Chemical Milling Solution Reveals Stress Corrosion Cracks in Titanium Alloy

During the past several years the hot salt stress corrosion cracking of various titanium alloys has been studied. One problem associated with this research has been the difficulty of observing extremely small stress corrosion cracks. The standard technique of metallographic polishing and etching was successful in many cases but is tedious and requires polishing equipment as well as a microscope.

It was discovered that a solution of the type used for chemical milling of titanium alloys will reveal stress corrosion cracks without special surface preparation. The solution consists of 10 parts HF (concentrated), 60 parts H_2O_2 (30% concentration), and 30 parts H_2O, by volume. The surface is simply rinsed in water and dried, swabbed with the solution for 10 to 30 seconds, and rinsed again in water. The cracks can be observed (continued overleaf)
by the naked eye or at low magnification. The tech-
nique is especially applicable to large specimens or
hardware where polishing would be impractical. The
solution may also be useful in revealing small machin-
ing cracks or fatigue cracks, but should not be used
when examination must be totally nondestructive.
The photograph illustrates stress corrosion cracks in
a Ti-8Al-1Mo-1V titanium alloy which has been
treated with the solution.

Note:
Inquiries concerning this innovation may be di-
rected to:
Technology Utilization Officer
Langley Research Center
Langley Station
Hampton, Virginia 23365
Reference: B67-10322

Patent status:
No patent action is contemplated by NASA.
Source: D. N. Braski
(LAR-10077)