NASAACONTRACTOR € ‘nuatmmg'»g

A§ REPORT

= : N66 39893 S
3 m’ x (ACCESSION NUMBER) (THRU . = P
= : //Ié/ // Microfiche (MEFI Tl
zvl . 3 ' tPAGES) é :.an I
~ ( R-él 0') 5532 luly BT

NASA CR O TMxX GR AD NUMBE (CATEGORY)
~r : S
GPC PRICE

IT ICAL” TRACKING TA! o emcesis_ .7
FOR MAN-MACHINE RESEARCH

'RELATED TO THE OPERATOR’S

EFFECTIVE DELAY TIME

|
I

. Ql‘ (\‘R

Hﬂ&‘ 

PART I THEORY AND EXPERIMENTS WITH A
FIRST-ORDER DIVERGENT CONTROLLED ELEMENT

). McDonnell, and A. V. Phatak i

- Prepared by

SYSTEMS TEC?WOLOGY INC.
_ Hawthorne, Calif,

Jor Ames Research Center

 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION « WASHINGTON, D. C. - NOVEMBER 1966




NASA CR-616

A "CRITICAL" TRACKING TASK FOR MAN-MACHINE RESEARCH

RELATED TO THE OPERATOR'S EFFECTIVE DELAY TIME

PART I: THEORY AND EXPERIMENTS WITH
A FIRST-ORDER DIVERGENT CONTROLLED ELEMENT

By H. R. Jex, J. D. McDonnell, and A. V. Phatak

Distribution of this report is provided in the interest of
information exchange. Responsibility for the contents
resides in the author or organization that prepared it.

Prepared under Contract No. NAS 2-2288 by
SYSTEMS TECHNOLOGY, INC.
Hawthorne, Calif.

for Ames Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information
Springfield, Virginia 22151 - Price $3.00




FOREWORD

This report was prepared under Contract NAS2-2288 between Systems
Technology, Inc., Hawthorne, California, and NASA. The NASA project
monitor was George Rathert. The STI technical director was Duane T. McRuer
and the project engineer was Henry R. Jex.

The experimental work was carried out jointly at The Franklin Institute
Iaboratory for Research and Development, Philadelphia, Pennsylvania. The

principal investigator there was William C. Reisener under the technical
direction of E. S. Krendel.

iii

K ECEDING PAGE BLANK NOT FILMED.




ABSTRACT

A closed-loop compensatory tracking task has been developed which
yields a measure of the human operator's time delay characteristics
vwhile tracking, constrains his behavior to within very narrow limits,
and provides a 1ow—var1abllity indicator of the operator's tracking
ability. The task is called the "Critical Task" becausc the operator
is required to stabilize an increasingly unstable controlled element

up to the critical point of loss of conmtrol.

In the present report, a first-order divergence is used as the
controlled element to obtain certain theoretical advantages. Based on
recent human response research, a theoretical analysis of this man-machine
system is performed, and an experimental program is described which enables
describing function and critical task measures to be compared. A specific
critical task mechanization and operating procedure 'is developed which
yields consistent and reliable measurements of the critical levels of
instability.

An analysis of the describing function results shows that, when
operating near criticality, the subject’s behavior is adequately repre-
sented by recently developed human operator describing function models
and adaptation laws. Further, the extrapolation of describing function
data to the critical level of instability shows that the operator con-
sistently loses control at small, but finite, mean stability margins.
The Jjust-controllable first-order divergence is shown to be related
dominantly to the operator's effective time delay, and secondarily to
the nominal variations of his average tracking characteristics and to
mid-frequency phase lags due to long period kinesthetic adaptation
effects.
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A "CRITICAL" TRACKING TASK FOR MAN-MACHINE RESEARCH
REIATED TO THE OFERATOR'S EFFECTIVE DEIAY TDME

Part I. Theory and Experiments with
a First-Order Divergent Controlled Element

SECTION I
INTRODUOTTICN

Recent research in man-machine systems (refs. 1 —5) shows that
several important system characteristies (such as closed-loop stability,
bandwidth, etc.) are critically dependent on the value of the pilot's
effective delay time, to. Effective delay time is defined herein as an
apparent "pure time delay," "dead time," or "transmission lag" which is,
in actumlity,a low frequency approximetion to the sum of several high
frequency effects. The primary constituents of 1o are neural transmis-
sion delays, effective lags due to neural coding, any delay time involved
in the human pilot’s equalization activities, and an effective delay
approximating the higher order terms in the neuromuscular response of a
particular 1limb. (An additional component in Te results when the system
is such that the equalization lead, Ty, can be used for partial compensa-
tion of high frequency lags.) While some components of Te are involved
in the classical step reaction-time delay, others, such as the cerebral
equalizing and processing delays, are different. Furthermore, during
continuous tracking of randomlike inputs, modes of human subsystem opera-

tion different frem those used for discrete movements are brought inte play,



e.g., contrast the saccadic (jump) movements of the eyeball versus its
smooth pursuit movements for respective step or smooth changes in the
desired point of regard (ref. 6). Consequently, a simple psychomotor
test for measuring the effective delay time during continuous tracking

would be of great practical value.

Such a tracking test, for use in programs related to man—machine

integration and piloted vehicles should have the following attributes:

1. Provide a clear measure of tracking behavior which
is related to other tracking tasks and to the

subject's psychomotor capabilities.

2. Be sensitive enough to revesl significant changes
in psychomotor performance due to the applied

experimental variables or stress conditions.

3. Can be validated rapidly to achieve a high level

of confidence, meaningfulness, and baseline data.

L. Be usable under a wide variety of test conditions.

This report summarizes exploratory research on a critical task

technique (involving compensatory tracking of a certain type of con-
trolled element) in which a single experimentally varied parameter will
reveal the pilot's effective delay time during tracking tasks essentially
freé from experimental artifacts. In applying servomechanism techniques
to the apalysis of pilot—vehicle systems we have discovered that, by
proper choice of a first- or second-order divergent "controlled element,”

the pilot's tracking behavior can be artificially constrained to simple




¢ forms, in which Te is the dominant parameter and is measured by the
critical divergence time constant, beyond which closed-loop control

becomes impossible.

The theoretical basis for the concept resulted from aircraft handling
qualities investigations in references 7 and 8. The use of a constraining
alrcraft stabilization task was originally proposed as a critical task by
Ashkenas in an unpublished memorandum (ref. 9), and verification of the
theoretical predictions was published in reference 10. A simplification
of the task from the complex dynamics of an aircraft to a simple first-
order controlled element was proposed by Durand in 1961 and was verified
as an unpublished byproduct of the work reported in reference 10. The
large scale investigations of reference 2 included two simpler unstable
controlled elements to determine the human operastor's describing function
under subcritical operation, and these results indicated that the under-

lying assumptions would probably be met near critical conditions.

The present program was started to develop the critical task concept
into & usable psychomotor test. This includes laying a firm analytic
foundation for its justification, developing a specific test configura-
tion, and verifiying the indicated measurements by independent measure-
ments of an operator’s describing function under conditions closer to

criticality than reported in reference 2.

The report starts with a description of the human response parameters
affecting effective delay time, leading to the critical task concept and
its theoretical basis, all drawing heavily on the background of reference 2.

There follows the evolution of a specific critical task configuration and




procedure, including some early results. Next comes the experimental
validation of the test, which was performed in the Human Response Facility
at The Franklin Institute Laboratory for Research and Development. Finally,
the implications and conclusions of this phase of the program are summs-

rized. Certain mathematical analyses and data are contsined in the Appendix.




SECTION II

A. THE HUMAN OPERATOR MODEL

In this section the current mathematical model of the human operator
will be summrized to form a basis for subsequent theoretical analyses
of the critical task. The emphasis will be on those features affecting

the operator's apparent delay time.

The critical task is a single-loop compensatory tracking task, for
which the important parameters are defined in figure 1. Two key features
are the solitary operator stimulus (the error) and the random-appearing
pature of the forcing function (the system input). Numerous experiments
(e.g., those summarized in refs. 1 and 2) serve as the data base for the
analytical model describing human operation and adaptation for compensa-

tory tracking with a visually presented, random-appearing forcing function.

The model of figure 1 comprises three elements:
1. A general gquesi-linear describing function form.

2. A series of "adjustment rules" which specify how to
"set" the parsmeters in the generalized describing
function so that it becomes an approximate model of
human behavior for the particular situation of

interest.

3. A set of remnant power spectra related to the

parameters in Item 2.




The most precise form of operator describing function* for compensatory

control tasks is (see ref. 2 for details):

ar
R weals) e
Yp(jo,t) = erJ a’'r
ol 2o | (Trde +1)
T jeo +1){T Ja)+1) ( )+——-—+1]

mm———— s’ (1)

Gain Time Neuromuscular Equaliza-

Delays system tion

A slightly modified form of this equation is used to facilitate comparison

between the operator gain in this and various simpler or earlier models.

This form is:

aq
1
JO+ /= KT(G )
TK) T Triw+1
¥p(Jort) = Kne_jm['tdﬂr(t)]( 2 2 jw {TLJa)+1
+— ! T Ju>+1) (Jw> e ] I
(J“’ T J\ M oy oy (2)
where K, = Kp(Tg/Tg) = 'mid-band pilot gain"

The operator is able to adjust his mid-band gain, K , and equaliza-
tion parameters, Ty and Ty, within a fairly wide range for suitable
loop closures. These adjustments have been firmly validated by experi-
ment and their application is treated in numerous other references
(e.g., 2—5 and 7—10) and need not be further discussed at this point.
The term K(ap/op) in the describing function refers to the indifference
threshold describing function. This is nearly unity for difficult

tracking tasks, because the serial thresholds are consciously reduced

*Because this describing function is strictly valid only in the
frequency domain, it is herein represented as a function of the frequency
operator (Jjw) instead of the Laplace operator(s).




‘. to their nominal levels, while the rms inputs to the thresholds (the

displayed error, etc.) are relatively large.

Next, consider the time delay terms. The pure time delay represented

by the e_'j(m-d term is due to sensory excitation (the retina in the visual
case), nerve conduction transport lags, computational lags, and other
latencies in the central nervous system. 13 can also include sampling lags
associated with multiple display scanning. It appears to be essentially
invariant with forcing function and controlled element dynamics for random-
appearing input tasks. However both intersubject and intrasubject 14
variations occur. Empirically the minimum value for Tq Seems to lie in the

range from about 0.06 to 0.10 sec for single-loop tracking situations.

The operator's time delay variation, 7.(t), is not thoroughly under-

stood at this time, but is believed to be a good way to describe one

source of remnant. In that case, it would be a function of attention level,
task difficulty, etc. Any variation in T, results in an apparent phase lag
fluctuation and sets one fundamental limit on the minimumm phase margin
required for closed-loop stability during a long duration tracking task.
Over long tracking runs (1— 5 minutes) the mean value of T.(t) is zero, but
over very short periods(on the order of a few seconds) it may drift somewhat.

This point will be discussed later in interpreting the experimental results.

The neuromuscular (NM) system is represented here by a formidable array
of parameters. A detailed description is beyond the scope of this report,
but is currently in preparation. The pair of terms (jo + 1/T)/(Jw + 1/T%)

is a tentative model of the effects of kinesthetic sensory adaptation (or

"washout") in the neuromuscular subsystem. Ty is the time constant of

sensory adaptation, on the order of tens of seconds, and is analogous to the




time it takes for the feel of newly put-on clothing to disappear.

