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OSO SPACECRAFT MANUAL

Section 1

INTRODUCTION

i.i GENERAL

The Orbiting Solar Observatory (OSO) is an earth-orbiting satellite designed

primarily as a stabilized platform for solar-oriented instruments - searching out

and reporting information about the sun. The expected minimum useful life-time

is 6 months. Progressive change in the attitude of the observatory permits ob-

servation of most of the celestial sphere as well as portions of the earth's sur-

face. The spacecraft design provides for orientation of the prime experiments to

within 1 arc-minute of the center of the sun throughout the uneclipsed portion of

the observatory orbit. Additional experiments are contained in the wheel, which

rotates once every 2 seconds.

The number and type of experiments can be interchanged and increased from

mission to mission with little change in configuration of the structure. (9SO, as a

basic carrier, provides the scientist great flexibility in experiment configuration

and mission objective.

1.2 PURPOSE OF MANUAL

/
This mamml is a spacecraf_ handbook prepared for'groups such as the ex-

perimenters and sub-contractors to use in preparing hardware for the spacecraft.)
The handbook will also supply needed information to such groups as Goddard

Space Flight Center, Delta Vehicle Group, Tracking and Data Acquisition Per-

sonnel and Data Processing Personnel and others.

1.2.1 References

Publications that may be used as references in association with this manual

are listed in Table 1-1.
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Table 1-1

References

Title Date or Number

February 1965GSFC Experimenterts Manual for the OSO

GSFC Experimenter's Manual for the OSO

Supplement #1

BRRC Experiment/Spacecraft Interface

Specification

BRRC Model Specification for OSO D

Spacecraft

BRRC Test Specification for OSO D

Spacecraft

OSO Project Development Plan,

Revision 3.

GSFC Environmental Test

Specification

AVCO VHF Command Receiver

BBRC OSO Aspect System Manual

TM65-1

June 1965

A18480

A17408

A17409

July 1966

S-320-D-2

1 September 1964

15 July 1965
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1.2.2 List of Abbreviations

To facilitate the usage of this manual, certain terms are abbreviated; these
terms and the abbreviations used are listed in Table 1-2.

Table 1-2

Abbreviated Terminology

Nomenclature Abbreviation

Analog Subcommutator

Ball Brothers Research Corporation

Digital Multiplexer & Encoder

Electron Volts

Goddard Space Flight Center

Inside Diameter

Orbiting Solar Observatory

Outside Diameter

Pressure Per Square Inch

Pressure Per Square Inch Absolute

Pressure Per Square Inch Gauge

Pulse Code Modulation

Pulse Duration Modulation

Revolutions Per Minute

Revolutions Per Second

Spin Orientation & Rate Electronics

True Inside Radius

ASC

BBRC

DME

ev

GSFC

ID

OSO

OD

psi

psia

psig

PCM

PDM

rpm

rps

SORE

TIR
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Section 2

GENERAL DESCRIPTION

2.1 INTRODUCTION

The Orbiting Solar Observatory consists of an upper structure and a gyro-

scopic spinning lower structure. The upper structure, which is termed the sail,
contains both the pointing experiment instruments and the solar cells. The lower

portion, known as the wheel, is built around a central hub casting containing bear-

ings which support the sail shaft. This aluminum shaft runs from the base of the

sail through the center of the wheel, ending in a support ring structure on the

underside of the wheel. Mounted on the shaft between the top and lower wheel

bearings is a high-pressure nitrogen gas tank for the pitch precession jets which

are mounted on the sail structure. A torque motor mounted at the top of the shaft

controls the pointed section in azimuth. On the base of the shaft is a slip ring

assembly which provides the electrical and communication contacts between the
upper and lower structures.

Figure 2-1 shows the entire spacecraft; the semicircular sail towards the

top, the pointing instruments which are the rectangular cases near the bottom

center of the sail, and the nine-sided wheel underneath the sail. (See also Figs.
2-2 and 2-3).

In addiUon, it shows the three extendable arms. Spreading these arms im-

proves the gyroscopic stability of the craft. The circular vessels on the ends of

the arms contain a gas supply for adjusting the rotation rate of the wheel. The

weight of the spacecraft alone is approximately 350 pounds; the complete observ-
atory about 600 pounds.

Tables 2-1 through 2-4 list the materials used in the spacecraft and their
application.
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Table 2-1

Aluminum Alloys

Material
Designation Specification

2024-T-351 QQ-A-268-T351

2024-T-351

2024-T-351

2024-T-3

2024-T4

2024-T4

2024-TO-T42

A356-T6

6061-0
HT toT6

6061-0

6061-T6

6061-T651

5052-H34

II00-HI4

3003-H14

7075-T6

QQ-A-355-T351

QQ-A-267-T351

QQ-A-355-T3

QQ-A-355-T4

QQ-A-268-T4

QQ-A-355-TO
HT to T42
MIL-H-.6088

QQ-A-356-T6

QQ-A-327-TO
MIL-H-6088
(Heat Treat)

_-A-327-TO

QQ-A-327-T6

QQ-A-325-T651

G_,-.A-S18-HS4

_-A-4U-HI4

G_-A-359d-H14

{_-A-282-T6

Design Applications

Miscellaneous rigid structural parts
such as: arms, blocks, brackets,
mounting strips, covers, housings,
retainers, etc.

Miscellaneous rigid structural parts
such as: mounting plates, gussets,
panel angles, arms, holders, spacers,
etc.

Channel stiffener

Rigid structural parts such as: latch
links, follower links, stiffener angles,
brackets, sail skin, cases, covers, etc.

Mounting plate and bracket

Plug and spacer connector

Bracket, sail rib and panel

Castings, main structural parts such
as: center wheel and sail frames

Rigid structural parts from machined,
formed, and heat-treated sheets such
as: wheel compartment panels, rib
panels, covers, etc.

Spun sheet cover

Channels and straps

Battery housing

Small structural brackets, covers, etc.

Shear pins and deep drawn parts

Cover

Shaft
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Table 2-2
Ferrous and Other Metals Except Aluminum

Material Specification Design Applications
DesigPAtion

MIL-S-7720-302Af Tubing fittingType 302
Stainless Steel

Type 302
Stainless Steel

Type 302
Stainless Steel

Type 303
Stainless Steel

Type 303
StainlessSteel

Type 303
Stainless Steel

Type 303
Stainless Steel

Type 303
Stainless Steel

Type 304
Stainless Steel

MIL-A-8675

MIL-S-7720-302A Cb

QQ-763-303A

MIL-S-7720-303 Ac

MIL-S-7720-303 AC-b

MIL-S-7720-303Af

MIL-S-7720-303 Bc

QQ-S-763B-304A

Valve poppet

Tubing manifold

Structural partsofsmall com-
ponents such as: valve case,
bushing cylinder covers, arm
lock follower, etc.

Small parts such as: lock
block, rotor key, stud, etc.

Tubing manifold

Washers, retainers, tubing fit-
rings, slip ring, etc.

Retainers, nuts, bolts, etc.

Tubing fitting

Type 18-8
StainlessSteel

Type 18-8
StainlessSteel

Type 416
Stainless Steel

Type 4140
Carbon Steel

Coin Silver

Silver Braze

Solder

MIL-Y-6845

QQ-A-763 C1 416A
MIL-S-6857 (Heat
Treat)

MIL-S-5626
MIL-C-76074 C1 I
(Electroless NI Plate)

90% Ag, 10% Cu,
Brinell

MIL-B-7883
QQ-S-561 Filler
Material

QQ-S-571-SN63-
W-AR-P3

QQ-s-svlc

Seamless tubing

Sintered fiRer

Pivot screw, arm latch pins

Hinge pins

Electrical contact

Pressure tubing and slip
rings

Electrical Soldering
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Table 2-3

Non-Metals

Material

Designation

Epoxy Glass Laminate

Epoxy Glass Laminate

(copper clad)

Epocy Glass Laminate

Specific_ion

NHL-P-18177

Type GFE or

GEB

MIL-P-13949B

MIL-P-79C

Design Applications

Circuit boards, insulating

spacers, etc.

Printed circuit boards

Housing for electronic

(tubing)

Diallylphthalate

Melamine,
Mineral Filled

Ceramic,

Silicone Impregnated

Alkyd Putty No. 413

Nylon

Nylon

Nylasint

Teflon

Glass, Borosilicate

Glass

Glass

Glass, Quartz

Epoxy

Epoxy

Form TR GR164

MIL-M-14F (SDG

Type I)

MIL-E-5400

MIL-M-20693A, Ty I

MIL-P-17091

64HV

MIL-I-22129

Fish Shurman BK-TG

Coming X-260-JL

Coming No. 2600
GE-102

Paraline

Epoxy Products No.

3022

Resin No. 18 Hardener

components

Electrical connectors

Electrical connectors

Electrical connectors

Electrical connectors

Insulating spacers

Insulating spacers

Lubricant reservoirs

Insulating sleeves and wire
insulation

Optical

Optical filter

Optical filter

Cover-glass

Bonding

Thermally conducting
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Table 2-3
Non-Metals (cont.)

Epoxy

Epoxy

Epoxy

Material
Designation

Silicone Elastomer

Silicone Elastomer

Polyolefin (Irradiated)

Phenolic

Aluminum Honeycomb
Phenolic Sandwich

Silicone Rubber

Buna-N Rubber

Specification

Shell Epon 828, Shell
V-25 or Versamid

V-125 Curing Agent

Armstrong C-7, with

Activator and LD-20

Pearlite

Hysol 4238, Versamid

125 Curing Agent

GE RTV-11, Thermo-

lite 12 Calalyst

GE LTV-602, SRC-05,

Catalyst

Rayclad-RNF-100 Ty

Design Application

Potting, bending, conformal

coating

Potting compound

Thermally conductive

bonding

Potting and conformal

coating

Potting and conformal

coating

Insulating Sleeves and

Silicone Rubber

Fluorinated Polymer

II

MIL-P-15035

NEMA LE

Goodyear
Bondalite- Z

wire insulation

Insulating spacer

Cover panels

3M No. 70 Electrical

Tape

Parker N-183-9 or

N-109-7

Lord Mfg. Co. No.
J-6449-10

RTV Damped

Rulon A

Electrical wrapping

"0" ring

Bumper

Rigid Mount
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Table 2-3

Non-Metals (cont.

Material

Designation

Red Fiber Sheet

(vulcanized)

Mylar

Polystyrene "Q" Dope

Beryllium Oxide

Silicone Foam

Urethane Foam

Silicone Adhesive

Apiezon L

Specification

MIL-F-1148 Ty CH

3M Scotch Cast No.

!XR-5017

Nopco Lock Foam

Dow Doming Silastic
140

Design Applications

Electrical shield and flex-

print wiring

Inductor coating

Heat Sink

Potting compound

Potting compound

Bonding

Lubricant
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Table 2-4
Coatingsand Finishes

Material

Designation Specification Design Applications

MIL-G-45204 Ty II C1 4Gold Plate

Gold Iridite

Silver Plate QQ-S-365 Ty I Gr A

Electrical contacts

Electrical connectors

Electrical components

Silver Plate

Silver Electropolish

Nickel Plate

Chromium Plate

Copper Plate

Tin Plate

Solder Plate

Solder Plate

Aluminum coating

Aluminum Anodize

Aluminum Black

Anodize

Aluminum Hard
Anodize

Aluminum Chromicoat

MIL- F-14072

MIL-C-76074 C1 I

MIL-C-14550

MIL-T-10727 TyI

MIL-T-55155

Electro-deposK,
QQ-S-571 Solder

Vacuum deposited

MIL-A-8625

MIL-A-8625 Ty II

AMS 2468

Oakite Chromicoat

Coaxial relay

Slip rings

Protective finish on carbon steel

Protective finish on carbon steel

Printed circuit boards

Electrical connectors

Electrical components

Electrical components

Optical light shield

Surface passivation

Surface passivation and
optical black

Surface passivation

Surface passivation

Aluminum Photo
Anodize

Black Velvet

Aluminum Paint

White Paint

Polished Aluminum

Fed Spec 595 No. 36492

3M Black Velvet Paint

Komac XR-630 Silicone

Resin, MD5100 Pow-
dered Aluminum Pig-
ment (Metals Disinte-
grating Co.)

Domac XR-630 Silicone

Resin, Komac KM 6212

TiO 2 Pigment

Lettering

Optical Black

Satellite thermal control

Satellite thermal control

Satellite thermal control
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2.2 SAIL STRUCTURE

The sail structure (Figure 2-2) is a semicircular framework attached to a

casting called the azimuth. Solar cells cover the entire sun-facing surface, ex-

cept the part occupied by the pointed instruments. Behind the solar cells are

the electronic and mechanical components necessary for operation of the sail-

mounted equipment. Included are the coarse and pitch control eyes, nutation

damper, elevation servo motor and pneumatic gas control components.

The pointed instruments are mounted in the elevation frame which in turn

is mounted in the azimuth frame. Space is provided for two pointed instruments

each 4 inches wide by 8 inches high by 36 inches long. The pointed instruments

are independently adjusted to one another so that their optical axes are parallel.

Located on the front of each pointed instrument are the sun sensor eye blocks of

the solar pointing control system. The weight of each pointed instrument includ-

ing balance weights and attaching hardware is 40 pounds.

SAIL STRUCTURE

AZIMUTH

ELEVATIO

POINTED INSTRUMENTS

CONTROL SYSTEM

EYE ILOCKS

Figure 2-2-Major Features of Sail Structure
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2.3 WHEEL STRUCTURE

The wheel structure (Figure 2-3) is a nine-sided cylinder made up of nine

wedge-shaped compartments. Each compartment can contain instrumentation

occupying up to 1000 cubic inches of volume. Its overall diameter is 44 inches,

and the height of the cylinder is 9.9 inches. Attached to three of the wedge-

shaped sections are the extendable arms carrying the spin-control gas vessels.

After injection into orbit, these arms extend into the plane of the wheel, in-

creasing the effective diameter of the wheel to 92 inches.

An antenna array is located at the base of the wheel. It consists of three V

shaped monopoles spaced 120 degrees apart; two are active, and the third is

parasitic. One half of each monopole is the supporting element for the extending

2.3.1 Wheel Experiments

Five of the compartments contain experiments. No experiments are housed

in wheel sections to which the extendable arms are attached. Of the total ex-

periment weight, about 150 pounds is allocated to the wheel experiments. Pro-

rating this weight equally to five compartments gives an average of 30 pounds

per experiment compartment, not to exceed 45 pounds in any one compartment.

Experiment instrumentation in each compartment is not expected to weigh

exactly 30 pounds, and all the centers of mass are not expected to be located in

the same place. In general, however, the center of mass of all experiment as-

semblies in one compartment are on the radial center line of the compartment

about 4 inches above the deck.

2.3.2 Wheel Electronic System Compartments

Four of the wheel compartments house the control systems components,

telemetry equipment, and radio comm_T_! equipment. These compartments are

numbers 1, 4, 7, and 8. (See Figure 2-4.) Compartments 2, 3, 5, 6 and 9 house

the experiments.

2.4 STRUCTURAL BALANCE, STATIC AND DYNAMIC

For proper performance during launch and in orbit, the OSO spacecraft must

be balanced statically and dynamically. Since a large portion of the mass is ex-

periment instrumentation, restrictions are placed on the weight distribution of
each instrument.
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_STRUCTURE

J TOP THERMAL SHIELD

• ' "''_ "'"'" COMPARTMENT RIM

_ TypIKIALTEXPMEERINMmN T BOTTOMITHERMAL _ _,..,. PANEL

ANTENNA _,/q_::_.._:__

SP,NGASBOTTLE-"  

Figure 2-3-Major Features of Wheel Structure

2.4.1 Alignment Requirements

The alijpamem_ of the bearing axis of the spacecraft to the bearing axis of the
balancing machine spin table is sufficient to cause less than 0.002 TIR at the in-

dicator collar when the sail is held stationary and the wheel is rotated. The in-

dicator collar must be concentric within 0.002 TIR of a line through the center of

the attached fitUug and perpendicular to the attached (separation) plane.

2.4.2 Balance Requirements

With the three arms that are attached to the wheel structure fully extended,

the wheel is balanced within 10 ounce-inches static, and within 140 ounces-inches 2

dynamic balance.
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UCL (..
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/

/
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i
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I
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i NRL X-RAY

SQUIB

BATTERIES

SPIN DOWN
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PACKAGE

1. ALL PLUMBING COMPONENTS FOR WHEEL ARE IN COMPARTMENT 4.

2. ARM DAMPER SYSTEM LINE IS.IN EACH COMPARTMENT ROUTED

WITH PLUMBING LINES OR CO-AX LEADS.

3. OSO-D CONFIGURATION

Figure 2-4-Wheel Layout of Major Components
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While the arms remain extended, and the pointed experiments are locked in

the launch position, the sail is then balanced to provide observatory balance within

10 ounce-inches static, and 300 ounce-inches 2 dynamic balance. With the pointed

instruments in the orbit state, the sail is balanced to provide observatory balance

within 10 ounce-inches static and 300 ounce-inches 2 dynamic balance.

The observatory is balanced within 20 ounce-inches static and 1000 ounce-

inches _ dynamic balance with the arms placed in the stow position and the pointed

experiments locked in the launch position.

2.4.3 Machine Alignment

Before mounting the spacecraft on the balancing machine pedestal, the ped-

estal table is aligned perpendicular to the true bearing axis of its spindle with a
dial indicator. This indicator is set up to measure vertical motion 4.5 inches

from the center of the table. When this is accomplished the table is aligned within

0.12 minutes of arc. The upper structure is statically balanced about the eleva-

tion axis within the effect of a 5 gram weight. This is done in the fore, aft, top
and bottom directions.

2.5 MAGNETIC BALANCE

A permanent magnet or a bar of soft iron tends to align itself with the earth's

magnetic field as does a compass. The strength of this tendency is determined by

a property of the object called the magnetic dipole moment. If the spacecraft had

a significant magnetic dipole moment, the geomagnetic field would exert a torque

on it that could only be counteracted by the gas jets. Since no needless gas ex-

penditure can be afforded, the magnetic torque must be eliminated by reducing

the dipole moment to an insignificant value.

2.5.1 Torque Measurement

The spacecraft is hung on a frictionless suspension in a region of uniform

geomagnetic field, and the torque that is exerted by its attempt to line up with

the field is measured on a torque meter. This is done at three mutually perpen-

dicular positions. Then permanent magnets are installed with the same moment

but opposite orientation, making the net moment very small. The measurements

are then repeated to make sure that the torques are negligible.

In order to properly perform magnetic balancing, a torque must be measured

with a resolution of at most 100 dyne-cm. To accomplish this, the spacecraft is

2-13
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hung in such a way that the suspension friction and all stray disturbances (such

as those due to breezes) add up to well under 100 dyne-cm. The work must be

done where the earth's magnetic field is not distorted by extraneous magnetic

materials. A wooden building is used.

2.5.1.1 Magnetotropometer

The magnetrotropometer is an instrument that can handle test specimens up

to 1300 pounds, and measure torque with a resolution of 10 cyne-cm. It con-

sists of a tub about 5 feet in diameter and 2-1/2 feet deep with a core up the

middle, nearly filled by a donut-shaped object which floats in silicone oil. A

shaft hanging from this float extends down the core of the tub and through the

floor into a chamber on the floor below. The test specimen hangs on this shaft

and is protected from drafts by Lh_ _aled and ,,._,_._".... l n_ ch-_mber. Another shaft

extends upward from the float through the tub cover. This shaft is fitted with a

"chain carrier," which can be slid up and down and rotated on the shaft, and can

be locked to the shaft with a set screw. Three very light chains are attached to

the chain carrier 120 degrees apart, and droop radially outward to stationary

anchor points. These chains hold the float and spacecraft centered in the

apparatus.

If the float rotates slightly, the horizontal force of the chains no longer acts

through the center of the shaft. Therefore, this force causes a restoring torque

on the float. The torque due to the chains is a nearly linear function of float

angle for small float rotations.

There is a mirror mounted on the chain carrier. This, with a conventional

galvanometer telescope and scale, allows any small angular deflections of the
float to be read.

2.6 PRELAUNCH TESTS

To ensure that the OSO is in an operational readiness state, a series of tests

are conducted. All subsystems and experiment instrumentation must be capable

of surviving the launch environment and operating in the thermal-vacuum environ-

ment at orbital altitudes. For detailed information concerning these tests, refer

to the Experimenters I Manual for the OSO, Supplement mamber 1, Section 9, and

GSFC Environmental Test Specification, S-320-D2.
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Section 3

CONTROL SYSTEMS

3.1 INTRODUCTION

Like many other spacecraft, the 0SO-D uses the gyroscopic properties of a

spinning body for stability. After the launch sequence has been completed and

the arms have been extended, the control systems are activated. The sensors

acquire the sun, use it as a reference, and feed information to the electronic

control systems which in turn actuate the spin and pitch pneumatic systems to

stabilize the spacecraft.

