UNCLASSIFIED

Distribution

Prepared under

Contract No. Nonr-3815(00)(X)
Task NR 062-297

Supported jointly by

Department of Defense
Atomic Energy Commission
National Aeronautics and
Space Administration

Administered by

S. Doroff
Fluid Dynamics Branch
Office of Naval Research
Department of the Navy

Reproduction in whole or in part is permitted for
any purpose of the United States Government.

THE DYNAMIC BEHAVIOR OF A FOIL IN THE
PRESENCE OF A LUBRICATING FILM

by

A. Eshel and M. Wildmann

RR 66-29

September 1966

Prepared by A. Eshel

and

M. Wild

Approved by

AMPEX CORPORATION

RESEARCH AND ENGINEERING PUBLICATION

UC-271
ABSTRACT

Equations for the oscillations of a foil over a lubricating fluid film are derived and are simplified by a small parameter expansion. A few particular cases are discussed, and a linearized solution is obtained for the case of a massless, perfectly flexible foil moving at a speed U over an incompressible film. The solution reveals the phenomenon that small disturbances in the film thickness, as well as symmetrical large disturbances, propagate at a speed U/2.
CONTENTS

1.0 INTRODUCTION
2.0 DESCRIPTION OF THE MODEL
3.0 ASSUMPTIONS
4.0 BASIC EQUATIONS
5.0 ANALYSIS
6.0 SPECIAL CASES
 6.1 Inextensible Foil
 6.2 Massless Foil
 6.3 Solid Moving at U_o; No Axial Bulk Motion of Foil
 6.4 Massless, Perfectly Flexible Foil, Incompressible Foil
APPENDIX
REFERENCES
DISTRIBUTION LIST
LIST OF FIGURES

1. Schematic View of Problem Under Consideration

A-1. Time History of the Symmetry Point of a Disturbance in the Form of a Square Wavelet.
NOMENCLATURE

\(a \)
Half square wavelet width

\(\tilde{a} \)
Normalized half square wavelet width \(= a/r^{1/4} \)

\(a_n \)
Foil acceleration component normal to local foil direction

\(a_s \)
Foil acceleration component along local foil direction

\(A \)
Height of square wavelet

\(C \)
Compressibility parameter \(= \frac{p_a h_o}{T_o} \varepsilon^{-2/3} \)

\(d \)
Local foil thickness

\(d_o \)
Unstretched foil thickness

\(d_0 \)
Dimensionless foil thickness \(d/d_0 \)

\(D \)
Flexural rigidity of tape per unit width

\(E \)
Modulus of elasticity

\(f \)
Small perturbation \(= H - 1 \)

\(f_0 \)
Initial small disturbance

\(F \)
Fourier transform of \(f \)

\(F_0 \)
Transform of initial disturbance

\(h \)
Clearance

\(h_0 \)
Asymptotic clearance
H Dimensionless clearance ≡ h/h_o
j, k, l, m, n Exponential measures
M Bending moment per unit width
M̅ Normalized moment
M_p Mass parameter = \frac{\sigma \cdot U_o}{12 \mu} \epsilon
p Pressure under foil
p_a Ambient pressure
Q Shear force per unit width
R Local radius of curvature of foil
s Distance along tape; Fourier transform parameter
s̅ Normalized distance along tape ≡ \frac{s}{h_o} \epsilon^{1/3}
S_p Stiffness parameter = \frac{D \epsilon^{2/3}}{T_o h_o^2}
T Tension per unit width of foil
T_o Tension per unit width of foil at s = ∞
T̅ Normalized tension ≡ \frac{T}{T_o}
T_p Tension parameter = \frac{T_o}{E d_o}
t Time
U Foil velocity component normal to local foil direction
U_o Foil velocity at s = ∞
U̅ Dimensionless velocity component in foil direction = \frac{U}{U_o}
w Foil velocity component normal to local foil direction
\[\bar{W} \] Normalized velocity component normal to foil direction = \(\frac{W}{U_o} \) \(\epsilon^{-1/3} \)

\[x \] Longitudinal coordinate

\[\epsilon \] Dimensionless parameter \(\frac{6\mu U_o}{T_o} \)

\[\chi \] Dimensionless curvature

\[\lambda = \frac{2\pi}{\text{(wavelength of Fourier component)}} \]

\[\frac{1}{\lambda} = \lambda \tau^{1/4} \]

\[\mu \] Viscosity

\[\nu \] Poisson ratio

\[\pi \] Dimensionless pressure \(\frac{p - p_a}{T_o/h_o} \) \(\epsilon^{-2/3} \)

\[\sigma \] Foil mass per unit area

\[\sigma_o \] Unstretched foil mass per unit area

\[\frac{1}{\sigma} \] Dimensionless foil mass per unit area

\[\tau \] Fluid shear traction on foil; dimensionless time \(t \frac{U_o}{2 h_o} \) \(\epsilon^{-1/3} \)

\[\theta \] Slope

\[\xi \] Normalized longitudinal coordinate = \(\frac{x}{h_o} \) \(\epsilon^{1/3} \)
1.0 INTRODUCTION

The dynamics of a flexible foil serving as a boundary for the flow of a thin fluid film is a problem of considerable interest and application. The use and manufacture of magnetic tapes, paper, and plastic foils are some of the fields in which such applications arise.