Tﬁ is associated with a closed-loop root resulting from Tg and is usually
much longer than Tg. Consequently, 1/TK and 1/Tk constitute a very low
frequency lag—lead pair in the frequency domain. They are usually below
the bandwidth of measurement, leaving only & small residual amplitude
rise but appreciable phase lag at the lower input frequencies. An impor-
tant observation about kinesthetic adaptation is that the low-frequency
phase lag increases under difficult tasks, where concentration and

neurcmuscular system tension are maximum (ref. 2).

The remaining third-order characteristics of the NM portion of
equation (1) are associated with a high frequency first-order lag, Ny »
and an underdamped second-order lag, awy, {y- The Ty, term is related to
the viscous damping terms in the closed inner NM loops, while the second-
order terms reflect the combined stiffness, inertia, and damping in the
arm-plus-stick system. Direct measurements of the second-order charac-
teristics were made in reference 12, where, during a continuous tracking
task, the complete arm-plus-manipulator was struck and the ay and {y
were inferred from the resulting transient response. Generally speaking,
most of these dynamics occur at or beyond the frequency of followable
inputs (about 10 rad/sec). Thus they can be represented via simpler
terms by combining the main effects of the third-order model (e phase lag)

into a single first-order NM lag term (Tyjo + 1)—1, where

2t
Ty = TN1 + (TNE) (5)

or even to merely include Ty as an additional time delay to be added to 74




*

One frequently used term should be clarified at this point.

"Unity-gain crossover frequency" or just crossover frequency, ap, is

defined as that frequency where the open-loop amplitude ratio (output/error)
equals 1.0. The crossover frequency is important because it spproximates
the closed-loop bandwidth of the compensatory tracking loop, because it
defines the frequency region where most of the dynamic interactions of
feedback occur, and because it provides the dividing criteria between
relatively high (> a) or low (< ay) frequencies. As reference 13 clearly
demonstrates, it is only near crossover frequencies that accurate pilot

describing functions are required, and it is in the crossover region that

the effective delay time is defined.
3. EFFECTIVE DELAY TIME

Consider g sine wave of a given frequency, ®, operated on by a pure
time delay, 7. A fixed value of T will not alter the amplitude of
the output, but will shift its angular phasing with respect to the input

by an amount, Ap, which increases with the applied frequency:
M) = —T (1)

where Ap is in radians (negative

for lag) and o is in radians/second

In reverse, considering a frequency response plot, a phase lag which
varies as a linear increase with frequency (and with unity amplitude

ratio) represents an effective time delay.



The definition of the operator's “effective delay time" while
tracking a continuous random input is related to the mid-band lags
in the complete describing function (eq. 1). The breakpoints occurring
at frequencies greater than the crossover frequency are wy and 1/TN1:
and 1/IL will lie in this same frequency region if low fregquency lead
equalization is not required in the system. The phase lag corresponding

to these high frequency components is:

2y
1 Oy -1

09 = —oftg+1pe(t)] - tan” Tyo - tan ——— + tan” Ty (5)
[})
- (&)

At frequencies in the mid-band region (near ), this becomes:

. 2ly
Ny = —|Tg t () + TN, + Ty T |®

whence the effective delay time is defined as:

_ 2l
Te = 1 + Tp(t) + TN1 + 7@; - Ty, (6)

The effective time delay, Te, is the sum of the "near crossover" lead

and lag time constents plus the basic transport delays.

Changes in T imply changes in one or more of its constituents. It is
from this consideration that measures of Te have promise as integrated
indicators of the pilot's physiological integrity in a tracking task.

The adequacy of any such differential measure (i.e., Tegotysl — Tenominal)

is thereby dependent on the stationarity of Te in the normal organism.

10




Te appears to be stable (with small variance) over a small number of
trials, yet exhibits learning effects via slight reductions over a large
number of trials. It appears to be critically dependent on those physio-
locigal and psychological factors involved in the attainment of high grade
skill. It offers potential as a general measure of psychomotor perform-
ance when only a few runs are taken, while terminal values after many
runs indicate maximal tracking performence. Further, since current values
can be compared with either absolute minima previously obtained or average
population values, the measure provides some indication of probable

proficiency on difficult tracking tasks.

-C. THE CRITICAL TASK CONCEPT

The measurement of Te while tracking is normaelly a very difficult

procedure, in which one of two main approaches can be used:

1. The pilot's quasi-random input describing function
is first obtained, using Fourier analysis or a
cross-spectral analyzer. Then the frequency
response amplitude and phase are simultaneously
curve-fitted to remove the linear response terms.
From the residual phase versus freguency, the Te
is found using the following relationship:

_ d(p residual)
e - dw (7)

T

2. A parameter tracker, or "mimic," is operated in
parallel with the pilot, and contains an approxi-
mation to a pure time delay (possibly a first- or
second-order Padé polynomial). This delay, as well
as other parameters, is adjusted to minimize the
difference between the pilot and mimic outputs, and

the "best fit" value taken a5 Te.




It should not be surprising that very few accurate data on 7g
exist; such sophisticated measuring and data analysis procedures

preclude any large scale sampling T, by these methods.

The critical task technique can be explained as follows, using
a simplified pilot describing function. The complete model alters
the details but not the main essentisls. Consider a compensatory
closed-loop tracking task with a low frequency randomlike input, and
a controlled element having a variable first-order divergence (fig. 2),
Yo = —Kc/(—Ts + 1). The appropriate pilot describing function for this
controlled element (ref. 2) is a pure gain, Kp, and an effective delay
time, t,. The latter is approximated by a first-order Pade polynomial,

giving for Yb:

o)
Y = K —TeJo . 2 Jo + (8)
= pe = Kp —_—

The system survey*of figure 2 shows that there is a minimum gain, Kmins
which must be reached to stabilize the system (at (1)), and a maximum
gain, Kpay, at which it again goes unstable (at (3)). At Kopt (near (2))
the system is stable, but only marginally so. If ~T is now decreased
(more unstable), then it can be seen that both the phase margins and
gain margins vanish as T aepproaches Te. Furthermore, the pilot cannot
help his control by adopting low frequency lead or lag equalization;
lead gives less gain spread and lower gain margins, while lag gives more
phase lag and thus reduces the phase margin. Consequently, the pilot is

constrained to adopt a nearly pure gain response in the crossover region,

and in the ideal limit Tpiy = Te. Further systems analyses and data for
first- and second-order divergent controlled elements of this type, using

human pilot models, are given in reference 2.

*A "system survey" is a systems analysis, considering both the perform-
ance and stability aspects of a loop closure, using simultaneously the
root locus, conventional jw-Bode, and "Siggy" Bode techniques included in
the Unified Servo Analysis Method of reference 14.

12




As an alternative to the graphical solution, consider the analytical
solution, which is particularly simple in this case. With Y, in terms

of s for analytical} purposes, the open-loop transfer function is:

|
A
i
a
I\JI(D
n
+
~——
=
|

= KKe (9)

After some algebra, and using the basic closed-loop relationship that

Yor(s) = YOL(s)/ [1 + YOL(S)] , the closed-loop transfer function is:

Yor(e) = 2 1 K 2(K - 1) (10)
5 -
sT 4+ (?; -_ T -—E-)S + TeT
2 o1y, ofy,

Note that in this simplified case apy, — 0 at the critical condition
(point (1), dashed root locus in fig. 2). Then, from the “EL term in
equation (10), the result is Kjymjt = 1-0. Putting this in the total

damping term, ZQCL‘”CL = 0, glves:

2 1 (1.0)

e — - = t T = T

. T T 0at Teritical c
Therefore: Te = Te

With the more complete neuromuscular system and finite stability margin
effects included, the numerical results are modified, as will be shown later.

Still preserved, however, are the essential constraining effects on the

13



pilot's behavior (to pure gain near the shaded phase region of fig. 2)

and the close correspondence between T, and T,.

The critical tesk concept is, then, to provide a divergert controlled
element of a form that tightly comstraine the allowable pilot equalization
near the reglon of crossover, leaving the effective delay time, Te, &8 the
sole determinant of system stability. The divergence is then slowly
inoreased until control is lost, whereupon the critical divergence time

constant, Te, 18 a measure of Te.

D. EYFECTS OF OPERATOR MODEL REFINEMENT

Stability.— The definitive results on pilot describing functions in
reference 2 demonstrate that the precision pilot model [represented by
eqg. (1)] represents the measured operator describing function data
with remarkable accuracy over a two-decade range of frequency.
Unfortunately, a ten parameter model is too cumbersome for routine
data analysis, and it is not really necessary to represent every detail
of the data to get a good understanding or measurement of e, as the
subseguent analyses will prove. We will now make three loop closures
around a near-critical controlled element, using successively simpler
pilot models: first, the complete "precision" model; second, an
"extended crossover" model; and, third, the "simple crossover" model
(21l are derived and explained in detail in reference 2). The small
errors in the closed-loop roots, stability margins, and error spectra
resulting from the simplifications will then become apparent. The objec-
tive is to justify the use of these more tractable models for the

Subsequent analytical investigations.
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The controlled element to be examined is:

Yc=%l-%-g-)y=s—i£ (11)

which is near the observed limit for continuous tracking of a rela-

tively wide band input, having a bandwidth of eq = 4.0 rad/see.

The precision model pvarameters, actually based on measured describing

function data to be shown later in figure 17, are as follows:

XKy = 1.9 cm/cm

tg = 0.065 sec

T, = 0.02 sec 1/r, = 50 sec

TT = 0

Tk = 2.5 sec 1/Tx = 0.ko sec”
Tk = 25 sec 1/Tx = 0.04 sec |
Ty, = 0.0625 sec 1/TN1 = 16.0 sec”
wy = 23 rad/sec

ty = O-1

The complete precision describing function for this case is thus:

1.9e 06550 (ja) + .40)(55%’ + 1)
c(Jjw)

e(io) (jw N Ol‘)(%) + 1) [(%)2 + 2(231) Jo + 1]

The extended crossover model of reference 2 is a much simpler form

(12)

YPP

of equation (1), reasonably accurate over a range of frequencies of more

than one decade spanning the crossover region, in which the high frequency
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neuromuscular dynamics are represented only by their phase lag, i.e., as
increments of effective delay time, while the low frequency kinesthetic

lags are represented by a single inverse delay time, a. Thus,

—il(afe) + rew] (Tgo + 1)

e = %o (Trjo + 1) (13)

where (o4

1/7% = 1/7% | (14)
Te = Tq + Ty + 2 y/ay (15)
Tr, Ty &5 in equation (1)

Kp here corresponds to the mid-frequency gain, Ky

Often, when Ty, is small and 1/TL is beyond the crossover region,

as here, it is also included in Tege With these simplificetions the

previous parameters for eq. 12 yield, for the extended crossover model:

. 1.96—3[(.366/11)) + .1160]

Ypye (16)

This is the form which has been found best suited for fitting of first-

order critical task data.