The entire spacecraft is utilized as the controlled platform. The spin rate

around the spin axis is maintained by jets in the arms. These jets either in-

crease (spin up) or decrease (spin down) the spin rate to maintain a spin rate of

about 30 rpm (or 0.45 to 0.66 rps}. Pitch angle, the tangential relationship of

the sail to the sun, is maintained by two jets which are on the rim of the sail.

Since the sail is attached to the wheel through the shaft, the entire spacecraft

precesses about the pitch axis. Azimuth alignment of the sail is controlled by

the servo motor which is mounted at the top of the shaft. This motor holds the

sail fixed while the wheel rotates. A servo motor, mounted near the pointed

experiments, maintains accurate elevation alignment. The motor drives the

pointed instruments in elevation from signals supplied by the fine eyes. The

control systems location is shown in Figure 3-1.

A magnetic bias coil has been placed around the base of the spacecraft as a

supplement to the pneumatic system used to control the pitch angle. This mag-

netic bias coil is primarily intended as a mode of pitch control but is also capable

of correcting or adjusting roll attitude.

On previous OSO spacecraft it was realized that there is a necessity to de-

termine the aspect, or orientation, of the spacecraft. This is necessary to de-

termine the orientation of the scan pattern on a picture of the sun and to deter-

mine the great circle on the celestial sphere which the line of sight of a wheel

instrument describes as the wheel makes a revolution.

Therefore an Aspect Measuring System has been included in the OSO-D

spacecraft; this system consists of a magnetometer, a solar detector, and a

timer. The outputs of these are transmitted to a ground station where the data

is fed into a computer for calculation of the roll angle.
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The spacecraft can also be operated in a scanning mode. The mode of oper-

ation is initiated by a scan "on" command, and the spacecraft will revert to the

pointing mode when the scan "off" command is sent. In the scan mode, the azi-

muth and elevation servo systems are made to scan the solar disc and part of

its corona in a pattern similar to that of a television system. This mode of op-

eration enables the pointed experiments to present one complete data picture of

the solar disc and its immediate corona every 307.2 seconds.

The spin control and the pitch control systems are backed up by the com-

mand system which will allow manual control of the spacecraft spin and pitch

by command.

3.2 SPIN CONTROL SYSTEMS

There are two modes of controlling the spin rate of the spacecraft: (1) the

automatic mode which senses the period of spacecraft rotation and actuates a

pneumatic system to either spin-up or spin-down the spacecraft, and (2) a com-

mand backup system which can adjust the spin rate by signals from the ground.

A block diagram of the spin control systems is shown in Figure 3-2.

3.2.1 Automatic Spin Control System

Because the nutation frequency is directly proportional to the spin rate, the

spin rate of the spacecraft must be maintained between 27.0 and 39.6 rpm, with

an ideal spin rate of 30 rpm, so that the nutation damper will work effectively.

As the spacecraft rotates, the spin rate sensors see the sun each revolution

and generate a pulse. These pulses are used to trigger electronic circuits that

measure the period of spacecraft rotation. When the period of rotation, spin

rate, exceeds the prescribed limits, a signal is sent to the pneumatic system to

open one of two solenoid valves. One solenoid valve expells compressed gas

through the spin-up nozzles; the other expells compressed gas through the spin-
down nozzles.

3.2.1.1 Sensors

Two spin control sensors are mounted on the spin eye assembly (Figure 3-3).

A redundant spin eye assembly is mounted on the edge of compartment 8.

The assembly consists of four identical photovoltaic detectors. The output

of each detector is ideally a fixed current between 1 and 2 ma when the sun is in

3-3



the detector's field of view, and zero when the sun is outside the field of view.

The field of view is 3 degrees in azimuth and 24 degrees in elevation.

With 6 = 0, a typical output current of each detector in the assembly as a

function of azimuth angle _ is shown in Figure 3-4. The off-axis characteristic

(_ _ 0) has the same general shape as the on-axis curve but with the amplitudes

diminished. The peak outputs are as follows:

= 0 The peak on-axis output amplitude is greater than
1000 ua and less than 2000 ua

= ±12 degrees
The peak 12-degrees off-axis output amplitude is greater

than 800 ua and less than 2000 ua.

3.2.1.2 Electronics

An electronics package in compartment 4 contains the electronic circuitry

that converts the pulses from the spin eyes into signals to operate solenoid

valves. The spin control assembly controls the wheel spin rate by operating

the wheel spin-up gas jets if the spin rate drops below approximately 0.45 rps

or increases above approximately 0.66 rps. This circuit is also used for the

spacecraft despin during launch sequence operations. The weight of the spin

control assembly is 4 pounds 12 ounces.

A diagram of the spin control system is shown in Figure 3-2. As the wheel

rotates, the spin eye senses the sun once each rotation, giving a pulse each time.

These periodic current pulses provide the proper base-emitter bias to the PNP

transistor located in the spin eye amplifier. The output from this amplifier is

then shaped and applied to a flip-flop. The output of the flip-flop is fed to an

integrator which generates a rising ramp function. When the flip-flop changes

from the low state to a high state the integrator is reset. The ramp is inter-

rupted after it has been rising for the period of rotation. If the period of rota-

tion is 5 percer_ too long, the ramp rises above a critical level determined by a

voltage comparator. When this occurs, a burst generator operates and applies

power to a solenoid valve for four seconds.

Several problems associated with this technique are not immediately apparent.

As the spacecraft comes into the sunlight, it passes through the penumbral shadow

where only part of the sun is visible. If, during this time, the turn-on circuitry

applies power to the spin-up system before the spin eyes are giving out pulses of

sufficient amplitude, a call for spin-up gas would occur. This problem is solved

in two ways. First, the spin eyes are made sensitive enough to give satisfactory
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Figure 3-4-Typical Angular Response Curve of a Spin Control Detector

pulses on less light than is required to turn on the spacecraft. As a further pre-

caution, power to the regenerative trigger is delayed by about 5 seconds. During

this interval the sun rises far enough to show a nearly full disc, before the gas

system is required to operate. It takes approximately 9 seconds for the space-

craft to pass through thelpemunbral shadow.

3.2.1.3 Pneumatics

The spin pneumatic system uses compressed nitrogen flowing through noz-

zles located at the ends of the extended arms to produce a torque to either in-

crease or decrease the spin rate. See Figures 3-5 and 3-6.

The system consists of three storage bottles, one on the extremity of each

arm of the spacecraft. These storage bottles are filled with nitrogen at initial

pressure of 3000 psi. A quick disconnect fitting, an inline filter, and a check

valve on the input line provide assurance that the nitrogen supply is pure and

that it wiU net leak when the high pressure source is removed. The three stor-

age bottles and the fill-llne all feed into a common manifold. This manifold and
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Figure 3-5-Gas Control Systems

the pressure transducer are mounted on the skin of the spacecraft in compart-

ment 4. The pressure transducer (Figure 3-7) converts the pressure to an

electrical signal which is used as an input on channel 37 of ASC number 1.

A pressure regulator, the spin-up solenoid valve, and the spin-down solenoid

valve are mounted on a plate in compartment 4. The pressure regulator (Figure

3-8) decreases the 3000 psi system pressure to 60 psi. This reduced pressure
is delivered to both solenoid valves. When a signal (ground) is received from

the spin electronics package by one of these solenoids, the valve opens and dis-

charges the nitrogen through the three nozzles on the spacecraft arms. However,

the solenoid working voltage is supplied by the +19 volt day circuit and if this

circuit is not energized, the solenoids will not operate. The thrust of each nozzle

is 0.1 pound at a distance of 3.8 feet from the center of gravity; so the total torque

applied is approximately 1.14 pound-feet. The solenoid valves can also be actuated

by the Command Backup System; refer to paragraph 3.2.2.
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3.2.1.3.1 Pneumatic System Components

All pneumatic components within the pneumatic system are tested to deter-

mine if the system meets the spacecraft requirements.

3.2.1.3.2 Tubing

Three types of tubing are used.

a. 1/4 OD stainless steel braid covered, 1/8 ID which meets

MIL-P-5518.

b. 3/16 OD × 0.030 wall, copper which meets MIL-P-5518.

c. 1/80D Y 0.030 wall, copper which dno.q not meet MIL-P-5518.

Chase Copper Alloy Handbook, Copyright 1948, for this tubing

gives a burst pressure of 22,000 psi and working pressure of

3600 psi. All connections to this copper tubing are made by

silver brazing it inside the 3/16 OD copper tubing.

3.2.1.3.3 Fittings

All tubing fittings are standard MS flareless type, aluminum, rated for

3000 psi service and meet MIL-P-5518.

3.2.1.3.4 Storage Bottles

Each of the three open storage bottles has a 157 cubic inch volume for a

system total of 471 cubic inches. All bottles are made of titanium ahoy and

have the following ratings:

a. Operating Pressure

b. Proof Pressure

c. Burst Pressure

3000 psig

5000 psig minimum

6667 psig minimum

3.2.1.3.5 Check Valves, Filters, Pressure Regulators
and Solenoid Valves

All these components are rated at a minimum of 3000 psia service pressure

and a minimum of 7500 psig burst pressure. All have been proof tested at a min-

imum of 4500 psig.
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The solenoid valves are downstream of the pressure regulators so are not

actually part of the high pressure system. However, a leaky regulator could

apply 3000 psi to them; therefore, they have been considered as high pressure

components.

3.2.1.3.6 Pressure Transducers

The pressure transducers have a service pressure of 3500 psig and have

been proof tested at 4500 psig. The output of the pressure is telemetered on

Channel 37 of the analog telemetry system.

3.2.2 Command Backup Spin Control System

The function of the command spin backup is to automatically switch out the

automatic spin control systems if the wheel spin rate decreases below about 0.39

rps, or increases about 0.70 rps, and to switch in circuits which can use ground

commands to actuate the spin-up and spin-down gas jets. A spin backup arming

relay is provided which allows the automatic "switch to manual" feature to be

made operational or nonoperational by bround command. This relay also inhibits

switch to backup during launch sequence spin down.

3.2.2.1 Sensors

The spin backup sensor is mounted on the spin eye assembly (Figure 3-3).

This sensor is identical to the automatic system sensors. The output pulse

generated by the eye is connected to the backup sin eye amplifier in the spin

control electronics package.

3.2.2.2 Electronics

Pulses from the backup spin sensor (Figure 3-5) are applied to the backup

spin amplifier. This amplifier is identical to the spin eye amplifier. The base

of the amplifier is clamped by a 6.8 volt zener diode and the collector resistor

is selected for the proper gain. The output from the amplifier is applied to a

pulse shaper and then to the ramp generator. Depending upon the signal received

from the ramp generator, the overvoltage or undervoltage circuit will be ener-

gized. After passing through an amplifier stage, the signal is then applied to the

relay driver turning it on, and energizing the manual coil of the auto-man relays.

The spin backup circuitry is basically the same as the automatic circuit.
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With the auto-man relay in the manual position, 19 volts power is then ap-

plied to the manual circuits. A spin-up or spin-down command can then be

applied. This signal will energize a relay which applies an input signal to the

four second burst generator. The generator will conduct until it is turned off by

a negative pulse applied to the base of the input transistor. The four second time

constant is controlled by a r-c network. The output from the generator is applied

to the manual valve driver, saturating its output stage. This will place one side

of the solenoid coil at ground potential, causing it to energize.

The spin rate monitor supplies a quantized analog voltage to the telemetry

system from which the wheel spin rate can be computed. The spin rate is mon-
itored on channel number 12 of ASC number 1.

3.3 COARSE AZIMUTH CONTROL SYSTEM

The coarse azimuth control system is used to acquire the sun each space-

craft day. At the end of the spacecraft day, when the earth is between the space-

craft and the sun, the azimuth control system is inoperative and the sail rotates

with the wheel. As the spacecraft enters the field of view of the sun, it is the

function of the coarse azimuth control system to acquire the sun and orient the

sail so that the pointing control system can align the pointed experiments toward

the sun. A schematic diagram of this system is shown in Figure 3-9.

3.3.1 Sensors

There are two types of sensors used in the control circuit for the coarse

azimuth control system; the acquisition eye and the target eye.

3.3.1.1 Coarse Eyes

The coarse eyes each have a characteristic curve that approximates a co-

sine curve. Four coarse eyes are arranged as shown in Figure 3-10, using

shadowing masks to modify the cosine curve. This arrangement gives an error

signal with a stable null looking toward the sun and an unstable null in the anti-

solar direction. In addition, the arrangement is specifically designed to aid in
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the acquisition problem. At the spacecraft's dawn, the oriented section is spinning

along with the wheel section. Because of this, the sun must be acquired each

morning by stopping the oriented upper section. There is insufficient torque to

stop the rotating oriented section in a half revolution, therefore, a signal is needed

that will provide a stopping drive for a large portion of a rotation. A rate gyro

would, of course, be an ideal type of device for generating such a signal, but the

power consumed and the reliability problem with such a device would not allow

its use. By shaping the coarse eye curves and using error rate damping (lead

network), signals are developed to stop the rotation for all orientations except

in those narrow regions where sensing switches from rear eyes to front eyes.

The field of view of each coarse eye is 90 degrees in azimuth and 30 degrees in

elevation. The viewing field is reduced in elevation so the earth will not be ac-

quired during initial acquisition.

The coarse eye array will orient the upper section to the sun within 3 degrees.

When this is done, the upper section is stopped and coarsely oriented. The fine

eyes now are able to see the sun.

3.3.1.2 Target Eye

When the servo has settled down in the fine-eye region, the coarse eyes are

no longer necessary and would contribute to errors in the pointing due to their

picking up stray light from the earth. A target eye actuates the switch which

disconnects the coarse eyes fromthe circuit when they are no longer needed.

The target eye is identical to a fine eye except that the reticle is a rectangular

aperture which permits an 8 degree square viewing field. The angular charac-

teristics of a target eye are shown in Figure 3-19. A time delay of 6 to 10 sec-

onds is associated with the switch so switching does not contimmlly take place

during the initial acquisition. The target eye is mounted on a pointed instrument.

3.3.2 Electronics

Error signals produced by the coarse eye array axe applied to a preampli-

fier located in the servo box. The maximum normal current produced by the

coarse eye array is plus or minus 1.9 ma. The preamplifier provides a short

circuit load for the sensor. The sensor currents are converted to dc voltages

and fed to a rate network for servo damping. The pulse is also inverted before

being modulated. The rate network signal is modulated by a 1 to 2 kc square
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wave and then sent to the ac amplifier. The ac amplifier amplifies and demodu-

lates the error signal. The resulting dc error voltages are fed to the pulse width

demodulator. A block diagram of the pointing system is shown in Figure 3-21.

The pulse width modulator converts the dc error voltages to a constant

amplitude signal having a duration proportional to the error voltages. The

repetition rate of the pulses from the modulators are approximately 1,000 pps.

The pulses from the modulators are used to drive power bridge circuits which

in turn drive the azimuth torque motor.

The azimuth power amplifier located in the power box provides the driving

power to the azimuth torque motor. The amplifier operates as a saturated switch

to obtain maximum power efficiency.

When the target sensor receives the proper amount of illumination the target

eye amplifier will receive a signal, amplify the signal and apply it to the intensity

monitor. The intensity monitor will then produce and output voltage proportional

to solar intensity. This signal is monitored on channel number 22, ASC number 2.

The target eye amplifier also applies a signal to the on target relay driver

which operates the coarse-fine relay after a 6 to 10 second delay. This relay

switches out the azimuth coarse detector (sensor) and preamplifier, leaving

only the fine sensor and preamplifier, when the target sensor receives the proper
amount of illumination.

3.3.3 Servomotor

The servomotor in the azimuth control system is the same motor described

in the pointing control system. Refer to paragraph 3.5.3.

3.4 PITCH CONTROL SYSTEMS

The pitch control gas system is an on/off device using photo-cells as de-

tectors to sense when the jets should be turned on and off. The detectors are
mounted on the sail oriented toward the sun. Two different modes of operation

are possible; the automatic mode and the command pitch backup mode.
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3.4.1 Automatic Pitch Control System

The automatic pitch control system keeps the spin axis of the spacecraft

normal to the solar vector so that the elevation servo system is within operat-

ing range. The sensors monitor the pitch angle and, when the pitch axis is more

than 3 degrees from the perpendicular, a signal is sent to the pitch controllers

which operate jets to precess the spacecraft until the spin axis is approximately

1 degree beyond the perpendicular. The overshoot is to accommodate the scanning

requirements of an instrument located in the sail.

Outputs from the pitch control eyes (sensors) actuate electronic switches that

operate solenoid valves. The valves control the flow of nitrogen to the nozzles.

The exhaust of the gas applies a torque to the spacecraft to precess the spin axis

in the desired direction. The electronic switches are arranged so that both of the

up or down outputs must be high to actuate the switch and both must be low to turn

it off. A system diagram of the pitch control system is shown in Figure 3-11.

3.4.1.1 Sensors, Pitch Control

The pitch control sensor provides the angular pitch error signal to the pitch

control subsystem.

Four solar sensors are used for automatic pitch control activation. One

sensor is mounted with its optical axis tilted about 11 degrees above a line nor-

mal to the sail. The field of view of this sensor (A) extends to within 4 degrees

of normal. A second sensor is mounted so that its optical axis is tilted about

7 degrees above normal and its field of view extends below normal by about one

degree. The second pair is mounted with the same offset angles below normal.

These sensors operate in pairs to provide the pitch-up or pitch-down correction

(Figure 3-12).

The logic of pitch correction is as follows:

a. One point, ± approximately one degree of the solar direction, both the

(B) sensors are activated.

b. As pitch drift begins to exceed one degree, but is less than 3 degrees,

the appropriate (B) detector will be active, the other (13) detector will
be inactive.

c. As pitch error reaches threshold of the appropriate (.4.) detector, both

the (A) and (B) sensors will then be activated.
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d. A true pitch error is recorded and pitch correction is initiated.

e. Pitch correction continues until both the (A) and (B) detectors are

deactivated which, it can be seen, is about onc degree past the zero

error point.

When the pitch axis is zero, the spin axis is normal to the solar direction.

Now consider a pitch-up drift of the spacecraft in which the spin axis is tilted

away from the solar direction. As the A-down detector reaches its turn-on

threshold, the detector amplifier, after a delay of about 8 seconds, changes the

state of the pitch-down bistable flip-flop to its on condition. The flip-flop change

occurs, however, only if the B-down detector signal also is operative; that is, a

4 degree pitch-up error, the B-down detector is 4 degrees to 5 degrees past its

turn-on threshold. With only the B detector on, the flip-flop state will be held

in its off position until the A detector threshold signal is received. The flip-flop

off state is likewise a controlled condition when neither A nor B detectors are on.

Downward precession of the spacecraft results as gas is released from the

pitch-down jet and continues until a one degree pitch-down error is reached. At

this angle, the B detector signal falls below its on threshold and the pitch-down

valve closes as the flip-flop returns to its off state. Automatic correction of a

4 degree pitch-down error occurs in the same manner as for the error correc-

tion just presented, except that for down-error the elements of the pitch-up con-

trol are employed. The time to make a 4 degree automatic pitch correction is

about 64 seconds. A nutation of the spin axis results when a pitch correction is
made.

3.4.1.2 Electronics

The error signals are applied from the pitch sensors to the pitch-up or

pitch-down amplifiers {Figure 3-11). The pitch-up and pitch-down circuits are

identical. The signal is then amplified and applied to the flip-flop, placing it in

the up state. This signal is then applied to the driver circuit through a buffer

amplifier. The driver output transistor is turned on full, placing the negative

side of the solenoid at ground potential and energizing the solenoid.

The pitch-up gas jet shall actuate 3.0 to 10.0 seconds after the pitch angle

reaches its negative correction threshold of -3.5 degrees and will remain actuate

until the pitch angle is +1 degree. The pitch-down gas jet will actuate 3.0 to 10.0

seconds after the pitch angle reaches its positive correction threshold of +3.5 de-

grees and will remain actuated until the pitch angle is -1.0 degree. These +1 de-

gree and -1 degree signals received from the sensors will enable the flip-flop.
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Either pitch gas valve will remain actuated for a duration of approximately

10 seconds for each signal received. Error signals received while a pitch valve

is actuated will have no effect.

The pitch control system will remain in the automatic control mode during

the launch sequence until the 1200 second launch sequence time signal occurs.

This lockout is necessary during launch to avoid having the pitch system switch

to manual during initial pitch acquisition. Automatic correction of pitch errors

up to 18 degrees is possible during the lockout period.

3.4.1.3 Pneumatics

The pitch pneumatic system (Figure 3-13) forces compressed nitrogen through

the nozzles located on the rim of the sail to produce a torque to change the pitch

attitude of the spacecraft.

The system consists of a nitrogen storage bottle, pressure transducer, pres-

sure regulator, solenoid valves, and hardware. The storage bottle is mounted on

the azimuth shaft and is, therefore, an integral part of the sail. The other com-

ponents are mounted around the edge of the pointed experiments. The storage

bottle is filled with nitrogen at a pressure of 3000 psi. A quick disconnect fitting,

several inline filters, and a check valve of the input line provide assurance that

the nitrogen supply is pure and that it will not leak when the high pressure source

is removed. The storage bottle and the fill line connect to the same manifold.