Previous studies of this elasto-hydrodynamic problem were confined to steady state. It is the purpose of this paper to formulate and obtain a solution for a simple model involving transient phenomena in order to gain understanding and make it possible to interpret and devise techniques for the solution of more complex configurations which arise in practice.

2.0 DESCRIPTION OF THE MODEL

Consider an infinitely wide foil stretched between two far apart guides (Fig. 1) and moving at a very small distance, h_0, from a solid surface. Neglecting gravity, the equilibrium configuration of the foil may be found to be a straight line connecting the supports. At time $t = 0$, a disturbance in the shape of the foil is introduced, and the problem is to find its subsequent history.

The coordinates used in the mathematical description of the problem are t (time) and x (stationary position coordinate measured along the solid surface). Vectorial resolutions into components are made along the instantaneous positions of the foil (subscript s) and normal to it (subscript n). Some of the equations are more conveniently derived using the foil length s as a coordinate, rather than the stationary coordinate x.
Fig. 1 Schematic View of Problem Under Consideration
The conversion between the two coordinates is

\[
\left(\frac{\partial s}{\partial x} \right)_t = \left[1 + \left(\frac{\partial h}{\partial x} \right)_t^2 \right]^{1/2}
\]

(1)

where \(h \) is the clearance.

3.0 ASSUMPTIONS

(1) The flow is assumed to be planar.

(2) The fluid velocity profile is parabolic, and the fluid inertia is neglected.

(3) For consistency with assumption (1), the approximation is made that the lateral strain in the foil is zero.

(4) The stresses normal to the foil and the effect of the transverse shears on the deformation are neglected in analogy with the theory of plates.

(5) The rotational inertia of the foil is neglected.

4.0 BASIC EQUATIONS

Using assumptions (1) and (2), the fluid continuity is expressed by the Reynolds equation,

\[
\frac{\partial}{\partial x} \left(h^3 \frac{\partial p}{\partial x} \right) = 6 \gamma \frac{\partial (U \rho h)}{\partial x} + 12 \gamma \frac{\partial (p h)}{\partial t}
\]

(2a)

where \(p, U \) are the pressure and the tangential component of the tape speed, respectively, which are functions of position and time. Based on
the same approximation is the expression for the fluid shear tractions on the foil

\[\tau = -\frac{h}{2} \frac{\partial p}{\partial x} - \frac{\mu}{h} \]

(2b)

The three dynamic equations on an element of foil are:

\[p - p_a - \frac{T}{R} + \frac{dQ}{ds} = \sigma a_n \]

(2c)

\[\frac{dT}{ds} + \frac{Q}{R} + \tau = \sigma a_s \]

(2d)

\[\frac{dM}{ds} - Q = 0 \]

(2e)

The right hand side of the last equation vanishes due to assumption (5). In the above equations \(T, \sigma, Q, M, R, a_n, a_s \) denote tension per unit width, foil mass per unit area, normal shear force, bending moment, radius of curvature, normal and tangential acceleration components, respectively. The aforementioned variables are functions of position and time. With assumptions (3) and (4), the stress-strain relations result in the equations,

\[d = d_0 - \frac{\gamma (\gamma + 2)}{E} T \]

(2f)

\[\frac{1 - \gamma^2}{E} \frac{\partial (\dot{r})}{\partial \dot{t}} = \frac{\partial V}{\partial s} \]

(2g)

\[M = \frac{D}{R} \]

(2h)
where d is the local tape thickness which is a function of position and time, and D is the flexural rigidity per unit width:

$$D = \frac{Ed^3}{12(1 - \nu^2)}$$

The continuity equation for the tape is

$$\frac{\partial}{\partial x} \left[\frac{d}{d} \left(u \cos \theta - W \sin \theta \right) \right] = -\frac{\partial}{\partial t} \left(d \sigma \right)$$

(2j)

where $\theta = \theta(x, t)$ is the slope of the foil and $W(x, t)$ is the normal component of the tape speed. The acceleration components of an element of foil are*:

$$a_t = \frac{Du}{Dt} - \frac{D\theta}{Dt} W$$

(2l)

$$a_n = \frac{DW}{Dt} + \frac{D\theta}{Dt} U$$

(2m)