The simple crossover model merely ignores the low frequency kinesthetic

lags and thus is represented, in general, by:

e_Tejm (TLJ(D + 1)

Y =
Ps % (Trjo + 1)

(17)

For the specific numbers here, and noting that Ty = O and including -the

small value of Tf, in Te:

]
o)

. —.116jw
g = 1.9e (18)
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This is the simplest model capable of demonstrating the significant
aspects of critical tasks, and lends itself to analytic manipulation
more readily than the extended crossover model.*

The comparative loop closures can now be made. Root-locus and Bode

plots for each case are compared in figure 3, where the closed-loop

roots corresponding to or Ky = 1.9 are designated by the O. (Here
P 2

exact expressions for the phase lags from 1, and a were used.) Figure 3
and Table I demonstrate the following points:

1.

5.

The dominant closed-loop imaginary roots near
wpy, = 8 rad/sec are closely given by all three
pilot models.

The dominant closed-loop frequency is near the
unity-gain crossover frequency shown on the Bode

plots; agp, = Ac-

The simple model, having the least phase lag near
crossover, results in the highest damping ratio
of the dominant roots, and highest phase margin.

The main effect of the more precise models is to
make the minimum unstable frequency rise from zero
(as on previous fig. 2) to the crossover region.
The precise low and high frequency instability
points, Wy and ayp, are closely approximated by
the extended crossover model.

The damping of the second-order neuromuscular
dynamics is increased when the loop is closed.

*One additional approximation made in most analyses is to represent
the time delay terms by their first- or second-order Pade approximations.

Thus:

Te
. ——2-jd)+1 1
e teJ® = A = 7 ; o << Te (19)
Te
?Ja)+1
a
< -Fj—'l'l
e-m,/ga) = ( 2 ) ; ®w > a (20)
a
(‘m”)
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It can be inferred by inspection of figure 3,

and demonstrated by computation, that the

optimum crossover frequency, wq, (with respect

to stability and performance) drops only slightly
as 1/T is increased (more instability), and ends
up near the crest of the phase curve hump when the
stability margins vanish. For the simple model, ae
follows the precise value at first, then continues
to suddenly decrease toward zero as 1/T approaches
the critical value. Nevertheless, down to the very
low stability margins shown here, the simple model
gives correct trends in most of the closed-loop
parameters.

This numerical example demonstrates thet the extended crossover model
gives a remarkably accurate approximastion to the precision model, and
even the simple model shows the correct trends in the closed-loop

stability characteristics.

TABLE I

SUMMARY OF LOOP CLOSURE RESULTS

MCDEL PRECISION | (nocsoven | crossove

Dominant Root:

acr, (rad/sec) ........i.... 7.7 T4 7.9

EQL, v, 0.31 0.32 0.36
Crossover Region:

e (rad/sec) ..........i.. 6.5 6.7 6.7

ay, (rad/sec) veveveseneans 1.7 1.8 0

Wy (red/sec) cevecioocoons 11.0 11.2 1.4

Phase margin (deg) eeeeee.. 13 14 17

Gain margins (dB) :E zﬁé - ; 2 E
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Performance.— As a performance consideration, the elosed-loop error/input
response will now be compared for each model. The error/input response is
given by: |

L (s _ Eljo) _ 1
G’le(J(D) - I(jw T 1+ YOL Jo
The Padé approximations of equations (19) and (20) were used to approximete

the delay terms, and the resulting closed-loop fectored transfer functions in

terms of the leplace variable, s, are:

With Precision Model

(s+.0k) (s— ) (s +16) (s + 31) [s2 + 2(.1) (23)s + (23)2]

Gien(8) =
eP (s+.90) (s + 32.4) [s2+2(.31 )(7.7)9+(7.7)2] [s2+2(.23)(20.7)s + (20.7)2]

(21)
With BExtended Crossover Model

(s — -18)(s — ¥)(s +17.2)

(22)
(s + .65) [s2 + 2(.32)(7.4)s + (7.&)2]

1]

GieXC ( 5)

With Simple Model

-k .2
Gieg(s) = (e ) +17:2) (23)

[s2 + 2(.36)(7.9)s + (1.9)]

The power spectral density, or simply "error spectrum” of the error
for a specified input, is obtained by multiplying lGieIE by the input
spectrum. The mean square error relative to the mean square input is
given by the integral over the input bandwidth of this spectral density,

as follows:
. 2
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;_i‘ _ j;w o (@) do -
1 [ oy(@an

For a rectangular input spectrum of bandwidth wy,
Lo fwl 164 . (30 | Zao (25)
-1—2. (ni o] L€

Rather than assume an input spectrum at this point, just the square

modulus IG

iel

is plotted, in figure 4, for each case. Also noted in

the figure are the bandwidths corresponding to wj = 1.5 and 4.0 rad/sec.

This comparison shows that:

1.

The error spectra for the three radically different
appearing models are quite similar, especially in
the range of frequencies below 4 rad/sec where

most inputs are concentrated.

For inputs cut off at moderate frequencies like
@y = 1.5 to 4.0 rad/sec, the main difference is
slightly less error at the low end of the spectrum

for the more precise models.

The large peaks are sensitive to the slight changes
in closed-loop damping ratio of the dominant root
at app- Consequently, the higher frequency compo-
nents of the error will be more sensitive to the
model used than the low frequency portions of the

error.

The dip in the precision case near 23 rad/sec is due to

the neuromuscular system dynamics, ay aend QN'

Generalizing these and similar results, we conclude that, compared

with the precision pilot model, the more analytically tractable extended

crossover pilot model will reveal most of the significant theoretical
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implications of critical tasks. Even the very approximate simple pilot
model will revesl the main trends of such loop closures down to the

point of very small stability margins.
E. SOME THEORETICAL IMPLICATIONS

S8&mple model.— The reason for seeking simpler theoretical piiot
describing funetion forms than the precision model is to permit parametric
analyses of the stability and performance in the critical task. In the
previous section the simple pilot model for the first-order critical task
has been shown to yileld reasonably accurate trends in the mid-frequency
dynamics, the stabillty margins, and the error speetrum. Iet us now look
at some of the theoretical implications which can be drgwn by using the

simplest operator model.

First, consider the behavior-constraining effects of the critical
task as the divergent root is made more unstable.* As mentioned
previously, a first-order divergent controlled element is such that
no pilot equalization is required in the crossover region. ILow frequency
lead equalization would increase the phase margin, but only at the expense
of gain margin, and conversely for lag equalization. The final test of
this theoretical result (that no eqp.alization is required in the cross-

over region) will have to rest on experiment.

The narrowing range of gain and phase margins as A 1s increased
toward criticality (incipient loss of control) can be easily shown

analytically using the simple crossover model.

*For convenience the inverse time constant will henceforth be given
a single symbol, M = 1/T,
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Study of figures 2 and 3 would be helpful before starting this
discussion. From the denominator of equation (10), the open-loop
static gains necessary for the system to be unstable, app, > 0 and
for, = 0, are:
Kpin = 10
(26)

- et _ . _ 2 _
Knax = 3 T = Te) 1

Gain margin is defined as the ratio (expressed in dB) of a
specified gain to the gain for neutral stability. For the situation
here, there are two gains for neutral stability; hence the optimum
closure gain to maximize both gain margins is that gain which lies
in the middle of Kpgy and K i, expressed in dB. In other words,

the gain for maximum gain margins, Ksy, 1s the geometric mean of

Knin and Kjg .. Thus,

z )1 & (27)

Y e -

The meximum phase margin and the corresponding gain can also be computed.
Using the actual delay time in equation (9), the phase angle in radians is

given by: -1
¢ = —m— T+ tan Tw (28)

Thus, the phase margin is:

Py = T+ P = —T W+ tan” To (29)
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At the maximum phase margin point, the slope with respect to freguency

is zero:

>
ik S T

S T Tx (w2 C

Solving this for the frequency for maximum phase margin, wpy:

1 |,T
wpM =_T_ —1'.;—1 b TZTe (30)

This value of wpy may be put back in equation (29) to compute P> and

can be used to compute KPM or to locate it graphically. Remember that

the simple model represented by equation (30) is not completely accurate
in the limit as T/Té—-—l, where the above equation indicates that wpy — O,

whereas in the more precise models wpy remains at a finite frequency.

To illustrate the constraints on these parameters, figures 5 and 6
show some results from the more exﬁensive computations in reference 15.
In figure 5 are plotted the gains for the various stability margins as
the open-loop instability, A, is made more unstable, with the effective
time delay held constant at a typical value of 1, = 0.2 sec. There is
a véry rapid decrease in all the staebility margins as the critical con-
dition is approached. More specifically:

1. XgM: The gain for maximum gain margins is between
the gain for maximum phase margin and the gain for

minimum rms error. The maximum gain margins, Ky,

are marked along the Kgy curve.
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2. KPM: The gain for maximum phase margin is on the
low side of Kgy, but is very similar. The maximum
achievable phasse margins marked along this curve
become quite low (< 20 deg) well before the critical

point is approached.

3. K100: The gain for a practicel minimum phase margin
of 10 deg is near the stable gain limit at nonecritical
conditions, but departs appreciably from it for A > 3
(in general, for At, > 0.6).

L. Kémin: The gain for minimum rms error with g
rectangular-plus-shelf spectrum of the B6 type
(ref. 16) and @ = 2.5 rad/sec is very near the
maximum skable gain. Because this criterion
corresponds to a phase margin less than 10 deg
and gain margin less than a few dB, it is doubtful
that the theoretical minimum error will be approached
under most near-critical conditions. This analysis
ignores the effect of remnant, which will genexrally

increase the total errors and reduce Kemin®

Except for the Kemin curve (which depends on a given wj and input spectrum
shape), the stability margin curves can be normalized to any Te in terms
of the ratio of T to Te (or its inverse, Te/T = ATe) as shown at the top

of figure 5 .

Next, consider the theoretical error performance implications of the
simple model, as shown in figure 6. Here, the normalized error,*

erms/irms: is shown versus the instability, A, for gain adjusted to Kgm

*The normalized error is computed with standard procedures as outlined
near equations (24) and (25) herein and in references 2 and 15.
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(maximum gain margin). Two key conclusions may be drawn from the error
analysis represented by figure 6:
1. The tracking error rises very steeply as the

instability is increased beyond approximately
two~thirds of the ideal critical value.

2. The rms tracking error exceeds the rms input
by a factor of 5 to 10 as criticality is

approached.

The practical implications of these last two theoretical findings
are very important. TFirst, they imply that, in order for the displayed
error to remain within bounds, the input level must be very small compared
to the display range. (There will be further discussion of this point
in the section on "Critical Task Development.") Second, it must be
remembered that the pilot remnant will induce further errors, which will
be similarly magnified during closed-loop operation. This compounds the
display problem. These predictions, made well before the exiaerimen‘bs to

be described in later chapters, were verified in practice.

Extended crossover model.— The residual mid-frequency effects of the

low frequency phase lags from the Tk s T}'( effects detract from the phase
margin which would be computed from the simple model alone (see fig. 3),
and reduces the ideal A at which all stability margins disappear. This
theoretical limit is rederived in Appendix A using the extended crossover

model, or "a-model," of the operator. The result is:

Aejqea1 .

