NASA TECHNICAL

NASA TM X-~53397

(CATEGORY)

MEMORANDUM February 21, 1966
&
3 GPO PRICE $
K
; CFSTI PRICE(S) $
&=
§ Hard copy (HC) 702
= Microfiche (MF) ; _45/
1653 July 65
THE ALLEVIATION OF AERODYNAMIC LOADS ON
RIGID SPACE VEHICLES
by MARIO H, RHEINFURTH
Aero-Astrodynamics Laboratory
N67 14909
5 /
E . (PAGES) (i?iﬂ
NASA {M, 5'3_7)72 =

George C. Marshall
Space Flight Center,

Huntsville, Alabama



P

TECHNICAL MEMORANDUM X-53397

THE ALLEVIATION OF AERODYNAMIC LOADS ON RIGID SPACE VEHICLES

By
Mario H. Rheinfurth
George C. Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

A necessary condition for the successful flight of a space vehicle
through atmospheric disturbances is to maintain stability at all flight
times, It is, however, equally important to keep the responses within
the design limits of control deflections and structural loads of the
vehicle, The study demonstrates how the control systems engineer can
assist in this task by a judicious choice of the control system param-
eters. To this effect, several typical control modes are analyzed for
some basic wind profiles, The extent to which a reduction of aerodynamic
loads and control excursions can be expected is discussed for various wind,
wind shear, and gust conditions., By restricting the analysis to planar
and linearized motion of the vehicle, it is possible to derive a set of
preliminary design rules, which allows one to predict the relative merits
of the discussed control principles when system parameters or wind struc-
ture is changed. 1In addition, the study provides nomograms for the quick
determination of gain settings for accelerometer-controlled vehicles if
the gain values are given for angle-of-attack control and vice versa.

NASA-GEORGE C, MARSHALL SPACE FLIGHT CENTER



NASA - GEORGE C, MARSHALL SPACE FLIGHT CENTER

Technical Memorandum X~53397

THE ALLEVIATION OF AERODYNAMIC LOADS ON RIGID SPACE VEHICLES

By

Mario H. Rheinfurth

CONTROL THEORY BRANCH
DYNAMICS AND FLIGHT MECHANICS DIVISION
AERO-ASTRODYNAMICS LABORATORY

RESEARCH AND DEVELOPMENT OPERATTONS



I. INTRODUCTION

II. EQUATIONS OF MOTION

TABLE OF CONTENTS

........................................

----------------------------------------

A. Space-Fixed Coordinate System .........ciuveeunrsceranss
B. Body-Fixed Coordinate System ......c.icoveveernenaneenns
IITI. CONTROL EQUATION . .:ivvetiearrorscoaonnonnnnannnnsnnsnsssnsas

IV. SYSTEM STABILITY

........................................

V. STEADY-STATE RESPONSE ......................................
A. Gyro Control ..“ ................................. ces e
B. Velocity-Feedback Control ............. ..ot e
C. Angle-of-Attack Control ....... Chese et ceieee
VI. TRANSIENT RESPONSE‘ ................... e e

CONCLUSTIONS ..

iii

12

14

14

14

16

17



LIST OF ILLUSTRATIONS

Figure Title Page
1. Vehicle Coordinate Systems ..... Y i eee e, et 18
2. Gain Values for Equivalent Accelerometer (As =0) ... 19
3. Gain Values for Equivalent Accelerometer

(Ao = 1.0 8€C™) vuviinnninnnienns et . 20

4, Gain Values for Equivalent Accelerometer

(Ao = -1.0 sec™@) ...viiiiriiinnnnn e .. 21

5. Stability Areas for Angle-of-Attack Feedback (El = 0) 22

6. Stability Areas for Velocity Feedback (Bg = 0) ...... 23

7. Gyro Control (Ramp Input) ...... et ertecariaasanasnas 24

8. Gyro Control (Step Input) ..... ceetsereas s e ceeans 25

9. Drift Minimum (Ramp Input) ..... creesessasnaces ceenes 26

10. Drift Minimum (Step Input) ...... Creseteesesans ceean 27
11. load Minimum (Ramp Input) ..... Chesses st stensaseeee 28
12. load Minimum (Step Input) ...... Cecesestrensaanse cees 29
13. Velocity Feedback (Ramp Input) ﬁl = 10 Ag ceeenennns 30

