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EXPERIMENTAL AND THEORETICAL STUDY OF THE VISCOSEAL 

by John Zuk, L. P. Ludwig, and R. L. Johnson 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio 

Experimental studies were conducted on pressure patterns, gas inges- 

tion, and sealing capacity of viscoseals. Oil, water, and liquid sodium 

were used as the sealed fluids. Results indicated that when the groove- 

land pairs connected directly with the pressurized cavity (without an 

intermediate circumferential groove), an end effect, o r  ineffective seal 

length, was  evidenced by a sharp decay of pressure along the land leading 

edge. Results also disclosed that a helically grooved rotor viscoseal has 

increasing gas ingestion rates with increasing Reynolds number when the 

viscoseal liquid interface becomes unstable. However, if the helical 

grooves are in the housing (smooth rotors), gas ingestion could be elimi- 

nated by increasing Reynolds number. Secondary grooves on viscoseal 

land areas improved sealing capacity and reduced power absorption. So- 

dium was sealed at 300' to 625' F with negligible liquid loss. 

From a theoretical analysis, a set of two-dimensional equations (that 

includes both convective inertia and viscous forces) were formulated for 

a quasi-two-dimensional flow field in parallel groove geometries which 

can be used as a mathematical model for the viscoseal. The mathematical 

model consisted of an infinite smooth flat plate moving relative to a fixed 

infinite parallel groove-ridge surface with the clearance filled with an in- 

compressible, homogeneous, Newtonian fluid. A modified Reynolds num - 
ber evolved that is based on a groove-ridge characteristic length parallel to 

TM X-52245 



Y II 

1 
2 

4 

the smooth plate velocity vector. Application of the modified Reynolds 

number to published experimental results reveals that a significant im- 

provement (previously attributed to onset of turbulence) in bearing num- 

ber o r  sealing coefficient occurred when the modified Reynolds number 

~i7as war 1111ity; therefnrej it is arged that the strong influence of con- 

vective inertia, and not turbulence, is the main cause of this improve- 

ment. For  this reason a turbulent flow model should include the convec- 

tive inertia effects. The consideration of convective inertia effects re- 

veals that fluid density p, aspect ratio b/ho, and number of groove- 

ridge pairs N are additional parameters of pressure generation depen- 

dence that are not revealed by  creeping flow analyses. The analysis 

presented herein provides a unified approach which was  previously 

covered by the creeping flow and the semiempirical turbulent flow anal- 

yses. No restriction was  placed on the net flow; therefore, the analysis 

applies equally to hydrodynamic seals, bearings, and pumps. An arbi- 

t ra ry  groove-ridge shape is also permissible in solving equations. Con- 

sideration of convective inertia effects suggests the principle of viscoseal 

axial pressure generation and attainment of zero leakage. 

INTRDDUC TION 

The viscoseal is a special case of a general class of parallel groove 

geometries which have many potential applications for use as pressure 

generation devices. For  example, the parallel groove has been applied 

in spiral groove thrust bearings (ref. l), spherical and conical spiral 

groove bearings (ref. l), helical groove pumps (ref. 2), as well as heli- 

cal groove seals (viscoseal, ref. 3). 
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The viscoseal is potentially useful for sealing liquid metals, such as 

mercury, potassium, and sodium, in space electric-power generation 

systems that require 1 to 3 years of unattended operation and near zero 

leakage (refs. 4 and 5). As pointed out in references 5 and 6, the visco- 

sea! bas k- ihere~t  reli.hili,y and long life because of the absence of solid 

surfaces in rubbing contact. 

To date, analyses of parallel groove geometry have been limited to 

creeping flow solutions where convective inertia effects have been ne- 

glected. Convective inertia is the fluid mass acceleration due to a spa- 

tial velocity change, for example, a change in velocity due to an obstacle 

in the flow path. This is contrasted to an inertia effect caused by a tem- 

poral velocity change, for example, a variation in velocity at a point in a 

bearing due to shaft runout (which is a function of time). The creeping 

flow 

(see 

analysis is restricted to flows where the modified Reynolds number 

DISCUSSION) is much less than 1; that is, 

2 
Re = ReL(:) << 1 

or 

where 

Re? - 0.01 

C<1 
L 

Creeping flow analyses for pumps, screw extruders, seals, and 

thrust and journal bearings have been published by many authors (e. g., 
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refs. 1 to 26). Appendix C c 

4 

ntains an outline and discu sion of the pub- 

lished creeping flow solutions. The main criticism of the creeping flow 

solution (generally used in the laminar flow regime) is that its validity is 

restricted to Reynolds numbers below most engineering applications. 
A A ---hn- llLLillUcII n* V I  -=ni-nnirit-aI Y ~ ~ I I . L Y - - - ~ - -  ---- and -___ tiirhiilent flow formulations have been 

devised (refs. 4, 18, 27, and 28) for operation in a regime designated as 

turbulent, but they neglect the convective inertia terms which are impor- 

tant physically. The main criticism of these semiempirical analyses and 

turbulent flow model is that the existence of the turbulent regime is as- 

sumed. Turbulence, however, may not be necessary to explain reported 

experimental results and may not even exist. Even if turbulence does 

exist, convective inertia effects a re  thought to be far more significant. 

Kettleborough (ref e 29) numerically analyzed the slider bearing with in- 

ertia, turbulent, and viscous terms considered. When inertia only was  

considered, the results were in qualitative agreement with published 

(turbulent -attributed) slider bearing experimental results. Kettleborough 

concluded that the turbulence term did not appear to  greatly affect the 

operation of the slider bearing. 

Golubiev (ref. 24) applied centrifugal pump similarity laws to the 

helical groove seal (including operation where the rotor and housing are 

both grooved). This case considers an inviscid fluid (viscous forces ne- 

glected) whereby the pressure generation is found from Bernoulli's equa- 

tion modified by a geometric constant, where AP varies as the square of 

the velocity. The viscous force cannot be neglected for two reasons: (1) 

the viscous force causes fluid motion, and (2) the viscous force contributes to 

maintaining the generated pressure gradient. Unfortunately, the creeping 
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flow optimum geometry has been extended to be valid for operation beyond 

the creeping flow regime. Since the convective change is the main 

I driving force, a complete reevaluation of the optimum geometry including 

the groove-ridge shape must be investigated before conclusions on visco- 

seal p e r f w ~ ~ ~ ~ c c e  czc be mzde- ErprLments shnw that t h e  optimum 

geometry changes for flow beyond the creeping flow regime (ref. 27). 

I Several authors (refs. 20 and 21) reported that the viscoseal had a 

certain ineffective length at the high-pressure end of the seal. This has 

been called the end effect, and it has been suggested (ref. 20) that this 

ineffective rotor length be substracted from the calculated wetted-seal 

length in order to compare theory and experiment. Muijderman (ref. 1) 

derived theoretical pressure patterns for the spiral groove geometry on 

plane surfaces and developed an analytical method of correcting for  the 

end effect. However, pressure patterns in the viscoseal and end-effect 

alterations of these patterns have not been determined experimentally. 

Existing experimental data consists of average pressure measurements 

from which the existence of an end effect is deduced. 

Gas ingestion from the low-pressure to the high-pressure end of the 

seal is reported to have occurred when sealing potassium (ref. 4) and 

when sealing water (refs. 5 and 27). Although this gas ingestion charac- 

teristic may present no problem with a vacuum on the low-pressure end, 

it is highly undesirable in other potential applications because of con- 

tamination and/or detrimental effect on sealing capacity. Reference 24 

reports that in attempting to seal a liquid, the viscoseals (combining 

helical grooves in rotor and housing) worked on an air-liquid emulsion, 

and reference 25 reports that viscoseals (helical grooves on shaft) 
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operate with a mixture of oil and gas. These modes of operation could be 

due to gas ingestion. Leakage observations reported in reference 21 on 

"seal breakdown" and in reference 4 on 'lsecondary leakage" could result 

from gas ingestion into a closed cavity. 