This pressure transducer is mounted on the manifold. The pressure transducer

converts the system pressure to an electrical signal which is used as an input

on channel 46 of ASC number 2.
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The pressure regulator decreases the 3000 psi system pressure to 30 psi;

this reduced pressure is applied to both the pitch-up and pitch-down solenoid

valves. When a signal (ground) is applied from the power amplifier assembly

to one of the solenoid valves, the valve opens and discharges nitrogen through

the valve to its corresponding nozzle (pitch-up or pitch-down). However, the

solenoid working voltage is supplied by the +19 volt day circuit and if this cir-

cuit is not energized, the solenoids will not operate. The thrust of each nozzle

is 0.05 pound at a distance of 1.9 feet from the center of gravity; so the torque

applied by either nozzle is 0.095 pound-feet which causes the spacecraft to pre-

cess at a rate of 0.064 degree per second. The solenoid valves can also be

operated by the command backup system; refer to paragraph 3.4.2.

3.4.1.3.1 SLoz'agu _-*-1.

The storage bottle internal volume is 480 cubic inches minimum capacity

at ambient temperature.

3.4.1.3.2 Pressure Regulator

The pressure regulator reduces the system pressure from 3000 psi to
30 psi.

3.4.1.3.3 Pressure Transducer

The pressure transducer has a service pressure of 3500 psi and have been

proof tested at 4500 psi. The output of the pressure transducer is telemetered
on channel 46 of ASC number 2.

3.4.1.3.4 Other Components

All other components of the pitch system are similar to those used in the

spin system. Refer to paragraph 3.2.1.3.

3.4.2 Command Backup Pitch Control System

The command backup pitch control provides the means for switching outthe

automatic pitch control system if the automatic system continues to provide pitch

error correction for 107 + 15 seconds or the system may be commanded by ground

control. When the automatic pitch control circuits are switched out, driver cir-

cuits are switched in which can be operated by ground commands to control the
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pitch angle. The command circuits provide a solenoid drive duration for approx-

imately 10 seconds for each pitch command. The backup pitch control is locked

out during the launch sequence.

3.4.2.1 Sensor, Pitch Readout

This assembly provides to the spacecraft data handling system a 0 to 5 volt

signal proportional to the pitch angle. The pitch angle is defined as the angle be-

tween the spacecraft spin axis and the normal to the solar direction in the plane

formed by the solar direction and the spacecraft spin axis. The pitch angle data

are used to monitor the pitch control servo and in determining the spacecraft

orientation. The output of the pitch readout sensor is monitored on channel 4 of

ASC number 2.

The x, y, z coordinate system is fixed in the body of the assembly and is

shown in Figure 3-14. The y axis is perpendicular to the axis of the cylindrical

housing of the sensor and parallel to the line connecting the centers of the two

holes on either side of the front aperture. The x axis is defined as the direction

in this plane which results in an output of 2.5 volts from the sensor assembly

when it is made to coincide with the X axis.

y x

O

©

FRONT VIEW SIDE VIEW

Figure 3-14-Pitch Angle Readout Axis Definition
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The solar direction is defined as the line of sight from the position of the

assembly to the center of the sun. The X axis is coincident with the solar direc-

tion and the Y axis is normal to it in the y-X plane. Note that the x, y, z coordi-

nate system coincides with the X, Y, Z system whenever the assembly is oriented

in the solar direction (see Figure 3-15).
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Figure 3-15-Coordinate Systems

The orientation of the x axis relative to the solar direction is given by an

azimuth angle _, and a pitch angle 8. Note that the pitch angle is negative for

the sun above the x-y plane. The pitch angle response is the voltage output versus

displacement with ¢ held constant. Assembly weight does not exceed 75 grams.
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3.4.2.2 Electronics

If the automatic system continues to provide pitch error correction for 107

+15 seconds, the lock out driver will turn on which will energize the auto-man

relays, placing the system in the manual mode. An ASC number 2 sync pulse

(Figure 3-11) is applied to a shaper through a buffer amplifier to the 3 stage

flip-flop. This sync pulse is used as a timing pulse for the counter. When the

pitch down or up solenoid is held at ground potential, through the auto pitch up

or down driver, the flip-flop counter will also sense ground and start counting.

After approximately 107 seconds, the flip-flop counter will turn on the lock out

driver stage, which will energize the manual coil of the auto-man relays.

These relays may also be energized by a manual pitch command signal

(number 73). This signal, as shown in the figure, is applied to the coil of the

man-pitch relay. Energizing this relay applies 19v orbit power to the manual

coils of the auto-man relays.

Figure 3-11 shows the command control functions of pitch backup operation.

With backup control turned on, ground operations must command either pitch-

down or pitch-up as required. An analog pitch error monitor measures the error

angle and supplies a signal to telemetry. In response to a corrective command,

a 10 second burst is generated. Here the decoder command pulses operate re-

peater relays, which then trigger 10 second electronic monostable multivibrator

circuits. The monostable output signals control the pitch valves through the

backup solenoid drivers. Pitch correction angle for each 10 second burst is

about 0.6 degrees. The other two backup command inputs, as shown in Figure

3-11 are commands for changing the pitch control mode to either backup or auto-

matic operation. These commands also operate through repeater relays, which

in turn control the auto-backup latching relay.

3.4.2.3 Pneumatics

Refer to automatic pitch control (paragraph 3.4.1.3) for description of pneu-

matics.

3.5 POINTING CONTROL SYSTEM

The servo control for orienting the instruments to the sun operates about

2 orthogonal axes; azimuth and elevation. The two servo systems are independ-

ent of one another but are nearly identical. The azimuth servo system is more

complicated because of the large acquisition angles required. It operates about
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the spin axis of the spacecraft, and is used to hold the sail fixed in space by

driving against the rotating wheel. The elevation servo has only to rotate the

instruments a few degrees in a plane containing the solar vector and the spin
axis.

3.5.1 Sensors

All the sensors in the pointing control system are located on two different

assemblies; the fine control sensor assembly and the fine readout sensor as-

sembly. Both assemblies are the same except the fine control sensor assembly

has an additional sensor called a target sensor.

3.5.1.1 Fine Control Sensors

The four fine sensors (eyes) for both elevation and azimuth are mounted

directly on a pointed instrument (Figure 3-16). Fine eye detectors provide the

final servo control of the instruments pointed at the sun. They operate as null

devices. Two eyes are required to control a single axis of freedom. Figure

3-17 shows the angular characteristics of the fine eye. Pointing accuracy of the

fine eye control system is better than +1 minute of arc in elevation and azimuth.

The combined field of view of an eye pair is a cone of half angle 10 degrees. If

the conical field is cut by a plane passing through the axis of symmetry, the re-

sulting half cones correspond to the field of view of the individual eyes. In

practice the half cones are slightly lapped or toed-in in order to linearize the

response of the pair through the zero position. (See Figures 3-17 and 3-18.)

The major components of this detector are: an objective lens, reticle, filter,

back aperture and silicon cell detector. The objective lens is a piano-convex lens

with a back focal distance of 0.320 inch. Its purpose is to image the sun's disc

on the surface of the reticle.

The reticle is vacuum deposited on the front surface of a glass filter disc.

It is in the form of a knife edge, the region to one side of the edge being opaque.

The deep red filter is used so the pass-band accepted by the detector falls

in a natural window in the atmosphere. The cutoff point of this filter on the low

side is approximately 0.60 micron, below which there is severe atmosphe_c

attenuation. The filter, therefore, allows ground tests of servo systems to es-

tablish loop gains that will hold true during operation outside of the atmosphere.

The back aperture controls the output from errors between 1 degree and 10

degrees in such a way that a sharp drop-off at the outer edge of the field is avoided.
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The lens and reticle are staked into the same piece of metal, therefore no

possible shifting can occur as a result of vibration. The cylindrical tube mount

of the objective lens is designed so it can be deformed by a special adjusting

tool to achieve a bore sight adjustment of the detector. In these eyes, 0.0001

inch movements of the lens corresponds to a minute of angle so that the impor-

tance of a fixed alignment between objective lens and reticle is apparent.

3.5.1.2 Target Eye

The target eye, mounted on the fine control sensor assembly (Figure 3-16)

is the same eye described in the azimuth control system. When the sail is or-

iented within 5 degrees of the solar vector, the target eye generates a signal to

actuate the on-target relay which switches the azimuth control mode from the

coarse eye output to the fine eye output.

3.5.1.3 Readout Sensors

This assembly (Figure 3-20) consists of two detector pairs. The detector

pairs provide azimuth and elevation currents proportional to the angular dis-

placement of the normal to the mounting surface from the line to the center of

the sun. The operation of these sensors is the same as the fine control sensors

described in paragraph 3.5.1.1.

The readout sensor assembly is mounted on an OSO pointed experiment.

The experimenter provides three mounting surfaces in the same plane to accept

the three mounting surfaces in the same plane to accept the three mounting pads

of the sensor assembly. The three mounting pads of the sensor are also in a

plane. Ideally, the plane provided by the experimenter is parallel to the eleva-

tion gimbal axis and to the spacecraft spin-axis with the instrument at zero ele-

vation angle. The experimenter also provides an electrical connector which

mates with the connector on the fine readout sensor assembly.

3.5.2 Electronics

Error signals produced by the fine eyes are sent to the fine preamplifiers

and then through appropriate lead networks for stabilization. The error signal

is chopped by a solid-state chopper at 2 kc, amplified in a carrier amplifier and

demodulated by a solid-state demodulator. The amplifier then feeds the pulse

width modulator, which converts the dc error signal to a pulse train in which the

pulse width is proportional to the amplitude of the error signal. The repetition

rate of the pulse width modulator is about 1,000 pulses per second.
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prevents the current from flowing through the cell so the current must flow

through the preamplifier. The input impedance of the preamplifier must be low

enough so the eye current flowing into it does not cause a large enough potential

to make the dark cell conduct. It must also be low enough so it looks like a short

circuit to the illuminated cell. Both these requirements are met if the input volt-

age is held to 100 millivolts, or less. The maximum eye current is about 1.2

milliamps for a fully illuminated eye so the input impedance must be kept to about

80 ohms. This is done by a grounded base preamplifier. By making the preamp-

lifter a differential amplifier, common mode rejection is gained for both pickup
on the input leads and power supply variations.

A schematic of the preamplifier is shown in Figure 3-21. The bases of the

input transistors are clamped to a fixed potential by the emitter current of a

third transistor, so that the voltage at the emitters of the input transistors is

held constant by the base emitter voltage. The quiescent current flowing through

each input transistor at null (when no light current is flowing from the eyes}, is
slightly greater than the maximum current delivered by the photo cells. There

is a differential output between the collectors of the input transistors. This out-

put is then sent to the chopper and ac amplifier.

The azimuth coarse and fine preamplifiers are identical except for different

value components needed by differing coarse and fine eye currents and differing
lead networks parameters.

3.5.2.2 AC Amplifier Circuit

The differential error signal from the preamplifier is sent through a com-

pensation network to a solid state modulator which converts the error signal to

a 2 kc square wave whose amplitude is proportional to the error signal and whose

phase is shifted either 0 degree of 180 degrees with respect to the modulator

drive depending on the sense of the error signal. This square wave is amplified
in a conventional ac amplifier and then demodulated and filtered back to dc.

The demodulator'4s biased so that the output for a zero error signal is 7.5

volts, half-way down from the 15-volt regulated power supply. This is so a sym-

metrical swing can be obtained in either direction at the output. This swing
about 7.5 volts is necessary to drive the pulse width modulator.

The gain of the ac amplifier can be adjusted from 50 to 300 depending on
the servo gain required.
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The pulse width signal drives a power amplifier and transistor switch which,

in turn, feeds the motor. The transistors in the bridge are either saturated or

cut off by the pulse width signal so that very little power is dissipated in the
switch.

The motive element is a dc torque motor using a permaner_ magnet field.

This type of motor delivers large torques directly to an output shaft at low speeds,

which is the condition that we have in the spacecraft.

3.5.2.1 Preamplifier

The silicon photo cells of an eye pair are electrically connected in parallel

and with opposed polarity. When the one eye is illuminated and the other eye is

dark, the current generated by the illuminated cell flows through the cell in the
backward diode direction. The forward diode characteristic of the dark cell
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3.5.2.3 Pulse Width Modulator

The servo drive motors are driven by a pulse width modulated signal; that

is, a pulse whose width is directly proportional to the amount of drive. This

results in a highly efficient use of the motor power, since almost no power is

dissipated in the control transistors, which act only as switches.

The pulse width modulators convert the dc error voltages to a constant

amplitude pulse having a duration proportional to the error voltages. The repe-

tition rate of the pulses from the modulators are approximately 1,000 pps. These

pulses from the modulators are used to drive power switch circuits which in turn

drive the azimuth and elevation torque motors. The modulator consists of a com-

parator, oscillator, and amplitude clipper.

3.5.2.4 Power Switch

Up to this point the current requirements of the circuits discussed have been

measured in milliamps. However, the drive motors require approximately 1.5

amperes to deliver the necessary torque. The power amplifier delivers this

current.

The motive element is adc torquer with a permanent magnet field. This

motor is a 2-terminal device which requires that the current through the wind-

ing be reversed to reverse the direction of rotation. For this reason, a switch

arrangement must be used to drive the motor since only one polarity power sup-

ply is available. The switch uses power transistors as the control elements.

The pulses from the pulse width modulator are in the form of a string of

positive pulses whose width is proportional to the error signal. The positive

pulses are fed directly to the base of the trigger transistor, switching it on for

the duration of the pulse. The pulses are of sufficient amplitude and from a low

enough source impedance to cause saturation. The outputs from the trigger

transistors will place the multivibrator in the proper state for either clockwise

or counterclockwise rotation of the servo motor. Both conducting transistors

have low impedances compared to the motor, so most of the energy is dissipated

in the motor. The capacitor across the motor helps in lowering the inductive

spike developed when the current through the motor is abruptly cut-off at the

end of the pulse.

3.5.2.5 Readout Amplifiers

The high gain readout amplifiers produce voltages proportional to the azi-

muth and elevation pointing angles.
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Sensor output current provides the base-emitter bias to the input transistor

in the amplifier. The base of the transistor is clamped by a 6.8 volt zener diode.

The base resistor is selected for the proper temperature compensation; the

emitter resistor for 2.5 volts output with no input; and the collector resistor is

selected for the required gain (20 mv/ua). Proper impedance matching of the

amplifier to ASC number 2 is accomplished by an emitter follower output stage.

Power supply voltage for these stages is the 15 volts target on supply. The out-

put of the elevation amplifier is applied to channel 1 of ASC number 2, and the

aximuth amplifier output is applied to channel 2.

3.5.3 Torque Motors

Both spacecraft servos use dc torque motors as driving elements. These

large diameter pancake motors deliver large torques directly to the output shaft

without the use of gears. The azimuth motor is capable of applying 1.8 pound-

feet to torque and the elevation motor 0.9 pound-foot of torque directly to the

shafts. Since the motors and drive system are directly exposed to vacuum, the

elimination of gears is very important.

A serious problem with this type of motor lies in the use of brushes exposed

to vacuum. However, by treating the brushes with a special lubricant, these

motors are run for several times the expected number of revolutions in a vacuum

of 2 × 10 -8 millimeters of mercury with negligible brush wear.

The back emf of the motor is small, since it is operated at low speeds caus-

ing a negligible velocity error. It also contributes a negligible velocity error.

It also contributes a negligible amount of damping to the servo.

Figure 3-22 shows a diagram and a typical operating curve for the Type T-

4006 torque motor, (manufactured by Inland Motor Corporation of Virginia), which

is employed in the azimuth servo system. Figure 3-23 gives all the structural

characteristics and Table 3-1 the performance characteristics of the elevation

torque motor which is a Type T-2907-B also manufactured by Inland Motor

Corporation of Virginia, a subsidiary of Kollmorgen Corporation, Northampton,

Massachusetts.
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TY PE T- 4006
1.8 LB.-FT. TORQUE MOTOR DATA SHEET

MOUNTING DIM. .08.__8

C

o.3 8

5.125 ! \ I

5.124 j _

3.981 MAX. J

I I
2;625MIN. l

_ .2_.___
tEF.

0.625

L
i

( ROTOR )

0.3]3 MAX.

0.388 l

MAX. J

--/--T 5.o45

J J MAX.

2.3900

q

(0.147) DIA. THRU 0.82 COUNTER SINK TO 0.285

DIA. MIN., (4) HOLES SPACED AS SHOWN ON 4.625 B.C.

(0.147) DIA. THRU 0.82

DESCRIPTION

This is a frameless torquer which re-
quires that the mounting and bearings
be considered separately. The mounting
of the field or outer member is done

against the face opposite the brush hold-
er and is piloted on the O.D. Securing to
the mating member is done by inserting
four No. 6-32 flathead screws through
the holes in the field intended for that

purpose. A suggested mating diameter is
5.1255/5.1260. The brush life on this unit
should exceed ten million revolutions.

The fields are shipped with keepers which
must not be removed until rotor is in

place. Jack screw holes are provided for
this removal.

TYPICAL CURVE

DATA IS FOR MODEL T-4006-A
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Figure 3-22-Azimuth Torque Motor
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TYPE T- 2907
1.8 LB.-FT. TORQUE MOTOR DATA SHEET

,:'._3(ROTOR)

• ,:!4oo

M/_X. 0.__._.

0.309MAX. 1/8 (0.125)DIA. THRU° 82 COUNTERSINK TO

230 MaN. DIA. (4) HOLES SPACED AS CH
SHOWN ON 3.468 B.C.

DESCRIPTION

This is a frameless torquer which re-
quires that the mounting and bearings
be considered separately. The field or
outer member is mounted on the face

opposite the brush holder as shown in
the engineering drawing. The field is
piloted on the O.D. and is held to the

mating member by using the through
holes provided for four No. 4-40 flathead

screws. A suggested mating pilot diam-
eter is 3.7303/3.7308. The brush life on
this unit should exceed ten million revo-

lutions. The fields are shipped with keep-
ers which must not be removed until

rotor is in place. Jack screw holes are
provided for this removal.

TYPICAL CURVE

DATA IS FOR MODEL T-2907-B
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Figure 3-23-Elevation Torque Motor
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Table 8-1

Torque Motor Ratings

Characteristics
Model Number

T-4006-C T-2907-B

Peak torque, pound-feet

Volts at peak torque, stalled at 25°C

Back EMF, volts/rad/sec

Amps at peak torque

sensitiviW, pound-Ieet per amp

D-C resistance at 25°C, ohm

Self Inductance, Henrys

Temperature rise per watt, ultimate, °C

Maximum permissible winding

temperature, °C

Total friction, pound-feet

Viscous damping, pound-feet/rad/sec

Zero impedance source

Infinite impedance source

Ripple torque, pound-feet

At low torque levels

At peak rated torque

Rotor inertia, pound-feet sec 2

Weight, pounds

1.8 0.85

32.7 28.7

0.81 0.42

3.0 2.73

0.60 0.3i

10.90 10.50

0.021 0.016

1.60 2.90

105.0 105.0

0.035 0.013

O.045 0.014

0.001 0.00O5

0 0

0.12 0.i0

7.6 x I0 _4 2.1 x 10-4

3 1-1/2

All ratings are nominal values
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3.6 SCANNING CONTROL SYSTEM

Provisions have been made to control the oriented instruments in a scanning

mode. This scan mode sweeps the oriented compartment in such a way that the

entire solar disc and portions of the solar corona can be mapped by the experi-

mental instruments. The scanning control system is controlled by command

from the ground.

3.6.1 Sensors, Readout

This assembly (Figure 3-24) consists of two detector pairs. The detector

pairs provide azimuth and elevation error currents proportional to the angular

displacement of the normal to the mounting surface from the line to the center
of the sun.

The sensor assembly is mounted on a pointed experiment. The experimenter

provides three mounting surfaces in the same plane to accept the three mounting

pads of the sensor assembly. The three mounting pads of the sensor assembly

are also in a plane. Ideally, the plane provided is parallel to the elevation gim-

bal axis and to the spacecraft spin-axis with the instrument at zero elevation

angle. Refer to paragraph 3.5.1.1 for an explanation on the operation of the

sensors.

3.6.2 Electronics

The scanning control system is turned on and off by commands number 71

and 140, respectively. See Figure 3-21. The scan on command will apply a

pulse, as shown in the diagram, to the on coil of the EL and AZ raster signal

and scan power relays. Energizing the scan power relay applies 19v target on

power to the 15v scan regulator located in the power box. The output from this

regulator is monitored on channel number 40. Power supply voltage for the

scanning circuits is also supplied by the scan regulator.