14, Velocity Feedback (Step Imput) El =10 Ag eevvivennenn 31

iv




. DEFINITION OF SYMBOLS

Symbol Definition

F swivel thrust, newton

g longitudinal thrust acceleration, m sec™ <

I moment of inertia about C.M., kg m®

k radius of gyration, m

Lp distance of center of percussion from C.M. (EP = kz/xE), m
m vehicle mass, kg

M' aerodynamic moment coefficient, newton m

N' aerodynamic normal force coefficient, newton

T total thrgst minus drag, newton

\ velocity in standard flight direction, m sec~t

Ve longitudinal vehicle velocity, m sec™?

v normal vehicle velocity, m sec~?

VH longitudinal relative air velocity, m sec™t

Vl‘ normal relative air velocity, m sec™!

' wind velocity normal to standard flight path, m sec~?
X abscissa of space-fixed reference frame, m

Xg location of swivel point relative to C.M., m

Xp location of displacement sensor relative to C.M., m
Xy location of velocity sensor relative to C, M., m

XA location of accelerometer relative to C,M.,, m

y ordinate of space-fixed reference frame, m



DEFINITION OF SYMBOLS (Continued)

Symbol Definition

o angle of attack

B swivel engine deflection

¥ drift angle (¥/V)

e critical damping of control mode

3 abscissa of body-fixed reference frame, m
| ordinate of body-fixed reference frame, m
V) attitude angle of vehicle

We control frequency, sec™?

(Other symbols and abbreviations are explained in the text.)
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TECHNICAL MEMORANDUM X-53397
THE ALLEVIATION OF AERODYNAMIC LOADS ON RIGID SPACE VEHICLES
SUMMARY

A necessary condition for the successful flight of a space vehicle
through atmospheric disturbances is to maintain stability at all flight
times. It is, however, equally important to keep the responses within
the design limits of control deflections and structural loads of the
vehicle, The study demonstrates how the control systems engineer can
assist in this task by a judicious choice of the control system param-
eters. To this effect, several typical control modes are analyzed for
some basic wind profiles, The extent to which a reduction of aerodynamic
loads and control excursions can be expected is discussed for various
wind, wind shear, and gust conditions. By restricting the analysis to
planar and linearized motion of the vehicle, it is possible to derive a
set of preliminary design rules, which allows one to predict the relative
merits of the discussed control principles when system parameters or wind
structure is changed. In addition, the study provides nomograms for
quick determination of gain settings for accelerometer-controlled vehicles
if the gain values are given for angle-of-attack control and vice versa.

I, INTRODUCTION

Stability of a space vehicle is attained by proper control of the
thrust vector, employing jet tabs or swivel engines, Besides the
stability requirement, it is also important to keep the responses caused
by atmospheric disturbances within the design limits of the control
deflections and the structural loads of the vehicle. This problem is
solved in two ways., One is the proper design of the vehicle configura-
tion such that aerodynamic lift and moment coefficients are minimized.
The other is the selection of a control mode which provides load relief
during the period of flight where aerodynamic disturbances become severe.
The possibility and extent of reducing these aerodynamic loads by this
second approach are discussed in this report. This study is aimed at
establishing general criteria for the prediction of trends under changes
of system parameters and wind characteristics. Because of the complexity
of the actual system, this necessitates the introduction of several
simplifying assumptions. Accordingly, the equations of motion are
linearized, and effects of bending, sloshing, inertia, and compliance

of the swivel engines are omitted. The motion of the vehicle is restricted



to the yaw plane, and the system is considered to be time-invariant; this
restricts the analysis to short time intervals of the flight. The effect
of gravity in the yaw plane is neglected. Furthermore, the control equa-
tion is assumed to be linear, omitting actuator lags and control filters,
and all sensing elements are assumed to be ideal with a transfer func-
tion of unity. Although these assumptions at first appear to be very
restrictive, it has been proven that such a simplified analysis still
preserves the essential features of the space vehicle behavior and
provides satisfactory data for preliminary control system design.