The objectives of these studies were: 

(1) Study experimentally the pressure patterns in the viscoseal with 

particular emphasis on the pattern near the seal end (end effect) 

(2) Investigate experimentally gas ingestion and sealing capacity of 

the viscoseal 

(3) Develop a physical flow model for  a theoretical analysis of the 

viscoseal 

The data and analysis contained herein is covered in detail by the 

authors' papers (refs. 5, 6, and 30). 
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SYMBOLS 

ridge or  land width 

ridge or  land width parallel to viscoseal centerline 

acceleration vector 

groove width 

groove width parallel to viscoseal centerline 

specific heat of fluid 

specific heat of fluid at constant pressure 

clearance between ridge and smooth flat plate, o r  radial clearance 

unit normal directed toward axis 

unit normal tangent to trajectory 

body force in x-direction 

body force in y-direction 
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g 

hO 
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L' 

N 

n 

A P  

P" 

pC 

Pr 

Q 
Q* 

% 
Qt 

R 

Re 

Re* 

T" 

t 

U 

U 

body force in z-direction 

dimensionless factor, function of helical geometry 

acceleration of gravity 

step o r  edge height (or groove depth) 
L-- ------1 -..-.&-.-a 4 - 4 + - .  nf $1..;d Lllel-l l lar L " I k u u b t & v  AbJ VI A A U A U  

characteristic length, length of groove-ridge pair in smooth plate 

relative velocity vector direct ion 

axial length, normal to plate velocity 

number of helix starts 

integer 

pressure differential 

static pressure at reference state 

static cavity pressure 

Prandtl number 

net volume flow rate 

heat source energy 

volume flow rate normal to plate relative velocity direction 

volume flow rate in plate relative velocity direction 

fluid velocity in x-z plane 

radius of rotor 

Reynolds number 

modified o r  reduced Reynolds number 

temperature at reference state 

time 

smooth flat -plate velocity or rotor surface speed 

velocity in x-direction 
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AG 
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P" 
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v 

characteristic velocity in the y-direction 

fluid velocity vector 

pressure flow velocity in x-direction 

pressure flow velocity in z-direction 
-ml n ni+rr  in TI -di ?noti nn 
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velocity in z-direction 

coordinate along ridge-groove 

coordinate across film (between plates) 

coordinate across  ridge-groove 

angle between relative velocity direction and parallel groove- 

ridges o r  helix angle 

film height 

coordinate normal to plate relative velocity vector 

temperature ratio = 

bearing number 

T - TS 

TM- TS 

empirical sealing parameter (defined in ref. 5) 

absolute viscosity of fluid 

kinematic viscosity of fluid 

kinematic viscosity of fluid at reference state 

coordinate in direction of plate relative velocity vector 

density 

density at reference state 

shape parameter 

dissipation function 

angle traversed in polar plane 
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V vector differential operator Del o r  Nabla 

v2 Laplacian operator 

Subscripts: 

C 

g 

L 

M 

n 

r 

S 

t 

Z 

E 

77 

based on clearance 

groove 

or  film thickness 

based on characteristic length 

moving surface 

normal direction 

ridge o r  land 

stationary surface 

tangential direct ion 

across ridge-groove 

plate relative velocity direction 

normal to plate velocity direction (axial length) 

APPARATUS AND PROCEDURE 

Experimental Study of Pressure Patterns 

Figure 1 shows a schematic drawing of the experimental apparatus 

and viscoseal assembly used to study end effects and pressure patterns. 

The rotor of the viscoseal is attached to the power input shaft which is 

supported by externally pressurized gas journal bearings. Axial thrust 

due to sealed fluid cavity pressure against the rotor is resisted by the 

externally pressurized gas thrust bearing. The power input shaft is 

driven by a variable-speed electric drive and step-up transmission. A 

magnetic pickup monitors the shaft speed. The viscoseal housing is at- 

tached to a support shaft and roller bearing assembly, which permits 

axial adjustment. A pump pressurizes the seal housing cavity and circu- 



0 * 

4 

10 
4 

lates a cooling fluid flow from the reservoir, through a heat exchanger, to 

the test cavity and then back to the reservoir. This cooling flow is neces- 

sary to control fluid film temperature in the viscoseal. The steel rotors 

have a centerline average surface finish of 20X10-6 inch and are mounted 

v:itkii. 0. 0002 i ~ c h  r?f the tntal hdiratnr reading. The viscoseal housing 

is constructed from acrylic plastic and contains thermocouples and pres- 

sure  taps as shown in figure 2. Pressure taps, in a line parallel to the 

axis, are located at groove edges and midland and midgroove positions; 

pressure taps are also located near both edges along one groove. Two 

sets of four pressure taps (90' apart) were used to aline the housing with 

respect to the rotor within 0.0004 inch as determined by calibration. 

Thermocouples were located flush with the bore and groove root in a line 

parallel to the axis and at each midgroove and midland position. Figure 2 

also gives the groove dimensions used in this evaluation. The housing had 

a 2.001-inch bore and a 142 helix angle. Groove widths of 0.19 inch and 

land widths of 0.13 inch were provided by  using five helix grooves (five 

starts). These geometric proportions, which are based on the optimum 

relations given by reference 19, included a 0.015 inch groove depth and a 

rotor radial clearance of 0.005 inch. 

lo 

The kinematic viscosity-temperature relations for the mineral oil used 

were found to be the same before and after use in the test. These values 

can be found in table I. 

Experimental Study of Gas  Ingestion and Sealing Capacity 

In studies on sealing water (fig. 31, the water pressure and flow to the 

pressurized cavity (at the viscoseal high-pressure end) were controlled by 

throttling valves on the inlet and outlet water lines. This arrangement 
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provided temperature control of the sealed fluid. A transparent housing 

permitted visual observations on the rate of gas flow out of the pressurized 

cavity; and, in studies on grooved rotors, a stroboscope permitted obser- 1 -  
vations of the gas ingestion process in the rotating grooves. 

Figcre 4 is a diagrammatic sketch cf the expprLm-enta1 a-ppa-ratus used 

for evaluating viscoseals in sodium. The temperature was maintained by 

a furnace (resistance heaters) surrounding the viscoseal housing. The 

temperature was monitored by thermocouples attached to the seal housing 

outer diameter and by one thermocouple submerged in the sodium in the 

pressurized cavity. 

The enclosure surrounding the viscoseal assembly is pressurized 

with argon (after prior evacuation) to slightly above ambient to insure 

exclusion of air. Prior to the introduction of liquid sodium, the input 

shaft is set at some fixed speed. Sodium is introduced by pressurizing 

the reservoir and venting the leak detector tank (see sodium supply system 

in fig. 5). The sodium first fills the pressurized cavity (viscoseal high- 

pressure end) and then is allowed to f i l l  the leak detector tank to a pre- 

determined level. The leak detector tank float displacement is monitored 

by recording the differential transformer output that is produced by the 

transformer core attached to the top of the float. Thermocouples placed 

at different levels in the tank provide calibration during the filling process. 

By holding the reservoir temperature at 220' F, a low degree of oxide 

solubility was maintained, The 20-micron filter (stainless steel) inside the 

tank allowed 220' F filtration. A second filter external to the reservoir 

(5 microns) provides additional filtering at approximately 300' F. Sodium 

is partially removed from the system by pressurizing the leak detector and 
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forcing the sodium back into the reservoir. By alternately filling the 

system and then partially returning the sodium to the reservoir, the so- 

dium can be recirculated and refiltered. This recirculation provides a 

hot flush o r  cleaning action on the viscoseal assembly before a run. (All 

transfer lines and the test section are held at 300' to 500' F during this 

recirculation process. ) For all sodium studies the leak detector tank was 

held at 300' F, and any seal leakage resulted in a drop of liquid level and 

float position. Gas ingestion into the pressurized cavity was indicated by 

a rise in sodium level in the leak detector. 

Sealing capacity, when sealing sodium, was  obtained by increasing 

cavity pressure until the leak detector indicated leakage. Line thermo- 

couple readings were also found to be sensitive leak indicators. Visco- 

seal geometries employed in this evaluation are shown in table II. The 

geometry near the optimum (derived in ref. 19) was taken as the basis 

for comparison, and is listed in the first row of table Il as geometry 1. 

Secondary grooves were added to the lands of this basic geometry to form 

the second geometry evaluated. For the third geometry, a ratio of groove 

to land width of 1.90 was selected; and for the fourth geometry, secondary 

grooves were added to geometry 3. Geometry 5 is the internally grooved 

housing having the same groove dimensions as geometry 1. The rotor 

outer diameters were 1.993 inches, and the housing bores were 2.001 

inches. 

EXPERIMENTAL RESULTS AND DISCUSSION 

Pres sure Patterns 

Figure 6 shows an experimentally determined pressure pattern in a 

viscoseal composed of an internal helically grooved housing and a smooth 

4 -  
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rotor arrangement. In a plane orthogonal to the rotor centerline, the 

pressure increases across the groove (from point A to B) in the direction 

of rotor rotation and decreases across the land (from point B to C). The 

increase and decrease in pressure repeat for  each groove-land pair and 

prerlgce .x saw-tnnfh pressiire profile in the nrthngnnal plane. The pres- 

sure increases from the low-pressure end (plane 3) to the high-pressure 

end (plane l), and the pressure pattern has a helical twist corresponding 

to the helical grooves. (For a rotating grooved shaft this pressure pattern 

would be rotating. ) 

The pressure gradients in the planes orthogonal to the rotor center- 

line are essentially linear for axial positions not influenced by the end 

effects. Figure 7 shows typical experimental results. These pressure 

profiles are the same as those for the orthogonal planes shown in figure 6 

except that a single groove-land pair is unwrapped to form a plane figure. 

