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THE

FAST FOURIER TRANSFORM
IN

FOURIER SPECTROSCOPY

by

Thomas E. Michels

'Jl”—[ _ /Ogl’ 3 ABSTRACT

The ""Fast Fourier Transform' (suggested by Drs.
J. W. Cooley and J. W. Tukey) is presented with special
application to solving the interferogram integral obtained
in Fourier Spectroscopy. Computational timing is tabu-
lated and an explanation of a computer routine using this

method to a binary base is presented. W
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THE
FAST FOURIER TRANSFORM
IN
FOURIER SPECTROSCOPY

INTRODUCTION

The problem of digitally reducing interferogram data obtained from an in-
terferometer spectrometer is two fold; (1) numerical quadrature of the inter-
ferogram integral to obtain the spectral magnitudes, and (2) computation of the
phase of the spectral magnitudes to determine the direction of radiation flow.

A third requirement can be placed on the computation if a great number of
spectrums are to be analysed; that is fast calculation on a high speed digital
computer. This is the problem with which this paper is primarily concerned.

Many methods of fast calculations of the interferogram integral have been
suggested; however, the ""Fast Fourier Transform' (Cooley, J. W. and Tukey,
J. W., 1965) method offers many advantages in speed and accuracy which others
do not have,

The application of this method to discrete interferogram data is discussed
and the use of an existing computer program written by Dr. J. W. Cooley in
FORTRAN IV using the "Fast Fourier Transform' to compute a Fourier trans-
form or series is explained in Appendicies I and II. Only a small amount of in-
terferometer theory is discussed so as to keep the general theme of the report.

It should be mentioned that the Fast Fourier Transform has been imple-
mented with much success into the Infrared Interferometer Spectrometer (IRIS)
Experiment Data Reduction Program as well as the theoretical simulating the
IRIS experiment. Computational timings have been tabulated using these pro-
grams and are given in a following section. The reader should also be aware
that now with the computational speeds obtained using the '"Fast Fourier Trans-
form," problems in Fourier Spectroscopy which previously were overly time
rnsuming on the computer are now realistic for computer solution. These in-
:lude taking convolutions for truncated Fourier Integrals, shown by Dr. J. W.
{ooley, co-author of the Fast Fourier Transform (in an unpublished report) and
:orrection of asymmetric interferograms (Forman, M. L., 1965).



The author is greatly indebted to Drs. B. Conrath and R. R. Hanel for many
hours of helpful discussions on interferometer theory and Fourier analysis, and
to Dr. J. W. Cooley for the use of his computer program.

DESCRIPTION OF THE PROBLEM

The instrument used to obtain interferogram data in the IRIS experiment is
essentially a two beam Michelson interferometer, sketched in Figure 1.

MOVEABLE RADIATION

ilNCOMING
MIRROR

D
DETECTOR

FIXED
MIRROR

Figure 1-Sketch of Michelson Interferometer

The incoming heterochromatic radiation is split at the beam splitter, A,
into two waves of equal amplitude; one directed toward a moveable mirror at C,
and the other toward a fixed mirror at B. They are reflected back to the beam
splitter, recombined, and directed to the detector at D. The recombined signal
received at the detector is the interference pattern of the two beams called the

interferogram and, ideally, can be defined as a function of path difference traveled
by the two beams by

1(8) = J B, el?™? dy (1)

—~

The path difference, &, is defined with the aid of Figure 1 by

5 = 2 (CA - BA)




The multiplying factor of two times the distance (CA-BA) arises from the fact
that the radiation travels to the mirror and back again to transverse the added
distance (§ can be given as a function of time and mirror velocity; however, we
will use the path difference relationship here).

B, is the spectral distribution of the incoming radiation and is written here

in terms of wave number, v . It has been extended to include negative wave
numbers by the definition

Clearly, B, is real, and B, and I(3) are transform pairs; thus one is able
to obtain the spectrum B, by taking the Fourier transform of equation (1) which
is

B, = J I(5) e™i2™® d§. (2)

If I(5) were symmetric, which in the theoretical case is true, equation (2)
reduces to

a
B, =2 j I(3) cos (2nvé) dé
0

However, in actual interferometer use a phase shift, P is introduced by
the instrument components to the incoming radiation and equation (1) should be
re-written as

@
1<s>:J B e'%eizmd gy (3)
-C0

I(8)in this case will be an asymmetric function about zero path difference,
8,» Upon taking the Fourier transform of equation (3), one obtains

B, e ¥= j I(8) e12™8 45, (4)



Equation (4) is of the form

Bv el = Cv +1i Sv

and one merely takes the absolute value of the right hand side to obtain the
spectral magnitudes.

The phase shift ®, can, of course, be computed from

S
o, = tan™? <—V> (5)
C

v

The phase spectrum can be a useful tool in interpreting the amplitude
spectrum. The direction of the net energy transfer between the detector and
the target (determining whether the detector is warmer or colder than the
target) changes direction from one spectral region to another and is indicated
by an abrupt phase shift of 180°.

Therefore, the problem of digitally reducing interferogram data requires
solution of the interferogram integral in equation (4) and computation of the
spectral amplitude phases by equation (5).

NUMERICAL QUADRATURE OF THE INTERFEROGRAM INTEGRAL

The numerical calculation of the integral in equation (4) can be done by
various quadrature methods. The Gaussian quadrature is perhaps the most
accurate, but this method requires unequal spacing in the sampled data.

It is suggested that in practical use, when the truncated range (-5 , 5,) of the
integral (see equation (6)) is large enough, many advantages are offered by use
of the trapezoidal rule.

One advantage in accuracy is easily seen by looking at Eulers summation
formula: (Scarborough, 1955) )

b f £ N
J f(x) dx :‘h[ (20) () bt E(x )t (;(")]- 132 [£'(b) - f'(a)]
+_h_3_ [f’"(b) - f’”(a)] - [fV(b) _ f"(a)] EON
720 30240



This states that if the odd derivatives at the endpoints of an integration are
small or equal, the trapezoidal rule is an excellent approximation to the integral.