With the EL and AZ raster signal relay energized, signals from the scan

generators are applied as input signals to the fine preamplifiers. These signals

will then control the upper structure and the pointed instruments in a raster

mode. The azimuth and elevation servo systems are made to scan in such a way

that the entire solar disk and portions of the solar corona can be mapped by the

experimental instruments.

The scan consists of a square raster pattern as shown in Figure 3-25, 40

minutes of arc on a side, centered on the maximum intensity of the solar disc.
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The scan motion originates from a point approximately 20 minutes of arc in

azimuth and elevation from the center, and sweeps in azimuth. An azimuth

sweep is completed in 7.68 seconds, in synchronization with the telemetry clock.

As seen in Figure 3-26, at the end of each azimuth sweep, the elevation angle

steps down one minute of arc and the azimuth sweep is reversed. This pattern

continues for forty steps in elevation, taking 307.2 seconds to complete the en-

tire scan.

It should be pointed out that this raster pattern may suffer distortion near

the edges, and that the scan increment of 1 minute of arc is a nominal value
based on calibration data taken at the surface of the earth. Above the earth's

atmosphere, the intensity of the sun's radiation will change which will cause the

scan control to sweep and step over a larger or smaller solid angle. The solar

intensity will be measured with an auxiliary eye and its output will be telemetered.

In addition to a possible change in the scan solid angle, distortion in the in-

cremental elevation pattern and the sweep angle rate may rise. This is due to

the nonlinear response function of the sensing system at large angles from the
center of the sun.

Figure 3-27 is a timing diagram showing the relative readout points of the

azimuth position, elevation position, and the experiment data when the space-

craft is in the scanning mode.

The scan readout low gain amplifiers produce voltages proportional to the

azimuth and elevation pointing angles.

Sensor output current provides the base-emitter bias to the input transistor

in the amplifier. The base of the transistor is clamped by a 6.8 volt zener diode.

The base resistor is for temperature compensation and the emitter resistor is

selected for the proper gain. Power supply voltage for these stages is the 15volts

servo supply. The output of the elevation scan amplifier is applied to channels 6,

14, 18, 42, and 47. Azimuth scan amplifier outputs are applied to channels 3, 9,

12, and 24.

3.7 DAMPING NUTATION

Nutation occurs when the spacecraft is precessed by the gas jets.

tion amplitude is given by

_nutation =

M
. _ (0.05) (1.8)

lwp 37r
24rr

2

=0.00025 rad =0.75 min.
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I_ 3.072 SEC "1' 3.072 SEC 'l
AZ. EL. AT.

A;Z. EL.

• INDICATES TIME AT WHICH EXPERIMENT IS READ OUT

A_. INDICATES TIME AT WHICH AZIMUTH POSITION IS READ OUT
EL. INDICATES TIME AT WHICH ELEVATION POSITION IS READ OUT

t

NOTE: AZIMUTH AND ELEVATION POSITION ARE READ OUT EVERY FOURTH CHANNEL
OF SUB-COMMUTATOR.

Figure 3-27-Timing Diagram

The nutation will persist after the jets are turned off at some amplitude

between 0 and 0.75 minute, depending on the exact instant the jets are stopped.

This much wobble will demand that the servo do some work to counteract the

wobble, but the amount is negligible. Further, the inherent nutation damping

due to the structure and antennas flexing would eventually damp out this nutation.

When the spacecraft is separated from the third-stage rocket, it will have a

nutation due to the wobble of the unbalanced burned-out third stage, the unsym-

metrical thrust of the separation spring and the unsymmetrical motion of the

arms as they are swung out. It is estimated that this will result in a nutation of

several degrees amplitude after despin. A nutation of this amplitude would

seriously disturb the servo system and must be removed quickly by the nutation

damper (Figure 3-28).

A further cause of nutation is unbalance of the pointed instruments. These

two instruments have mechanical scanning mechanisms which move photo-

detectors inside the instrument. The detectors are placed at some specific

point for initial balance of the spacecraft and for launch. However, as soon as

they operate, the detectors move from this balance position. No nutation occurs

during the time the instrument is pointed, but as soon as the pointing control
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turns off at night and the oriented section starts spinning, a dynamic unbalance

occurs that causes a wobble of about 10 minutes. When the servo points again

the next day, the unbalance is gone, but the wobble shows up as a nutation.

3.8 MAGNETIC BIAS COIL

On OSO-2 spacecraft, the rapid use of the compressed nitrogen to control

the pitch attitude shortened the usable life of the spacecraft. To supplement the

pneumatic system, a magnetic bias coil has been installed. The primary pur-

pose of the coil is to control pitch attitude after the pneumatic system is ex-

pended; however, the coil may also be used to provide small amounts of roll
correction.

The coil i,q _ttaehed to thc base of tlm wheel and is protected by an alumi-

num shield. The approximate characteristics of this coil are as follows:

a. Physical

(1) Inside diameter: 13.1 inches.

(2) Outside diameter: 13.9inches.

(3) Thickness (along spin axis): 0.70 inches.

(4) Coil plane: 2.4 inches above separation plane.

(5) Weight: 4 pounds.

b. Electrical

(1) Turns: 2170 No. 31 wire.

(2) Resistance: 1075 ohms at 25°C.

(3) Inductance: 3.2tt.

c. Operational

(1) Dipole moment for 10 ma dc current: 2000 dyne-cm per gauss.

(2) Field at center of coil for 10 ma dc current: 0.8 gauss (along

spin axis)

Two attitude control problems are expected to be solved by incorporation of

the magnetic bias coil:

a. Control of the observatory magnetic dipole moment along the spin axis

to prevent excessive pitch drift rate and consequent high usage of pitch

gas.
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b. While meeting item a, control of the observatory magnetic dipole

moment along the spin axis to obtain a roll angle change with time,

and thereby permit certain wheel experiments to properly view the

celestial sphere.

The bias coil will be controlled only by ground commands. The six com-

mands employed will be as follows:

a. Power on.

b. Power off.

c. High current 10 madc (dipole moment 2000 dyne-cm per gauss).

d. Low current 5 madc (dipole moment 1000 dyne-cm per gauss).

e. Field polarity: north on sail side of coil.

f. Field polarity: south on sail side of coil.

In orbital operation, the time of bias coil turn-on, the level, and the polarity

will be determined from an analytical program whose inputs are actual meas-

urements of attitude in space, pitch drift rate, and roll angle change. The ex-

pected effects of energizing the coil will not be detectable in observatory data

until several days after turn-on because of the low dipole moment produced.

This long period for assessing the coil performance, knowing that no large un-

desirable observatory attitude change will occur, makes practical some degree

of trial and error experimentation to control the bias coil.

3.9 ASPECT MEASURING SYSTEM

The aspect measuring system (Figure 3-29) locates the solar and field vectors

in the spacecraft, measures the necessary angles, and computes the roll aspect

angle in ecliptic coordinates. Once the roll aspect angle has been computed, it is

combined with the pitch angle (from telemetry) and orbital data in a computer

program to establish the orientation of the spacecraft. A comprehensive descrip-

tion of the program together with a set of instructions for its general usage, is

published in the OSO Aspect System Manual, TM 65-1, dated 15 July 1965.

The system provides a method of determining 3-axis aspect with respect to

the celestial sphere for the spacecraft. Aspect can be determined within 3 de-

grees. The basic measurement requires a magnetometer mounted on one arm of

the spacecraft, with its sensitive axis in the plane of rotation. The aspect sub-

system provides two sets of measured data in a form to be read out directly by

the telemetry system. These data are: a measurement of a time interval which
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relates the wheel position in time to the spacecraft data word pulses for spin

rate and spin angle determination, and a measurement of the time interval be-

tween the magnetic field position and the solar direction for spacecraft roll angle
determination.

Except in the special case when the spin axis is parallel to the geomagnetic

field, the magnetometer produces a sinusoidal output as the spacecraft wheel

rotates. The positive excursion reaches its peak when the angle between the

field and the sensor axis is a minimum. The maximum negative value occurs

when the wheel has rotated 180 degrees and the sensor's sensitive axis is op-

posed to the field but forms the minimum angle between the sensitive axis and

the lines of force. The zero output occurs when the sensitive axis of the mag-

netometer becomes perpendicular to the field.

Since the zero output of the magnetometer is u_z_gui_hed -"*_,_. _,._._'_*_-_,._

signal conditioning, the instantaneous time at which the magnetometer's axis is

perpendicular to the magnetic field can be determined. This event is recorded

from a pulse output which may be channeled both to an experiment and to an

on-board logic circuit.

A second pulse, to locate the spin vector in the spin plane relative to the

magnetometer sensitive axis, is generated from a sun sensor. The angle in the

spin plane between the normal to the magnetic field and the spin vector is de-

termined, for a known spin rate, by measuring the time interval between these

two pulses with a counter circuit which counts the spacecraft 400 eps clock

pulses. The roll angle of the spin axis, with respect to the ecliptic plane, is

calculated by using this angle, the magnetic field characteristics, and the earth-

sun line at that point in space and time.

A positive voltage pulse can be provided to the experimenter the instant the

optical axis of the sun sensor swings through the plane of the spin axis and the

solar direction. Should an experimenter decide not to utilize the aspect infor-

mation, it then becomes the task of the experimenter to relate this pulse in time

with collected data, and to determine spin angle and spin rate information.

Figure 3-30 shows the spacecraft geometry with roll angle and pitch angle

in respect to ecliptic coordinates. Superimposed is a field vector, its projection

on a wheel plane, and the angle between the roll axis and the projection of the

field vector. If the wheel is rotating, the roll angle can be measured with the

aid of a magnetometer, a solar sensor, and a timer.
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3.9.1 Spin Orientation and Rate Electronics (SORE)

The SORE unit consists of an array of electronic scaler circuits and logic

gates. These elements function together to perform a scaler addition of the

spacecraft 400 cps clock pulses between various gating functions. The various

gating functions are received and derived from the main telemetry word gates

and the output of the sun sensor and the magnetometer. The system also derives

the pulses indicative of the magnetic field null from the magnetometer signal in-

put, and it derives a pulse indicative of the center of the sun from the sun sensor

current input.

The beginning of the 1st digital submultiplexer word (8th main frame word,

1st word of the 40 digital submultiplexer cycle) is used to start the SORE counter.

This is done by a pulse derived from the telemetry word gate {Figure 3-31). The

SORE counter counts clock pulses until a sun pulse (during the day) or a mag-

netometer pulse (at night) shuts it off. This count is stored until readout during

the 6th and 7th word times about 3 seconds later (Figure 3-32). Thus, every 25.6

seconds there is an accurate determination of the orientation of the wheel about

the spin axis. The number of clock pulses counted times the pulse period times

the wheel spin rate gives the angle through which the solar sensor must turn to

reach the pitch plane (magnetometer zero-crossing position at night) after the

beginning of the 1st digital submultiplexer word.

Two successive SORE counts also provide data necessary to establish the

spin rate accurately. Since the spin rate is controlled within certain limits, the

number of revolutions the wheel makes in 25.6 seconds varies between 10.0 and

16.9 with 13.5 as the average value.

3.9.1.1 Magnetometer

The magnetometer is a Schonstedt type SAM-4B-HS flux gate magnetometer

designed specifically for null detection in the earthls field. The electronic unit

is mounted in compartment 4 of the wheel.

Figure 3-33 shows a block diagram of the subassembly. A drive coil is

wound around the walls of a hollow cylinder of highly permeable material. A

solenoidal pickup coil is wound around the outside of the cylinder. Because of

the geometry there is no coupling from the drive coil to the pickup coil. A 10

kc oscillator connected to the drive coil provides a signal that saturates the

magnetic cylinder twice per cycle, gating out the earthts field each time. A

pulse with a peak height proportional to the strength of the axial component of

the earth's field occurs each time the drive current goes through zero because
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!

of the change in flux through the pickup coil. This pulsating signal is filtered

to produce a clean sinusoidal signal of frequency twice that of the drive signal.

The drive signal is also passed through a frequency doubler to provide a refer-

ence sinusoidal signal of the same frequency as that of the filtered pickup coil

signal. The two signals are in phase or 180 ° out of phase depending upon the

direction of the axial component of the earth's field in the magnetometer. Both

signals are used in a phase detector - the second harmonic of the drive signal

as the reference and the filtered pickup coil signal as the signal.

If the earthVs field component is constant, the output of the phase detector

is a dc voltage proportional to the magnitude of the axial field component through

the magnetometer with polarity determined by the sense of the axial field com-

ponent. Since the spacecraft is spinning, however, the output of the phase detector

is an ac voltage with a frequency the same as the rotation rate of the wheel section.

In the SORE assembly, the output signal of the phase detector is amplified

and limited to provide an approximate square wave. This signal is differentiated

to produce two spikes; one positive, making the falling zero. A clipping circuit

eliminates the negative pulse. The remaining pulse is used to mark the time at

which the magnetometer passes through the rising zero.

3.9.2 Aspect System Reference Axis (Solar Sensor Axis}

The aspect system reference axis is not located physically; rather it is

determined by the occurrence of a pulse triggered by the rising edge of the

solar sensor signal. As the sun moves across the field of view of the solar

aspect sensor (Figure 3-3} the image of the sun moves across a slotted mask

covering a filter and detector. The slot is wider than the solar image so that

the signal from the sensor is fiat on top, with a rising front corresponding to

the 32 arc minute width of the sun as its image moves onto the slot. When ap-

proximately 35 percent of the image area overlaps onto the slot, the SORE sys-

tem generates a sun pulse. The sun pulse is used internally by the SORE system

and is also available to wheel experiments as a reference. It is this pulse that

defines the location of the aspect system reference axis.
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Section 4

TELEMETRY SYSTEM

4.1 INTRODUCTION

The telemetry is accomplished by a PCM/PM system. This system consists

of the PCM multiplexing and encoding equipment, two tape recorders, two trans-

mitters, and a PCM junction box. Included in the multiplexing and encoding equip-

ment are five separate subassemblies; two digital multiplexers and encoders, two

_,mlog subcommutators and a distal submultiplexer/frame counter. See Figure

4-1 for a typical block diagram of the system.

4.2 FUNCTIONAL DESCRIPTION

A functional description of each individual unit is presented. Theory for the

data handling operation which utilizes most of these units as a system is then

discussed. Data transmission and the data storage and reproduction system are

discussed separately.

4.2.1 Digital Multiplexer and Encoder

The digital multiplexer and encoders are located in compartment number 1

of the wheel. One of these units accepts both analog and digital data, and con-

verts it into a serial non-return-to-zero (NRZ) binary signal. The signal is then

processed to produce a biphase return-to-zero (RZ) signal for storage in the tape

recorder, and for real time transmission. Included in this unit is a digital multi-

plexer to multiplex the experiment and spacecraft monitoring data, and an en-

coder for converting the subcommutator analog outputs into binary words. Selec-

tion of either multiplexer-encoder is accomplished by energizing a relay via the

command link.

4.2.2 Analog Subcommutator

One subcommutator is located in compartment number 1 of the wheel and

the other is located on the experiments in the sail. Both subcommutators are

continually operating and supply output signals to one digital multiplexer and

encoder. Each analog subcommutator is capable of multiplexing as many as 47

analog input voltages. The subcommutators are synchronized with each other
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so that each subcommutator is sampling the same channel during any main frame.

Also, the subcommutators are synchronized with the digital multiplexer so that

the subframe sync word of each subcommutator will be the last word to occur in

the main frame.

4.2.2.1 Encoding

The sampled output of each subcommutator is encoded into 8-bit binary words.

The most significant digits will occur first in time, proceeding to the least signif-

icant digit. The encoder is so constructed that the subframe sync code is inhibited

from appearing as data. If the analog input is of the proper level to be encoded as

the sync word, the encoder shall automatically complement the least significant

di_t. The encoded word for analog inp.t voltages greater than *5 volts are all

ones, and for voltages having a negative sign, zero.

4.2.2.2 Frame Synchronization

Channel 48 of each subcommutator is used for synchronization. The encoded

word is 01010101 for the 8 bits. A subframe rate pulse is provided as an output

which is coincident with the sample period of channel 48.

4.2.3 Tape Recorder

The tape recorder is a digital recorder/reproducer located in compartment

number 8 of the wheel. It records the information from the multiplexer-encoder

for a complete orbit of 100 minutes, and on command plays back in 5 minutes the

recorded information from the previous orbit. After the playback is completed,

it reverts to the record mode automatically. The tape recorder includes the

electronics necessary to process the signal for the record and playback cycles.

The command signal energizes a relay which applies power to the recorder se-

lected for operation.

4.2.4 Frame Counter/Submultiplexer

The frame counter/submultiplexer assembly is located in compartment

number 8 of the wheel. This assembly provides a means of counting main frames

of the data handling system and provides a means of submultiplexing digital data.

Two output signals are provided: a non-return-to-zero binary; and 40 sequential

timing pulses. Each timing pulse output occurs on a separate output line. A syn-

chronization code is inserted into the digital output signal once during each sub-

frame. An internal counter is provided for counting gate pulses from a specified
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submultiplexer channel. It has a continuouscounting capacity of 255 counts be-

fore automatically recycling to zero. The counter output is also inserted into

the digital output signal once during each subframe. The counter will reset to

zero when the proper reset input pulse is applied.

4.2.5 PCM Junction Box

The PCM junction box, located in compartment number 1 of the wheel, pro-

vides electrical interface between experiment and the data handling assembly and

the communication subsystem. This junction box provides 17 gate output signals

which are developed from the 32 gate channel input signals. Provisions are made

for combining two or more gate channel input signals into a single gate output

signal as required. Terminations are provided so that each input gate signal is

applied to a resistive load of 1000 ohms when the gate outputs are not terminated.

Each gate output has a 2000-ohm isolation resistor connected in series.

The PCM junction box also provides a digital word output and clock outputs.

The digital word output is derived from the twelve digital data input signals.

These twelve input signals are combined into a single signal which is connected

to two output lines. Twenty separate clock signal outputs are provided with each

having a source impedance of 10,000 ohms resistive.

4.2.6 Transmitter

The two transmitters are located in compartment number 8 of the wheel.

These transmitters are solid state devices with a modulator section, and an rf

section. Both units are capable of producing approximately 600 milliwatts of

power. The transmitter can be used as a beacon with no modulation for tracking

purposes, or as an FM transmitter for telemetry purposes. When modulated, it

transmits real time continuously, and stored data when the spacecraft is com-

manded to playback. In the event of failure of one of the transmitters, the re-

maining one would be used for tracking and telemetry. A command signal can

be used to select either transmitter for operation. Also, the modulation can be

removed by a command signal. The output of either transmitter is selected and

connected to the antenna system by a coaxial relay. Refer to Section 7 for the

operation of the antenna system.

4.3 DATA HANDLING SYSTEMS

The data handling system consists of four separate subassemblies; two digi-

tal multiplexers and encoders (DME), and analog subcommutators (ASC). Refer
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to paragraphs 4.2.4 and4.2.5 for operation of the frame counter/submultiplexer

and the PCM junction box. See Figure 4-2 for a diagram of the system.

The data handling system is designed to accurately and reliably record the

measured solar phenomena from the spacecraft experiments and the monitoring

subcommutators.

The main facets of this system include representation of the measured data

in binary coded form; time sharing between the experiments; on board tape stor-

age of the coded data; and transmission of real time and stored data to the sur-
face stations.

The measured data in binary coded form are stored within each instrument

package in shi_ re_sters. The shi_ re_sters in the inst_ments _ o_quen-

tially emptied by the clock and gate signals, according to the multiplex format.

The resulting time shared serial pulse train is processed by the main multiplexer

for storage and is directed to the tape recorders, and to the transmitting system

for real time transmission.

The data are transmitted in real time as a back-up to the primary transmis-

sion of the stored data, The latter transmission takes place upon command from

the assigned surface station. The stored data for a complete orbit are trans-

mitted in approximately five minutes by means of a high speed recorder playback.

The transmitted PCM signal is demodulated at the receiving station and re-

corded for later reduction and analysis. These recorded data are processed in

a data reduction facility, where the coded data for each experiment are decom-

muffed from the serial pulse train. Further data reduction and analysis can

then be performed to relate the coded data to the measured solar phenomina.

The system is capable of accepting serial binary-coded digital data, and 94

separate channels of analog data for processing into both PCM-NRZ or biphase

(Manchester code) output data; and also provides 32 sequential digital gating

signals, a subframe rate pulse and a clock signal.

4.3.1 Digital Data Handling

A simplified block diagram of system operation is shown in Figure 4-3. The

outputs of the ASC units are parallel-connected providing a common input into

each of the DIME units. Both of the ASC units are operative at the same time,

providing a system input capability of 94 analog channels (47 per unit). The two

DME units are also parallel connected, but are system redundant to one another,

and only one unit is operative at any one time. Selection of DME numberl or
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DME number 2 is accomplishedby applying power to one unit or the other via the
commandlink relay. Therefore, the system is composedof two ASCunits feed-

ing one DME unit.