(Neglecting curvature is not a significant e r ro r  since the ratio of rotor 

radius to groove depth is 65 to 1.) 

In these orthogonal planes, the ratio of pressure to cavity pressure 

P/Pc increases linearly over the groove and then decreases linearly over 

the land. This linear relation w a s  found to hold to the maximum test speed 

of 6000 rpm, which produced a modified Reynolds number (Re*) of 0.25. 

End Effect 

When the helical grooves connect directly with the pressurized 

cavity, the pressure developed along the land leading edge decays sharply 

near the high-pressure end of the seal. Typical results are shown in fig- 

ure 8 for  1000 and 6000 rpm. The pressure pattern at the end w a s  essen- 

tially the same f o r  the speed range investigated (1000 to 6000 rpm) except 
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that the results for 5000 rpm (not shown) and 6000 rpm start to show a 
1 

slight shortening of the end-effect length. This shortening is probably due 

to convective inertia effects. In all cases, the end-effect axial length was  

approximately equal to one-half the axial groove width. This suggests that 

end-effect length could be taken to one-half groove width without significant 

error. The pressure decay within the groove is due to the equalization of 

the land leading- and trailing-edge pressure, since a common pressure 

must exist in the cavity. 

I +  
I 

I 

Gas Ingestion and Sealing Capacity Observations 

When Sealing Water  

Grooved housing. - The series of photographs in figure 9 shows the 

gas ingestion process when sealing water  with a grooved housing and 

smooth outer diameter rotor. At a modified Reynolds number (Re*) of 

1.75 (2000 rpm), no gas ingestion is evident, the water film is clear, the 

interface is stable, and the scavenging length is nonwetted. 

At Re* = 2.58 (3000 rpm) the film had large gas pockets, gas was  

ingested as evidenced by air bubbles passing out of the transparent vent 

line, and the sealing capacity (parameter, AG) was lower than that at 

Re* = 1.75 (2000 rpm). Various degrees of gas ingestion and film rupture 

are evident for Re* = 3.50 (4000 rpm) to 6.10 (7000 rpm). At Re* = 7.00 

(8000 rpm), no detectable gas ingestion rate was  evident, and gas ingestion 

was not detectable from Re* = 7.00 (8000 rpm) to the highest speed evalu- 

ated, which gave Re* = 10.84 (12 000 rpm). At Re* = 7.00 and above, 

the seal wetted length had two distinct regions (fig. lO(f)): a gas-liquid 

region, and a region of homogeneous liquid at the high-pressure end. 
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Between Re* = 3.5 and 6.10, it was observed that the bubble size 

progressively decreased when moving from the low-pressure end to the 

high-pressure end. It is probably that with longer seal lengths the corre- 

sponding higher pressures would reduce the bubble size sufficiently to al- 

lm escapc 2'r"r the b d s ,  n d  t h i s  gas ingestion would be eliminated. It 

was observed that concentricity of rotor and housing markedly affect gas 

ingestion occurrence. 

Grooved rotor. - In a series of visual observations using a grooved 

rotor, the gas ingestion started at Re* = 1.9 and increased in rate with 

increasing Reynolds number (maximum investigated, Re* = 10.84). Below 

Re* = 1.9 the liquid-to-gas interface was stable and no gas ingestion was 

ob served. 

Gas ingestion mechanism. - These observed gas ingestion character- 

istics of the grooved rotor and the grooved housing a re  illustrated in fig- 

ure 10. The probable mechanism producing the difference between the gas 

ingestion process of the grooved rotor as compared with that of the grooved 

housing is illustrated in figure 11. For the grooved housing, when the cen- 

trifuge action on the liquid becomes great enough, the gas bubbles are dis- 

placed to the rotor surface and pass over the lands. Therefore, the bub- 

bles are not pumped to the high-pressure end. For the grooved rotor, the 

centrifugal action on the liquid forces the gas bubbles into the grooves; 

therefore, the bubbles are pumped to the high-pressure end of the seal. 

When a viscoseal is ingesting gas, the axial pressure gradient is non- 

linear and increases as the liquid-to-gas volume ratio increases in the di- 

rection toward the high-pressure end. For no gas ingestion, the axial 

pressure gradients are linear as shown in figure 8, which contains data 
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on sealing oil. As  shown in figure 12, gas ingestion results in nonlinear 

pressure gradients (increasing slope with increasing liquid-gas volume), 

which are significantly different from the gradients shown in figure 8. 

I 

I 

Leak rate. - In both viscoseal combinations (grooved housing and 

grooved rotor) w;rter W ~ E  sealed, ~ i t h  EO detectQhle leakage. It was ob- 

served that, although gas ingestion reduced the sealing capacity XG, ef- 

fective sealing of the water was maintained. 

Results of Sodium Sealing Studies 

Grooved housing. - In sealing sodium, the grooved housing did not 

ingest gas (fig. 13) for  concentric alinement (0.005 in. F. I. R. ) over the 

range investigated (Re* = 8.66 to 50.5) and for pressures ranging from 

2 to 100 psig. The sensitivity of the leak detector to measure gas inges- 

tion rate was estimated to be 0.50 cubic centimeter per hour. It was ob- 

I served that nonconcentricity leads to gas ingestion, but this situation was 

not investigated. 

Grooved rotor. - The grooved rotor started to ingest gas at Re* = 10, 

and the rate increased with increasing Reynolds number, as shown in fig- 

ure 13. This ingestion characteristic is similar to that observed when 

sealing water with the grooved rotor. 

Gas ingestion into closed cavity. - In sealing sodium, gas ingestion 

was readily observed by monitoring the liquid level in the leak detector. 

As shown in figure 14, a straight line on the oscillograph paper indicated 

no gas ingestion, no leakage, and thermal equilibrium. When gas inges- 

tion occurred, the liquid level line showed an upward trend, the slope of 

which is the ingestion rate. A s  gas ingestion proceeds, the gas bubble in 

the pressurized cavity increases in size (fig. 14(a)), and when the size 
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increases to the rotor outer diameter, the gas flows back out the annulus 

formed by the rotor and housing. This causes a decrease in bubble size 

and a sharp drop in the leak detector readout trace. If the interface is far 

enough away from the seal low-pressure end, the liquid wil l  be scavenged 

bzcB w i t b h  the nonwetted lengthi and no loss of liquid will  occur. The in- 

gestion process will begin again and the net result is a saw-toothed trace, 

each sharp drop indicating gas blowback. If the interface is sufficiently 

close to the seal end, liquid loss will occur, and the leak detector readout 

will show a saw-toothed trace with a downward trend, which represents 

a liquid loss at each blowout (fig. 14(c)). This latter action may be the 

"seal breakdown" phenomenon reported in reference 21 and the "secondary 

leakage" phenomenon reported in reference 4. (In sealing water, the re- 

peating bubble growth and subsequent seal blowout was visually observed 

by means of a transparent housing.) 

Sealing capacity. - The grooved housing had a higher sealing capacity 

(higher sealing parameter, XG) than the grooved rotor. The comparison 

is given in figure 15, which gives the sealing parameter XG as a function 

of Reynolds number based on c (Rec). The difference between the value of 

hG for the grooved housing and the value for the grooved rotor was at- 

tributed to the difference in gas ingestion characteristics. The grooved 

rotor operates with a gas-liquid mixture along the full wetted length simi- 

lar to that shown in figures 9 (b) to (e); the grooved housing operates with 

a homogeneous liquid at the high-pressure end of the seal and a gas-liquid 

mixture at the low-pressure end similar to that shown in figure 9(f). 

Figures lS(a) and (b) show the sealing parameter AG as a function of 

Reynolds number (Rec) for  groove configurations of five- and ten-helix 
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starts (see table 11) with and without secondary grooves on the lands. In 

both cases, a higher sealing coefficient was  obtained through the use uf 

secondary grooves. Secondary grooves also operate at lower power ab- 

sorption levels for equal sealing capacity, as was determined by the 

amount of heating -power required to maintain operating temperature. 

This lower power absorption is due to less land area as compared with 

the land area of the seals without secondary grooves. 

Sodium was sealed for pressures ranging from 2 to 100 psig with 

negligible leakage loss. The operating range was within Reynolds numbers 

(Re*) of 8.66 to 50.5, and the fluid temperature was in the range 300' 

to 625' F. The maximum length of any one run was 8 hours and accumu- 

lated testing time amounted to 50 hours for 10 runs. The oxygen content 

of the sodium for the 10 runs varied between 50 to 95 parts per million, 

as determined by the analytical method described in reference 31. 