The author would like to thank Mr., William D. Clarke for helpful and
stimulating discussions during the preparation of this study.

II, EQUATIONS OF MOTION

In the following analysis, the equations of motion will be derived
both in a space-fixed and a body-fixed coordinate system. The reason
for this is to show how the necessary linearization of the equations of
motion will result in notable differences with respect to the stability
and response of the system.

A. Space-Fixed Coordinate System

The space-fixed coordinate system has its origin at the undis=-
turbed position of the center of mass of the vehicle (Figure 1), The
equation of the lateral translation is obtained by summing all forces
in the space-fixed y~direction, which yields

my = (T - F) sin ¢ + F sin (p + B) + N'Q cos ¢. D)
The equation of rotation is obtained by summing all moments, which yields
% = - FxE sin B - M'a. (2)

The numerical value of the aerodynamic moment coefficient is chosen to
be positive for an aerodynamically stable vehicle, The linearization of
the equations of motion requires two conditions to hold: the rotational
motion ¢ and the engine deflection B have to be small.




With these assumptions, the equations of motion can be linearized
in the form

my = Tep + FB + N'« (3)

I = - FXEB - M'a. (4)

The angle of attack & in the above equations is defined as

tg & = s (5)

where Vi and VH are the relative air velocities perpendicular and parallel

to the longitudinal vehicle axis. They can be expressed in terms of space-
fixed velocities as

Vsin® =9 cos ¢ +w cos @ (6)

1
and

v, =Vecos ¢ +¥ sin @ - w sin ¢. a

Inserting equations (6) and (7) in (5) yields the expression of the angle
yof attack in the form '

tg(@ - ) = o ®)

This expression can be linearized by restriction to small angle-of-attack
values such that

oc=cp+y%. (9)



B. Body-Fixed Coordinate System

The body-fixed coordinate system has its origin at the center of
mass of the vehicle and its abscissa coincides with the longitudinal
vehicle axis (Figure 1).

Summing all forces normal to the vehicle yields
mij = F sin B8 + N'q, (10)
whereas the equation for the rotational mode remains unchanged, i.e.,
Ip = - FxE sin g - M'a. an

The linearization of the above equations of motion requires now only the
restriction to small engine deflections,

mn

FB + N'« 12)

I§ = - Fx p - Mo (13)

Since the condition under which the equations of motion were linearized
are less severe in the body-fixed reference frame, we expect this set of
equations to give a better description of the actual behavior of the
system than the set of equations of the space-fixed reference frame,

It remains to express the angle-of-attack relation (5) in terms
of body-fixed coordinates, This is accomplished by using the kinematical
relation

n= Vn - CPVg, (14)

which can be directly integrated by observing that

vg = - V cos q. (V = const.) (15)




This gives the normal vehicle velocity as

vn =1{) - V sin o. (16)

The corresponding relative air velocities are, therefore, given by

Vsing - 7} +w cos ¢ a7)

'L

and

VH V cos ¢ - w sin @, (18)

From this follows the expression of the angle of attack in terms of body-
fixed coordinates as

tg (@ - @) = W_- T, COS %/cos(a - o) ) (19)

This expression can be linearized by restriction to small rotational
angles and small angles of attack; this yields

a=cp+%. (20)

III, CONTROL EQUATION

It now remains to establish the law for controlling the motion of
the vehicle., To this effect, we employ a linear feedback control system
which establishes a linear relationship between the engine deflection
(control vector) and the state variables of the system in the form

B = ag®, + ai1f, + azfo + gy, + 817, + 82T, (21)