A typical main frame of PCM output data from the system will be composed

of data generated in the following manner:

28 serial 8-bit digital words

2 analog samplings

2 frame sync words

The serial digital data is fed into the system at the modulator circuit of the

DME, where it is encoded in NRZ and biphase form. At the appropriate time

word A and word B, respectively, are applied to the ASC timing control circuit

in the DME, and the ASC trigger pulses fed to the ASC decoder and flip-flop cir-

cuits to initiate sampling of two of the analog input channels. Sampling of the

analog data is via an analog switching circuit which provides an analog voltage

level between 0.0 and 5.0 volts full-scale to the buffer amplifier. From the buf-

fer amplifier, the analog sampling is fed to a comparator and A/D converter in

the DME which converts the analog data into an eight-bit parallel word. This
word is then converted to serial format and fed to the modulator for conversion

in NRZ and biphase form (for inclusion in the main frame of data). Normally

the 94 analog subframes require 48 main frames of data to achieve a complete

sampling of the 94 analog input channels. The 32 sequential digital timing sig-

rials are generated by the digital gate drivers and gating circuits from a series

of timing flip-flops. A self-generated subframe rate pulse is applied to the ASC

buffer amplifier circuit and is inserted into the analog data line as the forty-

eighth analog channel and is also provided as an output to the spacecraft
instrumentation.

4.3.1.1 Analog Subcommutator (ASC)

A simplified block diagram of an ASC is shown in Figure 4-4. Each ASC is

provided with 47 parallel analog input channels. The analog channels feeds di-

rectly to a "first-tier" analog switch circuit which is closed on command of a

"first-tier" decoder circuit. The analog channels are then fed to a "second-tier"

decoder circuit which selects the channel to be sampled on command of a "sec-

ond-tier" decoder circuit. Timing for the decoder circuit switching trees is

provided by ifllp-flops number 1 through number 7 which, in conjunction with a

feed-back loop, form a seven-stage 48 module counter which counts the incom-

ing ASC trigger pulses. The ASC timing chart is shown in Figure 4-5.
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Figure 4-2--Telemetry System Diagram (Sheet 2 of 2)
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4.3.1.2 Digital Multiplexer and Encoder (DME)

A simplified block diagram of the DME is shown in Figure 4-6. As shown

in this diagram, each single block represents a module, while the entire block

represents a functional entity.

Either of the data outputs is comprised of a serial format main frame of

data composed of 32 digital words (or subframes). Each main frame of data

contains two frame-synchronizing words and 30 words of data. Two of the 30

words of data are normally derived from the analog data presented to the input

of the DME from the 94 channels of analog input data at the ASC. The remain-

in_g 28 words of output data are obtained from the serial binary-coded digital

input data with the input at the modulator circuit. The digital gating signals at

the output, in conjunction with the shift pulse, are used in obtaining the serial

digital input data from the spacecraft instrumentation. The sampling of analog

data is initiated by the ASC timing control module (386) and the sampled analog

data is then presented to the comparator module (454). The sampled analog data

is then encoded into a paralleled eight-bit binary code and read from the parallel-

to-serial converter module (371) when interrogated by the digital commutator

circuit. All digital input data is applied to the modulator module (371) for con-

version in NRZ and biphase pulse trains for transmission at a rate of either 400

or 800 pps. The output bit rate is selected externally at the output on a connector

of the connector module.

The 32 main frame digital gating signals are generated internally by a digital

commutator circuit comprising the timing flip-flops, digital gate drivers {in the

form of a switching tree matrix) and digital output gates.

Power for each DME is provided by a power converter circuit which utilizes

spacecraft primary power. Spacecraft primary power is applied to only one DME

at a time via the command link relay. Thus, only one of the two DME units of the

system are operative at any one time. The DME timing pulses are shown in

Figure 4-7.

4.3.2 Physical Description

The two ASC packages and the two DME packages are identical in physical

configuration, therefore, for purposes of description, only one each of the two

units are described.
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4.3.2.1 Analog Subcommutators

Each ASC is contained in a case approximately 2.62 inches high by 3.25 inches

wide by 6.00 inches long, and weighs less than 45 ounces. The units contain 12

potted module assemblies and one shielded assembly mounted to, and within, the

case assembly. All input and output connections to the module, which project

through one end of the case. The entire 13 potted modules of the assembly are

encapsulated within the case, and are secured by four lock-screw assemblies to

the case. The open end of the encapsulated assembly is covered by a cover base

plate which contains mounting holes for securing the assembly in the spacecraft,

and the entire assembly is sealed with an epoxy compound.

4.3.2.2 Digital Mu|tip!exer __nd Encoder

The entire DME is contained in a case approximately 4.58 inches wide by

3.10 inches deep by 6.75 inches long, and weighs less than 70 ounces. Each

DME contains 14 potted module assemblies and two shielded and potted module

assemblies mounted to, and within, the case assembly. All inImt and output con-
nections to the DME are via three connectors mounted to a module at one end of

the case. All 16 module assemblies are encapsulated in the case sleeve, and are

secured by four lock-screw assemblies to the case ends. The mounting holes for

the encapsulated assembly are located at the case-end opposite the connectors.

The entire assembly is sealed with an epoxy compound.

4.3.3 Data Allocations

Table 4-1 shows the OSO-D main frame word allocation. Tables 4-2 through

4-4 list the wheel and sail commutator channels and the points measured. Note

that there are 48 channels for each subcommutator.

4.4 DATA STORAGE AND REPRODUCTION

Because there are not enough data acquisition stations to collect real time

data from the spacecraft continuously during the orbit period, it is necessary to

have a device for storing and reproducing data aboard the spacecraft. The de-

scription given is typical and may vary slightly from spacecraft to spacecraft.

4.4.1 Digital Tape Recorder/Reproducer

The purpose of the digital tape recorder is to store digital information at the

rate of 400 bits per second for a period of 100 minutes and to reproduce this in-

formation, on command, at a speed 18 times faster in a periodof five minutes.
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Table 4-1

OSO-D Main Frame Word Allocation

Channel No.

1

2

3

4

5

6--

7

8

9 T
10

11

12

13 _

14 _

15

16

17

18

19 ,,

20 _;

21

22 _,

23

24

25

26

27 "_

28

29

30--

31

32

NRL-Pointed

8 bit detector

Harvard 16 bit

detector flag bits

NRL-La

8 bit detector

UCL-304 A

8 bit detector

LRL

16 bit detector

UCL-XR

8 bit detector

ASE-Wheel

8 bit detector

ASC No. 1

ASC No. 2

ASE-Pointed

8 bit detector

Frame Counter

Frame Sync
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Channel

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

3O

31

Table 4-3

OSO-D Analog Subcommutator Channel Allocation

Wheel Analog Subcommutator (ASC No. 1) ! Channel

UCL X-Ray 1.6 k.v. Current Monitor

UCL 304 _ Peak Reader #1

LRL Shutter Position

UCL 304 _ Door Position, EHT Volts

LRL Power Supply Voltage

NRL La Wheel Position

NRL La Instrument Mode Monitor

UCL 304 _ Peak Reader #2

Receiver No. 1 AGC

LRL Sensitivity Mode Indicator

NRL X-Ray .5-3 _ Detector Data

Spin Rate Monitor

NRL X-Ray 2-8 _ Detector Data

Bottom Skin Temperature

Temperature Probe 15 Volt Regulator

Battery No. 1 Temperature

Battery No. 2 Temperature

Gas Bottle Temperature

Top Skin Temperature

NRL X-Ray 8-16 _ Detector Data

Rim Skin Temperature

Transmitter No. 1 Temperature

Hub Temperature

5 Volt Monitor - SORE

15 Volt Monitor - SORE

NRL X-Ray 44-60 _ Detector Data

UCL X-Ray 1.3 kv Current Monitor

Arm Lock Monitor

19 Volt Day-Night Power

19 Volt Battery (UVS Load Voltage)

Orbit Power, Day Sail

Wheel Analog Subcommutator (ASC No. I)

32 NRL X-Ray Wheel Position

33 Spin Circuit 15 Volt Regulator

34 Spin Backup 15 Volt Regulator

35 Spin Backup Arming Relay

36 Spin Auto-Manual Relay

37 Spin Gas Pressure

38 ASE X-Ray Subcommutated by:

a. Na I detector current (Sodium Iodide)

b. +4kv

c. -1.5 kv

d. A current (Anthracene detector

current)

e. Wheel Position

f. +ikv

g. A/C (anti-coincident detector) current

h. -6 Volts

39 ASE X-Ray Subcommutated by:

a. NaI current (detector count rate)

b. Ped current detector

c. A/C current detector

d. A current detector

40 UVS and Day/Night Bypass Relay

41 Charge Current

42 DME Select

43 Tape Recorder Select

44 Transmitter Select - Transmitter

No. 2 On-Off

45 Receiver No. 2 AGC

46 Arm Release

47 UCL X-Ray +6.5v monitor
i

48 Frame Sync
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Electronic circuitry allowing storage of 600 bits per inch on the tape per-

mits the tape length to be 300 feet. The shafting configuration consists of a two

capstan, single reel device. A two motor approach is employed to bypass clutch

problems.

A packaging layout is shown in Figure 4-8. A rectangular configuration is

used which requires a gask-o-seal for sealing.

With the conservative two motor approach and with substantial safety factors

on torque availability to torque required, the energy consumption for one record/

reproduce cycle is estimated at 130 watt-minutes.

4.4.2 Basic Approach

In order to limit the tape length to 300 feet, it is necessary to store the re-

quired 2,160,000 bits at a packing density of 600 bits per inch. The electronic

system which accommodates this density is shown in Figure 4-9. Tape speed in

the record mode is 0.63 inches per second and 12.0 inches per second in the

playback mode to provide the 18..1 ratio. The recorder also has a shaft modular-

ization feature which allows for easier recorder disassembly and belt tension

adjustment.

The two motor drive configuration strives to bypass problems encountered

with solenoid actuated captive spring clutches. The two motor approach involves

the use of one motor for record and the other for playback. The record motor is

left on continuously and drives the capstans at low speed as long as the playback

motor is OFF. However, when the playback motor is turned ON, an overrunning

clutch allows the playback motor to override the record motor and drive the cap-

stalls at high speed. When the playback motor is turned OFF, the system auto-

matically returns to the record mode.

The recorder incorporates the use of modularized electronics. Each elec-

trouic component (record amplifier, playback amplifier, etc.) is made up sepa-

rately and connected to the general recorder circuitry by internal connectors.

The recorder uses 400 cps clock signals which are externally available as syn-

chronizing signals for the recorderls motors.

The tape employed is a lubricated LR 1132 tape which was recommended by

the Recording Techniques Group at GSFC. It has been life tested by NASA per-

sonnel and found to be satisfactory.
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4.4.3 Electronics

The recorder is required to accept a maximum pulse repetition rate of 400

cycles per second, which at a recording speed of between 0.6 and 0.65 inches

per second, results in a packing density of approximately 600 to 650 pulses per

inch or 1200 to 1300 flux reversals per inch. Because of the characteristics of

the biphase RZ code, the minimum pulse packing will be approximately 600 to

650 flux reversals per inch, which would be the wave from resulting from a
chain of successive ones and zeros.

On the OSO-B2, the input coding consisted of two distinct pulse widths, one

twice as long as the other, one-shot reconstruction of the output signal was not

possible. It was necessary to reproduce pulses representing both the rise and

fall of each code bit. Pulses representing these instances could not be put on

one channel because of packing density problems. Those representing the rise

time were put on one channel by the use of two channel record and playback heads

as shown in Figure 4-9. By the aforementioned method, an actual packing density

-_of 1200 to 1300 flux reversals per inch was achieved on magnetic tape. By

making use of two channels, the inherent problems of pulse stretching and re-
suiting phase shift were eliminated.

It is believed that any shift due to skew between the channels is eliminated

by the use of comparatively low frequencies and the heavy magnetization result-

ing therein. Any variation in time between the first and second pulses is mainly
due to mechanical jitter.

In addition to the components described, the electronics network contains an

erase oscillator to provide automatic erasure upon playback. Also because of

the rather large fluctuation of the supply voltage, a voltage regulator for the

playback and record electronics is necessary to maintain the output voltage with-
in +10%.

The remaining major electronic subsystem consists of the drive electronics

for the record and playback motors which are also shown in Figure 4-9. Because

both motors are the two phase, synchronous hysteresis type, it is necessary to

provide a transistorized power inverter for each phase.

Because of the availability of synchronous motors for 100 cycle operation,

a high degree of speed and ratio stability is obtained by making use of the 400

cycle pulse in the spacecraft. This pulse is applied to the recorder pulse ampli-

fier which has a high input impedance to eliminate any loading on the 400 cycle

source, and then to a series of three binaries to provide count down to 100 cps.

The output of each binary is then fed to two bridge type power amplifiers, each

4-23



of which provides power amplification for one phase of the record and playback

motors respectively. By making use of the stable clock pulse frequency, exact

motor speed control is obtained along with a consistent playback record ratio.

4.4.3.1 Record Electronics

The record electronics circuitry is shown in Figure 4-10. It consists of a

single stage pulse amplifier having an input impedance in excess of 20,000 ohms.

Transistor T-1 amplifies the input pulse to saturation, and a differentiating net-

work consisting of R-1 and C-1 provides positive and negative spikes for trigger-

ing the one-shot circuits through diodes D-1 and D-2 as shown. The latter con-

sists of the standard circuit arrangement, T-3 normally on and T-2 normally

off. The single-shot multivibrator for channel 2 works in a similar fashion ex-

cept that it is triggered upon receipt of a negative pulse which is applied to the

base of T-5, thereby turning this NPN transistor off. These circuits have been

found to be quite stable under environmental changes and are easily adjustable

for different requirements of head current. In addition, the reliability of the

circuitry is further enhanced by the fact that the current pulse width can vary

considerably without changing the output signal from the reproduce head to any

appreciable extent. All that is required to produce the desired results is that

the pulse be considerably shorter than the input signal.

4.4.3.2 Reproduce Electronics

The reproduce electronics for the recorder is shown in Figure 4-11. The

subsystem consists basically of two class B pulse amplifiers, one four stage

and the other five stage, which are designed to amplify the positive half of the

sinusoidal signal from the reproduce leads to saturation giving 2 unidirectional

square pulses. The additional stage in the channel 2 amplifier is to provide a

negative output pulse; other than this the amplifiers are identical.

The supply voltage for the record and playback electronics is regulated to

a level of approximately 15 ± 0.2 volts in order to meet the specifications for

+10% stability of output signal voltage.

4.4.3.3 Erase Electronics

The recorder contains an erase facility which may be energized as desired.

This recorder uses a separate erase head and erase oscillator in lieu of the

permanent magnet type erase head. The circuitry for the erase oscillator is

shown in Figure 4-12.
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4.4.3.4 Drive System Electronics

The details of the circuitry for the drive system electronics are sho_ in

Figures 4-13 and 4-14 with the overall circuit broken down into two subsystems.

The first consists of an electronics network which converts a 400 cycle clock

pulse into two 100 cycle square wave signals one 90 degrees out of phase from

the other. This subsystem is shown in Figure 4-13.

The second part of the drive system electronics consists of the drive ampli-

fiers for the two phase synchronous motor, a basic diagram of which is shown in

Figure 4-14. Although the system uses a considerable number of transistors,

the associated components are quite few and the circuit provides a high degree

of reliability and efficiency.

4.4.4 Controls

As seen in the block diagram, Figure 4-9, two latching relays are employed,

their main function being to provide the necessary switch closures for playback

and record modes. Upon receipt of a command signal, these relays switch the

regulated voltage from the record to the playback electronics, and applies un-

regulated supply voltage to the drive amplifiers for the playback motor.

In addition to the above basic control features the supply voltage leads are

brought from the erase oscillator to an external connector in order that the

erase oscillator may be used as desired.

4.4.5 Mechanical Configuration

As mentioned previously the mechanical transport will involve modularized

shaft assemblies employing duplex pairs. A two capstand, differential speed

tape drive is used to drive the endless 300 foot loop. Two motors, one for play-

back and one for record, provide the drive for the capstans.

The packaging layout is shown in Figure 4-8. Operation of the transport is

as follows. During the record mode the record motor drives the left hand cap-

stan flywheel pulley through the jack shaft reduction. The flywheel pulley is free

to rotate on the capstan shaft. In the record mode the playback motor does not

run and as a consequence, the left capstan assembly overrunning spring clutch

transmits torque to the left capstan and to the right capstan through the belt

provided. A differential speed between the capstans is affected by a slight dif-

ference in pulley diameters. Since the playback motor is not running, the right
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capstan assembly overrunning spring clutch slips. When the playback mode is

desired, the playback motor is energized. The right spring clutch transmits

torque while the left slips. The result is that the capstans are driven at high

speed. The record motor continues to run during the playback cycle and never
need be turned off after launch.

The timer, consisting of a pulley-driven gear train, is belted directly to the

playback motor. One revolution of its output can produce switching operations

which turn OFF the playback motor after the five minute playback cycle is complete.

The record motor is an H. C. Roters Co., Model number 113, six pole, hys-

teresis, synchronous motor operating at a synchronous speed of 2000 rpm from

100 cps, two phase square waves. Its maximum output synchronous torque will
bc 9.07 h-.,,_ ........ .-,,..,.,_., _ "n_v't'rn'_lrn ,_vn_,,"*t_rt lr.,_rt nf N (19. "inoh-n11'n_.q

Operation at 2000 rpm assures a large safety factor on bearing life.

The playback motor is a Design Engineering Service Model RE, two pole,

hysteresis, synchronous motor operating at a synchronous speed of 6000 rpm

from 100 cps, two phase square waves. Its maximum output synchronous torque

will be 0.22 inch-ounces against a maximum expected load of 0.08 inch-ounces.

Operation at 6000 rpm is permissible from a life standpoint because of the rela-

tively short time that the playback motor operates (about 5% of the time that the

record motor operates).

Dimensions on file recorder layout drawing indicate a volume of less than

200 cubic inches. Because of the two motor and gasket seal configuration, the

weight of the recorder approaches a maximum of 6.5 pounds.

The jitter in the recorder is no greater than 2.0% peak-to-peak, from 0 to

800 cps, and the total jitter from 0 to 10,000 cps is less than 3%.

The recorder warm-up time is three seconds.

4.4.6 Power Considerations

It is conservatively estimated that at 19.0 volts and room temperature, the

power consumption in the record mode will not exceed 1.0 watt. Under the same

conditions the power consumption in the playback mode will not exceed 7.0 watts.

This playback load is broken down as follows:

a. Playback motor and drive electronics: 4.5 watts.

b. AC erase head; 1.5 watts.
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c. Record motor and drive electronics (running at playback) and playback

signal electronics: 1 watt.

These estimates yield a total energy consumption of 130 watt-minutes dur-

ing a complete record-reproduce cycle.

4.4.7 Requirements

The following is a list of the major tape recorder requirements:

a. Information rate - 400 bits/second

b. Code - Biphase RZ

c. Record time - 90 minutes

d. Speed ratio - 18

e. Jitter - 3% peak-to-peak, 0-10,000 cps.

f. Supply voltage - 19 • 3 volts

g. Allowable leak rate - 40 cc/year

h. Vibration

i.

j.

5-50 cps

50-1000 cps

1000-2000 cps

4.2 g's 0 to peak

9.8 g's 0 to peak

14.2 g's 0 to peak

Acceleration - 13 g thrust and 7.5 g spin

Tempe rature

Storage- 20°C to 60°C

Operating - 10°C to 35°C

4.4.8 OSO-D SpacecraR Recorder

Figures 4-15A and 4-15B show electrical schematics of the actual OSO-D

recorder. This recorder is slightly different fromthe typical recorder explained

in this section. Some mechanical differences are: the manner in which the

tape is held against the head; the method of recording; the belt drive; and dif-

ferent packaging. There are some minor circuit differences, but basically the

operation is the same.

The OSO-D uses a single-channel, high packing density, bi-phase non return

to zero recording system utilizing a level detection technique. This system was
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made feasible by the development of a phase-locked loop reclocking system

which enables retiming of the pulses and reduces jitter caused by tape motion
irregularity and noise.

4.5 DATA TRANSMISSION

The transmitter for the OSO-D spacecraft is a phase-shift keyed type em-

ploying all solid state circuitry. Transmission is made in two modes. Mode

one is continuous real time transmission, throughout the orbit. Mode two is an

interruption of real time resulting in the command playback of tape recorders.

During the second mode, the recorded data are transmitted to the controlling
station.

'rtns transmissio, l equii-es approxlmatc!y five mLnutes, und will take place

during the period of time the spacecraft is within radio range of the surface
station.

The real time transmission can only be received and recorded when the

spacecraft is in radio view of a surface station equipped for such acquisition.

The transmitters are physically located in the wheel of the spacecraft in

compartment number 8. The unit is rectangular in shape and occupies a volume

of less than 20 cubic inches. The weight is approximately 13 ounces.

The transmitter consists of a phase modulated crystal oscillator, a driver

unit, and a power amplifier. Figure 4-16 is a block diagram of the unit. The

unit delivers a nominal 600 mw of power to the antenna system. The power in-

put requirements are 19 volts _-3 volts. The maximum total input current is
210 milliamperes at 22 volts.