THEORETICAL ANALYSIS OF THE VISCOSEAL 

Basic Model 

The rectilinear Cartesian coordinate system was selected for mathe- 

matical tractability. A parallel groove-ridge plate geometry with a 

smooth f l a t  plate moving relative to the parallel groove-ridge plate, both 

of infinite horizontal extent, was chosen as the basic model (see fig. 17). 

Conceptually this model can be thought of as an infinitely long smooth 

rotor with a very large diameter and a concentric grooved housing. Actu- 

ally this infinite grooved plate model is the limiting case of a helical 

grooved cylinder where R - 00 o r  c - 0. If c/R? - 0.01, this model 

should give a good qualitative picture of the flow field and pressure gener- 

ation and significant trends for optimum geometry. (See argument in 
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appendix A.) For example, a practical geometry is a 2-inch-diameter 

rotor with a 0.005-inch concentric clearance, c/R = 0.005. 

The clearance between the infinite plates is filled with any incompres- 

sible fluid, and it should be noted that for this infinite horizontal extent 

case there arc? no end effects (in practical engineering design, of course, 

end effects must be accounted for). Since experiments at Lewis show that 

the end effect zone decreases with increasing rotor speed and also that it 

is less than a groove width, this analysis should be valid in the bulk of the 

homogeneous fluid (see figs. 18 and 19). 

In the flat-plate case, the boundary conditions on a groove-ridge plate 

in motion are constant; however, it will be  advantageous to have the 

smooth flat plate move relative to  the grooved flat plate. This will elimi- 

nate the temporal inertia terms and reduce the subsequent independent 

variables by one. 

A word of caution for extension of the results to a case where the 

groove-ridge pairs on a finite shaft are rotating relative to a fixed smooth 

housing. 

is stationary and the grooved rotor is moving, and when the housing is 

grooved and the rotating shaft is smooth. When the rotor is grooved, the 

surface speed is different at each point along the step or  edge of the moving 

boundary. Thus this analysis should be more valid for a smooth rotor and 

grooved fixed housing (from ref. 5 the grooved housing appears to be the 

desired mode of operation) with a large radius of curvature and/or small 

clearance. 

The boundary conditions are different when the smooth housing 

When referring to figure 17, it is noted that by the choice of coordinate 

system the groove-ridge pairs appear only in the y, z-plane. Later it will 
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be shown that this choice of coordinate system will be necessary to reduce 

the analysis to a two-dimensional problem for  the quasi two-dimensional 

flow field. It should also be noted that the drag force has been resolved 

into its components in this coordinate system and there is no equilibrium 

ef f ~ r c e s  in the z-direction with inertia (nonlinear) effects neglected. 

BASIC EQUATIONS 

The Navier-Stokes equations for  a homogeneous, incompressible, 

laminar, Newtonian fluid are the following (see ref. 32): 

x -direction : 

y -direction: 

Dv 

Dt ax2 ay2 az 

z-direction: 

D w -  - ~ + ~ ( a %  -+-+- a% a%) 
Fz a2 ax2 ay2 az 2 

P - -  
Dt 

(3) 

The Eulerian o r  spatial derivative is D/Dt, which is composed of the 

local acceleration (temporal velocity change) and the convective accel- 

eration (spatial velocity change): 
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a a a + u - + v - - + w -  a - -  D -  - 
Dt L v a t  J L  ax a Y  az, 

Local, unsteady, or ConvZtive 
nonstationary accel- acceleration 
eration 

The incompressible energy equation with constants C and k and neglect- 

ing compression work DP/Dt (ref. 32) 

(5) 

where <p is the dissipation function 

a u +  aw 
az ax 3 ax ay az 

2 a u +  av+  aw 2 
- -> +(- -) --(- 

The assumptions for this analysis are as follows: 

(1) For steady flow, 

(2) For no body forces, 

Fx = Fy = F, = 0 

This means there are no electromagnetic fields present and gravitational 

effects are negligible. 

(3) Isothermal and equal temperature plate surface conditions are 

assumed. 
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(4) Viscous (frictional) heating is negligible. Therefore, the thermo- 

physical properties are constant. This appears to be a good assumption 

for order 10 (water) and smaller (liquid metals) Prandtl number Pr fluids: 

Pr=-  cPp 
k 

In experimental setups there is an inherent unsteadiness due to vibra- 

tions, shaft runout, and eccentricity of rotor with respect to housing and 

misalinement. These factors wi l l  influence the degree of correlation be- 

tween the analytical and experimental results. 

The conservation of momentum and mass equations were nondimen- 

sionalized and a formal ordering procedure was used to determine the 

relative magnitude of the terms. Consequently, in a formal way the neg- 

ligible terms were found (see appendix A). 

An important parameter, the modified o r  reduced Reynolds number, 

was found: 
n 

This modified Reynolds number gives the relative magnitude of the inertia 

forces  to the viscous forces; that is, 

Inertia forces 
Viscous forces 

Re* = 

Thus, inertia forces can be neglected only if Re*?O. 01. 

After the formal ordering procedure (see appendix A), the three- 

dimensional flow field equations are as follows: 
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Conservation of momentum: 
2 

1 ap a (x-direction) (6) au au au - 
ax a Y  az p ax 

u - + v - + w - - - - - + v -  
aY2 

ap - 0 (y-direction) 
a Y  

(7) 

Conservation of mass: 

Fully developed flow is assumed in the x-direction. This means that 

v' and aP/& are not functions of x and that the pressure gradient in the 

x-direction (parallel to the groove) is a constant (verified experimentally 

in ref. 5). In figure 18, it is observed that this assumption is valid only 

where the average pressure profile at the ridge leading o r  trailing edges 

in the axial direction is linear. Gas ingestion results in a nonlinear pro- 

file (see figs. 18 and 19). 

With the assumption of fully developed flow along the groove-ridge 

direction (x-direction), the flow field equations become two-dimensional: 

2 
- constant (9) 

au au 1 ap a u  v - + w - = - - - + v -  where - -  
a Y  az P ax ay2 ax 
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v - + w - - - - - + v  aw aw- 1 ap fa$ -+- a2w\ 

Conservation of mass: 

The boundary conditions for an arbitrary shaped groove-ridge geome- 

t ry  (see fig. 20) are: 

(1) 

w = - u s i n a !  

(2) 

u = v = w = O  at y = h ( z )  

For example, when h(z) is a rectangular groove-ridge pair the boundary 

condition is: 

u = v = w = 0 at c < y < c + ho (on side of groove) 

u = v = w = 0 at y = c (on ridge) 
- -  

u = v = w = 0 at y = c + ho (on groove root) 

(3) Periodicity of groove-ridge pairs at the clearance interface. 

For  0 < y < h(z) - 
v(0, y) = v(L sin a!, y) 

w(0, y) = w(L sin a!, y) 

P(0, Y) = P(L sin a!, Y) - (APr+g)z 

where (APr+g)z = const 
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All velocity derivatives must also be the same to satisfy the periodicity 

boundary conditions 

ayn azm ayn azm 

for 0 < n , m  < 00 - - 
(4) Boundary condition for aP/ax for a cylindrical geometry (visco- 

seal). 

In appendix €3 it is shown that for a cylindrical geometry aP/& de- 

pends on the (AP  ) obtained in the z-direction 
r+g 

ax 27rRc.o~ a 

These equations (9), ( l l ) ,  and (12) can be solved for the velocity com- 

ponents. The velocity components can be obtained for arbitrary (APr+g)z. 

Then the axial pressure gradient aP/aL' can be found from 

I 

aL' L' L 

where L' is the axial length (see fig. 21). Qualitative pressure distribu- 

tion from experimental data in the x- and z-directions is shown in figures 

22 and 23. 

By examining the analysis, boundary conditions, and the derived equa- 

tions, the axial pressure gradient aP/aL' is a function of (a, U, p, v), 

where a is a shape parameter that is a function of (b/ho, c/ho, a/b, a). 



26 

Since convective inertia effects are important, new geometric parame- 

ters appear which are not implied in creeping flow theory. Most notable of 

these is the aspect ratio b/ho, which implies the degree of convective ef- 

fect. When the b/ho and a/b ratios are lmown, N, the number of helix 

o r  groove starts, can be found. (Direct effect of N is seen from boundary 

condition (4). ) Thus the number of groove o r  helix starts also is an impor- 

tant parameter. Since inertia is important, a high density is desired for  

pressure generation. 