. 2 1= Yate ; o< Tea)g (31)
/e

25



For a typical value of atg = 0.04 it can be seen that the zero margin
limit is reduced to A = 0.8/1e compared with A = 1.O/Te for the simple
case. The exact proportionality between the limiting A and 1/Te in the
simple model case is also modified by the o term,lbut this is a second-
order effect for reasonable values of the parameters. However, the
refined limiting case may not be of too much importance if finite
stability margins are required for control, since the simple model

results have been shown to be valid under these conditions.

F. SUMMARY OF THEORETICAL PREDICTIONS

At this point we will recapitulate the particular theoretical assump-
tions and predictions which are to be validated by the subsequent experi-
ments. It is assumed that the basic assumptions applying to continuous
compensatory tracking by a human operator sre met (e.g., random-appearing

input, well-trained operator, proper display asnd control gains, etc.).

The main special assumption of this theory is: While tracking with

a simple first-order divergent controlled element having a slowly adjusted

divergent root, the operator’s behavior remains quasi-stationary and can
be represented by the same describing function forms as proven valid for

constant-A conditions.

From these basic (and one special) assumptions, the analysis of
operator behavior has led to the following derived predictions, which
are to be tested experimentally:

1. Low run-to-run variance in all measured parameters

is expected because of the constraining nature of

the first-order critical tasks.

2. As the instability A spproaches its critical value,
the tracking errors will drastically increase and

the stability margins will decrease.
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3. The neuromuscular system will be forced to its
"tightest" mode of operation, to achieve minimum
neuromuscular contribution to 1, at high frequencies,

with an increase in a at low frequencies (from ref. 2).

4, The magnitude of Y, should be nearly constant, i.e.,

a "pure gain" over the stable range of crossover
frequencies, i.e., over roughly a decade from ay;
to ayy-

5. The limiting level of A which can be tracked for more
than a few seconds will be less than the theoretical
ideal critical value, X = 1/1,, because of the require-
ment for small finite stability marging, the need to
limit the tracking errors to remain on the display, and

due to secondary effects of the o phase contributions.

6. For a given operator, the exact value of instability, i,

at which control is lost will depend primarily on T, and

1 secondarily on o, as well as the limiting phase and gain
| margins required by that individual's random deviations
around his mean parameters. If these margins and o are
relstively invariant, then a calibratable relationship

should exist between Te and kc.

The development of a device for automatically determining the critical
instability will be described next before going on to the experimental

program.
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SEOTION III
DEVELOPMENT CF THE AUTOPACED CRITICAL TASK

It has been shown in the first section that & measure of the subject's
effective time delay, 7o, can be obtained by noting the value of the
unstable root at which the subject can no longer masintain control in a
tracking situation. It is a primary objective of this program to evolve
a method and test configurstion for increasing the unstable root from an
easily controlled value to the critical value while the operator tracks
continuously. An obvious approach is an automatic adjustment which not
only relieves the experimenter of the job, but also prevents his bias
from contaminating the data. Some of the key considerstions in the develop-

ment of the final test configuration will be reviewed in this section.

A. CRITERIA

The main criterion is that the measured value of the critical divergent
root, Ay, should be dependent only on the human operator's effective time

delay, Te, and not on the detailed mechanization of the critical task.

Specifically, the value measured should not depend significantly on the
selected display parameters, the adjusting device operation, or the modus
operandi. Variations in A, with secondary task variables such as run
length, input characteristics, and control gains are expected; hopefully,
these variations can be minimized or standardized by proper selection of
the task parameters. Other criteria included:

® OSimplicity of mechanization, to facilitate its exact

duplication in other laborstories and to maximize its
reliability.

® Suitability for untrained as well as trained operators
without experimenter adjustment -
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B. ROOT ADJUSTMENT SCHEMES

During exploratory phases of this program, documented in references 17

and 19, several root adjusting schemes were tried with varying success.
Adjustment by the experimenter, as originally used in the 1961 critical
task development, was eliminated as too cumbersome and unrepeatable.

Self-gdjustment of A by the subject himself was found to be unworksble
because no workload margin exists for the adjustment process as criti-
cality is approached. The most successful schemes are those depending
on the predicted (and observed) sudden increase in tracking error per-

formance as A nears the critical value for a particular operator.

Three performance feedback schemes for changing the root increase

rate, i, were:

Scheme A: % = k(e — [e]) (32)

Scheme B: i = k{ec — lel)” sen (ec  lel) (33)

Scheme C:. A = k[ec - ____Le;[__] (34)
(Tps + 1)

where "e" is the tracking error (seen by the subject as a vertical dis-
placement of a horizon-bar-like line on a CRT, le| is its rectified
value, and e, is a preselected "criterion" error level. Scheme A mecha-
nizes the concept that, for very small errors the subject is certainly not
near his stability limit and A should thus be increasing, while for
excessively large errors the subject is just losing control and there-
fore A should be decreasing. The divergent root should stabilize at
the subject's average minimum controllable value, A = A., and hence be

proportional to 1/tg. A number of difficulties with this scheme became

apparent as the experiments proceeded, and are discussed in the following

paragraph.



The principal difficulty with Scheme A was the large range in the
rate of increase, L. For the initial values of A the rate was too low,
while near terminal values the rate was too high. The total effect, then,
is that the subject is required to spend the majority of his tracking time
just in getting the root out near the "critical" region. The number
obtained in this manner is undesirable from two standpoints: during the
long initial time the subject can tire, and a fast final rate gives an
optimistic (or high) value for Ao+ This last point can be demonstrated
by using an adjustment rate so high that, even with hands-off control,

a significant A, is obtained before the display diverges to its limits.

Scheme B was evaluated in hopes of correcting the rate deficiency,
but a new problem arose — that of interaction. When the gain was high
enough to get a good adjustment rate, considerable coupling existed
between the control loop and the adjustment loop (the divergent root

"chased" the error level).

Smoothing the error (Scheme C) was of no help since the additional

lag created stability problems in the coupled subject—adjustment loop.

The best solution to these problems was found to be an adjusting law
which was not a feedback function of the error. A two-rate law was

evolved, of the form:

A= k4 H le] < eq
Tes + 1
Scheme D: k1 > kp (35)
A= ky Iel>c
Tes + 1
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The subject tracks while the root moves rapidly towards instability.
When the filtered absodute error reaches a predetermined level, the
rate 1s deereased to a ereeping, but irreversible, rate and eombinues
until the subject loses control. This is s¢milar to the action of an

experimenter manually adjusting A toward the critical limit.

The value of A at which control is lost can be considered to
represent the short-term average of A, over the last few seconds of a
run. Notice that the opefation represented by Scheme D is equally valid
for both the trained and the untrained operator since it depends only on the
point at which performance deteriorates. Scheme D was used for the

final experiments, and was termed the "autopaced test."

Before discussing the parameter selection for the autopaced test, it
will be helpful to discuss some error considerations. It is shown in
the theory section that if the conventional pilot models are assumed with
a fixed time delay, and if a maximum stability measure (such as gain
margin) is maintained, the system rms-error-to-input ratio as a function

of A will characteristically increase suddenly as shown in Sketch A.

epms corresponding to
erms emax = Scope limit, ete.
irms
K =Xem
0 A(t)
0 2 N /16

Sketch A. Characteristic error performance for critical task
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Consequently, the error criterion €¢, scope size, input, or visual angle
limits can all place upper bounds on epn.. If the results of any
experimental program are to be independent of the mechanization of the
experiment and equipment used, one must insure that these bounds are
operator-centered (e.g., eyeball limits), and not machine-centered
(e.g., scope size).
C. PARAMETER SELECTION

An attempt was made to desensitize the resulting A, obtained from
the critical task to the crucial parameters of the configuration.
Figures 7 -10 show, respectively, the sensitivity to error angle seen
by the eye, controlled element gain, amplitude of the input, and the
input bandwidth. The knee is quite apparent in each set of figure 7T
(two different adjustment "laws" were used) and the available error
display angle should obviously be greater than 10 deg. These runs
had no input except operator remnant, so it is quite important that
this minimum display angle be observed, because any input will further

increase the error.

During these runs to determine error limits, which involved various
combinations of eye-to-CRT distance and CRT masking apertures, it was
observed that the eye remains fixated on the null point, and the
eyeball does not move to track the error display. Though the error bar
traveled beyond +30 deg of visual angle and, in some cases, the eye

was only 5 cm from the CRT, the eye remained centered.

Figure 8 shows that Ao is fairly insensitive to control gain over

a range of two orders of magnitude. (Remember that the operator
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mst compensate for the control gain to keep the loop gasin within narrow
Iimits.) The nominal value had been chosen earlier from operator opinion
rating, and was borne out by these data. The input amplitude, figure 9,
has a small but linear effect on A, as does the bandwidth (fig. 10) of
the input. Zero input seems to give the "best," i.e., most consistent
and highest values of Ao, but this setup is not feasible if describing
function data are to be obtained. The input selection was then

made on the basis of past human operator response studies (ref. 2) so

that a direct comparison could be made between past T, data, data taken

for this project, and autopaced A, values.

The parameters ki, kp, €,, and Ty of Scheme D were selected on the
basis of A, data and operator opinion. The optimum combinations seem
to be readily apparent to the subject. He is quite aware of when the
rates are fast enough to give the optimistic reading mentioned below
and when the rates are too slow he immediately complains and the
data become erratic. An optimistic A, can be cobtained by raising the
root adjustment rate too high. The extreme case would be demonstrated
by having a rate so high that, even for a "hands-off" condition, a
significant A is obtained before the divergence cauées the task to cease.

This condition was avoided by msking subjective measures, as noted sbove.

An additional feature found very desirable is a dot operated by a
second gun in the CRT, which moves toc the right from the origin propor-
tional to A, analogous to the root location in the s-plane. The subject
can thus observe an increase in \ and monitor his score (the dot holds
at lc)- Good operator incentive is provided by this feature, combined

with instructions to "equal or better his previous score."
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1 MNechanization

The final configuration for the critical task test based on the
development just discussed is shown in block diagram form in figure 11,
while the parameters are given in Table II. The gains were chosen on
the basis of the appropriate angle at the eye, which is, of course,
directly related to the scope size (maximum displacement of the CRT
used is *4 cm). The value of e, should be about 10 to 20 percent of
the maximum scope deflection. This allows the operator to get to within
1 or 2 rad/sec of Aq before the adjustment rate ko switches in. Although
the operator should track at the rate ko for at least 10 sec before he
loses control to insure g nonoptimistic reading, tracking for much more
than 100 sec would probably bring the onset of fatigue and other undesir-

able long term variations.

TABLE II

NOMINAL AUTOPACED CRITICAL TASK PARAMETERS

K; = 0.366 cm scope deflection/volt

Ka = 57.5/d, degrees display displacement at eye
per centimeter of scope deflection

Ks = 2.42 v/Newton

ec = 0.38 cm 1

e(cm)
k1 = 0'2 rad/SeC/SeC 111[111-111

ko/ky = 0.25 /5‘

Qgﬁ\yr////dNﬁd\ 1

4

Tf = 1 sec
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To minimize the neuromuscular lags and to provide an isometric
(no deflection) restraint on the operator's muscles, a rigid force stick
is preferred. The force stick used for the tests reported herein is a
Measurement Systems, Inc., Model 435 control stick. Its low mass and
sensitive response allowed relatively high frequency responses to be

measured.