Typical characteristics of the transmitter follow. The peak deviation is

selectable throughout the range of 10 to 90 degrees. A digital input signal am-

plitude of 1.75 to 6 volts peak-to-peak will cause the specified phase deviation.

The data bit rate is 400 to 15,000 bits per second. The output impedance is a

nominal 50 ohms resistive. The transmitter frequency is 136 mc; frequency

stability is no more than _-5 Kc from center frequency under all environmental

conditions. The transmitter tunes into a 2 to 1 VSWR. The spurious outputs

are 40 db below the output carrier power level and no spurious outputs are

present in the command frequency band (approximately 149 mc).

Phase modulation has been utilized in the transmitter design because it is

inherently possible to achieve a more optimum design of a crystal controlled

transmitter than by the use of frequency modulation. The phase modulated sig-

nal can be received by a conventional FM receiving system.
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Section 5

COMMAND SYSTEM

5.1 INTRODUCTION

The command system is a PDM/AM/AM digital type capable of executing

140 commands. The receiver is an AVCO part number 185012 which operates

at 149.52 mc. There are two receivers connected in parallel whose inputs come

from a hybrid circulator in the antenna system. Both command receivers oper-

ate continuously as protection against a single receiver failure during the ac-

-_............ _v,,i,,_a,u _vL_uu. The output of the recelvers is a pulse duration

modulated 7 ke audio tone. It is fed to three decoders in parallel to be processed

for command execution. See Figure 5-1 for the command system block diagram.

Two of the decoders are located in the wheel to process the wheel commands.

They are connected in parallel. The third decoder is located on an experiment in

the sail to process the sail commands. The decoders each require a different

address code. The two wheel decoders are capable of processing the same 70

commands, but must be properly addressed to accept these commands. The sail

decoder is capable of processing the balance of 70 commands, but must be prop-

erly addressed to accept these commands. The output of the decoders actuates

a latching type relay when a command is executed. The relays are distributed

about the spacecraft external to the decoders. They are 12v de dual-coil type

relays. Therefore a total of 70 relays can be used to execute 140 commands.

The system uses digital techniques, wherein the commands are made up of

unique combinations of bits and words. A command word is made up of ten bits

and the typical command frame includes two words for address and three words

for instruction. The allocation of the command words for both decoder subsys-

tems is given in Table 5-1 for the OSO-D spacecraft. The commands are used

for the following purposes: (1) for normal command operations of the spacecraft

telemetry systems; (2) for failure or trouble analysis control of the spacecraft,

known as backup control; (3) and for experiment control.

5.2 COMMAND RECEIVER

The receiver is a single-conversion super-heterodyne AM receiver featur-

ing high reliability, low power consumption and high dynamic range capability
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Table 5-1

OSO-D Command Allocation

Command

Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Wheel Function
Command

Number
Sail Function

Playback On

Spin Up

ASE X-Ray Off

Tape Recorder No. 2

DME No. 1

UVS Bypass Open

Day Power Sail On

NRL Lyman Alpha On

XMTR No. 1

Day Night Bypass Closed

UCL 304 A Squib Comm.

UCL X-Ray Off

ASE X-Ray Door Open

and F. W. Disable

ASE X-Ray F. W. Auto

NRL X-Ray Peak Reader

Off

RF On

Tape Recorder - Power

On

NRL X-Ray Peak Reader

On

LRL P-E Detector On

NRL X-Ray Csllb. Off

Day Night Bypass - Open

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

9O

91

Raster Mode

HCO Low Voltage

On

Pitch Manual

Spare

NRL Off

HCO Position Sel. 1

HCO Position Sel. 2

HCO Position Sel. 3

HCO Position Sel. 4

HCO Position Sel. 5

HCO Position Sel. 6

HCO Position Sel. 7

HCO Position Sel. 8

HCO Position Sel. 9

Spare

Spare

HCO High Voltage
On

Spare

Pitch Down

ASE Aperture

Wh. 01

ASE Aperture

Wh. 10

Code*

Format

0015

0107

0111

0113

0114

0207

0211

0213

0214

0303

0305

0306

0309

0310

0312

O4O7

0411

0413

0414

0503

0505
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Table 5-1
OSO-DCommandAllocation (cont.)

Command Command Code*
Wheel Function Sail Function

Number Number Format

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

LRL Squib Comm. 92

UCL X-Ray Calib. On 93

UCL X-Ray Calib. Off 94

UCL X-Ray Low 95

Sensitivity

UCL X-Ray On 96

NRL X-Ray Wheel Pun. 1 97

NRL X-Ray Wheel Pos. 2 98

NRL X-Ray Wheel Pos. 3 99

Exp. Squib. Pwr. Reset 100

NRL X-Ray Calib. On 101

Spin Down 102

UVS Bypass Closed 103

UCL 304 _ He Lyman 104

Alpha On

NRL X-Ray Off 105

NRL X-Ray On 106

UCL 304 ,_ Calib. On 107

UVS Security Closed 108

Spin Auto 109

Orbit Power Bypass On 110

Playback Off 111

NRL X-Ray & Lyman 112

Alpha Motor Power On

UCL 304 ,_ On 113 Spare

ASE Filter Wheel 00 0506

ASE Filter Wheel 01 0509

ASE Filter Wheel 10 0510

ASE Wheel Reset 0512

ASE Post Acc. On 0603

.A_E Pn,qt Ace. Off 0605

ASE Chamber Door 0606

Open

HCO Position Sel. 10 0609

HCO Position Sel. 11 0610

HCO Position Sel. 12 0612

HCO Power OFF 0701

HCO Position Sel. 13 0702

HCO Position Sel. 14 0704

ASE Power ON 0708

ASE Power OFF 0807

HCO Mech. Ref. 0811

HCO Optical Ref. 0813

HCO Wavelength 0814

HCO Reset Override 0903

HCO Wavelength 0905
Reset

HCO Motor Start 0906

0909
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Table 5-1
OSO-D Command Allocation (cont.)

Command

Number

44

45

46

47

48

49

5O

51

52

53

54

55

56

57

58

59

60

61

Wheel Function
Command

Number
Sail Function

NRL X-Ray & Lyman
Motor Power Off

Exp. Squib Power Set

NRL Lyman Alpha Wh.
Pos. #i

NRL Lyman Alpha Wh.
Pos. #2

NRL Lyman Alpha Wh.

Pos. #3

NRL Lyman Alpha

C alib.On

NRL Lyman Alpha

Ca]lb. Off

NRL Lyman Alpha Alter.
Mode

ASE X-Ray On

Day Power Sail Off

Tape Recorder Power
Off

RF Off

LRL PE Det. Shutter

Advance

Orbit Power Bypass Off

NRL Lyman Alpha

2 x I0 -12 Range

NRL Lyman Alpha

5 x I0 -12 Range

Spare

UCL 304 _ Off

114

115

116

117

118

119

120

121

122

123 NRL

124 NRL

125 NRL

126 NRL

127 NRL

128 NRL

129 NRL

130 NRL

131 NRL

Spare

Spare

Spare

Spare

Spare

Spare

Spare

Spare

Pitch Auto

LV l_rr. Sup. No. 1

LV l>wr. Sup. No. 2

HV Pwr. Sup. No. 1

HV Pwr. Sup. No. 2

In Line S/R Select

Cross S/R Select

Speed Select

Speed Select

Motor Driver No. 1

Code*

Format

0910

0912

1003

1005

1006

1009

1010

1012

1101

1102

1104

1108

1203

1205

1206

1209

1210

1212
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Table 5-1

OSO-D Command Allocation (cont.)

Command Command Code*
Wheel Function Sail Function

Number Number Format

62 XMTR No. 2 132 NRL

63 NRL Lyman Alpha Off 133

64 LRL PE Det Shutter Stop 134

65 UVS Security Open 135

66 DME No. 2 136

67 Tape Recorder No. 1 137

68

69

70

LRL PE Det Off 138

Spin Manual 139

Redundant Playback On 140

Motor Driver No. 2 1301

**NRL No. 11 Not 1302

Used

**NRL No. 12 Not 1304

Used

**NRL No. 13 Not 1308

Used

NRL On 1401

NRL No. 14 Not 1402

Used

Pitch Up 1404

Spare 1408

Point Mode 1500

* Command Code format is the same for indicated wheel and sail.

** Experimenter allocated but not utilized

Spare - unassigned commands.

(2 uv to 0.1 v). It operates at 149.52 mc. The receiver is packaged in approxi-

mately 19 cubic inches and weighs approximately 19 ounces. The two receivers

arc located in wheel compartment number 7.

The reliability of the receiver has been obtained by the use of premium

components throughout. All transistors and diodes are silicon types. A com-

plete report on the measures taken to assure reliability can be obtained by re-

ferring to NASA document titled "Command Receiver for Gamma Ray Satellite

(S-15)," Report No. MTP-M-G & C-12, by H. P. Lowery.

Typical performance characteristics are given in Table 5-2. Figure 5-2 is

a block diagram of the receiver.
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Table 5-2
Typical Receiver Characteristics

* Frequency

Input Impedance

6 db bandwidth

6Odb bandwidth

Sensitivity (for Decoder relay

closure)

Overload

Image _jp.ction

Spurious response rejection

Local oscillator radiation

Local oscillator stability

Audio amplifier response

Temperature range

Output signal

Standby power

Interrogate power

Weight

RMS random vibration

Shock

100-150 mcs. (AM)

50 ohms

35-40 kc

100 kc maximum

2 uv maximum (75% modulation)

100,000 uv minimum

80 db

60 db minimum

200 u uw (100 uv) maximum

+2 kc

+1.5 db from 5 kc to 9 kc

-20 ° to +70°C

50 mw (5 v rms across 500 ohm load)

250 milliwatts (maximum)

330 MiUiwatts (maximtun, including

50 mw output)

19 ounces

20 g's (20-2000 cps)

50 g's-ll milliseconds

*Tuning fixed to specified frequency at the factory before shipment.
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With an rf input signal of 5 microvolts and 30 percent modulation, or 2 micro-

volts and 75 percent modulation, receiver sensitivity is more than adequate to

operate the digital decoder. The signal-plus-noise-to-noise ratio at 1.5 micro-
volts is 10 db minimum.

The i-f bandwidth, as determined by a crystal filter following the mixer, is
36 kc at 6 db and 100 kc at 60 db.

The

adjacent
ure 5-3.

crystal filter gives a stable selectivity characteristic, along with high

signal rejection. An overall receiver response curve is shown in Fig-

Two resistors in a "fixed-resistor" volume control are factory selected for

50 mil]iwa_s __udln output with a 5 microvolt input signal modulated 75 percent.

The audio amplifier is designed to operate into a load impedance of 500 ob___.s:

With this load, the audio frequency response is fiat within 2 db from 1 kc to 10 kc

as shown in Figure 5-4.

An unusual feature of the receiver is the use of varicap-diode automatic

gain control which gives sufficient agc to maintain the audio output within 3 db

as the rf input varies from 2 microvolts to 0.1 volts. The audio power output

vs rf input curve is shown in Figure 5-5.

5.2.1 Power Consumption

The supply voltage is 15.6 volts + 10 percent, positive above ground. Low

current drain is obtained by connecting various stages in a series-parallel

arrangement across the supply voltage as shown in Figure 5-6. Power consump-

tion is 250 milliwatts maximum during standby and 330 milliwatts maximum dur-

ing interrogation.

An investigation conducted to determine minimum voltage and current re-

quirements of the vhf amplifier, mixer, and oscillator circuits resulted in the

following arrangement: the oscillator (requiring 4 volts at 2 ma) is connected

in series with the parallel combination of the vhf amplifier and mixer (9.3 volts

and 1 ma each) across the 13.3 vdc regulated supply voltage. Thus the total

supply current required for the three stages is 2 ma compared to perhaps 3.5

ma in a conventional arrangement.

For additional information concerning the operation of the receiver, refer

to the AVCO manual, vhf Command Receiver, dated 1 September 1964 (80045XRW

11/964).
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5.2.2 Mechanical Design

Basic mechanical design was determined by the overall satellite packaging

concept. A standard packaging configuration was adopted by NASA to permit

stacking all of the various satellite equipments. The unit is 5-7/8 inches long,

3-5/8 inches wide, and one inch thick. See Figure 5-7.

Mechanical isolation of the five modules permits operation of the receiver

in high-level vibration environments. The receiver is also completely encapsu-

lated in Eccofoam FP Polyurethane potting foam.

5.3 COMMAND DECODER

The decoder receives a series of PDM tone bursts from the command re-

ceiver. These serial tone bursts are transmitted in a frame of five words, each

word containing eight data bits, a sync and a blank bit. The first two words of a

typical frame contain the address of a specific decoder. The last three words
contain a function command to be performed by this decoder. System reliability

is increased by transmitting the address twice, and the function command three

times. One correc%ly received address and command code is sufficient to achieve

the proper output function.

The decoder reads in all data presented to it from the command receiver.

Each serial train of pulses is shifted, bit-by-bit, into the magnetic core shift

register. The sync bit succeeding each word causes the decoder to interrogate

the contents of the shift register. If, at this time, the shift register contains

the prewired address for this decoder, the decoding position of the unit is enabled.

The succeeding words of the same frame are read into the shift register, and the

contents are interrogated by each sync bit. When a valid function command word

is recognized by the enabled decoding section, this command is generated at the

decoder output. (See Figure 5-8.)

The input tone bursts consist of three time durations, all prescribed as an

integral number of cycles of the subcarrier, or command frequency. They are

defined as follows:

a. Binary 0 = 18 cycles of subcarrier frequency

b. Binary 1 = 26 cycles of subcarrier frequency

c. Sync Bit = 54 cycles of subcarrier frequency
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A complete bit time is defined as 72 cycles of the subcarrier; therefore,

there is always a blank interval during each bit time.

5.3.1 Word Structure

As shown in Figure 5-9, a word consists of 10 bit times (720 cycles). A

blank interval for 1 bit time is followed by a sync bit, and then eight data bits

consisting of l's and O's. There are two types of words: address words and

command words.

The eight-bit data portion of an address word always contains a combination

of two 1 bits and six 0 bits, or six 1 bits and two 0 bits. There are 56 such com-

binations.

The eight-bit data portion of a command word always contains a combination
of four 1 bits and four 0 bits. There are 70 such 4 x 4 combinations available.

The decoder detects all 70 of these combinations.

5.3.2 Frame Structure

For most reliable operation in a high noise environment, a frame structure

having the first two words as identical address codes and the last three words

as identical command codes may be used. Figure 5-9 shows such a frame struc-

ture. The decoder generates the desired output signal if either address word and

any one of the three command words are received correctly. The decoder is also

capable of operating properly with a frame structure consisting of one address

word followed by one to four different command words. In this mode, bit errors

in the address word will result in no commands being executed. A bit error in

one command will result in that command not being executed. This format may

be used in less noisy conditions or when the transmission of a large number of

commands per given time is required.

5.3.3 Bit Detection

The purpose of the bit detection circuitry is to determine the information

content of each input tone burst. An integrating detection technique is used for

this purpose. (See Figures 5-10 and 5-11.) The input signal from the receiver

is applied to the bandpass filter. The center frequency of this filter is set for

the subcarrier frequency of the PDM signal.
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5.3.4 Input Threshold Detector

The output of the filter is connected to a threshold detector. This device

triggers when the filter output signal amplitude has reached a given threshold.

Once the threshold has been reached, the threshold detector circuit presents

unit amplitude pulses to the three integrator circuits.

There is an integrator and an associated threshold detector for detecting

each type of data; i.e., a sync bit, binary 1, or binary 0. When a tone burst ap-

pears at the filter output, the capacitor in the 0 integrator begins charging to

the power supply voltage. The 1 and sync integrators obtain their charging cur-

rent from one-shot 1 (OS1); these integrators operate only when OS1 is ON.

Therefore, _t the. be_nning of a tone burst, the 0 integrator will be the only one
of the three to begin charging.

As shown in the timing diagram (Figure 5-10) when the 0 integrator reaches

the preset level, its threshold detector triggers OS1. This is set to occur ap-

proximately in the middle of the 0 signal. Once the incoming burst has been de-

tected, the 1 and sync integrators begin operating. The charging rates of these

two integrators are different; each is set to reach its full charge approximately
at the end of its associated tone burst. The threshold detectors for each of these

integrators are set to trigger approximately in the middle of the unique portion

of the 1 and sync signals, extending beyond the 0 and 1 signals, respectively.

These two integrators remain at the charging level reached until they are reset
by osl.

5.3.5 Threshold Detectors

The 1 threshold detector provides the logic level indicating that a binary 1

PDM signal has been received. This level is inverted to provide a similar logic

level for a binary 0. The levels are connected to AND (gates) pulse gate 1 and

pulse gate 2 (PG1 and PG2 on Figure 5-11).

The sync detector signals AND (gate) pulse gate 3 that a sync pulse has been

detected. It also triggers blocking oscillator 1 (BO1) to effect the shifting of a 1

into the cores prior to clearing them. This aligns the data correctly in the cores

for the clearing and decoding operation. The same detector also turns on the

sense amplifier 4-volt bias circuit. This prepares the address sense amplifier

to read the output from the core memory address sense winding.
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One-shot 1 is triggered ON when a 0 bit has been detected. The one-shot is

set to time out during the blank interval between each data bit. The trailing edge

of OS1 interrogates the three AND (gates) pulse gates 1, 2, and 3, to determine

which blocking oscillator (BO1, BO2, or BO3) is to be fired.

In this manner, a 0 or 1 is loaded into the magnetic core shift register; or,

a clear pulse to the cores is generated, when a sync bit is detected. OS1 sup-

plies the charging current for the 1 and sync integrators, and also discharges all

three integrators at the proper time.

5.3.6 Magnetic Core Shift Register

The magnetic core shift register serves as a serial-to-parallel code con-

verter and as a decoding matrix. It stores the serial input code until the sync

bit arrives at the end of the code word. Then the stored code is read out in

parallel. Part of the address and command decoding is determined by the man-

ner in which the sense windings are wound through the register.

The shift register stores 20 bits of information. It stores 1 for the sync bits

at the beginning and at the end of a word, and l's or O's for the eight bits of the

word itself. These 10 bits are stored in row 2 of the register, as shown in Fig-

ure 5-11. The second set of 10 bits is the complement of the first set, and these

bits are stored in row 3. Each bit of the second set is stored in the register at

the same time as its complement in the first set. The second set of bits is re-

quired by the output decoding logic.

The magnetic core shift register consists of 40 tape-wound memory cores,

arranged in a two-core-per-bit fashion. The tape-wound cores are constructed

from a molybdenum nickel iron alloy wound on a stainless steel bobbin.

To store the information described above (rows 2 and 3 of Figure 5-11} 20

of the cores are used. The other 20 cores are required for temporary storage

during the shifting operation (rows 1 and 4 of Figure 5-11). BO1 and BO2 load

the register and shift held information already in the register. BO5, BO6, and

BO7 shift information in the register. BO6 and BO7 are logically redundant, but

are required because of the limited supply voltage available.

Information is shifted from left to right (see Figure 5-11}. BO1 sets the

flux in the first core of row 1 and shifts the information in the first five bit

positions of rows 2 and 3 one position to the right into rows 1 and 4, respectively.

BO2 performs the same shift operation, but sets the first core in row 4. When

BO1 or BO2 times out, it triggers BO5. BO5 shifts the information in the first

five bit positions of rows 1 and 4 one position to the right into rows 2 and 3,
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respectively. At the trailing edgeof BO5,BO6 is triggered. BO6 shifts the in-

formation in the second five bit positions of rows 2 and 3 into rows 1 and 4 one

position to the right. BO7 then shifts the information back into rows 2 and 3 in

the second five bit positions. When the sequence of BO firings is complete, the

information entered by BO1 or BO2 is in the first position of row 2 or 3; all the

old information has been shifted one position to the right in rows 2 and 3. There
is no information in the cores of rows 1 and 4.

5.3.7 Command Decoding

Command decoding consists of translating the eight bits of the command word

to a signal of one of the command outputs. Command decoding is done in two
stages.

A valid code is first translated to signals on four of the 16 sense amplifiers.

The outputs of the sense amplifiers are then combined in 4-legged AND gates.

Each AND gate serves to trigger one relay driver; this occurs only when all four

inputs to the gate are simultaneously true.

Each of the 16 sense amplifiers is fed by a sense winding. Each sense wind-

ing represents a particular 2-bit code. It is wound through the sync core (the

right-most core in row 2) and through two of the 8-data-bit cores. Figure 5-12

shows eight of these windings. Although only one winding is shown going through

the sync core, the other 15 also go through it.

The sense windings operate the sense amplifiers in the following manner.

When a valid command in memory is read out, the sync core generates a positive

voltage pulse on all 16 command sense windings. This pulse is sufficient to turn

on the sense amplifiers. However, an opposing negative voltage pulse, sufficient

to cancel the positive pulse, is simultaneously generated by each bit core con-

taining a 1.