The equations (9) to (12) and boundary conditions are the minimum 

number of terms that are necessary to mathematically describe the physics 

of the internal flow. This is the simplified form of the Navier Stokes equa- 

tions which should be used for an analytical solution; however, a mathe- 

matical function to describe the groove-ridge shape may be too complex 

for a closed-form analytical solution. Thus the equations are solvable by 

using high speed digital computer numerical methods. Since numerical 

schemes can accommodate all two independent variable terms with equal 

ease, it is suggested that 

solved numerically, i. e. , 
av 
aY 

v - + w  

the complete set of two-dimensional equations be 
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Of course, the numerical solution will determine under what condi- 

tions the previously derived simplified form of the two dimensional Navier 

Stokes equations are good approximations. 

By examining the set of equations (11) to (14) it is seen that v and w 

can be calculated from equations (ll), (12), and (13). The solution is 

identical to a two-dimensional flow case. Then the u flow field can be 

found from equation (14) which is linear in u. This is an example of the 

Independence Principle. 

From appendix A the energy equation with no temperature variation 

along the groove-ridge direction (aT/ax = 0) is 

Comparing the above equation with the x-direction momentum equation 

it is seen that the mathematical form of both equations is identical. 

Substituting 8 =$.w 

and 

1 ap 

Pgc Pgc P ax 
0 o r - -  Q* - a constant +- - - I-1 - 

Thus with Pr = 1 and the above substitutions, the equations (14) 

and (15) are identical. The thermal boundary conditions are 

At y = O  

8 = constant +w -+-U sin cy = constant 

At y = h(z) 

e = O=>W = o 
and the boundary conditions are similar  in form. 

The above statements mean that once the u velocity field is found 
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the solution will also give the temperature distribution for  the stated re- 

strictions of constant frictional heating o r  a heat source in the fluid with 

the appropriate physical parameters equivalent to the constant pressure 

gradient along the groove-ridge pair direction and Pr = 1. Note that this 

temperature distribution solution violates the initial assumption of con- 

stant thermophysical properties; however, for small temperature differ- 

ences the above solution will give a good qualitative picture of thermal 

effects. 

DISCUSSION 

Discussion of Equations 

This analysis is valid only for a homogeneous fluid and figures 18 

and 19 clarify the region of validity. The analysis is not valid for a 

scavenging area and a region consisting of a mixture of gas and liquid 

(see fig. 18) o r  under conditions of gas ingestion. 

It should also be pointed out that the analysis is not valid in the end 

effect region at the high pressure end of the seal (see fig. 18) where the 

groove connects with the cavity. Since the appropriate equations are non- 

linear, the pressure is not a harmonic function; thus, the usual analog 

methods of finding end effect are not available as found in creeping flow 

regions (see appendix C). 

The equations are unique in many ways. Mathematically, the problem 

has been reduced to two dimensions (y- and z-directions) but all three ve- 

locity components are present. Thus the flow field can be described as 

quasi-two-dimensional. Also, there is a pressure gradient in the third 

dimension (x-direction), but fortunately this gradient is a constant and 

dependent on the y- and z-direction gradients. 
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The velocity component v is no longer negligible as it was in the 

creeping flow solution. Physically, v cannot be negligible because of the 

presence of the edge effect which will result in a component of velocity in 

the y -direct ion. 

Since there is no restriction on net volume flow, the pressure gen- 

eration prediction equations should equally apply to hydrodynamic seals, 

bearings, and pumps. 

When further examining the physics of the problem, it is seen that 

across the groove-ridge pairs the unbalance of the convective accelera- 

tion force with the drag force results in a pressure gradient in the 

z-direction. Since the step o r  edge causes the convective acceleration, 

its effects are not negligible unless there is a very large aspect ratio 

and the mathematical model accounts for  the edge effect. Along the 

groove and ridge (x-direction) the drag force is in equilibrium with the 

induced pressure and convective inertia force. The drag force not only 

causes fluid motion but also aids in maintaining equilibrium with the 

pressure along the groove o r  ridge. 

Both equations of motion illustrate the coupling of u, v, and w in 

the convective inertia terms. This means that physically a condition such 

as no end leakage is possible. In creeping flow there is no coupling be- 

tween the velocity components, which illustrates the shortcoming of that 
I analysis (i. e., end leakage is not zero). 

The assumption that the inertia terms are of the same order as the 

viscous terms results in equations of the boundary layer type; however, 

the boundary conditions are different. 
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The equations are of a form that might tempt one to reduce the num- 

ber of independent variables by one by trying to find the admissable flow 

field which would result in a similarity transform solution. This tech- 

nique fails because of the characteristic lengths that are present in this 

type of confined flow. 

The equations are solvable by using high-speed digital computer nu- 

merical methods. A mathematical function to describe the groove-ridge 

shape may be too complex for a closed-form analytical solution. It 

should be interesting to find out if the step is still the optimum shape 

with convective inertia effects included. For creeping flow, Lord Rayleigh 

found in 1912 that the step w a s  the optimum shape by using calculus of vari- 

ations. 

The equations and ordering procedure should be reexamined carefully 

before extending these results beyond the assumptions used in this analysis. 

Discussion of Modified Reynolds Number 

A check was made on the significance of the modified o r  reduced 

Reynolds number by calculating Re* from the available published data at 

the claimed onset of turbulence (breakpoint). 

that the departure in all cases f rom a constant sealing coefficient occurred 

when Re* was in the range of 0.26 to 2.2, which suggests that the so- 

called beginning of turbulent operation is really the beginning of significant 

convective inertia effects. This would be in agreement with Kettleborough 

(ref. 29), who found qualitative agreement between his inertia solution and 

experimental turbulent results. 

In table 111 it can be noted 

For  seals 5, 6, and 7 (see ref. 27 and table 111), only the groove to 

ridge ratio has changed. As the ratio increases, the breakpoint decreases. 
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This is reasonable since a larger ridge area results in a less influential 

convective inertia effect and delays the beginning of pronounced convective 

inertia effects. It can also be seen in table III that the calculated Re* are 

within an order of magnitude of one another for all of the experimenters. 

It is difficult, nevertheless, to select the breakpoint (see fig. 24). Even in 

a range of possible breakpoint numbers, however, the order of magnitude 

will remain the same. Further experimental results will be necessary, but 

in general, it can be concluded that if Re* > 1, a constant sealing coeffi- 

cient or bearing number will not exist. 

b 

In figure 25 it is seen that classically the empirical sealing parameter 

AG was thought to be a constant until some critical Rec and then to vary  

exponentially in the turbulent regime. The creeping flow solution was 

thought to be valid until the critical Rec and then a semiempirical turbulent 

theory had to be used. Actually, the onset of significant convective inertia 

may be gradual, as shown in figure 25. Data (from ref. 27) for  seal 7 in 

figure 24 tends to show this. The derived equations herein pertain to all 

cases under assumptions stated and will  break down only under strong turbu- 

lence o r  an unknown instability phenomena. However, even in the turbulent 

flow model the convective inertia terms must be considered in addition to 

the Reynolds' stress terms. This is specifically shown by Kulinski and 

Ostrach (ref. 33) in their critical evaluation of high speed fluid film lubrica- 

tion theory. 
Principle of Viscoseal Operation 

The classical explanation of viscoseal operation is now de scribed. 

Since the seal is IIpurnpingI' the sealed fluid as fast it is leaking out, there 

is no net end flow (zero leakage). From the basic laws of fluid mechanics, 
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however, it is seen that the viscoseal axial pressure gradient results from 

the unbalance of the convective inertia force across the groove-ridge pairs 

and the drag force. The convective inertia force is much greater than the 

opposing drag force, and this results in a net pressure force. Along the 

groove-ridge direction, the drag force maintains equilibrium with the pres- 

sure force and convective inertia force. All three velocity components are 

"coupled, f f  and thus zero net leakage is achieved. This is an excellent ex- 

ample of the physical importance of a nonlinear effect. The inadequacy of 

the linear theory (creeping flow) has been previously discussed. 

SUMMARY OF RESULTS 

Pressure Patterns 

Pressure patterns were studied for a viscoseal in the laminar-flow 

regime with a mineral oil and the following results were obtained: 

1. For the condition of helical grooves in direct connection with the 

pressurized cavity, the end effect is evidenced by a sharp decay of land 

leading-edge pressure. 

2. No significant change in end-effect length was noted over the speed 

range investigated (modified Reynolds numbers (Re*) of 0.04 to 0.25). 

3. Circumferential pressure gradients in the plane of rotation (plane 

orthogonal to q-axis) increase linearly across the groove and decrease 

linearly across  the land. This pressure pattern repeats for each groove- 

land pair and provides a saw-tooth pressure profile around the circumfer- 

ence. The pressure gradients along the groove and land were linear. 