The coefficients aj and gi(i = 0,1,2) represent the gain values of the
various transducers (attitude gyro, rate gyro, accelerometer, etc.) which
monitor the motion of the vehicle., The variables @, ¢0, etc,, represent
the corresponding output signals. The use of higher derivatives in the
control law for more rapid response will in most cases not be necessary,
They are, in fact, undesirable because their implementation will cause
rather noisy output signals,

Within the accuracy requirements of the subsequent analysis, it is
justified to set the output signals monitoring the angular motion of the
vehicle equal to their corresponding actual state variables; i.e,,

P =P bo =9, B =Y. (22)

The output signals of the transducers monitoring the lateral motion,
however, depend on their location along the longitudinal vehicle axis,
For body-fixed sensors, we can obtain their output signals in terms of
state variables (and their time integrals) by using the fundamental
relation as given by equations (3) and (12):

1=y - &9 (23)

We obtain
iy = - G =T - B0 - X (24a)
ho=h-xd =9 -8 [ gt - xo (26)

n=n- xD@ =y - gk/i/ edt - xD¢. (24¢)

Tt should be emphasized at this point, that the quantities f] and 7 in
the above equations do not represent the velocity and displacement along
the normal missile axis, but are merely the time integrals of the normal
vehicle acceleration, 7.

The effect of the integral terms appearing in these equations is
often undesirable, They can be compensated for by appropriate integra-
tions of the output signal of the attitude gyro. These terms can also
be eliminated by mounting the transducers on the space-fixed stabilized




platform. The gain values associated with such platform-mounted sensors
will be designated by e In this case, the control equation is written
in the form

i.

B =agp+ ardp +adp+eoyo + ery, + es¥,, (25)

where the output signals are given by

¥o=9 - XA$ (26a)
?o =3y - XV¢ (26b)
Yo =¥ = X (26c¢)

In general, some sensors will be body-mounted; others will be plat-
form-mounted. 1In each case, the output signals must be expressed in
terms of body-fixed or space-fixed coordinates depending on the equations
of motion used., The following discussion assumes a body-fixed accelerom-
eter and platform-mounted velocity meter and displacement meter, The
control equation, therefore, has the form

B =agp +aip +ad + ey, + ey, + g2, - (27)

Adopting a space-fixed reference frame, we must first express the output
signals of the sensors in terms of space-fixed coordinates using the
relations (24) and (26); this yields

B =acp +ayp +ak + ey + eiy + gy, (28)
where
50 = a5 = egXpy - g8 (29a)
4y = a3 - e1xy (29b)
as = ap - gaX, - (29¢)




It is desirable to simplify the control equation (28) by eliminating the
lateral and angular acceleration terms using the equations of motion

(3) and (4) of the space-fixed coordinate system. This yields the con-
trol equation in the simplified form

B = Ac® + A1 + Ejy + E1y + BQ, (30)
with
. - mI(a0 - xDeo) . . mI .
O mo o mO [o]
mI(al - X el)
Vv ml
A = g Eq = mg °1 (31)

(N'T + mxAM') go - m Mas

(o] mo

=]
Il

ml + mFan2 - F(mexA + I) go.

It is interesting to notice that only the term B, contains aerodynamic
parameters, The above transformation shows that it is possible to replace
an accelerometer by an equivalent angle-of-attack meter and vice versa,

Because of the relationships of equation (31), we can assume without
loss of generality that the control equation is given in the form (30).
The gain value for the equivalent accelerometer in equation (28) is then
simply

mI B + m(xEF B, + M') as

go = 1 1 . (32)
IN' +m M X, + F(I + mexA) Bo

Substituting an equivalent accelerometer for an angle-of-attack meter can
be done with or without resorting to an angular acceleration feedback as
indicated by the free parameter a, in equation (32). The angular accelera-
tion feedback term a, could be used to compensate for unreasonably high

or low values of the accelerometer gain go. An illustration of such a
conversion from angle-of-attack meter to equivalent accelerometer and

vice versa is given in the nomograms of Figures 2 through 4 for the

Saturn V vehicle at maximum dynamic pressure. In Figure 2, the depend-
ency of the gain values of an equivalent accelerometer is shown with




respect to its location along the longitudinal vehicle axis with the

gain value B, of the angle of attack as parameter and no angular accelera-
tion feedback (a5 = 0). For high gain values of the angle-of-attack meter,
locations of the accelerometer in front of the center of mass (x < 0)
require ‘excessively high accelerometer gains and are therefore to be
avoided.

