High Energy Forming Facility

The problem:
To design and construct a watertight, high-explosive forming facility 25 feet in diameter, 15 feet deep and capable of withstanding repeated explosions of 10 pounds of TNT equivalent.

The solution:
A cylindrical shell of high-strength steel fabricated according to statically determined calculations to allow various structural elements to deform or move elastically and independently while retaining structural integrity. The design is based on shock-wave energy absorption with the shell pulsating in hoop tension and rebound. The forming vessel remains watertight as a result of a bituminous seal located between a reinforced concrete footing and the steel shell. This seal is retained by a special double-curvature, pressure-spring cove plate connected to the floor plate (footing) at one edge only.

Notes:
1. The explosive forming facility permits drawing or forming exceptionally large metal sections as well as relatively small, extra-thick sections to precision tolerances.

This document was prepared under the sponsorship of the National Aeronautics and Space Administration. Neither the United States Government nor any person acting on behalf of the United States Government assumes any liability resulting from the use of the information contained in this document, or warrants that such use will be free from privately owned rights.
2. Inquiries concerning this invention may be directed to:
 Technology Utilization Officer
 Marshall Space Flight Center
 Huntsville, Alabama 35812
 Reference: B67-10588

Patent status:
Inquiries about obtaining rights for the commercial use of this invention may be made to NASA, Code GP, Washington, D.C. 20546.

Source: B. Ciurlionis of North American Aviation, Inc. under contract to Marshall Space Flight Center (MFS-14026)