Gas Ingestion and Sealing Capacity 

Visual observations and experimental evaluation of viscoseal assem- 

blies with water (modified Reynolds numbers of 1.75 to 10.84) and sodium 
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(modified Reynolds numbers of 8.66 to 50.50) as sealed fluids disclosed 

the following: 

1. Gas ingestion characteristics were fundamentally different for the 

helically grooved rotor-smooth bore housing combination. In the grooved 

housing-smooth rotor combination, centrifugal action tended to  hold the 

gas bubbles out of the groove; thus the bubbles tended to escape over the 

lands rather than be pumped into the seal high-pressure end and a condi- 

tion of no gas ingestion could be achieved. In the grooved rotor-smooth 

bore housing combination, centrifugal action forced the gas bubbles into 

the rotor grooves; thus the gas bubbles were pumped into the seal high- 

pressure end and increasing speeds resulted in increasing gas ingestion. 

2. In sealing sodium, the grooved housing-smooth rotor combination 

had no detectable gas ingestion rate, but the grooved rotor-smooth bore 

housing combination showed increasing gas ingestion with increasing 

Reynolds number. 

3. No gas ingestion occurred when sealing water with either the 

grooved rotor-smooth bore housing o r  the grooved housing-smooth rotor 

viscoseal when the liquid interface was stable (below Reynolds number (Re*) 

of 1.9). 

4. In sealing sodium, the grooved housing-smooth rotor combination 

produced a higher sealing capacity (higher sealing parameter) than the 

grooved rotor-smooth bore housing combination. 

the presence of gas ingestion in the case of the grooved rotor. 

This was attributed to 

5. Sealing, with negligible sodium leakage rate, was  obtained for  

short operational periods (maximum length of continuous evaluation was 
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8 hr) over a pressure range of 20 to 100 lb force/sq in. gage and at sodium 

temperatures of 300' to 625' F. 

Theoretical Analysis of the Viscoseal 

A review of the literature on the theoretical analysis of the viscoseal 

~ revealed that either the convective inertia forces o r  the viscous forces 
I 

were neglected (inviscid fluid assumption). This analysis included both 

convective inertia and viscous forces. The following two-dimensional set 

of equations for a quasi-two-dimensional flow field were formulated and 

are solvable for the velocity and pressure distribution and optimum geom- 

etry utilizing numerical methods on a high-speed digital computer: 

Conservation of momentum: 
2 

where - -  a' - constant a u  + Y- v - + w - - = - - -  au au 1 ap 
aY ax 

az p az aY2 

Conservation of mass: 

0 av + aw - 
ay az 
- --  

With the following boundary conditions 

(1) At the moving smooth plate surface, 

u = u cos a! v =  0 w = -v sin Q! 

(2) At the fixed parallel groove geometry surface, 
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(3) Periodicity of groove-ridge pairs at the clearance interface. 

For 0 < y < h(z) - 
v(L sin Cqy) an+m v(0, y) = v(L sin CY, y) and an+mv(O, Y) - - 

ayn azm a? azm 

nim -n+m aAA1--w(u, yj  - d - - .  w(L sin a, y-1 w(0,y) = w(L sin a , y )  and - 

ax 27rRcos CY 

From the development and analysis of the equations, the following 

results and conclusions can be made: 

1. A modified o r  reduced Reynolds number evolved which gives the 

relative magnitude of the convective inertia forces to the viscous forces: 

2 
Re*-ReL(:) 3 ReC (:) if c<1  L 

The characteristic length w a s  selected to be the length of the groove- 

ridge pair in the direction of the smooth plate velocity vector. This is 

the principal length over which the driving force acts. The flow behavior 

over each groove-ridge pair is the same. Convective inertia effects can 

only be neglected if Re* << 1, which will  result in true creeping flow. 

2. A modified Reynolds number equal to 1 will predict a significant 

change in sealing coefficient or bearing number which heretofore was  at- 

tributed to the onset of turbulence. This means that the convective inertia 

effects are the foremost contributing factor to the improvement in sealing 
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coefficient or bearing number, not the turbulence effects. A calculation 

of the modified Reynolds number at the onset of turbulence of four different 

experimenters disclosed that the modified Reynolds number was near 1 

(Re* = 0.25 to 2.2). Thus a turbulent flow analysis must also include the 

convective inertia terms in addition to the appropriate Reynolds stress 

terms. 

3. Several additional parameters of pressure generation dependence 

were found that are not implied in the creeping flow analysis. These addi- 

tional parameters, which arise from convective inertia effects, are the 

fluid density p, the groove width to depth o r  aspect ratio b/ho, and the 

number of groove-ridge pairs N. 

4. Solving equations (11) to (14) by numerical analysis will permit the 

investigation of arbitrary groove -ridge shape, for example, sinusoidal, 

rectangular, triangular, etc. Now a check can be made to see if a step is 

the optimum shape with convective inertia effects as it is for  creeping flow. 

5. The analysis provides a unified approach to parallel groove opera- 

tion previously covered by creeping flow (sometimes called laminar flow) 

analysis and a semiempirical turbulent flow analysis. 

6. No restriction w a s  placed on the net flow situation between the 

plates. Therefore, the analysis can be used to analyze parallel groove 

geometries in hydrodynamic seals, bearings, and pumps. 

7. The viscoseal axial pressure gradient results from the unbalance 

of the convective inertia force across the groove-ridge pairs and the drag 

force. Along the grooves or ridges, the drag force maintains equilibrium 

with the pressure force and the convective inertia force. 
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8 .  Zero leakage in viscoseal analysis can be attained through the con- 

sideration of convective acceleration te rms  (nonlinear effect). It is argued 

that the creeping flow analysis, which is a linear theory, cannot prove zero 

leakage. 

9. The format of this analysis can be used to evaluate qualitative con- 

vective inertia effects in any step or converging wall hydrodynamic seal, 

pump, o r  bearing (Rayleigh step, journal bearing, etc. ). 

10. Solution of the u velocity (along the groove-ridge direction) will 

give an insight to the heat transfer in the viscoseal for the case when 

Pr = 1. 

APPENDIX A 

FORMAL ORDERING PROCEDURE FOR SIMPLIFYING 

BASIC EQUATIONS 

The Navier-Stokes equations for  a homogeneous incompressible 

Newtonian fluid, neglecting body forces and for  steady flow, are 

(AI) 
ax2 ay2 az 

(A21 
ay2 az az 

The incompressible continuity equation is 

- + ? ! ! + E = o  au 
ax ay az 

To find the important t e r m s  in the previous flow field equations, a 
I 
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formal ordering procedure will  be used to determine the relative magni- 

tudes of the terms. 

The terms are normalized by scaling them to their appropriate maxi- 

mum characteristic value as follows: let 

- X - Y z= Z x =  y = -  
L cos Q C L sin a! 

- v -  W v = -  W =  
- U 
U =  

u cos Q V u sin CY 

The characteristic dimensions c and L can be seen in figure 17. 

It is noted that a trigonometric relation exists between x and z charac- 

teristic lengths and that c/L < 1. The characteristic length was selected 

to be the length of the groove-ridge pair in the direction of the smooth 

plate velocity vector. This is the principal length over which the driving 

force acts. The flow behavior over each groove-ridge pair is the same. 

Let p* and v* be the fluid density and viscosity corresponding to a 

reference state (P*, T*). Therefore, 

and 

- P  p = - =  1 
P* 

for  incompressible fluids with constant thermophysical properties. Now 

to find the relative magnitude of V so that all terms of the incompressible 

continuity equation will  be of the same order, the incompressible continuity 

equation is nondimensionalized: 
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V L  To have all terms of the equation the same order of magnitude, - - must u c  
V L  be of the order of 1. Therefore, V = Uc, and thus T= - -. 

L u c  \ 

Next the equations of motion. are nondimensionalized. The pressure 

term must first be nondimensionalized; even though the pressure is not 

the drix.*g force, it l a  the function of primary importance. Thus the char- 

acteristic pressure is not extremely important. Since the pressure gradient 

is related to the rotor speed, it appears to be logical to nondimensionalize 

the pressure with respect to the dynamic pressure pU (also called the 2 

dynamic head) : 

It can be seen that the characteristic dynamic pressure pU2 has re- 

duced the number of nondimensional groups by one (i. e., if P* (a refer- 

ence pressure) had been used, another nondimensional group would be 

present in the equations). Also, since the incompressible case is being 

analyzed, the pressure appears in the dynamic role only, not in the thermo- 

dynamic role. 