Figures 3 and 4 show similar nomograms employing angular acceleration
feedback which results in changes of the gain value of the equivalent
accelerometer, The above results could have also been derived using a
body-fixed reference frame as long as the arising integral terms are
properly compensated for, Such a compensation is necessary when a body-
fixed velocity meter and displacement meter are used in a space-fixed
reference frame. In the following discussion, it will always be assumed
that the proper compensation has been done such that ensuing results and
conclusions apply equally well to a body-fixed or space-fixed reference
frame.

IV, SYSTEM STABILITY

The characteristic equation governing system stability in the space-
fixed reference frame is obtained by omitting the external disturbance
w, assuming a time dependency of eSt in equations (7), (8), and (9) and
setting the resultant determinant equal to zero. This yields the fourth
order polynomial:

AN' Fx

FB, I 1
IN' o E ™
mIS“‘+<V + v -FIEl+mA1FxE> sa+( v Al""V_Al
'FXE M'
2

+m FxE B, +m M - FIE, +m FxEA;> s< + = A, - v A,

TFxE '

) R W ] [

- B -y FME1+NxEFE1+TFxEE1>s

+ (N'x, - M+ Tx) FEg = 0. (33)




To simplify further discussion, we abandon the constraint of the lateral
translation by setting Eg = 0. As a consequence, the vehicle has lost
control over its lateral position. This penalty, however, is not severe,
since one can hope to correct for a temporary deviation from the standard
flight trajectory at a later flight time. The characteristic equation is
now of third order. Two of its roots are, in general, conjugate complex
(control roots) having an absolute value which is large compared to the
absolute value of the third real root (drift root) of the polynomial,

The stability behavior of the rotational mode (control mode) can, there-

fore, be approximately analyzed by the first three terms of the polynomial
(33)

. - FBO FEl A;,_ xE-M FxE (A0+B°)+M"~
Flav Y av T B F I }=0’

(34)

From equation (34) we can draw several important conclusions., The first
concerns the frequency of the rotational mode (control frequency) which

is represented by the last term of the above equation, It is affected

by both the attitude and angle-of-attack feedback (A, + By). The atti-
tude rate feedback, A;, has the tendency to increase the control frequency,
This influence is, however, very small and can be neglected in most prac-
tical cases, It is also important to notice the absence of a velocity
feedback term, E;, from which we conclude that its influence on the
(undamped) control frequency is also negligible. The undamped control
frequency can, therefore, be approximated by

1
Fx, (A, +B)) +M

Wl = 1 . (35)

Because of experimental and theoretical uncertainties in the aerodynamic
coefficient M' (< O for unstable configurations), it is common practice
to choose the values of A, and B, such that the first term of equation
(35) becomes predominant in order to guarantee a comfortable stability
margin,

The second conclusion concerns the damping of the control mode which
is represented by the second term of equation (34). Angle-of-attack feed-
back (By) tends to increase the damping of the control mode, whereas
velocity feedback (E,) decreases it. However, both of these influences
are small in comparison to the attitude rate feedback term, A;, for prac-
tically encountered gain values. The aerodynamic damping term in

10




equation (34) is also very small such that the "control damping" can be
approximately written as

Al Fx Al w
< ——FE_ - : 36)
Cc 21 W, 2(Ap + By + M'/FxE) (

Dropping all negligible terms in equation (33), we can rewrite it in the
form

F(N'x, - M')
mIs® + mA4 FxEsz + {%FXE A, + B)) +m M'j—s + 5 A
TFx.. B '
_ E o IM ' e -
v v T F(N X, = M' + Tx;) Ey = O, (37)

The stability boundaries of this equation are given as follows:

(a) Static Stability Boundary (D, = O)

(N' -M')A_ + {(T+1N") -M'}E SV
By = h: 2 B - _F . (38)
TXE

(b) Dynamic Stability Boundary (DiDs = DgD=)

(N'x_ - M' - A;Fx ) A+ {(T + ¥') x -M'}E‘.l-(l+z3:1)M’
B = E E” o E F
= - s
(T + A]_F) XE
(39)

where E; = E,V and Al==A1V/2p.

