(1)
AV=X(1)
LO 1 I=2,N
1 AV=AV+X(I)
AV = AV / FLOAT(N)
LO 2 I=1,N
2 Y(I)=X(I)-AV
RETURN
END

112
'IP FOR FIXIT
SUBROUTINE FIXIT(A,N,N2,N7)
DIMENSION A(10,1),B(5,1),N(50),KK(4),S1(15),S2(15)
DO 200 J=N2,N7
DO 100 I=1,N
100 D(I)=A(J,I)
200 CALL STDEV(N,N,S1(J))
 KK(1)=8
 KK(2)=10
 KK(3)=12
 KK(4)=14
 LO 400 J=J+4
 DO 300 I=1,N
300 U(I)=D(I)
400 CALL STDEV(N,N,S2(J))
 WRITE (6, 11) (S1(J), J=N2,N7), (S2(J), J=1,4)
11 FORMAT(15H0 STD. DEV. *6F11.6*2X*4F11.6)
RETURN
END

'IP FOR STDEV
SUBROUTINE STDEV(X,N,S)
DIMENSION X(1)
SUMX=0.
XSQR=0.\nENSN
LO 100 I=1,N
SUMX=SUMX+X(I)
100 XSQR=XSQR+(X(I))*2
SP=XSQR-((SUMX**2)/EN)
S = SQRT ((SP / (EN - 1.))
RETURN
END
IP FOR CF2F1

SIMROUTINE CF2F1(Jr,ALCr,IT,ALWr,ALUr,Kr,Nr)
LIMENSION TMP(2),ALWr(1),ALUr(1),ALC(1)

Kr=6*Kr+4
FCr=K

IIT = 2
IF(IIT)=11,1,11

11 NT = 3
1 IF(Jr)33,3,33
33 TMP(2)=0.0
GO TO 2

3 ALC(Kr+4)=0.0
ALC(Kr+3)=0.0
FNR=ALC(Kr+3)-ALW(Kr+3)

NN=0
DO 5 I=1,N
NN = NN + NT
ALC(Kr+4)=ALC(Kr+4)+ALD(NN)