Nondimensionalization of x -Direction Momentum Equation 

When the x-direction momentum equation is nondimensionalized, 

equation (1) results in 
- 

1 ap - aii aii aii 
aiz a7 

u - + v - + w - = -  
2 a x  az cos a! 
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Next a Reynolds number is defined based on the characteristic length L: 

where 

and thus 
- 

1 ap - - aii az - aTi u - + v - + w - = -  
2 %  a-z cos a! az ay 

2- &] (A6) 

The convective acceleration and pressure terms are of unit order; thus, 

the viscous term must be of unit order also. The largest term of the 

viscous forces is (:f fi, since (--) < 1; therefore, the - 
ay2 

should be of unit order. The modified Reynolds number is defined by 
n 

Re* = ReL (kr .  This is the identical TvreducedTv o r  TTeffectiveTT Reynolds 

number that is used in the bearing theory to show the true relative magni- 

tude of the inertia and viscous forces; therefore, 

Inertia forces 
Viscous forces 

Re* = 

(e. g . ,  see ref. 32). Now for curved geometries, a Reynolds number 

based on clearance has appeared. This is especially true in viscoseal 

analysis where 
- uc Re, - - 

v 
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Writing the previous x-direction momentum equation in terms of Re, 

gives 
z 2- - u-+v-+ a~ - aii - w -- aii- - 1 -++ a 5  V * C  1 -+-- a u i a u c  1 

E agi az cos 2 a! az uc L cos 2 QI ax -2 c a 2  

or  

-+- -+- - - 
- z 2- 

asi a7 az cos 2 c 872 L sh2ev  a22 

- aE - aii - au- 1 ~ U L ~ U C  1 u -+v -+w -- - 

2- -2 Again it is seen that the a u/ay term is the largest. 

Thus l/Rec(L/c) should be of unit order. Now 

Re* ReC(:) 

which leads to 
n 

It does not matter which Reynolds number is used to find the relative 

inertia force to viscous force ratio provided that c/L < 1, which corre- 

sponds to the conditions 

a2 a2  - >>- 

and 

a 2  a2 - >> - 

The proper x-direction momentum equation then becomes 
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It is assumed that CY does not go to 0' or 90' for  the formal ordering 

procedure to be valid. 

Example 

A numerical example will  be used to illustrate the validity of neglect- 
2 2 2  ing the a /az2 and a /ax viscous terms. A typical viscoseal has the 

following construction and operating conditions: smooth 2-inch-diameter 

rotor, 0.0035-inch concentric radial clearance between the ridge (housing) 

and rotor surfaces, 1000 rpm, and sealed fluid (water) at 60' F. There- 

fore, 

v = 1 7 . 5 ~ 1 0 - ~  sq in. /sec 

c = 0.0035 in. 

U = 27rR(1000 rpm)/60 = 100 in. /sec (plate speed) 

c/R = 0.0035 (therefore, curvature effects should be slight) 

L = Ridge width + Groove width (in circumferential direction) 

= 0.2 in. + 0 . 2  in. = 0.4 in. 

CY = 15' 

ReL = UL/u = 23,000 

Rec = Uc/v = 200 

Using the Reynolds number based on the characteristic length L yields 

z a u  

ReL az2 ag2 

2- 
-- - (,,G+ 13000-+ 15- 

Using the Reynolds number based on the clearance c gives 
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2- 
+ 114 - + 0.13 a u  

ay2 

2- a u  

n 

In both equations it is seen that a%iay4 is the largest term. Now the 

modified or  reduced Reynolds number is 
n z 

Re* = ReL(:) = Rec(:) = 1.75 

Nondimensionalization of y -Direction Momentum Equation 

Nondimensionalizing the y-direction momentum equation (eq. (2)) 

yields 

(A81 
Again using the definition of Re* and examining the terms of unit order 

2- 
u-, v-, w-, -- @( 1) 
- a v - a v - a v  1 a v ,  

ax ap a?; Re* a y ~  

thus 

Since 

therefore 
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(A91 - ap E 0 
aY 

This result is expected for  a f l a t  plate where there is no mechanism to 

generate a radial pressure gradient (e. g., a centrifugal force). For 

small curvatures, c/R - < 0.1 however, the radial pressure gradient 

aP/ay should also be a small quantity and have little physical i d h e n c e  

on the axial pressure gradient. This can be shown by considering the 

following simplified model. Consider the flat plate model accelerating 

steadily about an origin. From elementary dynamics 
4 a = Stet + anen 

where: a = q = 0 for steady acceleration t 
2 - q2 = (u cos a! - w sin C Y )  

R an - 

q is the fluid velocity in the tangential plane (x-z plane) and 

q = u cos a! - w sin a! (see fig. 17). en is the unit normal that is directed 

towards the axis of rotation. This is the y-coordinate direction in the flat 

plate model. Thus the centrifugal inertia force effects the y-momentum 

equation only. 

Add pan to the inertia force in equation (A2) and nondimensionalize 

as before and let U= U v  and R = Ri?. Thus equation (A8) becomes 
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qq (.I (-SA m + cos aq2 W(1 
R c  

Comparing the largest viscous te rm,  pressure and centrifugal inertia term 

Now use a typical ReL (as in example) 10 3 and apply restriction 

C<O.Ol 
R -  

a 2- 2 - ap 
a7 

(lo- ) - + (lo- )(-sin CrT + cos afi)2 

Again 

if 

c < 0.01 
R -  

which substantiates the claim that the centrifugal effects should be small. 

In this model Coriolis forces were also thought to be negligible. The 

above centrifugal effect is for  the case when the grooves are on the sta- 

tionary housing. A slight modification is required for the groove-ridge 

pattern rotating. Note that as c/R - 1 the centrifugal force effects are 

no longer negligible. 

Nondimensionalization of z -Direction Momentum Equation 

In a like manner the z-direction momentum equation is nondimension- 

alized and appears in a similar form as the nondimensional x-direction 

momentum equation (A6) 
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1 aF V* 
-* - a ~  -aw----+-[ - 
u-$ v-+ w -- 

a~ ay ax sin 2 (Y az UL c0s2(Y %2 

(A 10) 
Examining the viscous terms 

The largest term is ( L / c ) ~ ( ~ % / @ ~ )  and it would appear that the a%/aE2 

term could be neglected; however, this term must be retained due to a 

physical argument. Because of the "edgeT' there is a sharp gradient in the 

z-direction and the nature of the flow is such that the a%7/aZ2 term must 

be retained. Thus the z-direction momentum equation in dimensional form is 

This was pointed out by Dr. A. Mager of Aerospace Corporation, Los 

Angeles, California (personal communication, October 5, 1966). 

Nondimensionalization of the Energy Equation 

The energy equation for steady temperature variation for an incom- 

pressible fluid with constant thermophysical properties and negligible 

compression work is 

Nondimensionalize as before and nondimensionalize the temperature by 

letting 

T - Ts @ 6 =  and Q' = - 
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&* at + 

now 
1 -  1 -- 1 1  L -  

where P: is the modified Pgclet number 

or 

az a7 az P, 

Now assume constant temperature in the x-direction (along the groove 

ridge pairs) then 

Now dimensionalize all terms but the temperature 
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APPENDIX B 

FORMULATION OF AUlNG GROOVE-RIDGE BOUNDARY CONDITION 

FOR A CYLINDRICAL GEOMETRY (VISCOSEAL) 

A special case of parallel groove geometry is a cylindrical geometry 

which is the helically grooved fluid film seal (viscoseal). For this cylin- 

drical geometry a special boundary condition must be placed on the pres- 

sure gradient along the groove-ridge direction. This can best be illus- 

trated by referring to figure 26. It is seen that the point o to point a can 

be traversed along both coordinate axes on the surface (x and z axes). 
* 

From figure 26 and figure 21, . it is seen that going from point o to 

point a along the z-axis involves the traversing of an angle q. 

Now going the same distance along the x-axis 

2nR - Rv 
L' 

cot a! = 

Equating (Bl) and (B2) 

2 n - 4 0 -  rp 
tan a! cot a! 

or  
2 cp = 2n cos a! 
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The arc distance (path length) in the x-direction is: 

s = ?((Rq)2 + (L')2 

Upon substitution for L' and q 

ax S 2aR COS cy 

It is seen that aP/& = constant which follows from fully developed 

flow along the groove-ridge direction and verified by experiment in refer- 

ence 5. 

APPENDIX C 

SUMMARY OF CREEPING FLOW ANALYSIS 

The optimization from creeping flow analysis has been formulated by 

considering a flat-plate model (unwrapped cylinders, see fig. 27) and the 

following: 

(1) General incompressible plane Couette flow is assumed in the 

5 -direction (Poiseuille flow and simple Couette flow). The -direction 

momentum equation is 

with the boundary conditions 
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u E = U  at p = O  

= O  at c = h  
u€ 

where 

h = c at ridge surface 

h = c + ho at groove root surface 

The well known solution (e. g., see ref. 32) is 

(2) Poiseuille flow is assumed in the q-direction. The q-direction 

momentum equation is 
2 

r l - 1  2P a w  

at2 1-1 a77 
--- - 

with the boundary conditions 

w = O  at p = O  

w = O  at c = h  
rl 

rl 
The well-known solution (see ref. 32) is 

Now the condition Q = 0 is imposed in the control volume; that is, 

which means that there is no net end leakage o r  closed channel flow. This 

is a restriction that limits the optimization and pressure gradient predic- 

tion to a seal only. 