11



The stability boundaries become straight lines in the By/Ag-plane using
El as a parameter or in the El/A0 plane using Bo as a parameter. The
corresponding stability areas are illustrated for pure angle-of-attack
feedback (El = 0) in Figure 5 and for pure velocity feedback (Bg = 0)
in Figure 6. Both figures show the stability areas for the system
described in a space-fixed as well as in a body-fixed coordinate sys-
tem., The transition from space-fixed to body-fixed coordinates is
readily obtained by setting T = O in equations (38) and (39). Because
of the dominance of the A;-term in equation (39), the dynamic stability
line in the Bg/Ag-plane has a slope of approximately -45 degrees, and
the slope of the dynamic stability line in the E,/Ag-plane assumes a
rather high (positive) value,

A comparison of the stability behavior of the system shows a remark-
able difference between the space-fixed and body-fixed coordinate sys-
tem regarding the boundaries of static instability. In the space-fixed
coordinate system, this static instability occurs if the angle-of-
attack feedback gain, By, is being increased. Physically it represents
the gain value of B, beyond which the vehicle turns its nose into the
wind to such a degree that it acquires a negative drift velocity; i.e.,
the vehicle flies against the wind.

Another point of interest in the stability areas is the zero-
crossing of the dynamic stability boundary. This occurs approximately
at the value of the angular displacement feedback gain, Ay, at which
the restoring moment of the swivel engines compensates the overturning
aerodynamic moment.

V. STEADY-STATE RESPONSE

The response of the vehicle is subject to two basic constraints.
One is the limitation of the control variable, B, the other the design
limit of the bending moment. For rigid body considerations, as in this
discussion, the bending moment can be expressed as a linear combination
of the angle-of-attack, o, and the control variable, B, in the form [1}];:

M(x,t) = M('x(x) a(t) + M'B(x) B(t). (40)

12




The objective of aerodynamic load relief is to reduce this bending moment
by a control system design which forces the vehicle to turn into the wind
without excessively high excursions of the engine deflection. To investi-
gate the response pattern of the various control modes which we can choose
within the stability areas depicted in Figures 5 and 6, we first derive
the expression for the steady state response of the system to a unit step
input.

This is obtained by setting all time derivatives equal to zero,
Since we assume in the following that the guidance term, E,, is omitted,
the system is only quasi-stable in its lateral position, y. Therefore,
the vehicle assumes in its steady state a constant lateral velocity, ¥,
when a unit step function is applied and we have to retain all y-terms
in the equations when the steady state responses are obtained for this
case,

By introducing the abbreviation

CO = (N'xE - M') Ao - TXE BO - %M"l‘ (N'KE - M + TXE) El, (41)

the steady-state response in the space-fixed coordinate system is thus
given as

@/ gg = g5 Ea (42)
e
(Bﬂlw)ss = Ea (43)
(o]
WN'x, - M) _
(@KXW)SS = - XEO Ei (44)
(N'xE - M) Al - Txg B, - %’M'
/v = —— = : (45)

The next step is to find control modes which exhibit load relief
features such that the vehicle turns into the wind in its steady-state
response.

13




A. Gyro Control

This is the simplest_control mode which employs attitude and
attitude rate feedback only (E; = By = 0). It can be readily seen that
in this case all steady-state values vanish with the exception of the
lateral velocity, ¥, which approaches the wind velocity, w. The vehicle
starts drifting with the wind, but does not turn into it. A load relief
in the above sense is therefore not achieved, although the steady-state
bending moment is zero.