This test configuration has been mechanized on general purpose analog
computers at both Systems Technology, Inc., and The Franklin Institute.
About 17 amplifiers, 11 potentiometers, 1 multiplier, and 5 relays are

required for the complete circuit (shown in Appendix B).

D. OPERATION

An gutopaced critical task test begins with the operator in place and
grasping the stick. The root instability is initially set at a finite
low value to insure operator attention. When the rectified and filtered
error builds up to the preselected value, the rate of increase of A
decreases but A continues to creep outward until control is lost. When
control is lost, the error goes off-scale and the computer holds, giving

a reading for Aq.

Figure 12 shows typical time historles of autopaced runs with and
without an input. Points of note are the relatively random appearance
of the input, the very random appearance of the error and its sudden
increase past e, followed by the decrease in i, the similar sppearance
of the traces with and without an input, and the moderate time required
for the complete run (less then 1 min).

The final system proved to be very reliable and satisfactory for a

number of different subjects of various skill levels who tried it out.
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SECTION IV
EXPERIMENTS

There are essentially two objectives to the experiments reported
herein. The primary objective is to establish that the autopaced criti-
cal task indeed provides some measure of 7e. Second, an explanstion and
description of the operator's behavior near incipient instability are
desirable to further extend the work of reference 2. In attaining these

objectives, the experiments are aimed at

e Observing A effects on the human operator's behavior,

as measured by describing function and performence dats

e (Correlating autopaced data with describing function dats
The experimental program was carried out in three phases:

1. An exploratory group of experiments was performed as
Jjust described, using the STI simulator, to determine
the optimum controlled element configurations, the best
adjusting scheme for A, and the optimum parasmeters. In
addition, some very rough checks of intersubject differences

and task learning times were made (ref. 19).

2. A group of preliminary describing function runs Was made
at The Franklin Institute to verify the duplication of
the STI test configuration, and to provide a check on
the similarity between the behavior of the test subject
and past subjects in similar tasks.

3. The main experiments, performed at The Franklin Institute,
included both autopaced A and describing function data,

with emphasis on variations in )\ and input.

In the remaining portions of this rather lengthy section the most

important results of Phases 2 and 3 will be covered (the exploratory
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Phase 1 work has been documented in references 17 and 19, and was discussed
briefly in the previous section). After reviewing the over-all experi-
mental design, the autopaced data will be presented, then the describing
function measurements, their curve fits, and resulting parameter trends
will be given. The interpretation of these combined results will be

discussed in the final main section.
A. IXPERIMENTAL DESIGN

The scope of this program was too small to consider & massive,
statistically designed experimental progrsm to cover all variables of
immediate interest, i.e., subjects, number of trials, input bandwidth and
level, degree of instability, run length, etc. In fact, not enough was
known at the start to even guess at the levels and replications required
for a rational gatistical design. Consequently, emphasis was placed on
key preliminary experiments which would validate the crucial assumptions
and provide sufficient insight and data on which to base subsequent

theoretical analyses and detailed experiments.

While the exploratory experiments of Phase 1 showed distinct
individual differences in the achievable autopaced \q scores, these and
the previous experiments on subcritical first-order tracking tasks indi-
cated that the basic forms of wvarious operator's describing functions
were similar and reasonably well constrained by this task (see ref. 2).
Consequently, it was decided to use a single subject, provided that the
describing function form was shown to be similar to that of other oper-

ators under previously tested conditions. As will be shown later, this
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sgreement was established, and therefore the limited experimentsl time

could be used to increase the reliasbility of one subject's data.

The most important variable was the unstable root, A. For the
describing function runs, four values of A (2, 3, 4, and 5 rad/sec) were
chosen to span the region between the previous data of reference 2 and
the limit at which runs of reasonable length could be made.

Based on the Phase 1 experiments and on the results for subcritical
tasks in reference 2, it was felt that the input bandwidth would have a
secondary effect; most of the describing function and autopaced data
were measured with one basic low-bandwidth (wj = 1.5) input spectrum, but
a few describing functions were measured at a higher bandwidth (ai = 4.0).
Of course, no describing function data could be measured with zero input,
because cross-correlation of the signals with the input is required.
Because the Phase 1 autopaced data, as well as the theory, indicated that
there would be some effect of input level, the main sutopaced runs were

made with and without the basic input.

A matrix of experimental variables and the number of replications

mde gt each condition is given in Table III.

TABLE III

MATRTX OF EXPERIMENTAL CONDITIONS

LEVEL OF INSTABILITY, X (rad/sec)
INPUT BANDWIDTH,
2 3 L 5 Meximum Achievable
wy (rad/sec)
No. of Describing Function Runs No. of
Autopaced Runs
o — - - - 45
1.5 3 2 9 3 L6
k.0 - - in - -




The procedural design consisted of a series of several simple
experiments in which one variable was changed during each day's testing.
Thus, A was the dominant variable on one day and wj on another. One set
of conditions was established as a "base run" case which was included in
each day's runs. By this means it was possible to obtain a large number

of replications of one case to establish its intrinsic variasbility, while

=2

permitting & more economical number of runs across the variables of

interest.

During each day's testing, the autopaced critical task was run (with
and without inputs) at the start and end of the day. To balance out
fatigue and presentation order effects, the describing function runs (which
were limited to less than a dozen per day by the complex procedures involved)
employed a randomized order of presentation of the dominant variable in
the morning,and the reverse of this in the afternoon. A detailed run

log is included in Appendix C showing the chronology of the data reported

herein.

B. AUTOPACED \Ac DATA

The first data to be presented are the results of the autopaced runs.
The automatically paced and scored setup described in an earlier section
was used for all these trials. Near the end of the Phase 1 experiments
at STI, the subject, an engineer and private pilot, was given a large
number of trials to insure thorough learning of the task. It has been
found that the autopaced critical task provides an excellent training
device because it demends constant attention, always progresses to the

subject's skill 1imits, and engenders strong motivation to achieve a high
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score. For simplicity, these trials were all made without a command input;

the gsubject's remnant was ample excitation, as is shown in figure 12.

Experience with the exploratory trials of Phase 1 had shown that from
three to five autopaced runs should be made in one samping of \,. Aver-
aged over five subsamples, the mean for successive samples, ié, is quite
stable over a large number of trials in any given time interval on the
order of an hour or two. The five-trial means and standard deviations

for Ac during the learning trials are shown in figure 13.

No statistical analyses of these training data were attempted, but

the foliowing points were apparent:

1. The initial learning time, to get out to a critical
instability of A, = 5, was quite rapid — on the order of

a few trials.

2. BSubsequently, over a month's time and over 170 trials, the
controllable divergence gradually rose to a level near
e = 6.5 * 0.7 and leveled off.

3. The trial-to-trial variance (as evidenced by the trend in
the standard deviations) was appreciable, being partly
attributed to the lack of warmup and loosely controlled

training procedures.

4. Although some large fluctuations in the five-trial means
were noticed, no attempt was made to formally correlate
these particular data against time of day or other
subject-centered variables which might conceivably have
an effect on A, because no pattern is evident among the

coded points of figure 13.

Other unpublished learning curves skow similsr trends, i.e., that
initial learning is quite rapid and ), stabilizes at a reasonable level

after seversl dozen trials.
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During the course of the main experiments at The Franklin Institute,
which spanned several days, five-trial autopaced data were taken at the
start and end of each day. These data are shown plotted chronologically
in figure 14. Runs were made with and without a standard random-
appearing input, and a small but consistent difference in 3:0 is apparent.
Except for the first set of runs (with input), the levels of ic appear
to be essentially the same as the previous set made at STI (note the
mark on figure 14 indicating the terminal level of the learning trials
from figure 13). These data, as well as the subject's reports, suggest
that the autopaced test configurstion and dats can be duplicated easily

even in widely different facilities.

Some simple statistical amalyses of the main data were made to establish
the distribution of wariance, to determine the independence of run-to-run
variations in Kc , and to check any trends in the data. First, a standard
RUNS test was made to verify that the variations sbout the mean within )
each five-trial sample were randomly ordered (ref. 20, Table II, p. 298).
The test showed that the devistions were random. (In the worst case, the
test statistic u=25was within the 90 percent confidence interval.)
Histograms of the individusl trial differences from their five-trial mean
are shown in figure 15. A )(,2 test. of goodness of fit was made on each
set to verify whether or not these deviations could be considered normally
distributed (Gaussian). The test showed that with 26 degrees of freedom in
each case, )(,2 was well within the 95 percent confidence interval, and that
the two sets of data are normelly distributed (with no inmput, Xz = 11.27;

with input, 12 = 13.8; while the 5 percent reject levels are )(2 = 30.1 and 38.9,

41




respectively.) The reason for choosing A, rather than 1/A, = Tg for .
analysis is as follows: The recent large scale, simple reaction time

(RT) measurements reported in reference 21 show definitely that 1/RT,

rather than RT itself, is normally distributed. The reason given is

that the RT deviations should depend primarily on the velocity of

propagation of signals along neurons, which might be expected to be

normally distributed about a mean velocity. The average velocity would

be measured by (distance/RT), thus 1/RT should have a normal distribution.

If an snalogy between RT and T. is drawn, then 2., which is roughly
proportional to 1/Te, might also be normally distributed about its

mean value. The results herein support that hypothesis.

One further conclusion can be drawn from the histogram datg: the
standard deviation of a typical trial value of 7, from its sample mean is
a reasonably smell percentage of the mean. Taking the over-gll test means

for each input case as a reference, the specific values are:

Standard (Std. Dev.)

Mean Deviation Mean
NO Inpube.evveeiinneennnnn.. 6.58 *0. 31 h.7he
With input (B6'—1.5-1/8).. 6.00 +0.39 6.50%

These percentages are lower than those experienced in most simple
response time measurements, where the standsrd deviations are typically
10 —13 percent of the mesn under the best of conditions (ref. 22, p. 38).
Consequently, fewer trials are needed to establish a mean to specified
precision with the autopaced critical task, and it should be an efficient
substitute for reaction time measurements in situations where tracking is

important.
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From inspection of figure 14 it is apparent that, except for a couple
of samples, the level of A, remmined remsrkably constant across all the
test days. Consequently, the over-all means for each input case can be
tested for the significance of their different means. Since the distribu-
tions have been established as normal, the normal statistic (t = difference

in means — standard error) was used. This test gave

O]

value of t = 5.25,
which is far beyond the value of t (t = 2.57) for a 99 percent confidence
interval. It is concluded that the small systematic reduction in ic due

to input is statistically very significant.

In fact, it turns out that almost all five-trial sample means are
probably different, albeit slightly, from the over-all mean (as determined by
Student's t test). Except for the obvious law initial set and anomalously
high (but carefully checked) last two sets of runs in figure 14, the
implications of this last finding are that the day-to-day, and even
morning-to-afternoon, differences in Te might be readily detectable by
this technique. This interesting possibility should be studied further.

The interpretation of the measured A, in terms of Te, and its correlation

with other data, will be done in a later section.
In closing this subsection, the following conclusions are drawn:

1. The autopaced critical task developed herein, as well as
the resulting )\, scores for a given well-practiced subject,

can be closely duplicated at various facilities.