*The operator Df/Dt denotes the convective derivative, i.e., the rate of change of the property f following a material point of the tape. In (x, t) and (s, t) expressions, this becomes, respectively:

$$\frac{Df}{Dt} = \left(\frac{\partial f}{\partial x} \right)_t \left(u \cos \theta - W \sin \theta \right) + \left(\frac{\partial f}{\partial t} \right)_x$$

$$= \left(\frac{\partial f}{\partial s} \right)_t \left(\frac{Ds}{Dt} \right) + \left(\frac{\partial f}{\partial s} \right)_s$$
Finally, the following kinematical relations are needed to complete the formulation:

\[\frac{l}{R} = -\frac{\frac{\partial^2 h}{\partial x^2}}{\left[1 + \left(\frac{\partial h}{\partial x} \right)^2 \right]^{3/2}} \]

(2n)

\[\frac{Dh}{Dt} = U \sin \Theta + W \cos \Theta \]

(2o)

\[\frac{\partial h}{\partial x} = \tau g \Theta \]

(2p)

5.0 ANALYSIS

In the following, the equations will be nondimensionalized and then simplified by means of an asymptotic analysis. The analysis revolves around the dimensionless group \(\epsilon = \frac{6\mu U_0}{T_0} \) which in view of past experience\(^1\), is chosen as a perturbation parameter. The dependent variables will be normalized with respect to their characteristic magnitude so that the new dimensionless quantity will be of order unity. The independent variables will be normalized with respect to their characteristic interval of change so that differentiation with respect to the resulting dimensionless variable will not change the order of magnitude of the differentiated dimensionless variable. Those characteristic dimensions which are unknown a priori are formed with the aid of unknown exponents which are to be determined later.
Thus,

\[\tilde{U} \equiv \frac{U}{U_o} \quad (3a) \]

\[\tilde{d} \equiv \frac{d}{d_o} \quad (3b) \]

\[\tilde{c} \equiv \frac{c}{c_o} \quad (3c) \]

\[H = \frac{h}{h_o} \quad (3d) \]

\[\tilde{T} \equiv \frac{T}{T_o} \quad (3e) \]

\[\bar{T} = \frac{b - b_k}{k} \quad (3f) \]

\[\chi = \frac{h_o / \varepsilon^n}{\bar{R}} \quad (3g) \]

\[\bar{W} = \frac{W}{U_o \varepsilon^2} \quad (3h) \]
The new variables Eq. (3) are substituted in Eqs. (2). In addition, Eq. (2h) is substituted in Eq. (2e) and Eqs. (2b), (2e), (2l), (2m) into Eqs. (2c), (2d). Finally, Eq. (2p) is expanded into a trigonometric series as follows:

\[\theta = \arctan \left(e^{-m} \frac{\partial H}{\partial \xi} \right) = e^{-m} \frac{\partial H}{\partial \xi} - \frac{e^{-3m} \left(\frac{\partial H}{\partial \xi} \right)^3}{3} + \ldots \]

(4)

and the transformation

\[\left(\frac{\partial}{\partial \xi} \right)_t = \left[1 - \frac{1}{2} \frac{\partial H}{\partial \xi} e^{2m} \ldots \right] \frac{\partial}{\partial \xi} \]

(5)

is applied. With these changes, Eqs. (2) become:
\[
\varepsilon^{2n+2k} \left(\frac{\partial}{\partial \xi} \left(\frac{H}{\xi} \right) \frac{H}{\xi} \right) = \varepsilon^{1+n+k} \left(\frac{\partial}{\partial \xi} \left(U \frac{h}{\xi^2} \right) \frac{H}{\xi} \right) + \varepsilon^{1+n+k} \left(\frac{\partial}{\partial \xi} \left(\frac{h}{\xi^2} \right) \frac{H}{\xi} \right)
\]

(6a)

\[
\frac{\partial}{\partial \xi} \left(1 - \frac{1}{2} \left(\frac{\partial \xi}{\partial \xi} \right) \varepsilon^{2m} \right) + \frac{\partial}{\partial \xi} \left(1 - \frac{1}{2} \left(\frac{\partial \xi}{\partial \xi} \right) \varepsilon^{2m} \right) - \frac{1}{2} \frac{\partial^2 \xi}{\partial \xi^2} - \frac{\varepsilon^{1-m}}{H} = \frac{\xi U \varepsilon^{1+m}}{2} \left(\frac{\partial \xi}{\partial \xi} \right) \frac{\partial H}{\partial \xi} \varepsilon^{2m}
\]