B. Velocity=-Feedback Control

This control mode employs a velocity-feedback, E;, in addition
to attitude and attitude-rate feedback. Since N'x, >M' and C, > 0 for
a (statically) stable vehicle, we deduce from equation (44) that the
steady-state attitude of the vehicle is negative; this means, according
to the adopted sign convention, that the vehicle turns into the wind and
that this control mode exhibits the desired load relief feature. 1In
addition, the lateral drift velocity ¥ is smaller than the steady-state
wind velocity. Since the vehicle does not completely drift with the wind,
it stays closer to the nominal flight path, It assumes steady-state
values for angle of attack and engine deflection, and therefore has also
a steady-state bending moment,

C. Angle-of-Attack Control

This control mode is characterized by an angle~of-attack feed-
back, B,, in addition to attitude and attitude rate feedback. In general,
this control mode will yield the same steady-state values as the gyro
control mode. However, there exists an important special case for a

feedback signal, By, such that

(N'xy - M') A - % M
Txg

By = . (46)

With this gain value, the steady-state responses of equations (42)-(45)
become independent of the velocity-feedback gain, E;. They are as follows:

TxE
(O%XW)DM - N'xE - M' + TxE

(47)
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(Blodpy = = ¥x. - W + % (48)

@/%dpy = - N ro - M7 ¥ Tx (49)

(/04 = O (50)

This control mode is referred to as "drift-minimum control" [2]. It
derives its name from the fact that, in this particular control mode,

the steady-state drift velocity vanishes. If the velocity-feedback,

E,, is zero (pure angle-of-attack control), then the drift velocity, ¥,
will assume the indeterminate form 0/0. Physically speaking, this means
that the steady-state drift velocity is determined by initial conditions
and transient motion of the vehicle. 1Its final value is usually very
small in comparison to the steady-state wind velocity. The drift-minimum
control mode, therefore, leads to small deviations from the nominal flight
path., From equation (49) it can also be seen that the drift-minimum con-
trol mode exhibits the desired load relief feature by assuming a negative
steady-state attitude. Because of the dual feature of providing minimum
drift and load relief, the drift-minimum control mode has been intensively
studied in the past [3, 4]. The steady-state bending moment, however,
does not vanish.

The drift-minimum condition of equation (46) leads to an operat-
ing point which lies on the static stability boundary of the stability
area for the space-fixed coordinate system (Figure 5). This means that
the drift root of the characteristic polynomial becomes zero. The
45-degree dotted line represents points for which the control frequency
remains constant; i.e., Aj + B, = const. For the space-fixed coordinate
system, the drift-minimum condition represents the highest angle-of~
attack feedback possible without becoming unstable, Since no instability,
however, occurs at this point in the body-fixed coordinate system, it is
possible to further increase the angle-of-attack feedback gain. Keeping
the control frequency constant, we thus arrive at a point where the atti-
tude feedback gain, Ay, equals 0. This control mode is referred to as
"load-minimum control." 1In this control mode, the vehicle turns com-
pletely into the wind (¢ = - o). All other steady-state values vanish.
Therefore, the steady-state bending moment becomes zero, justifying the
name given to this particular control mode.

15



VI. TRANSTENT RESPONSE

The control mode to be adopted for load alleviation will also
strongly depend on the transient behavior of the vehicle, especially
how fast the vehicle can be turned into the wind. The effectiveness of
the load alleviation is directly proportional to this "turnability"
parameter, which is given by the quantity Co = FxE/I. Other factors
of importance are the wind, wind shear and turbulence characteristics,
and the relative magnitude of the coefficients M)} and M} of the bend-
ing moment equation (40) at the critical stations of the vehicle,

To gain more insight into the salient features of the various pos-
sible control modes and to assess their relative merits or demerits, the
response behavior of a Saturn V space vehicle was investigated for the
maximum dynamic pressure region, Two basic wind input functions were
applied. One is a ramp input, which serves to illustrate the effect of
an average wind shear of 0.02 m/sec/m building up to a maximum level of
75 m/sec, the other a step input of the same magnitude demonstrating the
effect of a severe gust condition, The feedback gains of the different
control modes investigated were set to give a control frequency of 0.15 cps
and a critical control damping of 70 percent in each case. All response
curves are plotted for both the space-fixed coordinate system (subscript s)
and the body~fixed coordinate system (subscript B),.