In many cases, the derivatives at the endpoints of the interferogram are
equal, and in the worst cases observed the derivatives were always of the
same order. In these cases, the order of the error would be h, the separation
distance (A$ in the interferogram integral), and for the interferogram integral,
this is small.

Therefore, the trapezoidal rule appears to be a satisfactory quadrature
method and, as one will see, is a suitable form for the "Fast Fourier Trans-~
form' to obtain speed of calculation.

Rewriting equation (4) as a truncated inverse over the interval (—51 s 9,)s
and, for convenience, setting A = Bvei@v , we have

8
A, :J ’ 15y e 7™ dv (6)
..81

Since the interferogram values sampled by the instrument are an average
over an interval, the trapezoidal rule takes the form

n

i@, ~-i27V 8]
A =B e "=As E I(5,)e ) (7)

j=m

where the subscript, j , ranges over N sampled intervals with N defined as

Nz=m+n+1

The point 8, is of course the sampled interval which normally will not
correspond exactly to the point of zero path difference. Correction methods
have been studied for correction of asymmetric interferograms of this type
(Forman, M. L.); however, this paper will not concern itself with these methods.

Solution of equation (7) to obtain the spectral magnitudes and phase angles
is easily accomplished using the ""Fast Fourier Transform," and, as one will
see, yields a very high degree of accuracy for computer solution.



THE "FAST FOURIER TRANSFORM"
1. Description of the Method

The form of the Fourier series equation required for the '"Fast Fourier
Transform' is

N-1 L 2mjk
B(k)e N (8)

It

I(3)

k=0

and its transform is

N-1 27k

1 -1
B(k) = o Z I(3)e N (9)

i=0

Normal solution of equation (8) using a decimal based summation requires
an order of N2 operations where an operation is defined as one multiplication
and addition. However, the number of operations using a different base, say r,
is of the order 8N log N. A simple example will illustrate the saving.

If N is composite such that N =r, - r, , and j and k are written

izt i io=01,2 ...r, -1 j;=0,1, ..., "1

and

k:r2k1+k0,k020,1,...r

then equation (8) can be written




i2m (ryky + k)
I(j) = 2 Z Bk) e "
ko Ky

. 2m
iz_ﬂjrk 1—jk0
N 271 N
= B(k)e (S]
ko Ky
But
27r'rk 27Tk ( +34) '2Trk
i— 3 Ty Xy i r r, j J 17 ig T
e N - e N 1°2 171 0:e N 190 T2

Therefore, the inner sum over k . depends only on j 0 and k0 , which can be
written as

27 .
— kyigr,

.
By (Go-ko) = z Brykytky)e
ky
and equation (8) now becomes
i
I(ryip *ig) :Z B, (ig ko) e
kg

The total number of operations for this case is now N(r1 +r,) as opposed to N? before.

It has been shown (Colley, J. W., Tukey, J. W., 1965) that the most saving is
obtained when N is written as some number raised to an integer power, or



and, further, if r = e, one uses the least operations in solving equation (8). How-
ever, if r = 2, the saving is approximately the same, and from a digital com-
puter standpoint, certain advantages in programming are obtained.

With this in mind, if one writes
N=2"

and

where each jy and kjy , 4 =, -..m~1 take on the values 0, 1, then equation (8)
takes the form

It t2n Rt i) =B Gyt 2yt .t 2™ )
where
) ) igﬁ?"okm_ﬂm-l
B(ig 2™ 2k, , * ...tk = E B(2™"-'k,_ 1 t...tky)e

km_1




and

The routine listed in Appenlix I uses the base two and is written such that
either the Fourier series coefficients or their transform can be computed. That
is, one is able to compute either equation (8) or equation (9).

2. Application to the Interferogram Integral.

We saw that the spectral magnitudes and phase angles can be obtained from
equation (7),

If one sets,

and



where v, = 6, =0 , we have

Av, = AS E 1(8)) e-i2mikAvAS, (10)

j:—n

Further, if one makes the substitutions

j=i-n
AsAy =N"! = (Number of sampled intervals)~?,

one can write the summation in the form suitable for the '"Fast Fourier Trans-
form." That is,

. 27kn N} 27
N E TN 11
Ay, =AS e I(Sj)e (11)

j=0

where
N=m+n +1.

If the number of sampled intervals,N , does not equal a power of two and
the interferogram has zero mean (no DC component), one is able to add values
equal to zero to either or both ends of the interferogram without loss of ac-
curacy and compute spectral magnitudes corresponding to v =kAv. Here,

where

N' =N +4

such that N’ is equal to two raised to some integral power.

10
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Figure 2—Interferometer extended with zeros on each end with
6, centered in area of N’ intervals.

Further, if the interferogram is positioned in the area of N’ intervals as
shown in Figure 2, such that §  is a distance N'/2 from the beginning, a par-
ticularly simple case arises. Keeping in mind that A, = Bv e'?” | equation (11)
takes the following form for this case,

N-1 2T

] -i —jk
Av, =05 ei™ Z I)e (12)

1=0

and the spectral magnitudes are computed as before from
By, = |Av, | (13)
Re-writing equation (12) as
Bu e @ KzelkT (Cy =18,

or

By, o' Pk "¥) = Cy - i8S,

the phase angle can then be computed from

Sy
Qv = tan-! o tk 7 (14)

Y

11



or

(-1)* sy,
Py, = tan-! ""—k—"‘
—1)* Cy,
For the case when the interval ¢, is not positioned in the center of the array,
one still can use equation (12) to compute the spectral magnitudes, however, one

must use an equation similar to equation (11) to compute the phase angles. That
is,

Sv
ov, = tan! () 4 27KD (15)
Cvy N

where, n, is the number of intervals from the beginning of the array to 5 0

In using the routine in Appendix I, one must be careful applying it to com-
pute the Interferogram integral. From experience it proved easier and faster
to compute the Fourier series coefficients rather than the Fourier transform.
This means that for the real input data, one obtains the complex conjugate of the
vector By, e 1P as output from the "Fast Fourier Transform."