(6b)

\[
\frac{\partial}{\partial \xi} \left(1 - \frac{1}{2} \left(\frac{\partial \xi}{\partial \xi} \right) \varepsilon^{2m} \right) + \frac{\partial}{\partial \xi} \left(1 - \frac{1}{2} \left(\frac{\partial \xi}{\partial \xi} \right) \varepsilon^{2m} \right) - \frac{1}{2} \frac{\partial^2 \xi}{\partial \xi^2} - \frac{\varepsilon^{1-m}}{H} = \frac{\xi U \varepsilon^{1+m}}{2} \left(\frac{\partial \xi}{\partial \xi} \right) \frac{\partial H}{\partial \xi} \varepsilon^{2m}
\]

(6c)

\[
\bar{d} = 1 - \nu (1 + \nu^2) \frac{T_0}{E_d} \bar{T}
\]

(6d)

\[
\frac{1 - \nu^2}{2} \frac{T_0}{E_d} \frac{\partial (\bar{u})}{\partial \xi} = \varepsilon^{m-j} \frac{\partial \bar{u}}{\partial \xi} \left[1 - \frac{1}{2} \frac{\partial H}{\partial \xi} \varepsilon^{2m} \right]
\]

(6e)

\[
2 \varepsilon^{m-j} \frac{\partial}{\partial \xi} \left[\bar{u} \left(1 - \left(\frac{\partial \xi}{\partial \xi} \right)^2 \varepsilon^{2m} \right) - \bar{w} \varepsilon^{l+m} \frac{\partial H}{\partial \xi} \varepsilon^{2m} \right] = - \frac{\partial (\bar{c} \bar{d})}{\partial \tau}
\]

(6f)

\[
\chi = - \varepsilon^{2m-n} \frac{\partial H}{\partial \xi} \left[1 - \frac{1}{2} \left(\frac{\partial \xi}{\partial \xi} \right)^2 \varepsilon^{2m} \right]
\]

(6g)

\[
\varepsilon^{j} \frac{\partial H}{\partial \tau} = 2 \left(\bar{u} \frac{\partial H}{\partial \xi} \varepsilon^{m} + \bar{w} \varepsilon^{l+m} \right)
\]

(6h)
The already mentioned perturbation process with $\epsilon \to 0$ will be considered now. In the physical problem which is of interest here, namely, the time dependent problem with interaction between the fluid-mechanical effects and the elastic effects in the foil, all the terms of Eq. (6a) are to be of the same order, hence:

$$2m + 2k = 1 + m + k \quad (7a)$$

$$2m + 2k = 1 + k + j \quad (7b)$$

Since it is desired that χ and $\frac{2H}{\xi^2}$ will be of order unity it follows from Eq. (6j) that it must be true that

$$2m - n = 0 \quad (7c)$$

By similar reasons it is concluded from Eq. (6c) that

$$n - k = 0 \quad (7d)$$

As a result of Eq. (6h):

$$l = j \quad (7e)$$

m = 1/3 \quad (8a)

n = 2/3 \quad (8b)

k = 2/3 \quad (8c)

j = 1/3 \quad (8d)

l = 1/3 \quad (8e)
It is further concluded from Eq. (6c) that foil stiffness is important when the stiffness parameter

\[S_p = \frac{D \epsilon^{2/3}}{T_o h_o^2} \sim O(\epsilon) \]

and foil mass is important when the mass parameter

\[M_p = \frac{S_o U_o}{T_o} \epsilon \sim O(\epsilon) \]

Variations in tension, speed and thickness are significant when the extensibility parameter

\[T_p = \frac{T_o}{E \epsilon_o} \sim O(\epsilon) \]

and the effect of fluid compressibility is appreciable when the compressibility parameter

\[\frac{1}{\epsilon_p} = \frac{T_o \epsilon^{2/3}}{f o h_o} \sim O(\epsilon) \]

The functions \(H, \pi, T, d, U, W, x, \delta \) are now expanded in a series of the form:

\[P = P_o + P_1 \epsilon^{2/3} + \ldots \ldots \]

where \(P \) stands for any one of the above property functions. Substitution of the expansion Eq. (13), into the equations (6) collecting terms of equal powers of \(\epsilon^{2/3} \), the zeroth approximation with the omission of the subscript zero becomes:

