An Improved Nuclear Magnetic Resonance Spectrometer

The problem:
To accomplish a high degree of nuclear stabilization of a nuclear magnetic resonance (nmr) spectrometer for low gyromagnetic ratio nuclei in a simple, straightforward manner. Such stabilization has previously been possible only through a complicated nmr system employing frequency synthesis.

The solution:
A device in which a sample of a reference substance is placed in a container that is slipped over presently used nmr receiver inserts. The transmitter excites the nuclei in this container external to the coil windings and the nuclei induce a signal in the signal coil of opposite phase to that of nuclei in a sample container inside the receiver coil winding.

How it's done:
A cylindrical sample container is placed coaxially about the common nmr insert as shown in the left figure. A reference sample in such a container has a sufficiently homogeneous field to give a signal suitable for locking the field and frequency of an nmr spectrometer with a simple audio modulation system of a type widely in use. Spectra of N14, C13, B11, P31, F19, and H1 are successfully recorded when the spectrometer is stabilized on a sample of the corresponding nucleus in such a sample container external to the

(continued overleaf)
receiver coil. Resolution of the order of 0.2 to 0.4 cps is achieved for N14, C13, B14, and P31.

Notes:
1. The ultimate in design to increase the field homogeneity at the sample and reference would be a one-piece insert with the receiver coil wound inside as shown in the right figure. The problems concerning such a design are under study, the winding and placement of the coil being the greatest at present.

2. Inquiries concerning this innovation may be directed to:
Technology Utilization Officer
NASA Pasadena Office
4800 Oak Grove Drive
Pasadena, California 91103
Reference: B67-10234

Patent status:
No patent action is contemplated by NASA.
Source: Stanley L. Manatt and Daniel D. Elleman (JPL-762)