At first the response behavior is shown for a simple gyro control
mode in Figures 7 and 8. The attitude remains positive at all times for
the ramp input as well as for the step input. The vehicle does not turn
into the wind, and no load relief is obtained. The steady-state values
gradually drop to zero with the exception of the drift angle ¥ which
approaches the wind angle, ¢,; i.e., the vehicle drifts with the wind.
Introducing angle-of-attack feedback in the form of the drift minimum
control mode changes the response pattern radically, For the ramp input
(Figure 9), the vehicle attitude very rapidly becomes negative; this
reduces the angle of attack simultaneously, This reduction of angle of
attack can even be achieved with a smaller engine deflection than in the
gyro control mode. For such wind input function, the drift minimum con-
trol mode would, therefore, also reduce the bending moment in comparison
to that of the gyro control mode. Especially conspicuous - at least for
the space-fixed coordinate system -~ is the extremely low drift angle, 7.
The steady state responses approach the values as given in equations (47)
through (49). TFor the step input (Figure 10), the system reacts immediately
with a comparatively large transient engine deflection, which causes the
vehicle to turn instantly into the wind. This results in a substantial
reduction of the angle of attack, After the initial kick, the engine
quickly settles down to its steady state value. Because of the high
engine excursion, the evaluation of the system response with regard to
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the desired load alleviation now becomes more complicated. If the
turnability, Cs, of the vehicle is high and if the thrust coefficient,
M'B of equation (40) does not contribute significantly to the total
bending moment, it is possible that the engine deflection stays within
its design limit and that the bending moments can be reduced in compari-
son to those of the gyro control mode. A careful investigation must
therefore be made whether or not the predicted wind shear or gust condi-
tions allow a load reduction by using the drift minimum control mode.

Adopting the "load minimum" control mode (Figures 11 and 12) shows
that all statements made for the drift minimum control mode apply also
for this type of control, but in a stronger sense. Low wind buildups
lead to very favorable conditions for load alleviation, whereas high
wind shears will lead to even more severe engine deflections than those
exhibited for the drift minimum control mode. It is interesting that
the already discussed instability of the system which appears in the
space-fixed reference frame results in a tumbling of the vehicle. 1In
the body-fixed reference frame, this instability does not exist, and
the vehicle merely turns completely into the wind; i.e.,, @ = -C4.
Finally Figures 13 and 14 give an example of a velocity feedback con-
trol mode., This control mode also causes the vehicle to turn into the
wind with a consequent reduction of the bending moment, at least under
low wind shear conditions. For high wind shear or gusts, the engine
deflections are less severe than in the previously discussed control
modes; this makes the velocity feedback an attractive candidate for
load reduction under high wind shear and gust conditions. Also, the
velocity feedback control mode assists in reducing lateral drift veloc-
ities, and should, therefore, be preferred over a reduced angle-of-attack
feedback which does not exhibit this feature,

CONCLUSTONS

The reduction of aerodynamic loads is possible by careful selection
of an appropriate control mode under a large class of wind and wind shear
conditions, However, the effectiveness of the load reduction depends
decisively on the vehicle configuration and the wind shear characteristics
of the atmospheric disturbances. If the power level of the atmospheric
disturbances is concentrated at high frequencies, the possibility of a
load reduction is vastly reduced because of high engine excursions which
tend to increase the total bending moments. 1In this case, improvement
can be obtained through various modifications of the discussed control
modes by introducing nonlinear and adaptive control techniques. However,
preliminary load studies such as those discussed above always have to be
supplemented by more refined analyses incorporating the effects of flex-
ibility, sloshing, etc. This, under certain circumstances, can lead to
drastic reevaluation, or even rejection, of control modes which had proven
to be satisfactory under simplified assumptioms.
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