*If consistent higher order approximation equations are desired it is necessary to use more accurate fluid mechanical equations and at a certain stage, also, more accurate elastic equations.
\[
\frac{\partial}{\partial \xi} \left(H \left[\pi + c_p \right] \frac{\partial \pi}{\partial \xi} \right) = \frac{\partial \left(\bar{U} \left[\pi + c_p \right] H \right)}{\partial \xi} + \frac{\partial \left[\left(\pi + c_p \right) H \right]}{\partial \tau} \tag{14a}
\]

\[
\frac{\partial \pi}{\partial \xi} = \frac{\partial \bar{U}}{\partial \tau} \tag{14b}
\]

\[
\pi - \tau \chi + s_p \frac{\partial^2 \chi}{\partial \xi^2} = \frac{\partial}{\partial \tau} \left[\frac{\partial \bar{W}}{\partial \tau} + \frac{\partial}{\partial \tau} \left(\frac{\partial H}{\partial \xi} \right) \right] \tag{14c}
\]

\[
\bar{d} = 1 - \nu^2 \left(1 + \nu^2 \right) T_p \bar{T} \tag{14d}
\]

\[
\frac{1 - \nu^2}{2} T_p \frac{\partial (\bar{d} \bar{U})}{\partial \tau} = \frac{\partial \bar{U}}{\partial \xi} \tag{14e}
\]

\[
\frac{\partial}{\partial \xi} \left(\bar{d} \bar{U} \right) = -\frac{1}{2} \frac{\partial (\bar{d} \bar{U})}{\partial \tau} \tag{14f}
\]

\[
\chi = \frac{\partial^2 H}{\partial \xi^2} \tag{14g}
\]

\[
\frac{DH}{D\tau} = 2 \left(\bar{U} \frac{\partial H}{\partial \xi} + \bar{W} \right) \tag{14h}
\]

where the operator \[\frac{D}{D \tau}\] to the zeroth approximation is:

\[
\frac{D}{D \tau} = 2 \bar{U} \frac{\partial}{\partial \xi} + \frac{\partial}{\partial \tau}
\]
6.0 SPECIAL CASES

6.1 Inextensible Foil

In this case \(T_p \sim 0(\varepsilon^{2/3}) \). If at \(\xi = -\infty \),
\(\bar{T} = 1, \ \bar{U} = 1 \) and if initially \(\bar{\sigma}(\xi) = 1 \) then \(\bar{d} = 1, \ \bar{\sigma} = 1 \) at all times
and

\[
\frac{\partial}{\partial \xi} \left(H \left[C_p + \Pi \right] \frac{\partial \Pi}{\partial \xi} \right) = \frac{\partial}{\partial \xi} \left(\left[C_p + \Pi \right] H \right) + \frac{\partial}{\partial \tau} \left(\left[C_p + \Pi \right] H \right) \tag{15a}
\]

\[
\Pi + \frac{\partial H}{\partial \xi} - \frac{1}{P} \frac{\partial H}{\partial \xi} = 2 \ M_p \left(\frac{\partial^2 H}{\partial \xi^2} + \frac{\partial^2 H}{\partial \tau \partial \xi} + \frac{1}{4} \frac{\partial^2 H}{\partial \tau^2} \right) \tag{15b}
\]

It is seen that in this case the effect of the foil mass appears only transversely. If extensionality is not negligible then the foil mass is of equal significance or insignificance transversely and longitudinally.

6.2 Massless Foil

In this case \(M_p \sim 0(\varepsilon^{2/3}) \). If at \(\xi = -\infty, \ \bar{T} = 1 \),
then \(\bar{U} = 1, \ \bar{\sigma} = 1, \ \bar{d} = 1 - \nu (1 + \nu^2) \ \bar{T}_p \) at all times and the equations reduce to

\[
\frac{\partial}{\partial \xi} \left(H \left[C_p + \Pi \right] \frac{\partial \Pi}{\partial \xi} \right) = \frac{\partial}{\partial \xi} \left(\left[C_p + \Pi \right] H \right) + \frac{\partial}{\partial \tau} \left(\left[C_p + \Pi \right] H \right) \tag{16a}
\]

\[
\Pi + \frac{\partial^2 H}{\partial \xi^2} - \frac{1}{P} \frac{\partial H}{\partial \xi} = 0 \tag{16b}
\]
6.3 Solid Moving at \(U_o \): No Axial Bulk Motion of Foil

Two cases must be distinguished here:

Case a:
Large disturbances causing longitudinal foil speeds of order \(U_o \) are considered. In this case the speed in the Quette terms in the Reynolds equation and in the fluid shear expression has to be modified to include the sum of \(U_o \) and \(U_{foil} \). In dimensionless form, to the zeroth approximation, the only modification in Eqs. (14) will be the replacement of \(U \) by \(1 + U \) in Eq. (14a).
(The effect on the fluid shear is, anyway, of order \(\epsilon^{2/3} \).)