Clearly, this makes no difference in computing the spectral magnitudes
other than a factor of two, however, the phase angles must now be computed
from

Sv
oy, = k7 - tan'1<—-5> (16)
Cvk
or
-hHk*1ls
oy, = tan™} D7 5w (17)
(-DE 1 ey,

or, in the case where 80 is not positioned in the center of the interferogram,

Sv
Py = 27;;{1’1 - tan_1<—k> (18)

Cvk

12




3. Summary of the Application.

The method of computing the spectral magnitudes and phase angles can be
summarized as follows:

1. Read the interferogram data into the "Fast Fourier Transform' (FFT)
and compute a Fourier series yielding Cy, and Sy, as output.

FFT (series) = Cy, +1i Sy
2. Compute the spectral magnitudes from
By, =248 - [Cy +i Sy
where

v, =kAy, k=0, 1, ... N-1

and AV = 1
A§ -N'

3. Compute the phase angles from either equation (17) or (18) depending
upon the position of the interferogram data in the array of sizeN' = 2™,

In using the routine in Appendix I, one automatically obtains the same
number of points of output as he has read in as input.

4, Computational Timing

Figure 3 shows the computational times obtained using the FORTRAN IV
version of the "Fast Fourier Transform' routine (HARM) listed in Appendix I.
The line indicating the times obtained on the IBM 360/65 system were obtained
with the HARM subroutine, compiled with the optimization option. These times
were obtained by Mr. Guy Marcot, Laboratory for Space Sciences, GSFC. A
comparison with conventional times obtained with the algorithm by Goertzel
indicates the saving, especially with a large number of data points.

13
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ALGORITHM
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[4p)
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5
Z 50— HARM
= IBM 7094 HARM
I1BM 360/65
20
A L
e —— ] l 1
2000 4000 6000 8000

NO. OF REAL DATA POINTS

Figure 3—Computation Times using the FORTRAN |V version of HARM on
the IBM 7094 and 360/65 Computers vs. the Goertzel algorithm.

Another version of the HARM subroutine, written in FORTRAN II and FAP,
which is used in the theoretical simulation of the IRIS experiment was timed for

211 and 212 points on the IBM 7094 computer. These results are tabulated
below.

No. of Time for Fourier
Points series calculation
211 1.3 sec
212 2.6 sec

The times tabulated above include the time obtained to compute the sine and
cosine transform and do not include taking the absolute value or obtain the phase
angle. This has been timed using the theoretical IRIS simulation. To compute
722 spectral magnitudes and phase angles out of the 21! or 212 available took
approximately 3/10 seconds.

14




10.

11.

REFERENCES

Blackman, R. B. and Tukey, J. W., ""The Measurement of Power Spectra,"
Dover Publications, Inc., New York, 1958.

Byrne, L. H., "Digital Computer Simulation of the Infrared Interferometer
Spectrometer (IRIS) and Interferogram Analysis," Goddard Space Flight
Center Report X-650-65-24, 1965,

Connes, J., '"Recherches sur la Spectroscopie par Transformation de
Fourier," Rev. d'Opt, Vol. 40, 1961.

Cooley, J. W. and Tukey, J. W., "An Algorithm for the Machine Calculation
of Complex Fourier Series,’ Mathematics of Computation, Vol. 19, p. 297,
1965.

Forman, M. L., et al, ""Nonlinear Phase Correction of Interferograms Ob-
tained in Fourier Spectroscopy,' Air Force Contract AF 19(628)-251,
Scientific Report No. 2, AD 624-086, Clearinghouse for Federal Scientific
and Technical Information, Washington, D. C., July 1965.

Forman, M. L., et al, ""Correction of Asymmetric Interferograms Obtained
in Fourier Spectroscopy,''Journal of the Optical Society of America, Vol. 56,
No. 1, Feb. 1966.

Hanel, R. A. and Chaney, L., '"The Infrared Interferometer Spectrometer
Experiment (IRIS)." Vol.I, Martian Fly-by Mission, Goddard Space Flight
Center, Report X-650-64-204, 1964.

Hanel R. A. and Chaney, L., ""The Infrared Interferometer Spectrometer
Experiment (IRIS)."" Vol. II, Meteorological Mission, Goddard Space Flight
Center, Report X-650-65-75, 1965,

Mertz, L., "Astronomical Infrared Spectrometer,' The Astronomical
Journal, Vol. 70, No. 8, p. 548, October 1965.

Mertz, L., "Transformations In Optics," John Wiley and Sons, Inc., New
York, 1965.

Strong, J. and Vanasse, G. A., "Interferometric Spectroscopy in the Far
Infrared,' Jour. of the Opt. Soc. of Am. Vol. 49, No. 9, September 1959.

15



12. Scarborough, J. B., "Numerical Mathematical Analysis,” The Johns Hopkins
Press, Baltimore, 1955.

13. Williams, R. A. and Chang, W. S. C., ""Resolution and Noise in Fourier-

Transform Spectroscopy,’’ Journal of the Optical Society of America, Vol.
56, No. 2, Feb. 1966.

16




APPENDIX I
Sample Program Using the ""Fast Fourier Transform'' Routine "HARM"

The following program has been written exemplifying the use of the "HARM"
subroutine to compute the transform of a set of real data and take the inverse
of the transform to compare with the original data.

"HARM" is written in FORTRAN IV and is set up to accept complex input as
well as to perform a three-dimensional sum in directions M(1), M(2), M(3).
The return from "HARM'" has the complex vector computed and stored in the
array A, where

A(1) + i A(2) =Cy, +i Sy,

A(3) + 1 A(4) =Cv, +i Sy,

and so on. The array M and option IFS must be set prior to entry, and if one
wishes to use the routine in one-dimension, as in the sample program, one sets

M(1) = log, N
M(2) =0
M(3) =0

The call to the "HARM" subroutine is
CALL HARM (A, M, INV, S, IFS, IFERR)
A = Array of complex input, where the real and imaginary parts are
in consecutive storage locations. A must be dimensioned 2N.

