The problem:
To achieve a buffer amplifier with an input current of 0.1 microamp maximum at -20°C, it is necessary to use a Darlington connection at the input differential stage to the amplifier. Such an arrangement causes collector current to be so low that serious degradation in the gain-bandwidth product of the transistors results in poor performance of the buffer amplifier. Therefore, a basic tradeoff must be made between input current and bandwidth for any stable dc amplifier using bipolar transistors.

The solution:
A unity gain buffer amplifier with a field effect transistor (FET) differential input stage that responds much faster than bipolar transistors when operated at low current levels. The circuit illustrated uses a dual FET in a unity gain buffer amplifier having extremely high input impedance, low bias current requirements, and wide bandwidth. Input bias current is less than 10\(^{-8}\) amps maximum and bandwidth exceeds 2 mc while measured offset stability is -4mv at -20°C and +5mv at 85°C.

(continued overleaf)
Notes:
1. Adequate gain stability will be realized with this circuit only through use of a very stable constant current source.
2. Inquiries concerning this innovation may be directed to:
 Technology Utilization Officer
 Marshall Space Flight Center
 Huntsville, Alabama 35812
 Reference: B67-10334

Patent status:
No patent action is contemplated by NASA.
Source: Dynatronics, Inc.
under contract to
Marshall Space Flight Center
(M-FS-916)