One or more negative pulses will cancel out the positive pulse from the sync

core. Therefore, only the sense windings passing through bit cores containing O's

will have the necessary positive pulse at clearing time to energize the sense
amplifier.

The 16 command sense amplifiers also receive signals from the strobe one-

shot and sense amplifier 4-volt bias circuits. An amplifier produces an output

signal only when the sense winding signal is positive at strobe time.
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5.3.8 Address Decodil_

The address word decoding is accomplished in the same manner as the com-

mand word, with one exception. The address sense winding is threaded through

all eight data cores as well as the sync cores. In this manner, a positive signal

will be generated on this wire only when the complete address is available in the

cores. (See Figure 5-13.)

Each decoder is furnished with preselected address sense wires. These

wires are brought to the input connector in order to provide for a selection of

one of these as the address to be detected by the decoder. When the positive

address signal is detected by the address sense amplifier, OS2 is triggered ON.

The timing of this one-shot is set to last for the duration of the next four words

of the frame bein_ transmitted. With OS2 on, the AND gate PG5 may now operate

the OS3, whenever the sync bit is detected. OS3 applies power to the relay
drivers. The selected driver turns on for 35 + 5 milliseconds when a command

has been detected. Once the frame of data has expired, OS2 times out and will

not be triggered on again until the selected address is detected. Until this occurs,

PG5 and OS3 are inoperative, and no relays may be energized.

5.3.9 Relay Driver Matrix

The sense amplifier outputs are arranged in a 16 × 16 matrix as depicted in

Figure 5-14. The horizontal lines are derived from the two right-hand groups of

cores shown in Figure 5-13. These are the most significant four bits. The

vertical lines are derived from the two left-hand groups of cores, which are the

least significant four bits of the 8-bit command word.

This full matrix forms 256 intersections; however, only the 70 intersections

which produce the codes containing four l's and four O's are used for decoding
command words.

Located at each of the 70 selected intersections is an AND gate and a relay

driver. When four sense amplifier output pulses occur simultaneously at the

inputs to the AND gate, the associated relay driver is triggered ON. For example,

a relay is to be energized when the command word 01010101 is transmitted. The

relay must be connected to the relay driver located at intersection 21 on the

matrix shown in Figure 5-14. When this command word is received and decoded,

the four sense amplifiers, (V1 (01--), V2 (--01), H 1 (01--), and H2(--01), will gen-
erate a pulse, triggering ON relay driver 21 and energizing relay 21.
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5.4 SYSTEM OPERATION

5.4.1 Normal Command Operation

The commands used for normal spacecraft operation are primarily to oper-

ate the telemetry systems during the acquisition and tracking periods.

5.4.2 Command Backup of Automatic Functions

Various command words are used for backup control of the spacecraft dur-

ing orbital operation. This backup system could extend the life of the spacecraft.

Those functions which lend themselves to manual control or backup are

(1) spin control, (2) pitch control, (3) undervoltage switching, and (4) the se-

quencing timer. The functions of spin and pitch are described in Section 3; the

undervoltage switch circuit is described in Section 6; and the sequencing timer

is discussed in Section 10.

5.4.3 Experiment Control

The experiment control command allocations for the OSO-D spacecraft are

listed in Table 5-1.
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Section6

POWER SUPPLY AND DISTRIBUTION

6.1 INTRODUCTION

Power for the spacecraft and the experiments is supplied by a battery pack.

This battery pack is recharged while the spacecraft is in the sunlight by an ar-

ray of solar cells that are mounted on the sail. Power is distributed to several

electrical busses that are either energized or de-energized depending upon the

state of battery charge and whethcr or not the spacecraft is in sunlight. The

system diagram for the power supply and distribution is Figure 6-i.

6.2 SOLAR CELL ARRAY

The solar cell array is mounted on the front face of the sail. A honeycomb

panel on the back of the array acts as a heat sink. The array is shown in Fig-
ure 1-1.

The solar cell array converts solar energy into electrical power which

charges the battery pack and also furnishes electrical power during daylight

operation. There are approximately 2016 silicone cells arranged in 36 parallel

strings of 56 cells each, which cover an area of 3.8 square feet. The power out-

put available from the solar array is 38 wars. There is reverse current diode

protection to prevent the batteries from discharging through the solar cells.

6.2.1 Solar Cell

Each solar cell is an N/P shingled silicone cell with a resistivity of 10 ohm/

cm. The solar cells each have a blue reflecting filter with a response between

0.410 microns and 2 microns. For radiation purposes, a 20 mil cover sheet of

Coming Fused Silica is applied with LTV 602 GE cement. An anti-reflective

coating with a transmissibility which peaks at 0.625 microns is applied to the
cover sheet.

6.3 BATTERY PACK

The battery pack consists of 42 nickel-cadmium, F size cells, These 42

cells are distributed in six packs of seven cells;two packs are located on the
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rim of the spacecraft in compartments 1, 4, and 7. To produce an 18.9 volt de

supply, the 14 cells in each compartment are connected in series; and the three

groups are connected in parallel to provide the necessary power capacity. The

battery pack voltage ranges from 16 volts at a nearly discharged state to 22 volts

at a fully charged state.

There is no prime supply voltage or current regulator in the spacecraft;

however, there is an undervoltage switch to prevent the batteries from being

completely discharged and a regulator that supplies voltage for critical space-

craft functions and experiments. A temperature probe is attached to the battery

pack in compartment 1; this probe detects changes in the battery case tempera-

ture and feeds this change as an input to channel 16 of ASC number 1.

6.3.1 Batteries

Each individual battery is capable of taking a 0.45 ampere charge for at

least 96 hours with an end-point voltage of 1.49 volts or less. This cell is capa-

ble of providing 0.76 ampere for 5 hours at 1.2 or more volts after undergoing

the following schedule.

a. Charge at 0.45 ampere for 16 to 96 hours

b. Discharge at 0.76 ampere for 5 hours

c. Charge at 0.45 ampere for 16 to 17 hours

d. Repeat b and c until four discharge-charge cycles have been

completed.

6.3.2 Charge Rate Monitor

The charge rate monitor delivers a voltage to channel 41 of ASC number 2

proportional to the output current of the solar cell array. The monitor amplifies

the voltage drop across four paralleled 0.6 ohm resistors in the positive solar

cell array lead. The solar array current monitored is between 0 and 2.67 am-

peres. Power for operation of the monitor is taken directly from the batteries.

This three stage transistorized monitor products an output between 0 and 5

volts dc (nominally 1.87 volts per ampere of current being monitored) with a

load of 100 k ohms.
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6.4 CONTINUOUS POWER BUS

The batteries are connected directly to the continuous power bus. Circuits

that receive power from this bus are shown in Figure 6-2. The continuous power

bus is connected to the launch power bus through the undervoltage switch (relay)

and the undervoltage bypass switch (relay). The voltage (satellite load voltage)

on the continuous power bus is monitored on channel 30 of ASC number 2.

6.4.1 Undervoltage Switch (Relay)

The spacecraft batteries are nickel-cadmium cells which have a rather fiat

discharge curve until they become almost fully discharged. Near the fully dis-

charged state, the voltage falls abruptly and the impedance increases and very

little power can be drawn from them. When the batteries become almost fully

discharged, they will not be able to deliver the current necessary to allow the

servo to be activated and orient the sail toward the sun. This condition will re-

sult in a disabling of the spacecraft. By utilizing ground command, sections of

the spacecraft can be turned off to conserve power so the undervoltage condition

is not expected to occur. However, if the command system is not operative and

the batteries are discharged to the point where the voltage drops abruptly, a final

means is available in the spacecraft to prevent the loss of the vehicle. This is

the undervoltage switch (relay) which shuts down the entire spacecraft and per-

mits the batteries to charge from the rotating solar cell array. When the bat-

teries are about 10 percent charged, the undervoltage switch turns on the space-

craft again. A diagram of the undervoltage switch is shown in Figure 6-1.

All the power for spacecraft operation goes through a 6-pole double-throw

latching relay. Five of the poles carry the spacecraft power and one is used for

switching in the undervoltage switch.

When the voltage is high and the batteries are charged, the relay is as shown

in the diagram. Power is applied to the turn-off voltage reference and to the coil

of the relay that will turn off the spacecraft. The driver for the coil is shut off,

however, so the relay cannot operate. Power for a regenerative switch that con-

trols the driver is fed directly from the batteries. When the battery voltage drops

to 15.5 volts, the regenerative switch operates and changes state. This in turn

fires the driver for the "off" coil causing the relay to be activated and place the

batteries in a charge state. As the contacts leave their "on" position, power is

removed from the "off" coil of the relay and from the "off" voltage reference.

A time delay in the regenerative switch keeps the "off" coil driver saturated so

the energy stored in the 47 microfarad capacitor across the "off" coil can flow

through the relay and complete the contact transfer.
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Whenthe relay has transferred, power is removed from the spacecraft ex-
cept for the undervoltage sensor. The battery voltage is now connectedto the
"on" voltage reference andthe "on" relay coil. The "on" voltage reference is
set so it will not fire the regenerative switch until the battery voltage rises to
19volts. Therefore, the "on" coil driver is not energized andthe relay cannot
transfer. When,due to charging from the solar cell array the voltage rises to
19volts, the regenerative switch changesback to its original state and fires the
"on" coil driver. The relay contacts are nowtransferred back to their original
state, aided by the capacitor across the "on" coil.

Sufficient hysteresis is built into the undervoltage switch so the servo can
catchand orient the solar cells for efficient battery charging after it hasagain
beenturned on.

6.4.2 Undervoltage and Security BypassRelays

The operation of the undervoltage and u.v.s, bypass security relay serves

as a command back up function when failure occurs to the undervoltage relay.

If the undervoltage switch fails to open when the voltage is low the "load off"

coil of the undervoltage bypass relay (latching type) must be energized by an

alternate means. This is accomplished by the undervoltage bypass open com-

mand number 6 signal. With this coil ("load off") energized, the continuous

power bus will then be applied as the input to the undervoltage relay amplifier.

(See Figure 6-1.)

To shunt the undervoltage switch after the voltage has risen to a sufficiently

high level it is necessary to energize the "load on" coil of the undervoltage by-

pass relay. To energize this coil the u.v.s, bypass security relay (latching type)

must be in the closed position. The undervoltage bypass security closed com-

mand number 38 and the undervoltage bypass security open command number 65

signals control the position of this relay. With the security bypass relay in the

closed position, the undervoltage bypass closed command number 33 signal may

then be applied to energize the "load on" coil of the undervoltage bypass relay.

Once this backup system is in operation, care must be taken to monitor the

state of the spacecraft. Telemetry points indicate the state of the shunt and

series undervoltage command system.

6.5 LAUNCH POWER BUS

The launch power bus receives dc voltage from the continuous power bus

through the undervoltage and undervoltage bypass relay. Launch power is
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applied through relay contacts to the spin up and spin down circuits; day/night

circuits; and to the contacts of the orbit power turn on relay. This power is

also utilized as power supply voltage for the analog subcommutator, digital mul-

tiplexer and encoders, and the transmitters. The arm lock and arm release

switches also make use of this power.

6.6 ORBIT POWER BUS

The orbit power bus is energized by the orbit power turn on relays approxi-

mately 600 seconds after launch. These relays transfer power from the launch

power bus to the orbit power bus; the power is then distributed to either the day

power bus or the night power bus as determined by the day/night or day/night

bypass relay. The orbit power bus in the sail is connected to the sail day power

bus through the contacts of the NRL On/Off relay. Orbit power is monitored on

telemetry channel 31, ASC number 1. Refer to Section 10, Launch Sequence, for

the operation of the orbit power relays.

6.6.1 Day/Night Relay

During the dark portion of the orbit, certain of the components in the space-

craft are not operative. To conserve power, the pointing control, the pointed

experiments and the spin up system are turned off. A pair of solar sensors feeds

the day/night relay circuit. The output of each sensor is a fixed current between

1 and 2 ma when the sun is in the sensor's field of view, and zero when the sun

is outside the field of view.

All the orbit power goes through the day/night relay (Figure 6-1) which is a

6-pole double-throw latching type relay. The solar sensor current controls the

position of this relay. Sensor current is applied as base-emitter bias to the spin

eye amplifier which in turn is applied to a pulse shaper that drives a flip-flop.

When the flip-flop receives a turn on pulse signalD it changes to a state which

applies a signal to the day relay driver through an amplifier. The night relay

driver is then cut off. As the contacts leave their night position, power is re-

moved from the day coil of the relay. A time delay keeps the day-coil driver

saturated so the energy stored in the 47 microfarad capacitor can flow through

the relay and complete the contact transfer.

After the relay has transferred, orbit power is applied to the day power bus.

The relay will remain in this state until a dark-current signal is received from

the sensor. This signal will change the position of the flip-flop, energize the

night-coil of the relay and remove orbit power from the day power bus and apply

it to the night power bus. The day/night relay is monitored on telemetry channel

number 29, ASC number 1.
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6.6.2 Day/Night Bypass Relay Circuit

The day/night bypass relay (Figure 6-1) is a two pole double-throw latching
type. This relay operates as a commandbackupfunction whenfailure occurs in
the day/night relay. Both coils of the day/night bypass relay are operated by 19
volts launch power that is applied through the contacts of the day/night bypass
closed or openrelays. The day/night bypass closed commandnumber 10 con-
trols the closed relay andday/night commandnumber 21 controls the openre-
lay. In the normally openposition, the day/night bypass relay shunts the day/
night relay, applying orbit power to the day power bus. Whencommandedto
the closed position, the day/night bypass relay will apply orbit power through
its closed contacts to the night coil of the day/night relay which will then apply
--_:* po;vcr +_the night power bus.

The telemetry channels for the day/night bypass relay are channel number
40 and channel number 29, ASCnumber 1.

6.6.3 Day/Night Override Relay

The day/night override relay (Figure 6-1) is a momentary type relay that is
operated as a ground function only. This relay is energized by a override signal
from the ground console. Onceenergized the day/night override relay applies
15 volts power to the free running oscillator which is timed at 2.4 seconds. The
oscillator time is approximately the spin rate of the wheel. This signal is then
applied to the eye-pulse-on circuit in the spin control assembly. The day/night
relay will then be switched to the day condition without the aid of a sun pulse.

6.7 DAY POWER BUS

The day power bus when energized by the position of the day/night turn-on

relay supplies power to the spin-up and spin-down solenoids, the SORE, and the

spin control assembly. Also receiving power from this bus are the wheel ex-

periments and the contacts of the day-power-sail relay. The day-power-sail

relay is a latching type that can be turned on by command number 7 and off by

command number 53. When in the on position, day power is supplied to the sail-

day-power bus. This bus supplies power to the sail pointing system and the

pointed experiments. These systems can be removed from the day power bus,

should the need arise, by energizing the off coil of the day power sail relay.

The telemetry channels for monitoring the day power and sail day power

are channel number 29, ASC number 1, and channel number 31, ASC number 1,

respectively.

6-10



6.8 NIGHT POWER BUS

The night power bus is controlled by the day/night turn-on relay. Night

power is supplied to the spin control assembly and to the required wheel experi-

ments. Power to the wheel experiments is supplied through separate relays so

each experiment may be turned on and off by command, as desired.

6.9 15-VOLT REGULATOR ASSEMBLY

The output of the regulator is maintained at 15.0 volts + 20 mv with an input

from 16.2 to 22 vdc and a regulator load from 0 ma to 50 ma. Quiescent current

with 19 volts input at room temperature is less than 4 milliamperes.

The regulator (Figure 6-3) consists mainly of 3 transistor stages and a 12

volt zener diode. A 3.9 ohm resistor and 1 microfarad capacitor provide surge

protection.

When the situation exists where the 15 volt output decreases, the voltage at

the CR1 and R7 junction will decrease causing less conduction of CR1. Tran-

sistor Q3 will then conduct less which will cause its collector voltage to raise.

This voltage is applied to the base of Q2. Q2 will then conduct more, requiring

more base current from Q1. The voltage at junction R2 and R4 will decrease,

which will cause a heavier conduction of Q1 causing the output voltage to in-

crease to 15 volts.

When the voltage output increases, the voltage at the CR1 and R7 junction

will increase causing zener CR1 to conduct more. Transistor Q3 will then con-

duct more which will cause its collector voltage to decrease. This voltage is

applied to the base of Q2. Q2 will then conduct less, requiring less base current

from Q1. The voltage at junction R2 and R4 will increase which will cause less

conduction of Q1. The output voltage will then be reduced to 15 volts.

Regulation is required for the SORE, temperature probes and transducers,

power amplifier, backup, and the spin control assembly. The spin box regulator

is included in the undervoltage switch assembly, but the circuit is the same as

described except the component designations are different.

6.10 AZIMUTH SHAFT ASSEMBLY

The wheel structure and sail structure are connected by an aluminum shaft

which runs from the base of the sail, through the center of the wheel and terminates
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in a support ring structure on the underside of the wheel. This shaft is held in

place by two bearing, one on top and one on the bottom of the wheel. Mounted

on the shaft between the two bearings is a high pressure nitrogen gas tank for

pitch precession jets located on the sail structure. A torque motor mounted on

the top of the shaft, controls the azimuth position of the sail while the spacecraft

is in daylight. On the base of the shaft is a slip ring assembly which allows

transmission of power, telemetry signals, and control signals between the sail

section and the wheel. Figure 6-4 illustrates the azimuth shaft assembly.

OEARIH_ A_I_L¥

AZIMUTH DRIVE MOTOR

o' PITCH _9 $O1TLE

;----"'- (
I

BEARING A_EMOLY

SUP RIN_.q

Figure 6-4-Azimutk Shaft Assembly
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6.10.1 Slip Rings

The electrical connection through the slip ring is made by utilizing brushes

making contact with the proper ring track. Brush force is 17 to 25 grams at the

contact point. With the slip ring not rotating, the resistance between each ring
lead and the associated brush lead at the connector does not exceed 0.1 ohm.

The telemetry slip ring allocations for the OSO-D spacecraft are listed in

Table 6-1.

Table 6-1

OSO-D Slip Ring Allocation

Slip Ring Function
Circuit No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

400 CPS Clock

NRL DSM Gate No. 1, DSM No. 21

Signal Ground
19 Volt Orbit I>wr.

NRL DSM Gate No. 2, DSM No. 22

NRL R.O. Gate No. 2 MF #2

NRL R.O. Gate No. 1 MF #13 & 23

ASE R.O. Gate No. 1 MF #6, 14, 22, & 13

Nutation Damper Release

Elevation Lock Release

ASC No. 2 Trigger
ASC No. 2 Data Out

Decoder Input

Digital Data R.O. (Harv.}

Harv. R.O. Gate No. 1 MF #3,4,11,12,19,20,27, & 28

Digital Data R.O. (ASE - NRL)

19 Volt Day I>wr.

19 Volt Day l>wr.
19 Volt Solar Cell

19 Volt Solar Cell

Power Ground

Power Ground
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Section 7

ANTENNA SYSTEM

7.1 INTRODUCTION

The antennasystem (Figure 7-1, block diagram) consists of the antenna

array, two match boxes, a power divider, a diplexer, a hybrid circulator and

a coaxial relay. This system is used for tracking, telemetry transmission, and

command reception. The coaxial relay accepts either transmitter output signal

and apphes it to the diplexer. _1,,u....u_'-"* of *_,,_ --_--__"1.... ._o +h_..._.........,pp]i_dtn th_

antenna array through the power divider and match boxes. When receiving a

signal, the path is through the antenna array, the match boxes, the power divider,

the diplexer, the hybrid circulator and then to the receivers.

7.2 ANTENNA ARRAY

The antenna array is located at the base of the wheel. It consists of 3 "V"

shaped monopoles spaced 120 degrees apart. Each antenna element (Figure 7-2)

consists of a support bracket and a stub. The support brackets also support the

extendable arms of the spacecraft. Each stub is electrically connected to its

respective support bracket to form a three-element array. The stub provides

proper impedance matching and eliminates standing waves on the transmission

line. The three elements are completely insulated from the spacecraft by the

use of nylon and fiberglass-epoxy material. Two elements are excited and the

third is parasitic. The element excitation is applied at the point where the sup-

port bracket connects to the spacecraft arm. The electrical length of each ele-

ment is approximately one-half wavelength. The antenna system serves two

purposes: functions as a receiving antenna for the command system; and a

transmitting antenna for the tracking and telemetry system. This array is con-

tinually spinning, along with the wheel, at 30 rpm.

7.2.1 Match Boxes

Two match boxes are connected to the base of the two active antennas. These

boxes are located under the arms next to the wheel. An rf cable assembly con-

nects the boxes to the antenna.
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These capacitive networks provide the proper impedancematch betweenthe
antennaandthe transmission line. The antennaswill then be in proper balance
for maximum power transfer.