M = Array containing the logrithm to the base 2 of the length of the
summations in directions M(1), M(2), M(3). M is dimensioned 3.

17



INV = Array computed in "HARM" for bit inverting. INV is dimensioned
N/8.

S = Array computed in "HARM'' containing the array of sines. Sis
dimensioned N/8.

IFS = 0 compute INV and S tables
+1 compute INV and S tables and do Fourier series
-1 compute INV and S tables and do Fourier transform
+2 do Fourier series only
-2 do Fourier transform only

IFERR = Error option. (See Appendix II)
Further amplification of the use of "HARM'" can be obtained from the

program write-up on file in the Laboratory for Atmospheric and Biological
Sciences.

18




C. TEST OF FAST FOURIER TRANSFORM ROUTINE(HARM)

THIS PROGRAS PERFORMS A TRANS CRM ON A SET OF DISCRETE REAL OATAS

C THEN TAKES THE INVERSE OF THE TRANSFORY TO RLCOVER THE ORIGINAL
" C DATA. THE INPUT DATA REPRESENTS A BLACK 20DY TEMPERATURE SPECTRU
C COMPUTED IN THE 'IRIS!' EXPERIMENT.
DIMENSTION A(16384)sM(2)sINV(2048)s5( 2048)
C SET UP DIMENSIONS
M(1)=6
M(2) =0
M(3) =0
N1 = 2%%M(1)
N2=2%%4(2)
N3=2%%11(3)
NTOT=N1*¥N2#N3
DO 10 1=1.NTOT
10 A(I)=0.
READ(2515) (A(2%1-1)s I=1sNTOT)
15 FORMAT(6E1245)
16 WRITE (3517) (A(2%J=1)sJ=1,MTOT)
17 FORMAT (26HIORIGINAL DATA— REAL PART  //(5F13.5))
WRITE (3518) (A(2%J) s J=1sNTOT)
| 18 FORMAT (26HCORIGINAL DATA~ IMAG PART  //(5F1345))
| C EVALUATE FOURIER TRANSFORH
C IF IF5 = -1s SETUP INV AND S TABLES AND AND COMPUTE FOURIER SERIES
iFs = -1
CALL HARM(AsMs INVsSs IFSs [FERR)
25 WRITE (3942) (A(2%J=1)sJ=1,NTOT)
42 FORMAT (23MIREAL PART OF TRANSFURW//(S5F1345))
WRITE (3s44) (A(2%J)2J=1sNTOT)
44 FORMAT (15HOIMAGINARY PART//(5F1345))
| C TAKE INVERSE
c IF IFS=+2s COMPUTE FOURIER SERIES.

IFS = +2
CALL HARB(Asts INVsSs IFS, IFERR)
WRITE (3570) (A(2%J=1)5sJ=1,NTOT)

70 FORMAT(60HIREAL PART OF ORIGINAL IHPUT OBTAINED BY INVERTING TRANS
LFORM//(5F1345))
WRITE (3,71) (A(2%J) sJ=1sNTOT)

71 FORMAT (1SHOIMAGINARY PART//(5F1345))
PAUSE 77777
END



ORTIGINAL NDATA-

23C. 06000
230, 03000

REAL PART

59007 229499800
230408000 . 23002000 . . 229492304,

228~ GONGC
230408000

23C.030C0
- 230410000

236, 0100C
e 2290 BIOCL

23C. 05000

2RS35 L

230 10000
- 22994000
22G. 84000

~228~-85000

229. 8800C
229, 58300

2290 96000

. --229%9a98€03

2290 99C0YD

2294 84CG)
229489000

230. 00829

279. 8500
e 2726.52000
229. 17000

2294 747220

22902 TOOC

229, 710700

229, 61C09

229263000

. 229063003 .

$230,01600

229, 95400
23Ce 03CC0
23007002
229, 90500
229447200

-230e 04200

229, 2130C¢C
- 2290 69C0C
229, 24000

233, 09009

2292993500
230, C80U0
2296989535
2290 7431)
2294 73023

e 23008003

229483207
2296 0wl
2292053060

L P2 G200 229, 57000 229453000 . .229,95000 223,88002 .
230 N0nNCG 72 Sa 87000 229a. 67000 229a 64CC0
ORIGINAL DATA- [IMAG PART
0a Da Qs De Qe
Y oSN Lo D Oa oo o oo D
f‘a C.o. Ga OI 30
0. Oa Na S Qa et srrinem .":LI__..,,‘.., e
Co Ca Ca 0a e
e o - O, - Cae e D . Qe S
e Ca -0a DOODND -0 203CC -3e 300023
=L, OQRA0CND =R, (L300 =Ca 0NC0ND _=0a000GL . _ -JaC002Y
-Ca DCOON = 0a COOND =-0a ONCDD -0 02C00 -0 LDICY
=C ACO0G =Da DODCL 0. 2A000 =0a03000 L =Qa003d00. .
-C. 000N =N COON0 -0e AQCOD -NaCAC0S -0 GTN3D
e = CAAGOCD. =l 00000 =0,00000 =0 00000 -22G20200.
-Ca 0NOCH =-Na CONOE -0a CO00G -0a 02300