Case b:
Only longitudinal disturbances which do not affect the fluid mechanics will be considered. Thus, foil speeds of order \(U_o \epsilon^{2/3} \) or less are considered. To the zeroth order approximation:

\[
\frac{D}{Dt} = \frac{\partial}{\partial t} \left(\epsilon^{2/3} \right)
\]

\[
\frac{\partial \eta}{\partial t} = 2 \bar{W}
\]

\[
\frac{\partial T}{\partial t} = \mathcal{O}(\epsilon^{3/2})
\]

The basic equations become to the zeroth order approximation

\[
\frac{\partial}{\partial \xi} \left(\eta^2 \left[\eta + \frac{1}{2} \eta \right] \frac{\partial \eta}{\partial \xi} \right) = \frac{\partial}{\partial t} \left[\frac{\partial \eta}{\partial \xi} \right] + \frac{\partial}{\partial t} \left[\frac{\partial \eta}{\partial t} \right]
\]

(17a)

\[
\eta + \frac{\partial \eta}{\partial \xi} - S_p \frac{\partial \eta}{\partial \xi} = 2 \epsilon \eta \frac{\partial \eta}{\partial \xi} \frac{\partial \eta}{\partial t}^2
\]

(17b)
6.4 Massless, Perfectly Flexible Foil, Incompressible Flow

The equations reduce to

$$\frac{\partial}{\partial \xi} \left(H^3 \frac{\partial H}{\partial \xi^3} \right) + \left(\frac{\partial H}{\partial \xi} \right) = - \frac{\partial H}{\partial \tau}$$ \hspace{1cm} (18)$$

Writing the equation in terms of a coordinate $\xi' = \xi - \tau$ moving at a speed $\frac{d\xi}{d\tau} = 1$, it becomes:

$$H^3 H'' + 3 H^2 H' H''' = - \frac{\partial H}{\partial \tau}$$

It is clear, therefore, that symmetrical disturbances will make $\frac{\partial H}{\partial \tau}$ symmetrical and will stay symmetrical as time goes on. Thus, the axis of symmetry of such disturbances travels at a dimensionless velocity of $\frac{d\xi}{d\tau} = 1$ which corresponds to an actual velocity of $U/2$. It will be shown below that small disturbances of arbitrary shape also propagate at a velocity of $U/2$. This is not necessarily true, however, for large non-symmetrical disturbances. For example, it can be shown that the "nodal" point, $H = 1$, of an antisymmetrical large disturbance moves at a speed different from $U/2$.

If the disturbance is small relative to the magnitude of the clearance, the equation may be linearized as follows:

$$H = 1 + f(\xi, \tau)$$ \hspace{1cm} (19)$$

$$\frac{\partial^2 f}{\partial \xi^2} + \frac{\partial f}{\partial \xi} = - \frac{\partial f}{\partial \tau}$$ \hspace{1cm} (20)$$

with $f = f(\xi)$ at $\tau = 0$.

RR 66-29 15
The solution is obtained by taking the Fourier transform:

$$F(s, \tau) = \int_{-\infty}^{\infty} f(\xi, \tau) e^{-2\pi i s \xi} d\xi$$

(21)

The transformed differential equation is

$$\frac{dF}{d\tau} + (2\pi s i + 16 \pi^4 s) F = 0$$

(22)

and its solution

$$F(s, \tau) = F_o(s) e^{-2\pi s i + 16 \pi^4 s \tau}$$

(23)

where $F_o(s)$ is the transformed initial condition. Inversion is made by two successive uses of the convolution theorem and the use of a new variable $\lambda = 2\pi s$. It is found that

$$H(\xi, \tau) = 1 + \frac{1}{\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (\xi') e^{-\lambda^4 \tau} \cos \lambda (\xi - \xi' - \tau) d\lambda \lambda^4 d\xi'$$

(24)

Eq.(24) describes wave motion in a dissipative nondispersive medium. Each Fourier component of the disturbance decays at a rate which is proportional to $e^{-\lambda^4 \tau}$ and travels at a constant speed of $U_o/2$. A particular example is given in the appendix.

The above result has been obtained for a case with an infinite distance in terms of ξ between the disturbance and the boundary. Since ξ is a stretched coordinate, this result applies in practice, to cases with finite length between the supports, as long as the propagation of the disturbance has not yet reached within an order of $h_o/\epsilon^{1/3}$ from the boundary. Furthermore, this result applies to the central region of self-acting foil bearing as long as the disturbance is far enough from the inlet and exit regions.
APPENDIX

In this section a specific example is considered in order to enhance the physical understanding of the phenomenon. Imagine an initial disturbance in the form of a square wavelet

\[f_0(\xi) = A \quad -a < \xi < a \]

\[f_0(\xi) = 0 \quad \xi < -a ; \quad a < \xi \]

Let the point \(\xi = \tau \) be followed. Putting \(\lambda \tau^{1/4} = \lambda \) and \(\frac{a}{\tau^{1/4}} = \bar{a} \)