7.2.2 Power Divider

The power divider is a coaxial tee connector located at the center of the

coaxial transmission line that connects the two active antenna elements. The

common input connects to the output of the diplexer. Transmitted power is then

divided equally for each of the two active antennas. Proper impedance match-

ing makes the equal power separation possible. This is accomplished with the

antenna stub that is electrically connected to the antenna.

7.2.3 Diplexer

The diplexer is located in compartment number 8 of the wheel. It consists

of an inductance-capacitance network that allows the transmitting and receiving

systems to be connected to a common antenna array. This lump constant net-

work essentially provides common input-output connection to the power divider.

The diplexer also provides low loss paths to the receiver system and from the

transmitter system. In addition, it provides a large amount of isolation between
the receive and transmit connections. These functions must be isolated to pre-

vent damage to the receiver system when transmitting.

7.2.4 Coaxial Relay

The coaxial relay, located in compartment 8 of the wheel, is an rf switching

device. It is a magnetic latching type relay that selects one of two transmitter

outputs to be applied to the antenna system. This relay is energized by the con-

tinuous power bus which is applied through the contacts of either the transmitter

number 1 relay or the transmitter number 2 relay, depending upon which trans-

mitter is selected. The transmitter relays are controlled from the decoder

command system.

7.2.5 Hybrid Circulator

The hybrid circulator is located in compartment number 7 of the wheel.

This unit permits the simultaneous operation of two receivers at the same fre-

quency from a single antenna system. It satisfies the condition of low path loss

between the diplexer and either receiver and provides high isolation between

the receivers. Thus, the receivers operate independently of each other.
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Figure 7-2-Antenna Elements

This unit consists of a lumped constant bridge circuit, each branch of which

is housed in an individual compartment to prevent cross coupling. One rf input

and two rf outputs are provided.

7-5



Section 8

EXPERIMENT COMPLEMENT

8.1 INTRODUCTION

The spacecrafts carry into orbit between 7 and 9 experiments. The sail

section experiments are pointed and solar-oriented. Tables 8-1 through 8-4

list the institutions and experiments for a specific spacecraft.

Table 8-1

OSO-E1 Experiments

Institution Experiment

Pointed

Air Force Cambridge Research

Laboratories

GSFC

Wheel

Ames Research Center

Ames Research Center

Wheel

University of California

( San Diego)

Massachusetts Institute

of Technology

University of Michigan

University of Rochester

University of California
(Lawrence Radiation

Laboratory, Livermore)

Ultraviolet monochromator: 250-1300_

Solar spectrometer: 1-400/_

Measurement of thermal radiation

characteristics of surfaces to deter-

mine emissivity stability of spacecraft

temperature-control coatings

Experiment to measure albedo of the
earth: 3200-7800A

Also a directional radiometer to meas-

ure reflected sunlight and earth tem-

perature on the dark side of the earth in

the range of 1 to 30 microns to supple-
ment the Ames albede experiment.
Mounted on the albedo experiment.

Solar X-ray and gamma-ray bursts:
7-190 kev.

Measure anticoincidence events at

100 kev and at 2.5 Mev

Celestial gamma-ray detector: 100
Mev and greater

Solar X-ray experiment: 8-20_

Cosmic-ray charge spectrum detector:

measure intensity of the nuclear com-

ponent of primary cosmic radiation and

of high-energy gamma radiation > 100

Mev from the sun and the galaxy

Proton-electron detector: electron

energies > 60 key and proton energies
• 2' Mev. This experiment is similar to

the experiment on OSO-A and OSO-D
(Backup experiment only. To be flown

if another wheel experiment is not

available.)
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Table 8-2
OSO-D Experiments

Institution Experiment

Pointed

American Science and

Engineering, Inc.

Naval Research Laboratory

Harvard College Observatory

Wheel

American Science and

Engineering, Inc.

University College, London, and

University of Leicester

University College, London

University of California-
Lawrence

Radiation Laboratory
Livermore

Naval Research Laboratory

Naval Research Laboratory

Solar X-ray telescope; Spectrum

analysis 8-20_, above 20/_, and pos-

sibly below 8_ and map the sun in

X-rays

Bragg crystal X-ray spectrometer:
I-sA

Improved normal-incidence 300-1300A

scanning spectrometer- spectrohelio-

graph

Measurement of extrasolar X-radiation:

0.1-10_, possibly to 50_

Distribution of total solar X-ray emis-
sion over a wide band: 1.2-3.6_, 3-9_,

6-18A,44-55A,44-70A

Study of the solar He II resonance
emission: 304/_

Proton-electron detector: electron

energies >60

Kev and proton energies >2 Mev

X-ray ion chamber monitoring: four
chambers 0.1-1.6_, 0.5-3_, 2-8,_, and

8-16A

Lyman-alpha night-sky glow: monitor
1050-1350_ which includes the alpha

line at 1216_
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Table 8-3
OSO-F Experiments

Institution Experiment
Pointed

University College, London, and

University of Leicester

Naval Research Laboratory

GSFC

X-ray spectroheliograph: 3-9/_ and
s-ls 

Extreme ultraviolet solar spectro-

heliograph: an improved version of

experiment on OSO 2.

Continuation of the studies of the solar

spectrum.- 1-400._. Continuation of

the studies previously started on OSO

1 (an improved version of the instru-

ment scheduled for OSO-E1).

Wheel

Centre National de la Recherche

Scientifique, France

Naval Research Laboratory

GSFC

University of Minnesota

University of Colorado

Measurement of the self-reversal of

the solar Lyman-alpha line

Solar X-ray radiation ion-chamber

photometer, monitoring experiments:

0.1-1.6_, 0.5-3_, 2-8/_, and S-16/_.

Duplication of the experiment to be
flown on OSO-D.

Observations of the sun in the low-

energy gamma-ray region: 5 key to

150 key. These data will supplement

measurements made on OSO 2.

Dim-light monitoring experiment meas-

uring and polarization of the light from

air-glow layer. Similar to OSO 2 ex-

poriment.

Solar far-ultraviolet radiation monitor-

ing in three EUV bands: 290-370,_,
465-630_, and 760-1030_ for effect

upon ionization rates in the earth's

upper atmosphere (F and E layers).
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Table 8-4
OSO-G Experiments

Institution Experiment

Pointed

Harvard College Observatory

Naval Research Laboratory

Spectrometer-spectroheliometer
 00 -1 00 

Spectral burst and masking measure-

ment of solar X-rays

Wheel

Rutgers University

Los Alamos Scientific

Laboratories

University of Bologna

University College, London

University of New Mexico

Study of the zodiacal light

Solar X-ray monitoring in the 16-40_

region

Solar X-ray monitoring and gamma ray

astronomy in the 20-200 key energy

range

Study of the He I and He II Reservance
radiation

Measure direction and energies of

primary cosmic gamma rays
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Section 9

SPACECRAFT AND EXPERIMENT

TEMPERATURE MONITORING

9.1 INTRODUCTION

Throughout the spacecraft are sensing devices that measure temperature.

These devices produce an analog output that is measured and time shared with

other inputs by electronic subcommutators. There is one subcommutator in

each multiplexer-encoder located in the wheel and one subcommutator attached
to the pointed experiment in the sail. These ......suocummu_ators apply thc ,,_1,_

_AA_V b

data to the main multiplexer-encoder where it is converted to digital form and

encoded. Thereafter, it is processed the same as the experiment digital data.

Refer to Tables 4-3 and 4-4 for the analog subcommutator channel allocations.

9.2 TEMPERATURE MONITORING

Sixteen analog subcommutator channels are located throughout the space-

craft for measuring temperature. The wheel temperature measurements include:

bottom skin, top skin and rim structural measurements; batteries number 1 and
number 2; and the temperature of transmitter number 1.

The equipment that is monitored on the sail includes: gas bottle; hub; solar

cells; servo amplifier; azimuth casting; subcommutator number 2; power switch;
and the crystals within the NRL experiment.

Q

9.2.1 Temperature Probe

The temperature probe consists of a single stage transistor dc amplifier.

Temperature characteristics of the transistor cause the output voltage to vary
between 0 and 5 volts dc. These temperature characteristics are between minus

50 degrees and plus 70 degrees centigrade for the -70A model and between

minus 40 degrees and plus 100 degrees centigrade for the -100A model. Input

voltage is supplied from a 15-volt regulated supply and the output impedance is

9 kilohm. The weight of the complete unit is approximately 6 grams which

makes it possible to mount the unit by cementing it in place.
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Section10

LAUNCH PROGRAM

10.1 INTRODUCTION

There is a sequencing timer and a series of actuating devices installed in

the spacecraft to automatically perform a sequence of events that must occur

the latter part of the launch phase and prior to injection into orbit. The se-

quencing timer is started by the acceleration switch during third stage spin up.

(See Fi_u,'u _ " _ _i U--JL .1

The launch signal is applied from the launch bus, through the closed con-

tacts of both angular acceleration switches, to the run coil of the timer run

relay. Control power is then applied, through the closed contacts of both se-

quence timers, through the contacts of the timer run relay, and then to the
timer motors.

During specific times of the launch sequence timing cycle, pulses will

energize applicable relays or during ground checkout will apply signals to the

console for testing purposes. These energized relays will perform the func-

tions of applying squib battery power to ignite squibs, apply launch power to

the orbit power bus, energize the arming relay and auto-man relay in the spin
control box.

10.2 ANGULAR ACCELERATION SWITCH

The angular acceleration switches sense spacecraft and third stage accel-

eration at spin-up and energize the run coil of the timer run relay which in turn

starts the launch sequence timers.

The angular acceleration switches are located in compartments number 1

and 7 of the wheel. These switches consist of two permanent magnets attached

to a fixed frame and a magnet attached to a movable bronze rotor. The two

magnets are opposite to one another so that there is a strong attraction between

them. The rotor is dynamically balanced and is mounted so that its axis of ro-

tation is parallel to the spin axis of the spacecraft. As the spacecraft is spun-

up (accelerated), the inertia of the rotor tends to cause it to rotate about its

axis opposite to the direction of angular acceleration of the spacecraft (or to
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remain fixed in inertial space). If the acceleration is low, the force of attraction

between the magnets will hold the rotor fixed relative to the spacecraft. However,

as the acceleration is increased, a point is reached where the inertia force of the

rotor is sufficient to overcome the magnetic forces and the rotor begins to rotate

relative to the spacecraft.

An angular acceleration of the payload of 5.0 + 0.5 radians/sec 2 causes the

rotor to rotate approximately 180 degrees and operates the switch. Two angular

acceleration switches are employed in parallel to increase the reliability of the

system.

10.3 SEQUENCE TIMERS

The two sequence timers (one of which is redundant) are loacted in com-

partment 7 of the wheel. Each drive motor operates on 16 to 23 volts dc sup-

plied by the continuous power bus. The timers are sealed units which consist

of seven single-pole, single throw switches. Each switch is capable of switch-

ing 250 milliamps at 20 volts dc (resistive).

A total run time of 1400 seconds for the timer is divided into two functional

times; -100 to 0 for prelaunch, reset, and other test functions, and from 0 to

1300 for operational functions. Figure 10-2 shows the time span and the switch

opening and closing times. As each switch opens (or closes) a circuit is com-

pleted to perform a function.

10.3.1 Timer Operation

The third stage spin-up event actuates the acceleration switches and applies

continuous bus power to the coil of the timer run relay. With this relay energized,

power is then applied through the number 2 contacts of the timer to the timer

motor.

Figure 10-3 shows the launch and orbit injection events. These events are

for a typical mission and may vary slightly from mission to mission. The time

events mentioned in the following circuit explanations may also vary, depending

upon the mission.

10.3.2 Time Events

An automatic reset function is performed through the number 1 contact of
the timer. The timer reset break is defined as zero time. All other time func-

tions use this time as their reference point.
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GEN. NOTES UNLESSOTNEIIWI_ SF|CIFIED:

I. PRE_'ERR[D VENDOR:

LIND INSTRUM[NT6 INC MT VIEW Q_,LIF

[] SPECIFICATION 6:

TEMPERATURE :

HOLD /_.CEURACY TO RANGE CONDITtONI FROM +lO'C TO +40_'C.

HOLD ACCURACY TO RANGE CONDITION 2 FROM-20"CTO+46°C.

VOLTAB£

HOLD _J;URACY TO RANGE COk]DITION i FROM ITVDC TO 20VDC.

HOLD ACCURACy TO RANGE CONDITION Z FRoM IOVDC TO ,?.2VDC.

VIBRATION

TIIAER 14UST OPERATE AND HOLD ACCURACVTO RANGE CONDITION _.

DURING ONE 15 MINUTE SWEEP ALONG THE THRUST AXIS AT THE

F.0LLOWING LEVELS: •

S-18cP5 0.40A

18-50CP_ 6,¢ 8 PEAK

50-75 CP5 14.8 G PEAK

15-1"/5 CPS "25.00PEAK

175 -1000 CP5 14.8 O PEAK

IO00- ZOO0 CP5 21.1 6PEAK

T_MER MUST OPERATE AND HOLD ACCURACY TO RANGE CONDITION I

DURLNG ONE 15 MINUTE 5WEEP ALONGTH£ TANGENTIAL AXIS AND

ONE 15 MINUTE 5WEEP ALONG THE RADIAL AXIS AT THE FOLLOWING

LEVEL',

- ! _ Co_ 0.¢ DISPLACE MENT PEAK TO PEAK

14-50 CP5 s..O G PEAK

SO- 2000CP5 6.0 GPEAK

ACCELERAT_ON

TIMER MUST HOLD ACCURACy WITHIN RANGE CONDITION I DURING

IS 6/5 ACCELERATION FOR A PERIOD OF S MINUTES ALONG THRUST AXIS.

TIMER MUST HOLD ACCURACV WITHIN PHAGE CONDITION _. DURING

14 G'5 ACCELERATION FOR APERIOD OF IOMINUTE5 ALONG RADIAL AXIS.

CYCLE TIME

5_.TWEEN l&O0 _ IbO0 SECONDS ACCORDING TO AVAIL&E4LITY OF

GEAR TRAINS

CONTACT5

EACH BRUSH MUST {_E CAPABLE OF SWITCHING 600 MA AT 20VDC RESISTIVE

AND CAPAISLE OF CARRyiNG Z AMPS. AT LEAST 4 E_USHES IN PARALLEL

W1LL E_E USED _0_ EACH CIRCUIT> BUT THE LO&D ON THE CIRCUIT _/ILL NOT

EXCEED THE RATING FOR A 5INGLE I=.RUSH, CONTACT RESISTANCE AT EACH

BRUSH MUST BE LESSTHAN ONE OHM. AT LE.&ST TWO CRUSHES ARETOBE

ELIMINATED t_ETWEEN &D, JACEJ_LT_SWITCH POSITIONS. TRIM RCSISTO_ !:OR

_S;EED CONTROLTO HAVE A MAXIMUM RESISTANCE OF" 5 OHMS.

UFE

_000 CYCLES MINIMUM

FINIbH
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HOURS.THE LEAK MUSTBE LESS THAN 5xlO -6 STD CCOF HELIUM PER SEC

WHILE ;N A VACUUr4 OF 30 MM FIG OR LOWER.

MOTOR CURRENT

MAX k4OTOR CURRENT; 50MA FOR DIS551-L_ 65 MA FOR O18551-_,-5 ¢-T AT 19V

AND OPERATING TEMPERATURE FROM + I0" TO _- _[O°C

WEIGHT-MAX w'EIGHT I POUND _OUNCE5.

3. B{SRC TO TESTTIMER IN ACCORDANCE WITH LATE_T REV OF" AI8449 FOR DISC51 -I,{ AI&387 FOR DJ8551-3, -5 f -7

_ M&RK"_SI"$ APPLICABLE DASH NO. PER 5PS 19,OO-1-24 NO DECALCOMANIA
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Figure 10-2-Sequence Timer Functions
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+1481.57,NUTATION DAMPER UNLOCK (+800)

4-]9_qi _7 POWER ON FOR SYSTEMS, DE-SPIN, AZIMUTH

ACQUISITION AND PITCH PRECESSION (+600)

+1881 57, ELEVATION UNLOCK AND
+807.57, PAYLOAD SEPARATION (+126) - _ACQUiSITION 1+1200) "

+771.57, ARMS OUT (+90) _ ...._..,_ _". + 1931.57, SEQUENCE FOLLOWING

.j_ )) ...... _ _ ", TIMER START REPEATED (+1250)

+708.57, THIRD STAGE BURNOUT (+37.5) FIRST FLIGHT RECORDER

,_ ._p_,.,,. ', PLAYBACK (+95 MINUTES)
+686.07, THIRD STAGE IGNITION (+15) ",

', (SPACECRAFT ACQUIRES SUN
_r._e'_'-J +683.57, SEPARATION (+2)

. ;'; +671.07, SPIN-UP, _ EACH SATELLITE MORNING)
--,___ " SPACECRAFT TIMER STARTS (0)

_/,_\ COAST AND POSITIONING

/_+305.99,_'w'_ SECOND STAGE BURNOUT

"_/--+182.57, JETTISON SHROUD

_/ +152.57, SECOND STAGE IGNITION, SEPARATION

.;_/;.' +148.57, FIRST STAGE BURNOUT,

0, FIRST STAGE FIRING

LEGEND

Time at left of each event is measured from T-0, in seconds.

Time in parentheses at right of events is measured from start

of spacecraft timer. (Times are approximate.)

Figure 10-3-Typical Launch Sequence Events

10-7



10.3.2.1 Arm Release

At 330 seconds of the timing cycle, number 3 contact of the timer closes.

A pulse with a time duration between 10 and 20 seconds is then applied to the

coils of the two (redundant) arm release relays. Squib batteries number 7 and

number 8 supply power through the contacts of the energized relays to the three

sets of arm release squibs. With the release squibs now ignited, the three arms

are extended from the stowed position.

10.3.2.2 Orbit Power and De-spin

When 600 seconds has elapsed, timer contact number 4 closes for 15 to 20

seconds. A pulse is then applied to the coils of the orbit power and auto-man

relays. These relays have a redundant relay in parallel and will latch-in once

energized. By energizing the orbit power and auto-man relays, orbit power

comes on the spacecraft is de-spun to the nominal 0.5 rps.

10.3.2.3 Nutation Damper Release

The nutation damper release relays are energized with a pulse between 15

and 20 seconds time duration when number 5 contact of the timer closes for this

period. This function occurs at 800 seconds after spin-up. With the nutation

damper release relays energized, squib batteries number 9 and number 10 sup-

ply power through the closed contacts of the relays, exploding the nutation damper

release squibs. The nutation damper is now free to restrain any wobbling of the

spacecraft.

10.3.2.4 Elevation Release and Backup Arming

At 1200 seconds, timer contact number 6 closes applying a 10 to 20 second

time duration pulse to the elevation release and backup arming relays. Separate

squib batteries (number 9 and 10) supply power through the closed contacts of

the elevation release relay to fire the elevation release squibs. The elevation

drive mechanism is then unlatched. The latching type backup arming relay in

the spin control subsystem is also energized which supplies day power to the

system.

At 1250 seconds, all the timer sequence operations are repeated simultane-

ously, to provide redundant actuation of all events.
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10.3.3 Squib Batteries

In order to isolate the squib firing circuit from the main spacecraft power

supply, firing energy for the squibs is taken from separate batteries. The squib

batteries are located in compartment number 4 of the wheel and in the sail struc-

ture. These are nickel-cadmium cells that are capable of taking a 80 to 96-hour

change of 69 to 71 milliamperes. The cell is capable of providing 108 to 132

milliamperes at 1 volt or more for 4.5 hours after completing the following
schedule:

a. Charge - at 59 to 71 milliamperes for 18 to 96 hours

b. Discharge - at 108 to 132 milliamperes for 4.5 hours

c. Charge at 59 tn 71 milliamperes for 18 hours

d. Repeat b and c until four discharge-charge cycles are completed

The cell after being charged is capable of providing a voltage greater than

0.650 volts for at least 2 seconds while being discharged across a 0.037 ohm
load.

10.4 HYDRAULIC SYSTEM

During launch the three nitrogen-gas containers on the extended arms are

folded down around the third stage motor until completion of third stage burning.

They are then released by a squib actuated device and are caused to pivot to the

erect position by centrifugal force. The third stage and payload are rotating at

approximately 120 rpm. If the arms were not restrained, they would be violently

thrown open and could possibly damage the spacecraft. In addition, if the arms

do not erect at the same rate or if one arm does not fully erect, the dynamic

balance of the spacecraft will be upset. A hydraulic system is employed to ac-

complish both of these tasks, slowing the erection and insuring the simultaneous

erection of all three arms.

Each extendable arm is restrained by a piston moving in a fluid filled cyl-

inder attached to the wheel structure (Figure 10-4). The three cylinders are

interconnected so that the fluid, which is discharged from one cylinder, flows

to the intake of the adjacent cylinder. All three arms will extend simultaneously

because the system is completely filled with fluid. The rate of erection is con-

trolled by an orifice in the discharge port of each cylinder. The hydraulic fluid

is ethyl alcohol. Each cylinder is interconnected by copper lines running along

the outer periphery of the wheel structure.
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