2. Five-trial sample means for A, are very stable, and the
variance is remarkably low. This precision implies that
the autopaced critical tasks would be a very efficient
psychomotor test.
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3. Iearning is rapid, with several dozen trials being sufficient
to reach the asymptotic score level. An essentially constant

level of A, was observed throughout the experimental program.

4. The test can be run without a command input, using the sub-
Ject's remant "noise" to excite the system. Although the
test seems subjectively the same as with an input, the A,
scores without an input are about 10 percent higher than

with a standard B6' —1.5—1/8 input spectrum.

C., DESCRIBING FUNCTION MEASUREMENTS

Technique.— To validate the theoretical model and assumptions,
measurements of the operator's describing function were made. The subject
tracked a random input with a first-order divergent controlled element
at various fixed levels of instability up to the limiting level which he
could track continuously for 2 to 4 min. The describing functions were
meesured by the cross-spectral analysis technique, using the watthour
meter (WHM) analyzer at The Franklin Institute. A complete description
of the cross-spectral analysis method and the WHM analyzer is beyond the
scope of this report, and the reader is referred to references 2 and 23
for details on the method and equipment. By directly measuring the time-
averaged cross-spectra between the displayed error and the commsnd input,
®ie(uﬁ, and between the pilot's control output and the commsnd input,
®jc(w), the pilot's describing function is computed from

t(je) = :;—(% (26)

A run length of 4 min. is used for most measurements to provide an

adequate number of the low frequency cycles over which to perform the

averaging required by the cross-spectral technique.

W




Input. — Some input is required for describing function measurements,
and a sum of many sinusoids is required for the WHM amalyzer. By using
nonharmonic frequencies and random phases, random appearance of the input
and resulting displayed error are assured, thus guaranteeing pure compensa-
tory behavior by the human operator. Inputs are required at each frequency
at which the describing vet too large an input
bandwidth will cause the operator to "regress" and to smooth over any large
high frequency inputs. The solution, originally used in reference 16, is
to employ a set of dominant low frequency waves to provide the effective

input bandwidth, plus a number of very small high frequency waves which

the operator can barely detect but which he cannot avoid responding to.

The specific input consisted of the sum of ter sinusoids. The
spectral shape is shown in Sketch B, and approximates a dominant rectangu-
lar bandwidth whose highest frequency is wj. This particular shape has
been identified by the code B6' - w; — 0, Where B6' refers to the shape
(ref. 16), oy is the bandwidth, and o is the rms value in display units.
The rectangular-plus-shelf type of input spectra typified by the B6' input
have been used previously in human response programs, and have been found
to be good approximations to a random input. For example, the data in
reference 2 show that the input amplitude distributions are essentially
Gaussian, and that the resulting closed-loop error distributions , Which

are what the pilot actually sees, are also Gaussian.

1.0 "
) }
Amplitude -14db
(linear scale) . PR DU P o i
L2 il I T |
0O .26 42 .68 97 15 25 40 75 138 20
w(rod/sec)

Sketch B. Input spectrum (B6' shape, oy = 1.5 rad/sec)

45




Experimental Setup and Procedure.— The describing function measure-

ments Wwere performed with the same eXperimental apparabtus as the sutopaced
eritical tasks (see section IV-B and Appendix B). The operator was started
at an easy subcritical level of instability, which was then moved out to

a preset level of A = 2, 3, 4, or 5 for each run by the autopacer. At

this point the WHM measurements started and continued for 4 min. (except
for A = 5, where only 2 min. runs could be completed). About a dozen or

so runs were obtained during a morning and afternoon session each day.
Mean-squared tracking error and mean-squared control force were also
measured during the run. As mentioned previously, the order of presenta-
tion of each level of X was randomized and counterbalanced during each

day's running. A run log of the test conditions is contained in Appendix B.

Tle-in with previous dats.— Because the experimental design was con-

fined, for economic reasons, to a sampling in depth of one typical operator,
it was important to verify that this operator was typical of others.

Figure 16 compares typical describing function data (plotted as Yqy, the
open-loop describing function during the closed-loop tracking task) of

four pilots and one engineer during the similar subcritical tasks of
reference 2 (open symbols) with those of the present operator (solid
diamonds). The task differences were mostly limited to the apperatus,

as follows: (a) The control stick in the current experiments was a rigid
force-pickoff ﬁencil stick operated fore and aft; whereas, a light, stiffly
sprung handle operated sbout the lateral (roll) axis was used in the previous

cases. (b) The error was displayed by vertical displacement in the
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present case, versus horizontal displacement in the previous experiments.
(¢) The input had a lower rms level in the present experiments; otherwise

the inputs were essentially identical.

The difference between the present and the previous data (fig. 16) is

small and is consistent with the tighter neuromuscular loop permitted by

ick. This evidenced by slightly larger gain and

o
=4

P

the isometric force s
phase shift at low frequencies and a higher frequency for the neuromuscular
second-order term. It is concluded that the present experimental subject
is typical of the population of pilots for which this critical task is

intended.

Some idea of the subject-to-subject variability is also apparent from
figure 16. The wide phase scatter at the lowest frequency is due primarily
to intrinsic measurement accuracy limitations imposed by run length. The
lower variability near the crossover region is apparent, and is partly
explained by the "selective variability" hypothesis of reference 2,

(which states that the operator's behavior is the least variable in the
crossover region) especially if the system closed-loop stability is

marginal, as it is here.

Deseribing function data.— In order to verify the theoretically

predicted trends in the parameters describing the operator's behavior, as
the instability was increased toward criticality, the raw describing func-
tion data were averaged and curve-fitted. To show the run-to-run vari-
ability expected among runs taken at varieus times, the four individual
Yy, data plots comprising one data set are shown in figure 1Ta. This
condition (A = 4 and wj = 4 rad/sec) provided a very consistent set of

runs, and the small scatter shown is usually within the accuracy of
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the WIM cross-spectral analyzer.* Again, the reduced variability in

The averaged data from figure 17a are shown in figure 17b along with the
resulting standard deviations. The data of figure 17a are also curve-fitted,
using the three previously described human operator models. The parameters
for these three curves have already been given in egs. (12), (16), and (18).
The data points show features requiring the precision model of the operator
(solid line) to account for the entire frequency range, since there is some
low frequency lag and amplitude rise and a high frequency second-order peak.
However, the extended crossover model (dashed line), hereinafter called the
"a-model” for brevity, fits the data in the crucial stable reglon around
crossover frequency. It 1s used for the remminder of the data because it has
fewer parameters to adjust and yet covers enough of the frequency domain
to validate the theory. First, the mean pilot describing functions Yp(Jjw)
were fitted for phase (using special templates for combined T and a
effects), giving a and Te contributions; then the amplitude was fitted
near W, giving the pilot gain, Kp. Next, the corresponding open-loop
YpYe curves were drgwn through the open~loop describing function data, per-
mitting analysis of the various stability margins. "Best fit," but some-
what arbitrary, fairings were also put through the actual YpYc data points

to check the consistency of the actual and fitted trends.

*It has been noticed in previous and present work that the input

g = 4.0 cases usually have lower scatter than the wy = 1.5 cases, but it
is not clear whether this is due to the input bandwidth, the larger num-

ber of waves in the ay = k.o case, or to apparatus errors resulting from
the different WHM analyzer power levels used in each case.
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The remainder of the averaged describing function data taken at other
values of \ are presented in figures 18 through 21, first plotted as Yp
and then as YpY. in order to facilitate assessment of both the model fits
and loop closure criteria. It is obvious that neither the a-model nor any
other model will fit some of the erratic phase points, yet the values of
the actual and fitted stability parameters are fairly comsistent. Detsiled
discussion of these describing functions will be delayed until the collec-

tion of fitted data parameters has been reviewed.

Data parameters. — Table IV contains a summary of all the fitted

parameters, while figures 22—-25 show the comparison between the actual
and fitted data. The reader should mentally weight the \ = 2 and 4 data
points more heavily, since the A = 3 data are an average of only two runs
and the A = 5 data are made up of three short runs (2 min. and less). The
short run lengths mainly increase the low frequency varisbility.

Note, in figure 23, that Yy, seems to demonstrate contrary trends between
actual and model data. This is not considered significant because the
measured points are very sensitive to the fairing of the mid-frequency
phase curve. Although scatter exists in the other data, most of the
trends are consistent. One conclusion is, then, that the a-model
provides a sufficiently accurate fit to human operator describing

functions measured while performing subcritical and critical tasks.

The parameter adjustments exhibited by the operator can now be
extracted from these cross-plots. In view of the remarks made above
(regarding weighting of dats in favor of the A = 2 and 4 runms), we can

conclude that a, to a first-order approximation, is constant. The
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TABLE IV

FITTED PILOT MODEL PARAMETERS, LOOP CLOSURE CRITERIA,
AND TRACKING PERFORMANCE MEASURED DURING SUBCRITICAL TASKS

Instability, A (rad/sec) 2.0 3.0 4.0 5.0
Input bandwidth, wj (rad/sec) 1.5 1.5 1.5 4.0 1.5
a-model parameters

Pilot gain, XK, (linear)....... 2,601 2.65 §{ 1.73 } 1.90 | 1.67

Effective time delay, Te (sec) | 0.121] 0.111| 0.110| 0.116f 0.100

Iow frequency parameter, a

(1/8€C) e vieiiniiininiinnnn. 0.3 | o.41 | 0.3 | 0.36 | 0.3
Stability criteria

Crossover frequency, wg

(rad/sec) .. ovevereeernnnneens 5.0 7.5 5.1 6.7 7-1

Iower stable frequency, Wy

(rad/sec) . ceeeeeeniienannnnn 0.99 | 1.b0 | 1.65 ] 1.8 1.hh

Upper stable frequency, Wyp

(r8d/s€c)ceeeeeeeeiiniiinnnnns 11.0 [10.9 [10.5 [11.2 |11.3

Iower stable gain, Ku1

(linear)..ceeeeinnnenneennnns 1.11 { 1.11 | 1.07 ] 1.15 ] 1.05

Upper stable gain, Ku2

(linear) . ..oovvvineniinnnnn. 5.4 3.8 2.9 2.7 2.3

Gain margin, Ky (AB)...vvunn.. 6.5 3.0 4.0 4.o 3.0

Phase margin, @y (deg)........ 30 16 14 14 12
Performance

RMS: error/input, epps/irms

(CI/CI) + e eveeeeeainneenaenn 0.80 | 0.93 | 1.79 | 2.08 | 2.3k

RMS: control/input, Cypms/irms

(em/em) e vvreennnnnennennnanns 2.53 | 2.58 { 3.08 | 3.73 | 3.32

RMS coherence, pg...vvvenennn. 0.7+ | o.47 ] 0.67 | 0.7% ] 0.78
Normalized perameters

Relative instability, Aty .... | 0.242] 0.333 0.440]| 0.464]| 0.500

Relative a; QTg sereaecccsess . | o.ok2] 0.046| 0.0%8] o0.0k2| 0.03
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variation of T, with M\ appears to be almost linear. Note that the model
fits to the data make no implications on the limiting or minimum value
of t, achievable by the subject, but only provide a basis for extra-
polating beyond the conditions for long continuous rums, as required
for the describing function measurements. Other considerations, to be

discussed later, are invelved in determining the minimum T, attainable

by the subject.