Eq. (24) becomes

\[H(\tau, \tau) = 1 + \frac{2a}{\pi} \int_0^\infty \frac{e^{-\lambda^4}}{\lambda} d\lambda \]

This integral is numerically evaluated* and the result is depicted in Fig. Al. When \(\bar{a} \) is small (large \(\tau \)) the integral may be approximated by:

\[
\frac{H(\tau, \tau) - 1}{2 \pi / a} \approx \bar{a} \int_0^\infty e^{-\lambda^4} d\lambda - \frac{\bar{a}^3}{3!} \int_0^\infty \frac{e^{-\lambda^4}}{\lambda^2} d\lambda + \ldots
\]

\[= 0.906402 \left(\frac{q}{\tau^\pi} \right) - 0.051059 \left(\frac{q}{\tau^\pi} \right)^5 + \ldots \]

The asymptotic approximation is represented by a broken line in Fig. Al.

*The apparent singularity in the integral is overcome by using the relation

\[
\frac{H(\tau, \tau) - 1}{2 \pi / a} = \bar{a} \delta - \frac{\bar{a}^3}{3 \cdot 3!} + \delta \int e^{-\lambda^4} \frac{sin \bar{a} \lambda}{\lambda} d\lambda + O(\delta, \bar{a}^5)
\]

where \(\delta \) is a properly chosen small number.
Fig. A-1 Time History of the Symmetry Point of a Disturbance in the form of a Square Wavelet
Since the original profile of the disturbance is flat, the symmetry point is initially in a region of uniform clearance and therefore does not change its elevation. The excess fluid spreads out by forming exit regions with their corresponding undulations at the two ends of the wavelet. Thus for a period of time, the symmetry point may be in a region of curvature convex towards the h_0 line and is, thus, being pushed away from it until it flattens again. This explains the initial undulations shown in Fig. A1.
REFERENCES

Chief of Naval Research
Department of the Navy
Washington, D. C.
Att: Code 429
123
663

Commanding Officer
Office of Naval Research
Branch Office
455 Summer Street
Boston, Massachusetts 02110

Commanding Officer
Office of Naval Research
Branch Office
320 West 44th Street
New York, New York 10018

Commanding Officer
Office of Naval Research
Branch Office
P.O. Box 39
Fleet Post Office
New York, New York 09510

Commanding Officer
Office of Naval Research
Branch Office
1330 East Green Street
Pasadena, California

Commanding Officer
Office of Naval Research
Branch Office
1000 Jersey Street
San Francisco, California

Office of Naval Research
Resident Representative
University of Pennsylvania
3536 Walnut Street
Philadelphia, Pennsylvania 19104

Commanding General
U.S. Army Natural Resources
Research & Development Directorate
Research Division
Washington, D. C. 20315
Att: Mr. Norman L. Klein

Chief of Research and Development
Office of Chief of Staff
Department of the Army
Pentagon Building
Washington, D. C.

Commanding General
US Army Engineer Brig. Laboratories
Fort Belvoir, Virginia
Att: W. N. Craig, Nuclear Power Field Office

Commander
Army Rocket & Guided Missile Agency
Redstone Arsenal, Alabama
Att: Technical Library

E-3D
Box 2096, Duke Station
Durham, North Carolina

Chief of Staff
US Air Force
The Pentagon
Washington, D. C.
Att: AFHRA-43/M

Commander
Air Force Office of Scientific Research
Washington, D. C.
Att: 9MR

Commander
Research and Technology Division
of the Air Force Systems Command
Wright-Patterson AFB, Ohio
Att: AFRP (Mr. W. A. Shockey)

AFRC (Dr. L. McLeod, Jr.)
AFWA (W. A. Nelson)
AFRMR (F. C. Nakamura)

Defense Documentation Center
Cameron Station
Alexandria, Virginia

Chief, Bureau of Ships
Department of the Navy
Washington, D. C.
Att: Code 305 (Dr. J. H. Roth)
347 (R. A. Bakian)
64A (R. N. Faunce)
1500 (J. A. German)

Chief, Bureau of Naval Weapons
Department of the Navy
Washington, D. C.
Att: Code 35F-11 (J. F. Calef)
N65-1 (W. B. Walters)

Director
Naval Research Laboratory
Washington, D. C.
Att: Code 6000
5200

Special Projects Office
Department of the Navy
Washington, D. C.
Att: Code SP200 (D. Gold)

tn tcr (Dr. J. T. Crenen)

Commanding Officer and Director
US Navy Medical Engineering Laboratory
Annapolis, Maryland
Att: Code 850
Code 855 (C. M. Smith)

Material Laboratory Library
Building 211, Code 1E38
New York Naval Shipyard
Brooklyn, New York

Superintendent
US Naval Postgraduate School
Menlo Park, California
Att: Library, Technical Reports Section

Commanding Officer
US Naval Avionic Facility
Indianapolis 18, Indiana
Att: J. A. Weir

Mr. Clarence R. Miller, Jr.
Office of Assistant Director
(Area Reactors)
Division of Reactor Development
US Atomic Energy Commission
Washington, D. C.