20




21

RFAl PART CF TRANSFORM
?2¢, 81067 Na"0526 0o 04921 0203292 -0.01639
e Ca Q30 =Ca {3302 -0af1326 ~(a 00515 -0g01372
CaN2211 Ga C2160 -0~ 00379 -0 00196 -0o00677
. CaD1359  _ f.02375 . CaD1425 _  ~0e02524 De01311
CaN2518 -0, CNT713 Do 0ON6T6 001149 0e 00546
. =CalG45 . 0aN1539 __ =0001854 0020375 DeC0945
C.CN9CT faf0188 Co01375 (e00188 101907
e Lo 00945 L0275 -0.01854 0201539 =5e0C945
0~ 00546 Ne 1149 0, 00676 -0a 00713 Ned2518
e Ca0121Y = 0af2524  CaD1425 0e02375 DeN1359
~Calf0AT7 -0aNN196 -0a 00379 002160 0002211
. =0aN1372 =0, (0515 _ =(GaN01326 -0eC3302 0600301
-C.N1639 Ca03292 e 04621 Ce00526
IMAGINARY PART
C. -Cal13424 -0, 03590 002090 0eCC464
CoNC215 . Cafl1459  -04032894. .. 000230 ~0e03026
-C~-01345 Na 00272 Da 00449 -0a 00504 -0e01928
=00 03480 0a L3250 (0401285 _0e00126 -0,04073
0.00637 Cal 0557 -0a (30827 Da0046C 0,0N698
CaNOBE5 . ~0.00509 . Ca0N575 = =0s01536 ~  Ne00598
~C.N"021 -0a 01435 fo 0603435 DeCN021
L =NaNL568 . faN1536 . -0C0575 = 0a0N509 = -=0e00565
-0, 0NAGH =D PNGEC De 00N827 -0e 00557 -2400637
i €A QART3 o m0a L0126 R G1285 -C203250 DeC 3489
0.N1928 Cal D504 -0, 00449 000272 001345
Ca 32026 =CafN230 0 ND-02894 = ~0CA01459  -0e00215
-C. 07464 ~Na 02390 Ne N3599 Nol13424



REAL PART CF CRIGYNAL INPUT

OBTAINED BY INVERTING TRANSFORM

?30.0866S 229238999 229 98999 230202999 23008999
23Ca-B2866 2304029299 2304 07999 230,01999 229289999
230. 256G 230479999 229~ 95999 229494999 - 229468999

- 230~ £9859 229,9399S . 229,97999.. ..230,02998  230,07999
23r:. 07666 22%. 83699 229+ 58999 230, 06999 229097999

e 228 BOHISY . 2264846999 229,99999 . .229,89999 229.73999
23C."4GC9 229. 88000 229, 83999 2295 46999 229672999
226.91369 229457999 229, 88939 230503999 230409999
229, 844999 229~ 73999 229, 63999 2294 21CC0 2296 75999
228, 81969 . ...229,26999._ . .229,62999 . 2294,68999 229,28999
278.09G6G9 229~ 70999 229. 62999 229523999 22904999

228 t1GGS . 226, 56999 .. __229,58999. . __229.94999 . = 229.87999

229.99999 ?2G. 86999 229, 66999 229640020

IMAGINARY PART

22

(&N =0, 000N0) -(a DAOCE Do
e LADGNAS L 0. A0A00 . =0 00N e __DaCCO0D
C. nn0N =6 NOOND O =(a D020 -7+ 00000
=L DANDT Oa L. 00000 Ca0ACNG 05209009
0 Ge CODOT Qo 0030000 O
e £QNND] . =Ce S O Da 0200000
C.D0Ac0 Ca {CONN O Ja GON0C D, 0C00D
L. TONeN fe  =Ca00C0N =0, Q00060 22703009
C. eP akelsiete =Ga BNCON 24 GA0CC De
C.00nrn Qe LODS0 =T BACCY Qe -32aC0J00
-0, aneee =T £OODN Oa ~-0as GOOON Q. CCO0D
=laOOQQC e =0a00000 CaJC0CD . D
Ce =Ce (ANDO =0 OONGD =02 00000




APPENDIX I
"FAST FOURIER TRANSFORM" - "HARM"

C HARM DISCRETE FOUPIFR TRANSFORM. BASIC FORTRAN IV, IBSYSe
- SUBROUTINE HARMIA LML INV S, IFS. .. LFEERRY. —

DIMENSICN A(l).INV(l)o§(1).N(%)oN(B)oNP(B)oN(Z)9N2(2’ow3(2)
e e e EQUINMALENCE (N1 oNCL VYo (N2 NL2Y Yo IN3,NI3Y Y

e INPUT PARAMETERS TN BFE SET _AY USER BEFORF ENTFRING HARM~
e AIS A 3-DIMENSIONAL ARRAY. OF COMPLEX CQOFEFFICIENTS. .

' OF DIMENSIONIN(I)+N{2),N(3)),

e . YHE. ALS _ARE_STORED WITH REAL _PART OF A(I1,12,13) IN THE {OCATION

C WITH INDEY 2% (I3%N{1)%RN{2)+T2%N(1)}+11)+1 AND THE IMAGINARY PART
. INTIHE LCCATION IMMEDTATELY £01 L CWING

C 1§ THF FCURIEP SFRIES 1S REQUESTED, ARRAY A IS REPLACED B8Y
clf e X3 Y120 321 SSUM AL K] GK2 o KR) XMW R R(KI K J] I HW2RA(K2KI2) FIWIXR(KI%}2)

c SUMMFED OVER K1=71,N{1)=1, K2=0D4N{2)1=1, K3=CsN(3)-1
b WHERE WIsN(I)=TH RQOOT OF UNITYa . .
-0 MLTdalxsle2e3 WHERE N{IV=2%%xM{T1) IS THE NOLOF PTSaIN THE I-THeDIM,

C THE DIMENSION GF A IN THE CALLING PROGRAM SHOULD BE TWICE TFHE
o  NUMBER..CE _COMPLEY E{EMENTS OF THE t ARGEST A ARRAY _T0O BE PROCESS-

C FD
- . __THE. COMPLEYXY X*S ARF STORED IN. THE SAME MANNER AS Aa _ L _

"

e IFE THE FLURIER TRANSFNARM tS REQUESTED., THE ARGUMENT A IS TAKEN

C T RF X AND IS REPLACED BY THE ARRAY A SATISFYING THE FOURIER
e SERIE S ) o R
G LET MT=MAYX(ML1)eM({2)aM(3)})=2, NTI=2%¥MT, WITH M BFEING THE M

C GIVFN WHFN THE TABLES ARE SET.

c SEUI=SIN(IXPI/Z(2%NT ) Js J = 1+42+3+s0eNT=1, -
€ INVIJ+1)=WORD CONTAINING BITS OF J IN INVERTED CRDER IN ITS
Lo RIGHTIMAOST MI _BIT PNOSITIONSs FOR J = 0l e2seeesNT-1e -

C

C LET TES=0 TN SET UP SIN AND INV TABLESa.