5 ALC(Kr+3)=ALC(Kr+3)+ALD(NN-1)
TMP(1)=ALC(Kr+3)/FN
ALC(Kr+3)=TMP(1)
TMP(2)=ALC(Kr+4)/FN
ALC(Kr+4)=TMP(2)

2 I=50
NM=-2
DO 6 I=1,N
NM=NM+5
NN = NN + NT
ALW(NM)=ALD(NN)-TMP(2)

6 ALC(NM-1)=ALD(NN-1)-TMP(1)
NM=-2
NN=-4
DO 8 I=1,N
NN=NN+5
IF(IIT)=77,7,77

77 NM = NM + NT
ALW(NN)=ALD(NM)
GO TO 8

7 ALW(NN)=1.0

8 CONTINUE
NN=0
DO 9 I=1,N
NN=NN+5

9 ALW(NN)=1.0
FJJ=0.0
ALC(Kr+5)=J
IF(JJ)=17,15,17

17 FJJ=FJJ+1.0
NN=0
DO 18 I=1,N
NN=NN+5

18 ALW(NN)=ALW(NN)*ALW(NN-2)
IF(JJ)=17,15,15

15 ALC(Kr+1)=0.0
ALC(Kr+2)=0.0
ALC(Kr-2)=0.0
NN=-4
DO 19 I=1,N
NN=NN+5
TMP(1)=ALW(NN)*ALW(NN+4)
\[
\begin{align*}
\text{ALC}(K6+2) &= \text{TMP}(1) \cdot \text{ALW}(NN+1) + \text{ALC}(K6+2) \\
\text{TMP}(1) &= \text{TMP}(1) \cdot \text{ALW}(NN+4) \\
\text{ALC}(K6+1) &= \text{ALC}(K6+1) \\
19 \quad \text{ALC}(K6-2) &= \text{TMP}(1) \cdot \text{ALW}(NN+2) + \text{ALC}(K6-2) \\
\text{ALC}(K6-2) &= \text{ALC}(K6-2) / \text{ALC}(K6+1) \\
111 \quad \text{ALC}(K6+2) &= \text{ALC}(K6+2) / \text{ALC}(K6+1) \\
112 \quad \text{ALC}(K6-3) &= 0.0 \\
242 \quad L3 &= 0 \\
L1 &= -1 \\
L4 &= 0 \\
K6 &= K6-6 \\
113 \quad \text{IF}(FJJ-FK) &= 115, 122, 122 \\
114 \quad \text{FIJJ} &= FJJ+1.0 \\
\text{ALC}(K6+2) &= 0.0 \\
\text{ALC}(K6+1) &= 0.0 \\
\text{ALC}(K6-2) &= 0.0 \\
116 \quad \text{IF} &= 4 \\
117 \quad \text{DO} &= 119 \quad I = 1, N \\
118 \quad \text{IF} &= \text{NN}+5 \\
L2 &= \text{NN}+L1 \\
L5 &= \text{NN}+L4 \\
119 \quad \text{TMP}(1) &= \text{ALC}(K6+3) \cdot \text{ALW}(L2+4) \\
\text{ALW}(L2+4) &= (\text{ALW}(NN+2) - \text{ALC}(K6+4)) \cdot \text{ALW}(L5+4) - \text{TMP}(1) \\
\text{TMP}(1) &= \text{ALW}(L2+4) \cdot \text{ALW}(NN) \\
\text{ALC}(K6+2) &= \text{TMP}(1) \cdot \text{ALW}(NN+1) + \text{ALC}(K6+2) \\
\text{TMP}(1) &= \text{TMP}(1) \cdot \text{L4}(L2+4) \\
\text{ALC}(K6+1) &= \text{TMP}(1) + \text{ALC}(K6+1) \\
120 \quad \text{ALC}(K6-2) &= \text{TMP}(1) \cdot \text{ALW}(NN+3) + \text{ALC}(K6-2) \\
\text{ALC}(K6-2) &= \text{ALC}(K6-2) / \text{ALC}(K6+1) \\
\text{ALC}(K6-2) &= \text{ALC}(K6-2) / \text{ALC}(K6+1) \\
121 \quad \text{IF}(L3) &= 42, 120, 42 \\
122 \quad \text{HT TURN} \\
\text{FIN} &
\end{align*}
\]
```
* IP FOR CF2F2

SUROUTINE CF2F2(ARG, ALC, K6, DER, IO, K)
DIMENSION TMP(6), ALC, DER
XBAR = ARG
FKB = K
K6 = 6 * K + 4
IF (ALC(K6+5) >= 22, 22, 22)
22 FJJ = ALC(K6+5)
   NN = K6 + 6
   NO = I + 1
   DO 23 I = 1, NO
   NN = NN + 6
23 ALC(NN) = U, 0
   TMP(1) = 0, 0
24 TMP(2) = 1, 0
25 IF (ALC(K6+5) = TMP(1)) 2311, 2311, 2311
2311 TMP(1) = TMP(1) + 1.0
   TMP(2) = TMP(2) * XBAR
   IF (TMP(2)) 25, 24, 25
231 ALC(K6) = TMP(2)
   IF (TMP(1)) 2322, 2322, 2322
2322 K6 = K6
236 IF (XBAR <= 2344) 2344, 2344, 2344
2344 TMP(2) = ALC(KK6+6)
   ALC(KK6+6) = 0, 0
   GO TO 235
234 TMP(2) = ALC(KK6+6) / XBAR
235 ALC(KK6) = TMP(2) * TMP(1)
   TMP(1) = TMP(1) - 1.0
   IF (TMP(1)) 236, 236, 236
232 NN = 1
   TMP(1) = ALC(KK6+2)
   TMP(2) = ALC(KK6+1)
   KK6S = K6
   KK6 = K6 + 6
   DO 241 I = 1, NO
   KK6 = KK6 + 6
   NN = NN + 2
   DER(NN) = TMP(1) * ALC(KK6)
241 DER(NN+1) = (ALC(KK6)**2) / TMP(2)
242 L3 = 0
   L7 = 0
   LI = 1
   L4 = 6
26 IF (FJJ < KFR) 2111, 2111, 2111
2111 FJJ = FJJ + 1.0
   KK6 = KK6S
   NN = 1
   TMP(1) = ALC(KK6+2)
   TMP(2) = ALC(KK6+3)
   TMP(3) = ALC(KK6+4)
   TMP(4) = ALC(KK6+5)
   KK6S = KK6 + 6
   TMP(6) = 0, 0
   KK6 = K6 + 6
   DO 29 I = 1, NO
   KK6 = KK6 + 6
   NN = NN + 2
   L6 = KK6 + 4
L7
```

L2=K6+L1
TMP(5)=TMP(2)*ALC(L2)
TMP(5)=(XRAR-TMP(1))*ALC(L6)-TMP(5)
L5=K6+L4
ALC(L2)=TMP(6)*ALC(L5)+TMP(5)
DER(NN)=ALC(L2)*TMP(3)+DER(NN)
DER(NN+1)=((ALC(L2)**2)/TMP(4))+DER(NN+1)
29 TMP(6)=TMP(6)+1.0
CF2
IF(L3)242,30,242
30 L3=1
L1=0
L4=5
L7=-1
GO TO 26
CF2
211 IF(ALC(K6+5))212,212
212 DER(1)=DER(1)+ALC(K6+3)
CF2
212 RETURN
CF2
END
* X0T MAIN
"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in connection with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information derived from NASA activities and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities but not necessarily reporting the results of individual NASA-programmed scientific efforts. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546