The carefully considered, but somewhat arbitrary, extrapolation of
the data to the limiting value of A, in the autopaced experiments is

also shown on each of the cross-plots for use in later discussions.

The relative tracking error, as measured by the ratio of the rms
tracking error to the rms command input (both referred to the display
CRT), increases with A as shown in figure 26a. Similarly, the control
effort, as measured by the ratio of rms pilot output (in force units
referred to the display) to rms command input also increases with A.
Noting that the majority of the pilot output is represented by a nearly
constant gain amplitude ratio in the describing function plots, it might
be expected that cypg/epms = K, even if remnant were present. This
comparison is made in figure 26b, where it can be seen that the trend of
each with A is similar and that the magnitude of measured [control/error]

(rms), approximates the loop gain.

This correspondence offers an extremely easy way of checking that
KP is in the prescribed region. In experiments where the critical task

is used to constrain the operator's behavior, but where describing function
or parameter tracking measurements are not available, either Cppg/Tymg OF

fcl/lel could be used to give a close estimate of Kp-
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Figure 27 shows the variation of the relative coherence coefficient,
Ny, Which is a measure of the portion of pilot output linearly correlated

with the input relative to the total pilot output. As shown in

reference 2,

5 — —_ —
R S 5 (37)
a —
2 @ @
where c2 = the mean square total pilot output
2 = the mean square remnant (i.e., that portion not

accounted for by the describing function acting
on the input)

Remember that, by definition, the describing function accounts for
any simple nonlinearity in the operator's behavior. The remnant is left
to account for the effects o} random variations in the operator’'s
adjusted parameters, and especially the variations in delay time [Tr(t)
of eq. (1)]. Thus, p, is an indicator of the relative remmant in the

operator's control signal in an rms sense.

It is apparent from figure 27, where pg veries from 0.5 to 0.8, that
the remnant constitutes & relatively large fraction of the operator's
output in these experiments, which is probably due to the relatively
small input (oi = 0.32 cm here, as compared to 1.3 cm in reference 2

vhere p, = 0.8—-0.9). Weighting the X = 2 and )\ = 4 data gives a slight
decrease in pg as the instability is increased. The level of pg in figure
2T at X = 2 is slightly lower than the value measured in reference 2 for
the comparable case with Y, = 2/(s — 2)(0.T4 versus 0.8,

This concludes the presentation and analysis of the describing function
data. These results will now be compared with the autopaced X\, data and
the theoretical analyses in order to interpret the results, test the

original assumptions, and refine the basic theory.
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SECTION V
INTERPRETATION OF RESULIS

A. VALIDATION OF THE THEORY

In this section the experimental data will first be interpreted from
the standpoint of the key theoretical assumptions and derived predictions
presented at the end of the "Theory" section. Finally, some refinements

to the theory required by experimental results will be discussed.

The six theoretical predictions in Section II-F will be assessed
in successive order. The first relastes tc the low run-to-run variance
to be expected on the basis of the narrow range of Yp permitted by
stability considerations. As shown by the variances marked on the
describing function data of figures 17—21, in the important crossover
frequency region between 1 and 10 rad/sec the run-to-run variance is
relatively small (on the order of a few symbol widths) for a given 2.
Figure 16 showed that the variations from operator to operator are
comparably small (especially when it is noted that the controlled element
gains were changed for each operator in the previous experiments, requiring
compensating operator gain adjustments). As regards the trend in the inter-
run or interoperator variances with level of instability, the different
number of runs at each A makes numerical comparison difficult. Purely
on the basis of a subjective evaluation of figures 18-21, it is felt
that there is no really significant increase in variance with A. Thus,
the first set of theoretical predictions seems to be supported by the

data.
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The second prediction was that the tracking errors should increase
and stability margins would decrease as the instability approached its
critical value. A comparison between the theoretical curves of figure >
and the observed stability criteria of figures 24 and 25 shows there is
a clear validation of the prediction of decreasing stability margins.
From figure 26a it is also apparent that the relative tracking error
increases as A\ approaches its critical value, as predicted in figure 6.

The second set of theoretical predictions has thus been clearly vali-

dated.

The third theoretical prediction was that a tight neuromuscular
loop would result from the stress of controlling an unstable element.
A tighter kinesthetic (force feedback) loop would lead to increased
wy, lower fy, higher 1/TN, and higher o (due to a larger difference
between 1/TK and 1/Tk). The present data indicate that a lies between
0.3 and 0.4, a relatively high value compared with that of o = 0.2
given in reference 2 for Y, = 2/(s — 2). The apparent decrease of o
with X shown in figure 22a may only be scatter, as noted previously,
because the date variance increases at frequencies below ay,, where
the o phase contribution is fitted. According to the precision-fit
data shown in figure 17, for A = 4, the values of ay, &y, Ty, and 7,
are all consistent with a tighter neuromuscular loop than the A = 2
values in reference 2. (Part of this difference may be due to the

very stiff force stick employed for the present experiments as
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compared with the spring-loeded stick used in reference 2). Taking
into consideration the operator's subjective impression of increasing
his muscular tenseness during the autopaced runs, the third prediction

is considered firmly supported by these experiments.

Prediction No. 4 was that for Y. = K./(s—2) the operator's adaptation
would be pure gain (nonequalized) in the broad crossover region and would
be constrained to a narrow range of gains. The describing functions for
Yp plotted in figures 1T7a—21a clearly demonstrate the predicted constant-
smplitude behavior in the broad crossover region. As was shown previously,
the differences at very high and low frequencies are well accounted for
by the neuromuscular terms in the precision model. The gain adopted by
the pilot (K, in the precision model, or Ky in the a-model and simple
model) is well within the stability limits predicted theoretically in
figure 5, as shown in figure 25. Even the limiting values of stable
gain, which are measured from the describing functions, agree surprisingly
well with the predictions of the simple model (using the observed TéS in
conjunction with figure 5 or equation 26 to establish Kﬁg). The differences
are easily explainable too. The lower gein limit occurs at a higher gain
because of a slight adverse effect of the low frequency phase on the lower
gain limit (e.g., trace out the phase for the simple model and a-model
curves in figure 17b). The upper gain limit is reduced because of the
amplitude departure from that of the simpler models as the neuromuscular

second~-order peak is approached.*

*A slight additional overestimate in the theoretical Kup was found
to result from using the first-order Padé expression to approximate Te
in the analysis of equation (26), on which figure 5 is based.
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Of the possible pilot closure criteria suggested by theory (i.e., Kom»
Kpms Kemin’ K1 00+ etc.), comparison of figures 5 and 25 indicated that
the maximum gain margin criteria are used, since Kp roughly follows Kgym-
The very clear proof of the predicted constraining effect of the critical
task on operator adaptation is one of the most important results of these

experiments.

The fifth prediction was that the maximum instability which can be
tracked for a given length of time would be less than the theoretical limit
of A = 0.8/7¢ because of finite gain and phase margin requirements. This
is obviously true for the describing function runs, where the maximum
instability which could be continuously tracked for 2 min. on 50 percent

of the attempts was only A =5 for a fitted 1/1e = 10.

Consider next the extrapolations of the T, data in figure 22,and of
the phase and gain margin data of figure 24 to the critical short term
instability, i& = 6, as measured by the autopacer. It is apparent that
finite margins must still exist during the final few seconds of the auto-
paced runs. The value of ié = 6 is consistent with the non-zero stability
margins, according to figures 5 and 25. A somewhat tenuous further
extrapolation of these stability margins to their zero point would give
an intercept around A = 10 to 12, which would be consistent with 1/Te =10
to 11. The theoretical implicatiors of finite stability margins are thus
borne out, but the surprisingly high margins still apparent for the
autopaced data require further explanation. This will be given in the

final subsection.
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The final theoretical prediction was that the autopaced limiting lc
would depend primarily on 1/7, and only secondarily on the effects of o
and stebility margins, i.e., there should be a calibratable dependence
of Aec on Tg. The validity of this prediction depends on the smallness
and relative invariance of Ty, and the stability margins required as A
is increased to A,. If the operator could track for several seconds
with zero stability mergins, and if o were constant for all A near Aoy
then A, would approach the ideel limit which could, in turn, be precomputed
from the typical values of a from equation (31). However, these experi-
ments show that appreciable stability margins exist even at A, so the
universality of any functional dependence of A, and T, then depends on
the universality and consistency of the limiting stability margins and
the level of a. The present data are too limited to draw any fiym
conclusions at this point. The slight variation of a versus X\ in
figure 22a may or may not be significant for reasons noted previously.
If it is assumed constant for a given experimental setup, then only the
variations in stability margins from run to run, from operator to
operator, and for various rates of change of \A need to be examined.

The present data indicate a fairly stable phase margin requirement

for 4t min. runs st & given A, but the observed variation in Py with A

in figure 24 makes extrapolation to a given As less certain. Analysis

of the variations in stability margin with run length encounters an
uncertainty-principle limitation; the shorter the run length, the less
accurate the cross-spectral measurement, and thus the intrinsic variation

of stability margin at short run lengths cannot be resolved.
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Average describing function data fits for severasl operators at
nearly critical A would be required to determine the universality of the
margins required at A,. This was beyond the scope of the present program,
but is an urgent matter for future investigation. In short, the final
prediction was not investigated in sufficient depth to permit its firm

validation, and the few applicable data are vague.

In summary, all of the assumptions and predictions of the critical
task theory have been proven valid, except for one final point. Some of
the reasons behind the apparently large discrepancy between Kc and 1/Te

will be discussed next.

B. THE DIFFERENCE BETWEEN A, AND 1/7,

A mjor experimental result is the difference between the autopaced
control limit of ic and the fitted describing function value of 1/Te.
As previously discussed in the "Theory" section, some of this difference
is to be expected on the basis of low frequency phase effects. ILet us
now check this refined prediction. Extrapolating the measured describing
function data of figure 22 to the autopaced limit of Xe = 6.0 gives
o e = 0.%35 1/sec, Te|Xc = 0.094 sec; thus aTe|lc = 0.037. The theoreti-

cal ratio between the zero margin )\ and 1/Te is then given by equation (31)

88! Me = 1 - V0.0357 = 0.8

The observed ratio of the autopaced limit X, to 1/7e (extrapolated to Kc)
is ATe = 6.0(0.094) = 0.57. In other words, given a and A, the theory
would indicate Te = (AT)/As = 0.81/6.0 = 0.135 sec, while describing

function fits indicate 1e = 0.09%4 sec.
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The apparent discrepancy can be explained by carefully examining the
definition of average phase margin and its variation about a mean walue.
One source of variation in phase angle during a long run is the variation
in operator time delay, T,.(t). Consider an operator who is tracking with

a 7 varying every several seconds as shown in the sketch below.

i Run .}
l Length
Ts

Sketch C. Hypothetical variation in 7

A describing function measure mede over a long time compared to the
period of the variation would yield a T = Tg, or the average of the vari-
ation. But imagine short time describing function measures (if it were
possible to make such a measure accurately). If the subject were in a
subcritical task, a set of successive phase measurements of the describ-
ing functions might appear as shown in the fellowing sketch.

we

Average ¢ '

Phase

-180°

Average ¢,

T4 T3

Sketch D. Short time phase plots
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Clearly, the subject would lose control whenever his 7 became as large
as T), because it takes only a fraction of a second for the error to
diverge off-scale. The 7i is then the value that the critical task
measures, while the 1¢ is the quantity that the describing function

determines.