C IFS=41 TN SET UP SIN AND INV TABLES AND DO FOURIER SERIES.

C IFS=-1 T SFT UP SIN AND INV TABLES AND DO FOURIER TRANSFORM,

C IFS=42 TO DO FOURTIER SERIES ONLYa

N .. IF€==2 70 DO FOAURIER TRANSFCRM CNLY, e

o ONF _DOFES NOT HAVE T0O RFPEAT THE CALL TO 'HARM®* WITH IFS=C.+1,-1

c IF ONE DOFS NOT CHANGE THE MAYIMUM M,

B ol S R

C IFERR=A IF THE ARGUMENTS M ARF Ca Ko
N o e .

C 1FFRR=1 IF THFQF 1S AN FRROR IN CALLING 'HARM®

r 1F JIFS=",+1s=1s IT MEANS THAT THE MAXIMUM M IS GREATER THAN 22

C DR 1L ESS THAN 3
€ _TF IFS=+=2, IT MEANS THAT A SUFFICIENTLY LARGE SIN AND INV TABLFE

o HAS MNAT BEEN COMPUTED- ONE MUST CALL 'HARMY WITH TIFS=0,+-1 AND
L  _WITH A MAX M(I) GREATER THAN QOR EQUAL TO THE MAX M(I) FOR WHICH A

o FNAURIFR TRANSFORM IS TO BF COMPUTED,

L -

C IFFRR==1 IF ONE IS CALLING CN *HARM' WITH IFS=0,+-1 TO COMPUTE

23



L SIN., INV TABIFS WHICH YT ALREADY HAS COMPUTED ON A PREVIOUS
C CALL TN HARM WITH THE SAME MAXIMUM M
C

10 IF(TABS(IFS)I=1) 900 ,930,12
12 MTT=EMAXCAMILYoM{2)aM(3)) =2

RNOOT? = SQRT{(2-)
IE (MTT-MT ) 14,14,13

13 TFERR=1
e — -1 _RETURN

14 IFFRR=A
. M1=M(1)

M2=M(2)
— M 3=M3)

N1 =D%%M]
. N2=2%xM2

N3=2%%M3
. TF (TIFS) 161,20

€ TN CALCULATF TRANSFORM REPLACE A BY CONJG(AI/N
16 NTOT = N1%N2%N3

FN = NTOT
DO 18 T=1,NTNT

A(2%1=1) = A(2%I-1)/FN
18 A(2%1) = =A(2%I)/FN

20 NP(1)=N1%2
NP (20 = NP L) END

NP{3V1=NP(2)%N3
nno250 In=1.3

TL = NP{2)-NP(ID)
JTLl = T}

MT = M(IN)
e JIF _(MT1250,250,37

30 INIF=NPIIN)
KBIT=NP(ID)}

MEV = 2%(MT/2)
S LF AMI = MEV 16C,60.40

£ M 1S NRD. DC L=1 CASF
40 KRIT=KRIT/?

Kt =KRI1T7-2
_.hn_s5¢C I1=1,1L1.IDIF

KLAST=KL+I
DN 5€ K=T,KLAST,2

KND=K+KBTIT
DO _ONF STEP WITH t=1,.,4=0

A{KI=A(KI+A(KD)
CACKDY=ALK)=ALKD)

aNeReln)

C T=A(KD)

A(KD)I=A(K)=T
A(KY=A(K)+T

T=A(KD+1})
ALKN+1)=A(K+1)~-T

5 ALK+1)=A(K+1)+T
CIF (MT = 1) 7250 .250,52

§2 | FIRST =2
c DEF = JLAST = 2%%(L-2) -1

JUAST=1

24




601030

C M TS FVFEN
e B FIRST = 2 e - R
JLAST=0
e 70-DO-240 L=LFIRST.MI L2 I ) e
JINTIF=KRIT
XRII=KRIT /L - -
KL=KRIT=-2
—G e RRELR =0 e ——— —
DN 8C I=1,IL1.IDIF
e KA A S T = LK R _ -
NO 8C K=T1.,KLAST.,?2
K1=K+KBIT
K2=K14KRIT
e - K 32K 24 KBLT - —- - R —— —
c
el e DO _TMO STERPS WITH J=0 e
C A(KI=ALKI+ALK2)
ol ALK 2V=ALK)=ALKD) - —_
C A(K1)I=A(K1)+A(K3)
G A3 Y=ALKTL)=ACKE) - SO — —
c
el ALK Y=ALKYSA(KYY —_ R SO
C A{KII=A(K)-A(K])
L A(K2¥A(K2Y4A{KAN %] e e e e
C A(K3)I=A(K2)=A(K3)*1
. ol - e - -
T=A(K2)
e e ALK 2 Y = ALK Y =T — S - . e
ALKI=A(K)+T
I =A(K241 ) S » ——
AlK?2+1)=A(K+1)-7
e o ALKV =AKEDNET -
C
e T=AUKAY - S -

A(K3Y=A(K1)=-Y
ALK1)=A(KI)+T

T=A(K3+1)

e ALK 3V =AKYALN-T

ALK1+41)1=A(K1+1)+7
G

T=A(K1)
A(KINI=AL(K)-T - et i e et 2 s e A e 3 e i
ACKI=A(K)I+T
e T=ALKYEYY - _ _
AlKI41)=A(K+1)-T
o e AKEY I =A(KELYT - . i} e A
C
R==-A(K3+1)} — e — - — o <a e - i e
T = A(K3)
e ALK31=A(K2) =R - _ _
A(K?21=A(K2)+R
e ALK+ Y=A(K24Y)-T -
B0 A(K2+1)1=A(K?2+1)+7
eoervmremmsimrr e LB LV AST) 2352235982 . - -

82 JJ=0JNIF +1

25



C NO FOR J=1
I1tAST= 1L +.4.