Mr. W. Greenman, Chief
Engineering Development Branch
Reactor Development Division
US Atomic Energy Commission
Washington, D. C.

Headquarters Library
US Atomic Energy Commission
Washington, D. C.

US Atomic Energy Commission
Oak Ridge Operations Office
F. G. Ben E
Oak Ridge, Tennessee 37831
Att: Charles A. Kiser

US Atomic Energy Commission
Pentagon Area Office
Plainsboro, New Jersey 08534
Att: Dr. Malan

Chief, Division of Engineering
Maritime Administration
GAC Building
Washington, D. C.

Library
Cyanogen Engineering Laboratory
National Bureau of Standards
 Boulder, Colorado

Director of Research, Code MM
National Aeronautics and Space
Administration
600 Independence Avenue
Washington, D. C. 20546

Scientific and Technical Information
Facility
P. O. Box 1500
Bethesda, Maryland 20014
Att: Rift Representative (GAO/VLO)

(2)
M. Philip J. Mulian
Staff Engineer - Advanced Tapes
IBM Data Systems Division
Development Laboratory
Box 390, Poughkeepsie, New York 12602

General Dynamics/Convair
P. O. Box 1128
San Diego, California 92112
Attn: Library & Information Services (128-00)

Science & Technology Division
Library of Congress
Washington, D. C. 20540

Admiralty Compass Observatory
Ditton Park
Slough, Bucks, England
Attn: Mr. Henri J. Elwertowski

The University of Southampton
Department of Mechanical Engineering
Southampton, England
Attn: Dr. H. S. Grassam

Mr. R. A. Minard
Assistant Product Manager
Gas Bearing Technology Division
MPB Incorporated
Precision Products Division
Keene, New Hampshire

Mr. Edgar J. Gunter, Jr.
University of Virginia
School of Engineering and Applied Science
Charlottesville, Virginia 22903

Mr. L. Licht
Department of Mechanical Engineering
Columbia University
New York, New York

Mr. Sherril Hisaw
The Lafleur Corporation
16659 Gramercy Place
Torrance, California

Dr. Charles C.W. Ng
IIT Research Institute
10 West 35 Street
Chicago, Illinois 60616

Mr. Randy J. Sherman, Manager
Turbine Department
Technical Operations, Inc.
Radiation Products Division
441 Whisman Road
Mountain View, California

RR 66-29
Equations for the oscillations of a foil over a lubricating fluid film are derived and are simplified by a small parameter expansion. A few particular cases are discussed, and a linearized solution is obtained for the case of a massless, perfectly flexible foil moving at a speed U over an incompressible film. The solution reveals the phenomenon that small disturbances in the film thickness, as well as symmetrical large disturbances, propagate at a speed $U/2$.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOILS</td>
</tr>
<tr>
<td>LUBRICATING FILM</td>
</tr>
<tr>
<td>EQUATIONS</td>
</tr>
<tr>
<td>MATHEMATICAL ANALYSIS</td>
</tr>
<tr>
<td>FLUID MECHANICS</td>
</tr>
<tr>
<td>OSCILLATION</td>
</tr>
<tr>
<td>MECHANICAL PROPERTIES</td>
</tr>
</tbody>
</table>

INSTRUCTIONS

1. **ORIGINATING ACTIVITY:** Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2. **REPORT SECURITY CLASSIFICATION:** Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

3. **REPORT TITLE:** Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. **DESCRIPTIVE NOTES:** If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. **AUTHOR(S):** Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. **REPORT DATE:** Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.

7. **TOTAL NUMBER OF PAGES:** The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

8. **NUMBER OF REFERENCES:** Enter the total number of references cited in the report.

9. **CONTRACT OR GRANT NUMBER:** If appropriate, enter the applicable number of the contract or grant under which the report was written.

10. **AVAILABLE/LIMITATION NOTICES:** Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 1. "Qualified requesters may obtain copies of this report from DDC."

 2. "Foreign announcement and dissemination of this report by DDC is not authorized."

 3. "U.S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through"

 4. "U.S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through"

 5. "All distribution of this report is controlled. Qualified DDC users shall request through"

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. **SUPPLEMENTARY NOTES:** Use for additional explanatory notes.

12. **SPONSORING MILITARY ACTIVITY:** Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. **ABSTRACT:** Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

 It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U). There is no limitatation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. **KEY WORDS:** Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.