Solving for  pressure gradient that satisfies the Reynolds equation 

(ref. 34) results in a sealing parameter 
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2 =' c 

o r  

See references 1 to 26 for various expressions and values for  G. 

The creeping flow analysis has some paradoxes. It can best be illus- 

trated by referring to figures 17 and 28 and by observing the resolution of 

the drag force into components along the groove (x-direction) and normal 

to the groove (z-direction). In creeping flow, the drag force is in equilib- 

rium with the pressure force. Thus along the groove (x-direction) the 

drag force is indeed in equilibrium with the pressure force. In the normal 

groove direction (2-direction), however, the pressure and drag forces are 

in the same direction, which is also the direction of a very large pressure 

gradient (see figs. 22 and 23). Therefore, an unbalance of forces exists 

in this direction. Physically, the Q = 0 restriction is not possible. Also, 

this point can be illustrated from 5 - and 7 -direction momentum equations, 

respectively: 

Notice that there is no 

r7 
nents; that is, uE and w 

that fo r  zero leakage these 

velocity 'fcoupling'f between the velocity compo- 

are independent of one another. It is obvious 

velocity components are not independent of one 
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another. Thus, physically as wel l  as mathematically it is not possible 

under the restrictions of the classical creeping flow analysis to get zero 

leakage. 

Also in the creeping flow analysis the edge effects are assumed neg- 

ligible. The full meaning of this assumption has not really been clarified; 

it is only close to physical reality when c is very small and/or b/ho is 

very large. For  example, the creeping flow analysis is valid for spiral  

groove thrust bearings where c is on the order of 500 microinches and 

the aspect ratio is on the order of 1000 (c/L << 1, see fig. 29). As 

b - ho, the edge effect becomes more pronounced as the convective forces 

becomes more and more important. To date only reference 35 has ex- 

plicitly stated this restriction. 

To resolve the paradox of having the drag and pressure forces un- 

balanced in the z-direction, a convective inertia force is in equilibrium 

with the pressure and drag forces (a nonlinear effect). The step is causing 

a convective change that results in generation of an axial pressure gradient. 

The role of the step is now described. 

If a concentric rotor is rotating about a stationary smooth sleeve, no 

axial pressure gradient is generated. This is the classic axisymmetric 

Couette flow (see ref. 36). Furthermore, if an axial pressure gradient is 

imposed (e. g., by having the rotor translate in the axial direction) an 

"uncoupled" helical flow wil l  result. Subsequently, of course, there will  

be net flow out. 

In the helical groove seal (viscoseal), the step o r  edge ho is the 

pressure generation mechanism. Without the step, that is, the limiting 

case when ho - o (rotor and housing smooth), there is no axial pressure 

b 
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gradient generated. Eccentricity will generate a radial pressure gradient. 

Therefore, the effect of the groove wall  is a convective accleration or  in- 

ertia effect (nonlinear effect). To neglect the convective force terms 

means that the primary axial pressure generating mechanism is neglected. 

The creeping flow solution equations are linear and pressure is a po- 

tential function. The creeping motion or slow viscous flow momentum 

equation in vector notation is 
2 V P  = p v  P 

The incompressible continuity equation says 

v . v ' = o  
Taking the divergence of both sides of the equation yields 

v . v p =  pv 2 ( v 3 ) = 0  

or 
2 v P = O  

which is Laplace's equation, since pressure is a scalar quantity. Conse- 

quently, the multitude of mathematical analog methods of solving linear 

equations and specifically Laplace's equation can be used. Thus, solu- 

tions for end effect can readily be found (refs. 1 and 34). 

Muijderman (ref. 1) used conformal mapping to analyze the spiral 

grooved bearing. Again, this technique can be readily applied because 

pressure is a potential function. 
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TABLE III. - CRITICAL MODIFIED REYNOLDS NUMBER FOR DNSET OF TURBULENCE OF VARIOUS EXPERQdENTERs 

Radial 
learance, 

e, 
in. 

Ratiod 
radial 

clevance to 
rotor radius, 
dR 

S d  

a1 
2 
2B 
3 
3B 
4 
4B 
5 
6 
7 

.0047 
.00265 
.0053 
.00265 
,0053 
,00295 
.00295 

Ftyaml 1 iSF96-5oi 

Configura 
oil tion B 
Water Configura 
Mercurt time 

.0076 

. W 3  

.0085 

. W 3  

.0085 

.0047 

. W 7  

)iameter 
in. 

.0494 

.OM2 

.OM2 

.1156 

.1156 

.0607 

.IO83 

~ 

1.2430 
1.2465 
1.2420 
1.2461 
1.2408 
1.2461 
1.2408 
1.2455 
1.2455 
1.2455 

9.67 
9.67 
9.67 
9.67 
9.67 
5.81 
5.81 

2 

2 

.98 

.98 

.98 

.98 

.98 
1.83 
1.83 

(b) 
350 
(b) 
200 
400 
600 
200 

0.0029 0.0029 

.0015 

0.00325 0.0065 

0.0032 0.0032 

aEccentricity of rotor to housing, c = 0.1. 
bBreak point not well defined. 
'Four thread starts. 
h o t  explicitly found at bre-int but falls on data line. 

Ridge 
width, 

a, 
in. 

0.0934 
.1176 
.1116 
,0828 
.0828 
,0514 
,0514 
,1585 
.lo70 
.0609 

0.1063 
.lo63 
. lo00 
. lo00 

(C) 

- 

0.075 

.083 

- 

3.14 

0.79 

3.13 

1 

lodified 
Leymolds 
mumber, 

Re* 

1.7 
@) 
@) 
.95 
@) 
.95 

.97 

.32 

.26 

2.2 

0.50 
.25 

1.1 
.63 

0.41 

1.4 

.51 
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(b) Schematic liquid level oscillograph trace for repeated cycles of gas ingestion, subsequent 
gas blowout, and no liquid leakage at blowout. 
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(c) Schematic liquid level oscillograph trace for repeated cycles of gas ingestion, subsequent 
gas blowout. and liquid leakage at blowout. 

Figure 14. - Gas ingestion into closed cavity. 
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Figure 15. - Comparison of sealing parameters for grooved rotor and housing 
operating in sodium. Sodium temperature, 165" to 335" C (329" to 635" F). 
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Figure 16. - Comparison of sealing parameter obtained with helically grooved 
r d o r  a h  and without secondary land grooves operating in sodium. So- 
dium temperature, 165" to 335" C (329" to 635" F). 
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fb) Cross-sectional view along z-axis illustrating relative 
mution of smooth flat plate with respect to fixed parallel 
groove-ridge plate. 

Figure 17. - Mathematical model of parallel groove-ridge geometry of infinite horizontal extent 
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Figure 18. - Region of analysis validity(homogeneous fluid) of a grooved housing viscoseal. Reynolds 

number based on clearance or  f i lm thickness, 1700; modified or reduced Reynolds number, 19; 
400-microinch shaft rotational movement during photographic exposure; shaft speed, 8ooo rpm; 
sealed fluid, water. 



r 

-+ Discontinuous f luid f i lm i-- (mixed a i r  and liquid) 

Figure 19. - Viscoseal with grooved housing operating in a regime of water-air mix- 
ture (gas ingestion). Analyses does not apply for th is  discontinuous f luid f i lm 
case; 250-microinch shafl rotational movement dur ing photographic exposure; 
shafl speed, 5ooo rpm; sealed fluid, water. 
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Figure 20. - Cross-sectional view along z-axis 
i l lustrat ing arbnrary groove-ridge pair shape. 
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Figure 21. - Resolution of across and along grooveridge pressure gradients into 
axial pressure gradient “Unwrappd’ cylinder is  shown 

Figure 22. - Pressure distribution over parallel groove geometry. (Qualitative 
graphical representation from experimental data. 1 
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Figure 23. - Pressure profiles (qualitative graphical representation from experimental data). 
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Figure 27. - Model used in creeping f l w  solution. 
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Figure 28. - Resolution of plate velocity (or drag force) 
into components along and across groove or ridge. 
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Figure 29. - Example where the creeping f l w  mathematical model can be considered a valid 
physical model. Modified Reynolds number (Re? much less than 1 since clearance c is 
much less than characteristic length L. 
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