N 85 1 = JJILASTLIDIF
KY AST = Ki+1

NN 85 K=1,KLAST+2

Kl = K+KBIT
K? = KI1+KBRIT
K3 = K2+4KBIT
C LFTTING w=(1+41)/R0O0T2,W3={(-1+1)/R0O0T2,W2=1,
G MK Y =ALKYAA(K2 ) ]
C ALK2)Y=A{KI=A(K2}*]
el ALKV =A(KI ) RN A(KT ) RN
c A(K3I=A(K1)I*W=A(K3)*W3
SR VR i
C A(KI=A{K)Y+A{K])
SO VT ALK )I=A(K)I=A(K])
C ALKZ2)I=A(K2Y+A(K3)*]
Coe. ALK3I=A(K2)-A{K3}*]
C

e R ==A{K2+1)

T = A(K?)
e AUK2Y = A(KI=R

A(K)Y = A(KI4R
R A(KZ2+1)1=A(K+1)=T

AK+1)=A{K+1)+T

 AWR=A(KII-A(KL+1)
o AWI = A(K1+1)+4A(K]1)

==A(K3V-A(K3+1)
e TZA(K3) A (K341 )

A{K3)=({AWR=-R) /RO0OT2
o ALKA+1)Y=(AWI-T)/ROOT2

A(KI)Y={AWR+RI/ROOT2
A(KI+11=(AWTI+T)/RONT2

T= A(K1)
A(KII=A(K)=T.

ALKY=A(K)+T
T=ACKIERLY)

CALKE1)=A(KELI$T

R==A(K3+1}
T=A{K3)

A{K3¥=A{K2)=R
_ALK2)1=A(K2)+R
A(K341)=A(K2+1)-T
B85 A(K2+11=A(K2+1)+T_

IF(MAST=1) 235,235,9C
90_JJd=_JdJ + JIDIF

et A

L NOW DO THE REMAINING J'S
PO 220 g=2, JLAST
o R
7 FFTCH WS
L. DEF= W=WXxINV(J), W2=Wk%2, W3=W%*3

796 T=INV(J+1)
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SN = F = GRS A Y VA S OO U
W{l1)=S{IC)
Wi2)1=S(11)
172=2%1
~12C=NT=-12 - -
TF{T2C1120.110,100
B oS
C 2%1 IS IN FIRST QUADRANT
100 W2{11=S(12C) : o R
w2{21=S{12)
»»»»» 60T 130 . 0 e e e
110 wW2{1)=N,
SURSURRT " b X W B W= P et e e 4 o APt A P A1 e 23kl e e e et eenrri,
GO TO 130

C 2%1 IS IN SECOND QUADRANT

120 12CC = T2CHNT R L
12C==12C,
W2L11ls=SL12C)
W212)¥=S(120C)

130 I3=1412. o e .
T3C=NT-T13
IC(I2CY1E0.15C 140

C
i PALIN CEIRST QUADPANT — s+ o aseran
140 W3(1)1=S{T13C)

e MBSO BN
GO TO 200

1600 W3R ) =04 B
W3(21=1.,
GAIn 200

C
160 I3CC=I3C4NT . e B

IFCIRCCHYIOC..180,17C
B o _
€ T3 IN SFCCND QUADRANT
1720 _13C==13C — — .
W3 () )==S{13C)
e M3BL2)=S{13CC) e S e .
GO TO 26N
2180 W3(1)==1aA e o _ -
W3(?2)=1,
Q. J0 200
C
O 03%1 IN THIRD QUADRANTY . .
180 I3CCC=NT+13CC
e XACC = =Y3ACC
W3(11==S({13CCC)
— W3{2)==S{13CC) — i
200 TLAST=1L+J)
e DO 22C 1= TLASTY L IDIE _
KLAST=KL+1
. DD 2720 K=1.KLAST,2 e o S
K1=K+KBIT
— K2=K1+KRIT — e — -

K3=K?+KRIT

27
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....230

AN AN D NN

DO TwO STEPS WITH J NOT G
ACKI=A(KI+A(K2) 2W2

A(K2I=A{KI-A(KZ)*W2
CACKYLY=A(KYL I *W+ALK3 XW3

A{K3)Y=A(K1)EW=A(K3) *W3

A{K)I=A(KY+A(KY)

A(KIY=A(K)I—-A(K1]) e e
A(K?2Y=A(K2)+A(K2)*]

AUK3)=A(K2)-A(K2)Y*T o -
R=ALK2)%xh2{1)=AfK2+1)%W2(2)

T=ALK2)%W2(2)V+A{K2+ 1Y %W2(1)

A(K2)=A(K)-R U - . - o
A{K)=A(KI+R

A(K241¥=A(K+1Y-T i} o -
A{K+))=A(K+1)+T

G e et e e e e v o 2 5t et e i 1 2t et -

R=A(K2)%W2(1)}-A(K3+1)%kW3(2)

O T=A(KAVRWI(2V+A(K3+1)%W3 (L) S e —
AWR=A(KII®W(1)=A(K1+1)%W(2)

AWT=AIKII*WI2I+A(KL1+1)XW(1) ) e
A(K3)I=AWR=R

e ALK B L Y S AW Y T e e e e

A{KY)I=AWR+R

ALK1I+41)=AWT+T _ _ e e
T=A(K1l)

CA(KII=A(KI=-T S e

AIKY=A(KI+T

L T=ALKL+1D

AKI+1)=A(K+1}-T

A(K+1)=A(K+1)+T _ . - S
R==A(K3+41)