The actual source of the variation is not too importent as long as it is
realized that it is an operator-centered limitation. The tentative con-
clusion is that the critical task measures an upper bound, or limiting
value, of 7T.and not the average value. The fact that Xc is so repeatable
implies that a definite upper bound on T, exists. Consideration
of the statistical implications of variability on ¢ is not within the
scope of this report. To evolve a thorough treatment requires certain
information about remmant which is not yet awvailable, but is another

area for further investigation.

The apparent discrepancy between the measured Te and value indicated

by ic can now be interpreted as a At due to the operator's intrinsic

variability.
T = T + AT 8
eXc eDF (5 )

where Tey = the 7 computed via equation (31) from autopaced

¢ Ac and a for @y = O
Tepp = the 7 obtained from extrapolating the describing
function Te to Xe (fig. 22)
At = & short term increment arising from the operator's

basic variability

For continuous describing function runs to be possible, this At

requires that a finite average phase margin be maintained. This average
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- phase margin is given by:

P = QAT = %(Teic - TeDF) (39)

The measured data for these parameters are:

@ = 5.3 rad/sec (from fig. 23)
Tex = 0.135 sec |computed from eq. (31) with
¢ ¥c = 6.0 and a = 0.35
= 0.094 ig. 22
Tepp 0.094 sec (from fig )

Then, from equation (39)
Py = 5.3(0.135 — 0.094)57.3 = 12.2 deg

The extrapolated average phase mergin at X, in figure 2k is oy = 12 deg,
in, perhaps fortuitously, good agreement with the computation. The
conclusion is reached that the difference between the observed T, and
Te Predicted from Xc is simply a matter of defining short run versus

long run values of Ta®
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SECTION VI
CONCIUSIONS

This combined theoretical and experimental investigation of a

"eritical tracking task" yields the following main conclusions:

1. The behavior of a human operator, while in a compensatory
tracking task with a controlled element having a first-
order unstable divergence, is accurately predicted by the
servo theory of operator response (as given in ref. 2)

even near the point of incipient loss of control.

2. As the degree of instability (measured by the inverse
time constant, A) is increased, the closed-loop stability
margins decrease and the tracking errors increase, in

good agreement with the theory developed herein.

3. As the instability is slowly but continuously increased
during one run, a point of incipient loss of control is
reached, Xe, which, for the operator tested, had a con-
sistent level and low variability. A very satisfactory

mechanization for automatically measuring A, is presented.

4, This critical Ao 1s theoretically shown to depend primarily

on the operator's effective time delay, T., while tracking.

e
Both the analysis and experiments reveal that there are
appreciable secondary influences on A, due to the operator's
intrinsic stability margin requirements and neuromuscular
system artifacts such as kinesthetic phase lags (a effects)
and arm/control—stick resonances (wN, QN). The experiments
were not of sufficient scope to show whether or not these
secondary effects would preclude a universal dependence of

Ac on T, among all operators.

5. The good agreement between the theoretical and measured

operator describing functions proves that one can force
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an operator to adopt any form of equalization and gain
within his known capabilities by selection of a suitable
critical task configuration. This should permit a
variety of improved psychomotor tests to be developed
in which the experimenter has excellent control over the

operator's tracking behavior.

cific conclusions relating to the various phases of the
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Block Diagram
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Figure 2. Simplified systems analysis of human operator control
of a first-order divergent controlied element

67



jw

—20

a. Root Locus

Curve Kp:l.9 Pilot Model

ssesssee (n] s'mple

(See Text For Parameters)

[ ] Precision (K, =1,

9)

Extended Crossover

T ™
" | o
-10 L
| 1o w s& 10.c 30.0
b— T T T 1T T — T I
*20 Magnitude
. Plot
Y b. Bode Plots
dB TV PV s UV UV YUY CODe
0 \I\,
- =
T wy, we wy, \\
-20 £
E ...-o-' eole ¢ 'y
-180 4 eiasgesssses "
v L
(deg) E
-220~§
-260J‘

Figure 3.

Comparison of Loop Closures for

Three Pilot Models

68



25+
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Figure 4. Comparison of normalized error response
spectra for three pilot models
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Figure 14. Sample mean levels of -):c during the experiments
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at various levels of instability
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Figure 25. Observed pilot and loop gain parameters (Kys; Ky, and Kp)
at various levels of instability
and ccmparisons with simple theoretical limits
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Figure 26. Relative rms trucking errors and control outputs
versus the level of instability
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Figure 27. Relative coherence (pa) as a function of )\
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APPENDIX A

DERIVATION OF THE CRITICAL TASK LIMIT

The effect of the low frequency kinesthetic lags, as represented by a,
on the theoretical relation between the zero margin limit for A, and Te

will be derived. For brevity, most of the subscripts will be dropped.

The total open-loop describing function using the extended crossover

model (a-model) of the human operator is given by

Ko (a7 + a/w)

Tple TTs +1 (A-1)

The limiting conditions for vanishing msximum phase margin are sought.

The open-loop phase is

® = —x +otan | Tw - T — = (A-2)

from which the phase margin is
-1
q)Mztan ‘I‘u)c—m)c—-a— (A'5)

In the ideal limit, the critical condition occurs when both gy = O

and dp/dw = O. The expression for dg/dw is

I - S Taf (1 +ol) + a

1+ (Tw)® @ wg[('rw)g 1]

gl

-1 (A-4)

which is zero at the frequency for maximum phase margin, ® = Wpy-. Thus,

Tw%MU +al) +a = m%M[(TwPM)g +1] (A-5)
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Regrouping terms,

[(zopm)? + 1]a + 2By = vy [(Topu)? + 1] (2-6)

from which Ta.%M = [(T(DPM)2 + 1] [M%M - cr,] (A-7)
Generally, a << Ta.‘%M, 80
T2 (mapy)® +1 (A-8)

Thus, the frequency for maximum phase margin is

By = o (8-9)

Solving for t in the phase margin expression [eq. (A—B)J for @y = 0, and

recognizing this as the limiting crossover frequency, ox,

T = 1—tat.n“chq,_. -

a (A-10)

ol e

a .

—= = 7T -
ok
Finally, noting that in the limit wpy = @, the combination of Egs. (A-9)

and (A-10) into a quadratic in T, plus some algebraic simplification,

yields
. T
PoL - . A-11
1 - Yor T>r1 ( )
- 1 1
or Ae T —T-(1 - Var ); Ao < % (a-12)
Normalized with respect to 7, the last expression becomes
AeT = 1 — V(LT (A-13)
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APPENDIX B
RUN 10G, AVERAGED AUTOPACED DATA, AND COMPUTER SCHEMATIC

For the reader's reference, a run log of the pertinent runs from
which the data of this report were extracted is given in Table B-I. All

runs were made at the Engineering Psychology Iaboratory at The Franklin

Institute under subcontract to Systems Technology, Inc.

The critical values of A which are plotted in figures 13 and 14 are

repeated here in tabular form (Table B-II). The rms variance of the

sample is given by

where n is the number of trials in the sample.

A schematic of the computer mechanization is shown in figure B-1.
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TABLE B-I

CRITICAL TASK RUN LOG

Run no. A Input
(@)% | (o) () (CHPST
021865 ~-1 iy 2
-2 4 1
-4 A(t) 1
-5 A(t) 0
-6 2 1
-7 L 1
-8 3 1
-9 5 1 2 min. run
-11 5 1 Aborted after 45 sec
-12 5 1
-13 3 1
—1b L 1 Data interruped after 2:05 by
timer; 4 min. total
-15 2 1
-161 A(%) 1
021965-3 A(t) 0
-4 A () 1
=5 A(t) 0
-6 4 1
-12 L B6'—l—1/8"
-13 L B6'—4—1/8"
-18 y 1
—20| a(t) 0
=211 a(r) 1

*8Run number is month-day—year—run of day; i.e., 021865—1 is
first run on Feb. 18, 1965.

bYc = 2/(s—=2); 1»(t) denotes autopaced run.

®Input code: O = no imput; t = B6'-1.5—1/8"; 2 = B6—1.6~1/8".

d'Describing function run length is U min. except where noted.

®subject is J. D. McDonnell in all runs.
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TABIE B-I.— Concluded

CRITICAL TASK RUN IOG

Run no. A Input Remarks
022365~ 3 A (t) 0
-4 A (t) 1
-7 2 1
-8 L 1
-13 L 1
-1k 2 1
—16]1 A(t) 1
022465 — 3 A (%) 0
! A (t) 1
-5 Y 1 Interrupted at 3:07
-6 L 2
-7 4 B6'—4—1/8" | Interrupted at 2:42 and 3:47
-9 L B6' —k—1/8"
-11 L 1
-12| (%) 1
-13| a(t) 0
022565 -9 A(t) 0
~-10} (%) 1
-11 L 1
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TABLE B-II

TABULATION OF AVERAGED AUTOPACED DATA

Training runs (no input; 5 run samples)
Trial no. ate e o
-+ 1 - 1 <

1 1—05 1/13/65, 2:00 PM g:ig 8:2;
122 1/13/65, 2:35 PM ggg 8:22

§2 1/13/65, 5:15 PM 2:23 g:;g

Eg 1/14/65, 8:30 AM g:gﬁ 8:;2

;‘2 1/14/65, 11:25 AM 2:16*2 3:2:12

2(5) 1/14/65, 5:30 PM 2:22 8:?;

'6(2 1/25/65, 8:30 AM g:gﬁ 8:11:19

gg 1/25/65, 5:10 PM 2246 gl;g

22 1/25/65, 5:23 PM 22‘8 8%
182 2/2 /65, k:45 PM 2:255 8:22
}?g 2/3 /65, 4:40 PM 2:22 8:?3
1122 2/ 4 /65, b:h0 PM g:gﬁ g:gg
:%2 2/8 /65, k:45 PM g:lég 8:22
122 2/ 9/65, 10:30 AM g:gg m?
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TABIE B-IT.— Concluded

TABULATION OF AVERAGED AUTOPACED DATA

Training runs (no input)

Trial no. Date Ao Ohe
145 . 6.80 0.21
150 2/9 /65, 5:15 PM 6.30 0.55
155 . 6.04 0.55
160 2/10/65, 2:30 PM 6.20 1.21

Data runs (from The Franklin Institute)
No input
Run no. Number of trials e Ao
021865-5 6 6.36 0.28
-17 5 6.28 0.30
021965-3 5 6.27 0.22
=5 5 6.62 0.22
- 20 5 6.40 0.27
022365 — 3 5 6.%6 0.26
022465 — 3 b 6.51 0.22
-13 5 7.50 0.52
022565 -9 5 6.91 0.28
B6'—1.5—-1/8" input
Run no. Number of trials Xe Ne
02186514 6 5.05 0.36
-16 5 5.90 0.45
021965~ 4 5 6.02 0.1
—-21 L 6.08 0.46
022365 — 4 5 6.0k4 0.26
-16 5 6.22 0.42
022465 -4 L 5.95 0.33
—-12 5 6.66 0.15
022565 —10 5 6.06 0.17
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