T=A(K3) e O

L..22¢8
C

SBLK2)=ALKZ2) +R

LAI=IIDTR+A

A(K3)=A(KD?)=R

A(K3+1)=A(K2+1)-T
CALK241 ) =ALK2+1) 4T

FND OF 1 AND K LOOPS

C END CF J=-LOnP
. 235 JLAST=4% )1 AST+3
240 CONTINUF
G END OF L __LOQP
250 CONTINUF
G ___END_CF_ID L0CP o
C
C WF NNW HAVE THF COMPLEX FOURIER SUMS BUT THEIR ACDRESSES ARE
C RIT-REVERSEDa THE FOLLOWING ROUTINE PUTS THEM IN ORDER

.. 350

c

CIF(M3MTY) 370,3€C,36C0

NTSQ=NT*NT

M3IMT =M3-MT

M3 GRe OR FQa MT

360 1603=1

N3VNT=N3/NT
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e MINNASNT s e e e

800 J41=1
N Do 860 JAPP1=1,N1YNT

GO T 387
T M3 L FSS THAN MT - -
370 1GN3=?
‘N3IVNT=] . . R, _
NTVN3=NT /N3
e T INBEBEINLD - o eeecimas e r e e £t e St ket i Ao
38N JIN3 = NTSQ/N3
. MIMT=M2=NMT I
450 1F (M2MT)4TL 46T 4602
C . M2 GRaOR FEQe MT_ o _ .
460 1602=1
o NQMNT SN2 LINT — rm -
MINN?2=NT
. GO .TO 48C . __ e e . S
C M? LFSS THAN MT
470 IGN2. =2 R - e — -
N?2VMT=1
e e NTVNI2SNTI AN e,
MINN2=N2
480 JUN2=NTSC/N2 . O P S
MIMT=M1-MT
B8O IR {MIMT Y ST e ST 000 e
C M1 GRa 0OR FQe MT
e S 60 L IGALE]
NIVNT=N1/NT
. MINNY=NT . I e
GO TN 58C
C . M1 LFSS _THAN MT . . S - -
S7T0 IG01=?
e = NIVNTI=Y
NTVYNT=NT /NI
. MINNY=NT e — _
580 JJD1=NTSQ/NI]
600 JN3=) - - - e
J=1
e e YL BB APP3=1 2 NIVUNT
I1PP3=INVIII3)
.. DD BIC. AP3=1.MINN3
GO TN (F10.6201,1G03
e - K10 IP3=INVIUP3IXNIYNT - -
GDh TO 630
—nb20. 1P23=INVL.IP3) /NTYN3
630 T3=(TPP3+4IP2)%N?2
— . I00 Jgg92=1 ——— - —
NN 870 JPP?2=1+N2VNT
e YPP2=INVIINI _
N0 R6C JP2=1+MINN2
GO .T0 (110.720),1G02
T10 TP2=INV(JP2Y%XN?VNT
e GO TO 73C -
720 IP2=INV(JP?2)/NTVN2
130 _12=(1PP2+1P2)1%N] S _

TPPI=INVIIJII+T2
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s . DOCBEC UPY=Y1LMINNY e
GO TO (R117,827),1IG01
Bl IP1=INV(JP1)RNIVNT
GO TO 83"
820 IP1=INV{JP1l)/NTVN1
B30 1=2%(IPP1+471P1)+1
e TR AM=T) . 84008484845 Lo

B840 T=AL(1)
CCALINYSALY — i -
ALdY=T
S I=ACI+YY . - et e S
A{T+1)=A(J4])
ST - X (70 I 3 U 2 OO Us USSR
845 CONTINUF
85C J=J+2 : :
BeN JUl1=4a1+4un1
C _ END OF JPP1 AND d4P2 .
870 JI?72=J010244UD2
Lol L ENDQE JPP2 AND JP3 LOOPS - . e e e
88/ JJ3 = )J2414D3
c ENN CF JPP3 L O0OP
IFCIFS) 8Rr2,1,1
C DOING TRANSFURM, RFPLACE A BY CCNJG(A),
cee BB2.DN. 884 T=1oNTOT . e e e
884 A(?2%1) = —A(2%])
60 TO L e N -

RFTLURN

~ THF FOLLCWING PRCGRAM COMPUTES THF SIN AND INV TABLESe

YOO

900 MT=MAXCUIM(1) . M(2),M(3)) =2
LMY = MAXCL2.MTY . .
9N4 [F (MT=2019C64876,605
..9NnS IFFRR =1 S .
GO 10 1

- RETURN et e — -

906 TFFRR=0
e NTY=2EEMY S - -

NTV2=NT/?
C THETA=PIE/2%%(L+1) FOR L=1
910 _THFTA=, 7653581634

c JSTFP=2%%(MT-1+1) FOR L=1
o .. .. JSTEP=NTY
r JDIF=2%%(MT~L) FOR L=1
_JDYFE=NYVZ?
S{JINIFY=SIN(THFTA)
DO 950 L=2.MT

THETA=THFTA/?,

L JSTFEP2=JSTFP
JSTFEP=JNIF
JDYF=JSTEP/2
SCINIFI=CSIN(THETA)
JC1=NT-JDIF
S(JC1IV=CCS{THFTA)
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e e N

C

S20

940

950

ga0

976

986

JC=NT=
RRERENINE § S

Q(JD)“Q())*S(Jf1)+§(JDIF)*S(JC’
CONTINUE. o e e

SFT UP INVIJ) TARLE

MTLFYP=NTV?

MTLFEXP=22%({MT-L ), FOR L=
FMIFXRPEY. o o v e

A STENT=d STERZ o e
TFUJLAST - JSTFP) 950,920,920
NN 940 J=JSTFPLJLASTLJSTFP .

LMIFYP=2%%({1-1)a FOR L=1

INVE1)=D

N 980 L=1, MT
INV{IMIFXP+]1) = MTLEXP
NN S70 J=2.LMIEXP

JI=dA4LMIFXP o

1NV(JI!—INV(J)+MTLFXP
MTIFXP=MTLEXPZ2 _ .
F MIFXYP={ MIFXYPXxD
FROIFSY 1241.12_
RETURN

END .. -
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